1
|
Alouk I, Lv W, Chen W, Miao S, Chen C, Wang Y, Xu D. Encapsulation of Monascus pigments in gel in oil in water (G/O/W) double emulsion system based on sodium caseinate and guar gum. Int J Biol Macromol 2024; 285:138232. [PMID: 39626818 DOI: 10.1016/j.ijbiomac.2024.138232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/11/2024] [Accepted: 11/29/2024] [Indexed: 12/06/2024]
Abstract
In this study, a gel in oil in water (G/O/W) double emulsion system was developed with the objective of effectively encapsulating Monascus pigments and enhancing its stability. To this end, various formulations were prepared using guar gum co-dissolved with Monascus pigments in the internal phase and sodium caseinate as an outer phase surfactant. Different parameters were examined, including emulsion stability, encapsulation efficiency, rheological and tribological properties, as well as the light and thermal stability of the encapsulated Monascus pigments. The results demonstrated that Monascus pigments were effectively encapsulated in the G/O/W, with an encapsulation efficiency exceeding 90 %. The formulated system exhibited a relatively small particle size, which decreased with increasing guar gum and the external emulsifier contents. This resulted in an increase in viscosity accompanied by the formation of a gel-like structure and improved tribological properties, thereby enhancing the system's stability. The system with 1-1.25 % guar gum and 2.5 % sodium caseinate exhibited the highest stability for Monascus pigments, making them more resistant to heat and light. These findings have the potential to expand applications of Monascus pigments by providing a stable and effective encapsulation and delivery system that can also be utilized in the development of healthier food products.
Collapse
Affiliation(s)
- Ikram Alouk
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Wenwen Lv
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Wei Chen
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Song Miao
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork P61C996, Ireland
| | - Chao Chen
- Tianmeijian Biotechnology (Beijing) Co. Ltd, Beijing 100101, China
| | - Yanbo Wang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Duoxia Xu
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
2
|
Montoro-Alonso S, Duque-Soto C, Rueda-Robles A, Reina-Manuel J, Quirantes-Piné R, Borrás-Linares I, Lozano-Sánchez J. Functional Olive Oil Production via Emulsions: Evaluation of Phenolic Encapsulation Efficiency, Storage Stability, and Bioavailability. Nutrients 2024; 16:3909. [PMID: 39599696 PMCID: PMC11597669 DOI: 10.3390/nu16223909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES Olive oil is valued for its health benefits, largely due to its bioactive compounds, including hydroxytyrosol (HTyr) and oleuropein (OLE), which have antioxidant, anti-inflammatory, and cardioprotective properties. However, many of these compounds are lost during the production process. This study developed a functional olive oil-derived product using water-in-oil emulsions (W/O) to incorporate commercial extracts rich in HTyr and OLE. METHODS HTyr and OLE were encapsulated in a W/O emulsion to preserve their bioactivity. The encapsulation efficiency (EE) was evaluated, and the performance of the emulsion was tested using an in vitro gastrointestinal digestion model. Bioaccessibility was measured by calculating the recovery percentage of HTyr and OLE during the digestion stages. RESULTS The results showed that OLE exhibited higher EE (88%) than HTyr (65%). During digestion, HTyr exhibited a gradual and controlled release, with bioaccessibility exceeding 80% in the gastric phase and a maintained stability throughout the intestinal phase. In contrast, OLE displayed high bioaccessibility in the gastric phase but experienced a notable decrease during the intestinal phase. Overall, the W/O emulsion provided superior protection and stability for both compounds, particularly for the secoiridoids, compared to the non-emulsified oil. CONCLUSIONS The W/O emulsion improved the encapsulation and bioaccessibility of HTyr and OLE, constituting a promising method for enriching olive oil with bioactive phenolic compounds. Therefore, this method could enhance olive oil's health benefits by increasing the availability of these bioactive compounds during digestion, offering the potential for the development of fortified foods.
Collapse
Affiliation(s)
- Sandra Montoro-Alonso
- Department of Food Science and Nutrition, University of Granada, Campus Universitario Cartuja s/n, 18071 Granada, Spain; (S.M.-A.); (J.R.-M.); (J.L.-S.)
| | - Carmen Duque-Soto
- Department of Food Science and Nutrition, University of Granada, Campus Universitario Cartuja s/n, 18071 Granada, Spain; (S.M.-A.); (J.R.-M.); (J.L.-S.)
| | - Ascensión Rueda-Robles
- Department of Food Science and Nutrition, University of Granada, Campus Universitario Cartuja s/n, 18071 Granada, Spain; (S.M.-A.); (J.R.-M.); (J.L.-S.)
| | - José Reina-Manuel
- Department of Food Science and Nutrition, University of Granada, Campus Universitario Cartuja s/n, 18071 Granada, Spain; (S.M.-A.); (J.R.-M.); (J.L.-S.)
| | - Rosa Quirantes-Piné
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Campus Fuentenueva s/n, 18071 Granada, Spain; (R.Q.-P.); (I.B.-L.)
| | - Isabel Borrás-Linares
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Campus Fuentenueva s/n, 18071 Granada, Spain; (R.Q.-P.); (I.B.-L.)
| | - Jesús Lozano-Sánchez
- Department of Food Science and Nutrition, University of Granada, Campus Universitario Cartuja s/n, 18071 Granada, Spain; (S.M.-A.); (J.R.-M.); (J.L.-S.)
| |
Collapse
|
3
|
Pan Y, Ma X, Sun J, Bai W. Fabrication and characterization of anthocyanin-loaded double Pickering emulsions stabilized by β-cyclodextrin. Int J Pharm 2024; 655:124003. [PMID: 38492900 DOI: 10.1016/j.ijpharm.2024.124003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
Anthocyanins, one of the important water-soluble pigments, are sensitive to environmental factors, which limits the application of anthocyanins in food field. In order to overcome this limitation, double Pickering emulsions stabilized by β-cyclodextrin were developed. The optimum preparation conditions of the emulsions were determined firstly and the performance and structure of emulsions were investigated. Results showed that the optimum preparation conditions of emulsions were the ratio of (W1/O): W2 = 6:4 and 4 % β-cyclodextrin concentration. Optical microscope and confocal laser scanning microscope results confirmed that β-cyclodextrin adsorbed onto the surface of droplets forming stable double Pickering emulsions structure. In vitro gastrointestinal digestion experiments proved that double Pickering emulsions played a controlled-release effect in the small intestine. Rheological analysis proved that the emulsions exhibited elastic properties and demonstrated shear thinning behavior. The emulsions showed excellent stability under centrifugation and thermal conditions. These findings will promote anthocyanins' application in daily diet.
Collapse
Affiliation(s)
- Yibo Pan
- School of Chemical Engineering and Light Industry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Xiaoqiang Ma
- School of Chemical Engineering and Light Industry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Jianxia Sun
- School of Chemical Engineering and Light Industry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510006, Guangdong, China.
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, Guangdong, China.
| |
Collapse
|
4
|
Parralejo-Sanz S, Quereda-Moraleda I, Requena T, Cano MP. Encapsulation of Indicaxanthin-Rich Opuntia Green Extracts by Double Emulsions for Improved Stability and Bioaccessibility. Foods 2024; 13:1003. [PMID: 38611309 PMCID: PMC11012069 DOI: 10.3390/foods13071003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Opuntia ficus-indica var. Colorada fruit is an important source of indicaxanthin, a betalain with antioxidant, anti-inflammatory, and neuromodulatory potential, proven in both in vitro and in vivo models. Other betalains and phenolic compounds with bioactive activities have also been identified in Colorada fruit extracts. These compounds may degrade by their exposure to different environmental factors, so in the present research, two double emulsion systems (W1/O/W2) were elaborated using Tween 20 (TW) and sodium caseinate (SC) as surfactants to encapsulate Colorada fruit pulp extracts, with the aim of enhancing their stability during storage. Encapsulation efficiencies of up to 97.3 ± 2.7%, particle sizes between 236 ± 4 and 3373 ± 64 nm, and zeta potential values of up to ∣46.2∣ ± 0.3 mV were obtained. In addition, the evaluation of the in vitro gastro-intestinal stability and bioaccessibility of the main individual bioactives was carried out by standardized INFOGEST© protocol, obtaining the highest values for the encapsulated extract bioactives in comparison with the non-encapsulated extract (control). Especially, TW double emulsion showed bioaccessibility values of up to 82.8 ± 1.5% for the main bioactives (indicaxanthin, piscidic acid, and isorhamnetin glucoxyl-rhamnosyl-pentoside 2 (IG2)), indicating a promising potential for its use as a functional natural colorant ingredient.
Collapse
Affiliation(s)
- Sara Parralejo-Sanz
- Laboratory of Phytochemistry and Plant Food Functionality, Biotechnology and Food Microbiology Department, Institute of Food Science Research (CIAL) (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain (I.Q.-M.)
| | - Isabel Quereda-Moraleda
- Laboratory of Phytochemistry and Plant Food Functionality, Biotechnology and Food Microbiology Department, Institute of Food Science Research (CIAL) (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain (I.Q.-M.)
| | - Teresa Requena
- Laboratory of Functional Biology of Lactic Bacteria, Biotechnology and Food Microbiology Department, Institute of Food Science Research (CIAL) (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain;
| | - M. Pilar Cano
- Laboratory of Phytochemistry and Plant Food Functionality, Biotechnology and Food Microbiology Department, Institute of Food Science Research (CIAL) (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain (I.Q.-M.)
| |
Collapse
|
5
|
Lee J, Kwak E, Kim HT, Jo YJ, Choi MJ. Influence of different electrolytes and oils on the stability of W 1/O/W 2 double emulsion during storage and in vitro digestion. Food Sci Biotechnol 2023; 32:1515-1529. [PMID: 37637838 PMCID: PMC10449744 DOI: 10.1007/s10068-023-01282-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/24/2023] [Accepted: 02/10/2023] [Indexed: 03/01/2023] Open
Abstract
The aim of this study is to formulate a stable water-in-oil-in-water (W1/O/W2) double emulsion using different types of oils and electrolytes. W1/O was formulated with different electrolyte solutions (W1) dispersed in various oils (O) using polyglycerol polyricinoleate as a stabilizer. External aqueous phase was Tween-80 (W2), and W1/O dispersed in W2 was used. The emulsion containing NaCl or MgCl2 exhibited high encapsulation efficiency (EE) and maintained particle size. Regarding the oil type, the emulsion with MCT oil showed a small droplet size and a high viscosity and EE, presenting a stable droplet distribution in optical observation. The stability of emulsion containing NaCl was maintained during the in vitro digestion experiments. MCT oil, NaCl and MgCl2 have the potential to produce stable double emulsions for storage stability and in vitro digestion studies. The findings would be useful for preparing stable double emulsions used in the food and cosmetic industries.
Collapse
Affiliation(s)
- Jiseon Lee
- Carbohydrate Bioproduct Research Center, Sejong University, Seoul, 05006 Republic of Korea
| | - Eunji Kwak
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, 120 Neudong-ro, Seoul, 05029 Republic of Korea
| | - Hyo-Tae Kim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, 120 Neudong-ro, Seoul, 05029 Republic of Korea
| | - Yeon-Ji Jo
- Department of Food Processing and Distribution, Gangneung-Wonju National University, Gangneung, Gangwon 25457 Republic of Korea
| | - Mi-Jung Choi
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, 120 Neudong-ro, Seoul, 05029 Republic of Korea
| |
Collapse
|
6
|
Parralejo-Sanz S, Gómez-López I, González-Álvarez E, Montiel-Sánchez M, Cano MP. Oil-Based Double Emulsion Microcarriers for Enhanced Stability and Bioaccessibility of Betalains and Phenolic Compounds from Opuntia stricta var. dillenii Green Extracts. Foods 2023; 12:foods12112243. [PMID: 37297486 DOI: 10.3390/foods12112243] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Opuntia cactus fruit (prickly pear flesh and agricultural residues such as peels and stalks) is an important source of bioactive compounds, including betalains and phenolic compounds. In this work, two double emulsion W1/O/W2 formulations (A and B) were designed to encapsulate green extracts rich in betalains and phenolic compounds obtained from Opuntia stricta var. dillenii (OPD) fruits with the aim of improving their stability and protecting them during the in vitro gastrointestinal digestion process. In addition, the characterization of the double emulsions was studied by microscopy and the evaluation of their physical and physico-chemical parameters. Formulation A, based on Tween 20, showed smaller droplets (1.75 µm) and a higher physical stability than Formulation B, which was achieved with sodium caseinate (29.03 µm). Regarding the encapsulation efficiency of the individual bioactives, betalains showed the highest values (73.7 ± 6.7 to 96.9 ± 3.3%), followed by flavonoids (68.2 ± 5.9 to 95.9 ± 7.7%) and piscidic acid (71 ± 1.3 to 70.2 ± 5.7%) depending on the formulation and the bioactive compound. In vitro digestive stability and bioaccessibility of the individual bioactives increased when extracts were encapsulated for both formulations (67.1 to 253.1%) in comparison with the non-encapsulated ones (30.1 to 64.3%), except for neobetanin. Both formulations could be considered as appropriate microcarrier systems for green OPD extracts, especially formulation A. Further studies need to be conducted about the incorporation of these formulations to develop healthier foods.
Collapse
Affiliation(s)
- Sara Parralejo-Sanz
- Laboratory of Phytochemistry and Functionality of Plant Foods, Department of Biotechnology and Food Microbiology, Institute of Food Research (CIAL) (CSIC-UAM), 28049 Madrid, Spain
| | - Iván Gómez-López
- Laboratory of Phytochemistry and Functionality of Plant Foods, Department of Biotechnology and Food Microbiology, Institute of Food Research (CIAL) (CSIC-UAM), 28049 Madrid, Spain
- Nutrition and Obesity Group, Department of Nutrition and Food Science, Faculty of Pharmacy and Lucio Lascaray Research Center, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
| | - Erika González-Álvarez
- Laboratory of Phytochemistry and Functionality of Plant Foods, Department of Biotechnology and Food Microbiology, Institute of Food Research (CIAL) (CSIC-UAM), 28049 Madrid, Spain
| | - Mara Montiel-Sánchez
- Laboratory of Phytochemistry and Functionality of Plant Foods, Department of Biotechnology and Food Microbiology, Institute of Food Research (CIAL) (CSIC-UAM), 28049 Madrid, Spain
- Unidad de Investigación y Desarrollo en Alimentos, TecNM/Instituto Tecnológico de Veracruz, Miguel Ángel de Quevedo 2779, Veracruz 91897, Mexico
| | - M Pilar Cano
- Laboratory of Phytochemistry and Functionality of Plant Foods, Department of Biotechnology and Food Microbiology, Institute of Food Research (CIAL) (CSIC-UAM), 28049 Madrid, Spain
| |
Collapse
|
7
|
Milinčić DD, Salević-Jelić AS, Kostić AŽ, Stanojević SP, Nedović V, Pešić MB. Food nanoemulsions: how simulated gastrointestinal digestion models, nanoemulsion, and food matrix properties affect bioaccessibility of encapsulated bioactive compounds. Crit Rev Food Sci Nutr 2023; 64:8091-8113. [PMID: 37021463 DOI: 10.1080/10408398.2023.2195519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Food nanoemulsions are known as very effective and excellent carriers for both lipophilic and hydrophilic bioactive compounds (BCs) and have been successfully used for controlled delivery and protection of BCs during gastrointestinal digestion (GID). However, due to sensitive and fragile morphology, BCs-loaded nanoemulsions have different digestion pathways depending on their properties, food matrix properties, and applied models for testing their digestibility and BCs bioaccessibility. Thus, this review gives a critical review of the behavior of encapsulated BCs into food nanoemulsions during each phase of GID in different static and dynamic in vitro digestion models, as well as of the influence of nanoemulsion and food matrix properties on BCs bioaccessibility. In the last section, the toxicity and safety of BCs-loaded nanoemulsions evaluated on in vitro and in vivo GID models have also been discussed. Better knowledge of food nanoemulsions' behavior in different models of simulated GI conditions and within different nanoemulsion and food matrix types can help to standardize the protocol for their testing aiming for researchers to compare results and design BCs-loaded nanoemulsions with better performance and higher targeted BCs bioaccessibility.
Collapse
Affiliation(s)
- Danijel D Milinčić
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Belgrade, Serbia
| | - Ana S Salević-Jelić
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Belgrade, Serbia
| | - Aleksandar Ž Kostić
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Belgrade, Serbia
| | - Slađana P Stanojević
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Belgrade, Serbia
| | - Viktor Nedović
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Belgrade, Serbia
| | - Mirjana B Pešić
- Faculty of Agriculture, Institute of Food Technology and Biochemistry, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
8
|
López de Dicastillo C, Velásquez E, Rojas A, Garrido L, Moreno MC, Guarda A, Galotto MJ. Developing Core/Shell Capsules Based on Hydroxypropyl Methylcellulose and Gelatin through Electrodynamic Atomization for Betalain Encapsulation. Polymers (Basel) 2023; 15:polym15020361. [PMID: 36679242 PMCID: PMC9866801 DOI: 10.3390/polym15020361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 01/13/2023] Open
Abstract
Betalains are bioactive compounds with remarkable functional and nutritional activities for health and food preservation and attractiveness. Nevertheless, they are highly sensitive to external factors, such as oxygen presence, light, and high temperatures. Therefore, the search for new structures, polymeric matrices, and efficient methods of encapsulation of these compounds is of great interest to increase their addition to food products. In this work, betalains were extracted from red beetroot. Betacyanin and betaxanthin contents were quantified. Subsequently, these compounds were successfully encapsulated into the core of coaxial electrosprayed capsules composed of hydroxypropyl methylcellulose (HPMC) and gelatin (G). The effect of incorporating the carbohydrate and the protein both in the core or shell structures was studied to elucidate the best composition for betalain protection. Morphological, optical, and structural properties were analyzed to understand the effect of the incorporation of the bioactive compounds in the morphology, color, and chemical interactions between components of resulting electrosprayed capsules. The results of the thermogravimetric and encapsulation efficiency analysis coincided that the incorporation of beetroot extract in G in the core and HPMC in the shell resulted in the structure with greater betalain protection. The effectiveness of the core/shell structure was confirmed for future food applications.
Collapse
Affiliation(s)
- Carol López de Dicastillo
- Packaging Laboratory, Institute of Agrochemistry and Food Technology (IATA-CSIC), Av. Agustín Escardino 7, 46980 Paterna, Spain
| | - Eliezer Velásquez
- Packaging Innovation Center (LABEN), Department of Food Science and Technology, Technology Faculty, University of Santiago de Chile (USACH), Santiago 9170201, Chile
- CEDENNA (Center for the Development of Nanoscience and Nanotechnology), Santiago 9170124, Chile
| | - Adrián Rojas
- Packaging Innovation Center (LABEN), Department of Food Science and Technology, Technology Faculty, University of Santiago de Chile (USACH), Santiago 9170201, Chile
- CEDENNA (Center for the Development of Nanoscience and Nanotechnology), Santiago 9170124, Chile
| | - Luan Garrido
- Packaging Innovation Center (LABEN), Department of Food Science and Technology, Technology Faculty, University of Santiago de Chile (USACH), Santiago 9170201, Chile
- CEDENNA (Center for the Development of Nanoscience and Nanotechnology), Santiago 9170124, Chile
| | - María Carolina Moreno
- Department of Chemical and Bioprocess Engineering, Faculty of Engineering, Pontificia Universidad Católica de Chile, Macul 6904411, Chile
| | - Abel Guarda
- Packaging Innovation Center (LABEN), Department of Food Science and Technology, Technology Faculty, University of Santiago de Chile (USACH), Santiago 9170201, Chile
- CEDENNA (Center for the Development of Nanoscience and Nanotechnology), Santiago 9170124, Chile
| | - María José Galotto
- Packaging Innovation Center (LABEN), Department of Food Science and Technology, Technology Faculty, University of Santiago de Chile (USACH), Santiago 9170201, Chile
- CEDENNA (Center for the Development of Nanoscience and Nanotechnology), Santiago 9170124, Chile
- Correspondence:
| |
Collapse
|
9
|
Nishikito DF, Borges ACA, Laurindo LF, Otoboni AMMB, Direito R, Goulart RDA, Nicolau CCT, Fiorini AMR, Sinatora RV, Barbalho SM. Anti-Inflammatory, Antioxidant, and Other Health Effects of Dragon Fruit and Potential Delivery Systems for Its Bioactive Compounds. Pharmaceutics 2023; 15:159. [PMID: 36678789 PMCID: PMC9861186 DOI: 10.3390/pharmaceutics15010159] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
Dragon fruit (Hylocereus genus) has the potential for the prevention of diseases associated with inflammatory and oxidative processes. We aimed to comprehensively review dragon fruit health effects, economic importance, and possible use in delivery systems. Pubmed, Embase, and Google Scholar were searched, and PRISMA (Preferred Reporting Items for a Systematic Review and Meta-Analysis) guidelines were followed. Studies have shown that pitaya can exert several benefits in conditions such as diabetes, dyslipidemia, metabolic syndrome, cardiovascular diseases, and cancer due to the presence of bioactive compounds that may include vitamins, potassium, betacyanin, p-coumaric acid, vanillic acid, and gallic acid. Moreover, pitaya has the potential to be used in food and nutraceutical products as functional ingredients, natural colorants, ecologically correct and active packaging, edible films, preparation of photoprotective products, and additives. Besides the importance of dragon fruit as a source of bioactive compounds, the bioavailability is low. The development of delivery systems such as gold nanoparticles with these compounds can be an alternative to reach target tissues.
Collapse
Affiliation(s)
| | | | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| | | | - Rosa Direito
- Laboratory of Systems Integration Pharmacology, Clinical & Regulatory Science, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Ricardo de Alvares Goulart
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| | | | | | - Renata Vargas Sinatora
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| | - Sandra M. Barbalho
- School of Food and Technology of Marilia (FATEC), São Paulo 17500-000, Brazil
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| |
Collapse
|
10
|
Wang W, Sun R, Xia Q. Influence of gelation of internal aqueous phase on in vitro controlled release of W1/O/W2 double emulsions-filled alginate hydrogel beads. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2022.111246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
11
|
Liang R, Yang J, Liu C, Yang C. Exploration of stabilization mechanism of polyol-in-oil-in-water quercetin-loaded Pickering double emulsions. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Enhancement of the Stability of Encapsulated Pomegranate (Punica granatum L.) Peel Extract by Double Emulsion with Carboxymethyl Cellulose. CRYSTALS 2022. [DOI: 10.3390/cryst12050622] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Pomegranate peel enriched with high value of bioactive phenolics with valuable health benefits. However, after extraction of the phenolic compounds, diverse factors can affect their stability. Therefore, we, herein, aimed to prepare W1/O/W2 double nanoemulsions loaded with phenolic-rich extract from pomegranate peel in the W1 phase. Double emulsions were fabricate during a two-step emulsification technique. Furthermore, the influence of sodium carboxymethyl cellulose (CMC) in the outer aqueous phase was also investigated. We found that W1/O/W2 emulsions containing phenolic-rich extract showed good physical stability, especially in the particle size, polydispersity index, zeta potential, and creaming index. Intriguingly, high encapsulation rates of pomegranate polyphenols >95% were achieved; however, emulsion with CMC had the best encapsulation stability during storage. Thus, our study provides helpful information about the double nanoemulsions delivery system for polyphenols generated from pomegranate peel, which may lead to the development of innovative polyphenol-enriched functional foods.
Collapse
|
13
|
Mohammed a N, Ishwarya, S P, Nisha P. Ice-cream as a model system to evaluate the food colorant functionality of red beet extract emulsion. JOURNAL OF CULINARY SCIENCE & TECHNOLOGY 2022. [DOI: 10.1080/15428052.2021.2024475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Noor Mohammed a
- Agro- CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, India
| | - Padma Ishwarya, S
- Agro- CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, India
| | - P. Nisha
- Agro- CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| |
Collapse
|
14
|
Kocaman E, Rabiti D, Murillo Moreno JS, Can Karaca A, Van der Meeren P. Oil Phase Solubility Rather Than Diffusivity Determines the Release of Entrapped Amino Acids and Di-Peptides from Water-in-Oil-in-Water Emulsions. Molecules 2022; 27:394. [PMID: 35056714 PMCID: PMC8778980 DOI: 10.3390/molecules27020394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 02/01/2023] Open
Abstract
The permeation of amino acids and di-peptides with different hydrophobicities across the oil phase in W/O/W double emulsions was investigated at different concentrations, considering the pH of the aqueous phase. Moreover, the particle size, yield of entrapped water and release kinetics of the double emulsions was evaluated as a function of time. Regarding the release of the entrapped amino acids and di-peptides, their hydrophobicity and the pH had a significant effect, whereas the concentration of the dissolved compound did not lead to different release kinetics. The release of the amino acids and di-peptides was faster at neutral pH as compared to acidic pH values due to the increased solute solubility in the oil phase for more hydrophobic molecules at neutral pH. Regarding the effect of the type of oil, much faster amino acid transport was observed through MCT oil as compared to LCT oil, which might be due to its higher solubility and/or higher diffusivity. As di-peptides released faster than amino acids, it follows that the increased solubility overruled the effect from the decreased diffusion coefficient of the dissolved compound in the oil phase.
Collapse
Affiliation(s)
- Esra Kocaman
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak 34469, Turkey;
- Particle and Interfacial Technology Group, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium; (D.R.); (J.S.M.M.); (P.V.d.M.)
| | - Davide Rabiti
- Particle and Interfacial Technology Group, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium; (D.R.); (J.S.M.M.); (P.V.d.M.)
| | - Juan Sebastian Murillo Moreno
- Particle and Interfacial Technology Group, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium; (D.R.); (J.S.M.M.); (P.V.d.M.)
| | - Asli Can Karaca
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak 34469, Turkey;
| | - Paul Van der Meeren
- Particle and Interfacial Technology Group, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium; (D.R.); (J.S.M.M.); (P.V.d.M.)
| |
Collapse
|
15
|
Marze S. Compositional, Structural, and Kinetic Aspects of Lipid Digestion and Bioavailability: In Vitro, In Vivo, and Modeling Approaches. Annu Rev Food Sci Technol 2022; 13:263-286. [DOI: 10.1146/annurev-food-052720-093515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Lipid digestion and bioavailability are usually investigated separately, using different approaches (in vitro, modeling, in vivo). However, a few inclusive studies show that their kinetics are closely linked. Lipid bioavailability kinetics is likely involved in the development and evolution of several diseases, so lipid digestion kinetics could be involved as well and can be modulated by food design or combination. To illustrate this possibility, the compositional and structural aspects of lipid digestion kinetics, as investigated using in vitro and modeling approaches, are presented first. Then, in vivo and mixed approaches enabling the study of both kinetics are reviewed and discussed. Finally, disparate modeling approaches are introduced, and a unifying modeling scheme is proposed, opening new perspectives for understanding the role and interactions of various factors (chemical, physical, and biological) involved in lipid metabolism. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Sébastien Marze
- INRAE, Biopolymères Interactions Assemblages, Nantes, France
| |
Collapse
|
16
|
Carreón-Hidalgo JP, Franco-Vásquez DC, Gómez-Linton DR, Pérez-Flores LJ. Betalain plant sources, biosynthesis, extraction, stability enhancement methods, bioactivity, and applications. Food Res Int 2022; 151:110821. [PMID: 34980373 DOI: 10.1016/j.foodres.2021.110821] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/20/2021] [Accepted: 11/21/2021] [Indexed: 12/16/2022]
Abstract
Betalains are plant pigments with functional properties used mainly as food dyes. However, they have been shown to be unstable to different environmental factors. This paper provides a review of (1) Betalain plant sources within several plant families such as Amaranthaceae, Basellaceae, Cactaceae, Portulacaceae, and Nyctaginaceae, (2) The biosynthesis pathway of betalains for both betacyanins and betaxanthins, (3) Betalain extraction process, including non-conventional technologies like microwave-assisted, ultrasound-assisted, and pulsed electrical field extraction, (4) Factors affecting their stability, mainly temperature, water activity, light incidence, as well as oxygen concentration, metals, and the presence of antioxidants, as well as activation energy as a mean to assess stability, and novel food-processing technologies able to prevent betalain degradation, (5) Methods to increase shelf life, mainly encapsulation by spray drying, freeze-drying, double emulsions, ionic gelation, nanoliposomes, hydrogels, co-crystallization, and unexplored methods such as complex coacervation and electrospraying, (6) Biological properties of betalains such as their antioxidant, hepatoprotective, antitumoral, and anti-inflammatory activities, among others, and (7) Applications in foods and other products such as cosmetics, textiles and solar cells, among others. Additionally, study perspectives for further research are provided for each section.
Collapse
Affiliation(s)
| | | | - Darío R Gómez-Linton
- Department of Health Science, Universidad Autónoma Metropolitana, Iztapalapa, CP 09340 Mexico City, Mexico
| | - Laura J Pérez-Flores
- Department of Health Science, Universidad Autónoma Metropolitana, Iztapalapa, CP 09340 Mexico City, Mexico.
| |
Collapse
|
17
|
Heidari F, Jafari SM, Ziaiifar AM, Malekjani N. Stability and release mechanisms of double emulsions loaded with bioactive compounds; a critical review. Adv Colloid Interface Sci 2022; 299:102567. [PMID: 34839180 DOI: 10.1016/j.cis.2021.102567] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 12/27/2022]
Abstract
Double emulsions (DEs), known as emulsions of emulsions, are dispersion systems in which the droplets of one dispersed liquid are further dispersed in another liquid, producing double-layered liquid droplets. These systems are widely used in the food and pharmaceutical industries due to their ability to co-encapsulate both hydrophilic and hydrophobic bioactive compounds. However, they are sensitive and unstable and their controlled release is challenging. In this study, first, the stability of DEs and their release mechanisms are reviewed. Then, the factors affecting their stability, and the release of bioactive compounds are studied. Finally, modeling of the release in DEs is discussed. This information can be useful to optimize the formulation of DEs in order to utilize them in different industries.
Collapse
Affiliation(s)
- Fatemeh Heidari
- Department of Food Process Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Basij Square, Gorgan, Iran
| | - Seid Mahdi Jafari
- Department of Food Process Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Basij Square, Gorgan, Iran.
| | - Aman Mohammad Ziaiifar
- Department of Food Process Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Basij Square, Gorgan, Iran
| | - Narjes Malekjani
- Department of Food Science and Technology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| |
Collapse
|
18
|
Shen Y, Zhang N, Tian J, Xin G, Liu L, Sun X, Li B. Advanced approaches for improving bioavailability and controlled release of anthocyanins. J Control Release 2021; 341:285-299. [PMID: 34822910 DOI: 10.1016/j.jconrel.2021.11.031] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/18/2022]
Abstract
Anthocyanins are a group of phytochemicals responsible for the purple or red color of plants. Additionally, they are recognized to have health promoting functions including anti-cardiovascular, anti-thrombotic, anti-diabetic, antimicrobial, neuroprotective, and visual protective effect as well as anti-cancer activities. Thus, consumption of anthocyanin supplement or anthocyanin-rich foods has been recommended to prevent the risk of development of chronic diseases. However, the low stability and bioavailability of anthocyanins limit the efficacy and distribution of anthocyanins in human body. Thus, strategies to achieve target site-local delivery with good bioavailability and controlled release rate are necessary. This review introduced and discussed the latest advanced techniques of designing lipid-based, polysaccharide-based and protein-based complexes, nano-encapsulation and exosome to overcome the limitation of anthocyanins. The improved bioavailability and controlled release of anthocyanins have great significance for gastrointestinal tract absorption, transepithelial transportation and cellular uptake. The techniques of applying different biocompatible materials and modifying the solubility of anthocyanins complex could achieve target site-local delivery with negligible degradation and good bioavailability in human body.
Collapse
Affiliation(s)
- Yixiao Shen
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110161, China
| | - Ning Zhang
- College of Horticulture Science and Technology, Hebei Normal University of Science & Technology, Hebei Key Laboratory of Horticulture Germplasm Excavation and Innovative Utilization Qinhuangdao, Hebei, China
| | - Jinlong Tian
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110161, China
| | - Guang Xin
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110161, China
| | - Ling Liu
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110161, China
| | - Xiyun Sun
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110161, China
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110161, China.
| |
Collapse
|
19
|
Sattari A, Hanafizadeh P, Keshtiban MM. Microfluidic preparation of double emulsions using a high aspect ratio double co-flow device. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Mattila P, Pap N, Järvenpää E, Kahala M, Mäkinen S. Underutilized Northern plant sources and technological aspects for recovering their polyphenols. ADVANCES IN FOOD AND NUTRITION RESEARCH 2021; 98:125-169. [PMID: 34507641 DOI: 10.1016/bs.afnr.2021.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Consumers worldwide are increasingly interested in the authenticity and naturalness of products. At the same time, the food, agricultural and forest industries generate large quantities of sidestreams that are not effectively utilized. However, these raw materials are rich and inexpensive sources of bioactive compounds such as polyphenols. The exploitation of these raw materials increases income for producers and processors, while reducing transportation and waste management costs. Many Northern sidestreams and other underutilized raw materials are good sources of polyphenols. These include berry, apple, vegetable, softwood, and rapeseed sidestreams, as well as underutilized algae species. Berry sidestreams are especially good sources of various phenolic compounds. This chapter presents the properties of these raw materials, providing an overview of the techniques for refining these materials into functional polyphenol-rich ingredients. The focus is on economically and environmentally sound technologies suitable for the pre-treatment of the raw materials, the modification and recovery of the polyphenols, as well as the formulation and stabilization of the ingredients. For example, sprouting, fermentation, and enzyme technologies, as well as various traditional and novel extraction methods are discussed. Regarding the extraction technologies, this chapter focuses on safe and green technologies that do not use organic solvents. In addition, formulation and stabilization that aim to protect isolated polyphenols during storage and extend shelflife are reviewed. The formulated polyphenol-rich ingredients produced from underutilized renewable resources could be used as sustainable, active ingredients--for example, in food and nutraceutical industries.
Collapse
Affiliation(s)
- Pirjo Mattila
- Natural Resources Institute Finland (Luke), Turku, Finland.
| | - Nora Pap
- Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | - Eila Järvenpää
- Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | - Minna Kahala
- Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | - Sari Mäkinen
- Natural Resources Institute Finland (Luke), Jokioinen, Finland
| |
Collapse
|
21
|
Eisinaitė V, Kazernavičiūtė R, Kaniauskienė I, Venskutonis PR, Leskauskaitė D. Effect of black chokeberry pomace extract incorporation on the physical and oxidative stability of water-in-oil-in-water emulsion. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:4570-4577. [PMID: 33460453 DOI: 10.1002/jsfa.11099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/17/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Despite the obvious benefits of double emulsions in reducing fat content by replacing it with the water phase, their physical and oxidative stability remains a major concern. The objective of this study was to determine the ability of black chokeberry extract to inhibit lipid oxidation during storage at 4 °C for 60 days when different amounts of the extract were added to the inner water phase of the double emulsion. In the first step, the physical stability of the emulsions was evaluated. RESULTS Higher amount of the extract caused the formation of double emulsions with smaller droplets and higher viscosity. Throughout the whole storage period, the double emulsions showed good physical stability and high encapsulation efficiency (EE) of the extract (>95%) in the inner water phase. The positive effect of the extract on the oxidative stability of the double emulsions was shown by measuring changes in peroxide values and conjugated dienes and through the Oxipres and Rancimat tests during the convenient and accelerated storage of emulsions for 60 days. CONCLUSION The higher amount of extract suppressed lipid oxidation to a higher extent given the significant amount of polyphenolics in the extract. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Viktorija Eisinaitė
- Department of Food Science and Technology, Kaunas University of Technology, Kaunas, Lithuania
| | - Rita Kazernavičiūtė
- Department of Food Science and Technology, Kaunas University of Technology, Kaunas, Lithuania
| | - Ingrida Kaniauskienė
- Department of Food Science and Technology, Kaunas University of Technology, Kaunas, Lithuania
| | | | - Daiva Leskauskaitė
- Department of Food Science and Technology, Kaunas University of Technology, Kaunas, Lithuania
| |
Collapse
|
22
|
Tessaro L, Luciano CG, Martins MFL, Ramos AP, Martelli-Tosi M, do Amaral Sobral PJ. Stable and bioactive W/O/W emulsion loaded with “Pitanga” (Eugenia uniflora L.) leaf hydroethanolic extract. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2021.1949339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Larissa Tessaro
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Carla Giovana Luciano
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Maria Fernanda Libório Martins
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Ana Paula Ramos
- Department of Chemistry, Faculty of Philosophy, Science and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Milena Martelli-Tosi
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Paulo José do Amaral Sobral
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
- Food Research Center (FoRC), University of São Paulo, Rua do Lago, São Paulo, SP, Brazil
| |
Collapse
|
23
|
Farley S, Ramsay K, Elvira KS. A plug-and-play modular microcapillary platform for the generation of multicompartmental double emulsions using glass or fluorocarbon capillaries. LAB ON A CHIP 2021; 21:2781-2790. [PMID: 34105568 DOI: 10.1039/d1lc00126d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Although multiple emulsions have a wide range of applications in biology, medicine, chemistry and cosmetics, the use of microfluidic devices to generate them remains limited to specialist laboratories. This is because of the expertise required to design and operate these technologies. Here we show a plug-and-play microcapillary platform for the generation of multicompartmental double emulsions which only requires a low cost 3D printer for fabrication and syringe pumps for operation. Our microcapillary platform is modular because we fabricate junction boxes from a flexible resin to hold and align any type of standard glass capillary or piece of tubing for droplet formation without the need for capillary alignment. The flexible resin enables total sealing of the capillaries without the need for gaskets or adhesives, and the ability to use any type of capillary or tubing means that surface treatment is not required. We show how our microcapillary platform is able to generate water-in-oil-in-water, oil-in-water-in-oil, and oil-in-oil-in-water multicompartmental double emulsions with between 1 and 10 inner droplets with high accuracy and reproducibility using standard oils (FC40, mineral oil) and inexpensive surfactants (sodium dodecyl sulfate, SDS or 1H,1H,2H,2H-perfluoro-1-octanol, PFO). Additionally, we show the formation of binary multicompartmental double emulsions, where two types of inner phase droplets can be encapsulated in the multicompartmental emulsions. Our results demonstrate how simple and accessible tools can be employed to generate a powerful modular microcapillary platform. We anticipate that the simplicity of fabrication and operation of this platform, coupled with its ability to make a wide variety of different types of emulsions, will be attractive both to microfluidic laboratories and to those without microfluidic expertise who need an enabling tool for multicompartmental double emulsion formation.
Collapse
Affiliation(s)
- Sean Farley
- Department of Chemistry, University of Victoria, Victoria, Canada.
| | - Kaitlyn Ramsay
- Department of Chemistry, University of Victoria, Victoria, Canada.
| | | |
Collapse
|
24
|
TESSARO L, MARTELLI-TOSI M, SOBRAL PJDA. Development of W/O emulsion for encapsulation of “Pitanga” (Eugenia uniflora L.) leaf hydroethanolic extract: droplet size, physical stability and rheology. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.65320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
25
|
Natural blue food colorants: Consumer acceptance, current alternatives, trends, challenges, and future strategies. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
Natural blue food colorants: Consumer acceptance, current alternatives, trends, challenges, and future strategies. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.023%0a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
27
|
Co-Microencapsulated Black Rice Anthocyanins and Lactic Acid Bacteria: Evidence on Powders Profile and In Vitro Digestion. Molecules 2021; 26:molecules26092579. [PMID: 33925173 PMCID: PMC8125259 DOI: 10.3390/molecules26092579] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/29/2021] [Accepted: 04/26/2021] [Indexed: 02/03/2023] Open
Abstract
Two multi-functional powders, in terms of anthocyanins from black rice (Oryza sativa L.) and lactic acid bacteria (Lactobacillus paracasei, L. casei 431®) were obtained through co-microencapsulation into a biopolymer matrix composed of milk proteins and inulin. Two extracts were obtained using black rice flour as a raw material and hot water and ethanol as solvents. Both powders (called P1 for aqueous extract and P2 for ethanolic extract) proved to be rich sources of valuable bioactives, with microencapsulation efficiency up to 80%, both for anthocyanins and lactic acid bacteria. A higher content of anthocyanins was found in P1, of 102.91 ± 1.83 mg cyanindin-3-O-glucoside (C3G)/g dry weight (DW) when compared with only 27.60 ± 17.36 mg C3G/g DW in P2. The morphological analysis revealed the presence of large, thin, and fragile structures, with different sizes. A different pattern of gastric digestion was observed, with a highly protective effect of the matrix in P1 and a maximum decrease in anthocyanins of approximatively 44% in P2. In intestinal juice, the anthocyanins decreased significantly in P2, reaching a maximum of 97% at the end of digestion; whereas in P1, more than 45% from the initial anthocyanins content remained in the microparticles. Overall, the short-term storage stability test revealed a release of bioactive from P2 and a decrease in P1. The viable cells of lactic acid bacteria after 21 days of storage reached 7 log colony forming units (CFU)/g DW.
Collapse
|
28
|
Maghamian N, Goli M, Najarian A. Ultrasound-assisted preparation of double nano-emulsions loaded with glycyrrhizic acid in the internal aqueous phase and skim milk as the external aqueous phase. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110850] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Fu J, Zhu Y, Cheng F, Zhang S, Xiu T, Hu Y, Yang S. A composite chitosan derivative nanoparticle to stabilize a W 1/O/W 2 emulsion: Preparation and characterization. Carbohydr Polym 2021; 256:117533. [PMID: 33483050 DOI: 10.1016/j.carbpol.2020.117533] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/21/2020] [Accepted: 12/08/2020] [Indexed: 12/31/2022]
Abstract
For preparing stable water-in-oil-in-water emulsion, the role of nanoparticles in stabilizing the interface is very important. In this study, chitosan hydrochloride-carboxymethyl chitosan (CHC-CMC) nanoparticles were prepared considering electrostatic interactions; then the emulsion was prepared and the stability characteristics in presence of NaCl (0-200 mmol/L) and 30 d storage were studied. CHC-CMC nanoparticles (261 nm) were obtained when the CHC: CMC ratio was 1:2. CHC-CMC formation was verified by FT-IR when a new peak appeared at 1580 cm-1; W2 contained 2 wt % CHC-CMC and W1 contained 1 wt % sodium alginate, the creaming index (81.6 %) was higher for the emulsions than Tween 80 (67.4 %) after 30 d. Confocal laser scanning microscopy confirmed the double microstructures, in contrast to the collapse with Tween 80, because the CHC-CMC nanoparticles were densely adsorbing on the oil-water interface. This indicates that CHC-CMC has a stronger ability to stabilize W1/O/W2 emulsion than Tween 80.
Collapse
Affiliation(s)
- Juanjuan Fu
- Food Science and Engineering College, Qingdao Agricultural University, No. 700, Changcheng Road, Qingdao 266109, PR China
| | - Yinglian Zhu
- Food Science and Engineering College, Qingdao Agricultural University, No. 700, Changcheng Road, Qingdao 266109, PR China
| | - Fansheng Cheng
- Food Science and Engineering College, Qingdao Agricultural University, No. 700, Changcheng Road, Qingdao 266109, PR China
| | - Shuangling Zhang
- Food Science and Engineering College, Qingdao Agricultural University, No. 700, Changcheng Road, Qingdao 266109, PR China.
| | - Tiantian Xiu
- Food Science and Engineering College, Qingdao Agricultural University, No. 700, Changcheng Road, Qingdao 266109, PR China
| | - Yue Hu
- Food Science and Engineering College, Qingdao Agricultural University, No. 700, Changcheng Road, Qingdao 266109, PR China
| | - Shuo Yang
- Food Science and Engineering College, Qingdao Agricultural University, No. 700, Changcheng Road, Qingdao 266109, PR China
| |
Collapse
|
30
|
Nanoemulsion Versus Microemulsion Systems for the Encapsulation of Beetroot Extract: Comparison of Physicochemical Characteristics and Betalain Stability. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-020-02562-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
31
|
Water-in-Oil-in-Water Nanoemulsions Containing Temulawak ( Curcuma xanthorriza Roxb) and Red Dragon Fruit ( Hylocereus polyrhizus) Extracts. Molecules 2021; 26:molecules26010196. [PMID: 33401775 PMCID: PMC7795868 DOI: 10.3390/molecules26010196] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/27/2020] [Accepted: 12/29/2020] [Indexed: 11/29/2022] Open
Abstract
Hydrophobic curcumin in temulawak extract and hydrophilic betacyanin in red dragon fruit extract are high-value bioactive compounds with extensive applications in functional food. In this study, these extracts were encapsulated in water-in-oil-in-water (w/o/w) nanoemulsions as a delivery system using a two-step high-energy emulsification method. PGPR and Span 20 were used as lipophilic emulsifiers for the primary w/o emulsion. The most stable w/o/w formulation with the least oil phase separation of 5% v/v consisted of w/o emulsion (15% w/w) and Tween 80 (1.5% w/w) as hydrophilic emulsifier. The formulation was characterized by a 189-nm mean droplet diameter, 0.16 polydispersity index, and –32 mV zeta potential. The freeze–thaw stability may be attributed to the combination of low w/o emulsion content and high Tween 80 concentration in the outer water phase of the w/o/w nanoemulsions used in this study. The IC50 values of the nanoemulsion and the red dragon fruit extract were similar. It means that the higher concentration of curcumin in the nanoemulsions and the lower IC50 value of temulawak extract ensured sufficient antioxidant activities of the w/o/w nanoemulsions.
Collapse
|
32
|
Huang Z, Brennan CS, Mohan MS, Stipkovits L, Zheng H, Kulasiri D, Guan W, Zhao H, Liu J. Milk lipid
in vitro
digestibility in wheat, corn and rice starch hydrogels. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Zhiguang Huang
- Department of Wine, Food and Molecular Biosciences Faculty of Agriculture and Life Sciences Lincoln University P.O. Box 85084 Lincoln 7647 Christchurch New Zealand
- Riddet Research Institute Palmerston North 4442 New Zealand
| | - Charles S. Brennan
- Department of Wine, Food and Molecular Biosciences Faculty of Agriculture and Life Sciences Lincoln University P.O. Box 85084 Lincoln 7647 Christchurch New Zealand
- Riddet Research Institute Palmerston North 4442 New Zealand
- Tianjin Key Laboratory of Food and Biotechnology School of Biotechnology and Food Science Tianjin University of Commerce Tianjin 300134 China
| | - Maneesha S. Mohan
- Department of Wine, Food and Molecular Biosciences Faculty of Agriculture and Life Sciences Lincoln University P.O. Box 85084 Lincoln 7647 Christchurch New Zealand
| | - Letitia Stipkovits
- Department of Wine, Food and Molecular Biosciences Faculty of Agriculture and Life Sciences Lincoln University P.O. Box 85084 Lincoln 7647 Christchurch New Zealand
| | - Haotian Zheng
- Department of Food, Bioprocessing and Nutrition Sciences Southeast Dairy Foods Research Center Raleigh NC 27695 USA
| | - Don Kulasiri
- Department of Wine, Food and Molecular Biosciences Faculty of Agriculture and Life Sciences Lincoln University P.O. Box 85084 Lincoln 7647 Christchurch New Zealand
| | - Wenqiang Guan
- Tianjin Key Laboratory of Food and Biotechnology School of Biotechnology and Food Science Tianjin University of Commerce Tianjin 300134 China
| | - Hui Zhao
- Tianjin Key Laboratory of Food and Biotechnology School of Biotechnology and Food Science Tianjin University of Commerce Tianjin 300134 China
| | - Jianfu Liu
- Tianjin Key Laboratory of Food and Biotechnology School of Biotechnology and Food Science Tianjin University of Commerce Tianjin 300134 China
| |
Collapse
|
33
|
Jurić S, Jurić M, Król-Kilińska Ż, Vlahoviček-Kahlina K, Vinceković M, Dragović-Uzelac V, Donsì F. Sources, stability, encapsulation and application of natural pigments in foods. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1837862] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Slaven Jurić
- Faculty of Agriculture, Department of Chemistry, University of Zagreb, Zagreb, Croatia
| | - Marina Jurić
- Faculty of Pharmacy and Biochemistry, Department of Pharmacognosy, University of Zagreb, Zagreb, Croatia
| | - Żaneta Król-Kilińska
- Department of Functional Food Products Development, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | | | - Marko Vinceković
- Faculty of Agriculture, Department of Chemistry, University of Zagreb, Zagreb, Croatia
| | - Verica Dragović-Uzelac
- Faculty of Food Technology and Biotechnology, Department of Food Engineering, University of Zagreb, Zagreb, Croatia
| | - Francesco Donsì
- Department of Industrial Engineering, University of Salerno, Fisciano, Italy
| |
Collapse
|
34
|
Sun R, Xia Q. In vitro digestion behavior of (W1/O/W2) double emulsions incorporated in alginate hydrogel beads: Microstructure, lipolysis, and release. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105950] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
35
|
Improving antioxidant effect of phenolic extract of Mentha piperita using nanoencapsulation process. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00606-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
36
|
Encapsulation of a bioactive peptide in a formulation of W1/O/W2-type double emulsions: Formation and stability. FOOD STRUCTURE-NETHERLANDS 2020. [DOI: 10.1016/j.foostr.2020.100145] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Martins C, Higaki NTF, Montrucchio DP, Oliveira CFD, Gomes MLS, Miguel MD, Miguel OG, Zanin SMW, Dias JDFG. Development of W1/O/W2 emulsion with gallic acid in the internal aqueous phase. Food Chem 2020; 314:126174. [DOI: 10.1016/j.foodchem.2020.126174] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 12/17/2019] [Accepted: 01/07/2020] [Indexed: 02/08/2023]
|
38
|
Castro-Enríquez DD, Montaño-Leyva B, Del Toro-Sánchez CL, Juaréz-Onofre JE, Carvajal-Millan E, Burruel-Ibarra SE, Tapia-Hernández JA, Barreras-Urbina CG, Rodríguez-Félix F. Stabilization of betalains by encapsulation-a review. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2020; 57:1587-1600. [PMID: 32327769 PMCID: PMC7171008 DOI: 10.1007/s13197-019-04120-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/18/2019] [Accepted: 09/27/2019] [Indexed: 01/14/2023]
Abstract
Betalains are pigments that have properties that benefit health, such as antioxidant, anticancer, and antimicrobial activity, and they also possess a high ability to provide color. However, these pigments, although used as colorants in certain foods, have not been able to be potentialized to diverse areas such as pharmacology, due to their instability to physicochemical factors such as high temperature, pH changes and high water activity. For this reason, different stabilization methods have been reported. The method that has presented best results for diversifying the use of betalains has been encapsulation. Encapsulation is a method of entrapment where the objective is to protect a compound utilizing more stable matrices from encapsulation technologies. This method has been employed to provide greater stability to betalains, using different matrices and encapsulation technologies. However, a review does not exist, to our knowledge, which analyzes the effect of matrices and encapsulation technologies on betalains stabilization. Therefore, the objective of this review article was to evaluate the different matrices and encapsulation techniques that have been employed to stabilize betalains, in order to arrive at specific conclusions concerning the effect of encapsulation on their stabilization and to propose new techniques and matrices that could promote their stabilization.
Collapse
Affiliation(s)
- D. D. Castro-Enríquez
- Depto. Investigación y Posgrado en Alimentos, Universidad de Sonora, Encinas y Rosales s/n, 83000 Hermosillo, Sonora Mexico
| | - B. Montaño-Leyva
- Depto. Investigación y Posgrado en Alimentos, Universidad de Sonora, Encinas y Rosales s/n, 83000 Hermosillo, Sonora Mexico
| | - C. L. Del Toro-Sánchez
- Depto. Investigación y Posgrado en Alimentos, Universidad de Sonora, Encinas y Rosales s/n, 83000 Hermosillo, Sonora Mexico
| | - J. E. Juaréz-Onofre
- Depto. Física, Universidad de Sonora, Encinas y Rosales s/n, 83000 Hermosillo, Sonora Mexico
| | - E. Carvajal-Millan
- Centro de Investigación en Alimentos y Desarrollo, A.C. Biopolímeros-CTAOA, Carretera a la Victoria Km. 0.6, 83304 Hermosillo, Sonora Mexico
| | - S. E. Burruel-Ibarra
- Depto. de Investigación en Polímeros y Materiales, Universidad de Sonora, Encinas y Rosales s/n, 83000 Hermosillo, Sonora Mexico
| | - J. A. Tapia-Hernández
- Depto. Investigación y Posgrado en Alimentos, Universidad de Sonora, Encinas y Rosales s/n, 83000 Hermosillo, Sonora Mexico
| | - C. G. Barreras-Urbina
- Depto. Investigación y Posgrado en Alimentos, Universidad de Sonora, Encinas y Rosales s/n, 83000 Hermosillo, Sonora Mexico
| | - F. Rodríguez-Félix
- Depto. Investigación y Posgrado en Alimentos, Universidad de Sonora, Encinas y Rosales s/n, 83000 Hermosillo, Sonora Mexico
| |
Collapse
|
39
|
Huang Z, Brennan CS, Zhao H, Liu J, Guan W, Mohan MS, Stipkovits L, Zheng H, Kulasiri D. Fabrication and assessment of milk phospholipid-complexed antioxidant phytosomes with vitamin C and E: A comparison with liposomes. Food Chem 2020; 324:126837. [PMID: 32339791 DOI: 10.1016/j.foodchem.2020.126837] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 11/17/2022]
Abstract
Evidences have shown that phytosome assemblies are novel drug delivery system. However, studies of phytosomes in food applications are scarce. The characteristics of milk phospholipid assemblies and their functionality in terms of in vitro digestibility and bioavailability of encapsulated nutrients (ascorbic acid and α-tocopherol) were studied. The phytosomes were fabricated using ethanolic evaporation technique. Spectral analysis revealed that polar parts of phospholipids formed hydrogen bonds with ascorbic acid hydroxyl groups, further, incorporating ascorbic acid or α-tocopherol into the phospholipid assembly changed the chemical conformation of the complexes. Phospholipid-ascorbic acid phytosomes yielded an optimal complexing index of 98.52 ± 0.03% at a molar ratio of 1:1. Phytosomes exhibited good biocompatibility on intestinal epithelial cells. The cellular uptake of ascorbic acid was 29.06 ± 1.18% for phytosomes. It was higher than that for liposomes (24.14 ± 0.60%) and for ascorbic acid aqueous solution (1.17 ± 0.70%).
Collapse
Affiliation(s)
- Zhiguang Huang
- Tianjin Key Laboratory of Food and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China; Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, Christchurch 7647, New Zealand; Riddet Research Institute, Palmerston North 4442, New Zealand
| | - Charles Stephen Brennan
- Tianjin Key Laboratory of Food and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China; Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, Christchurch 7647, New Zealand; Riddet Research Institute, Palmerston North 4442, New Zealand.
| | - Hui Zhao
- Tianjin Key Laboratory of Food and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Jianfu Liu
- Tianjin Key Laboratory of Food and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Wenqiang Guan
- Tianjin Key Laboratory of Food and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China.
| | - Maneesha S Mohan
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, Christchurch 7647, New Zealand
| | - Letitia Stipkovits
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, Christchurch 7647, New Zealand
| | - Haotian Zheng
- Department of Food, Bioprocessing and Nutrition Sciences, Southeast Dairy Foods Research Center, North Carolina State University, Raleigh, NC 27695, United States; Dairy Innovation Institute, California Polytechnic State University, San Luis Obispo, CA 93407, United States
| | - Don Kulasiri
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, Christchurch 7647, New Zealand
| |
Collapse
|
40
|
Chaudhary N, Sabikhi L, Hussain SA. Emblicanin rich Emblica officinalis extract encapsulated double emulsion: controlled release of bioactive during phagocytosis and in vitro digestion. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2020; 57:1371-1381. [PMID: 32180633 PMCID: PMC7054584 DOI: 10.1007/s13197-019-04171-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 10/04/2019] [Accepted: 11/08/2019] [Indexed: 10/25/2022]
Abstract
ABSTRACT Controlled release of Emblicanin rich water soluble extract of Emblica officinalis (EEO) from the inner phase of water-in-oil-in-water type double emulsion (DE), during in vitro digestion and phagocytosis was investigated. It was observed that release of EEO (measured as total polyphenols and gallic acid by HPLC) from inner phase of DE was maximum during intestinal digestion followed by gastric and salivary digestion. Main reason was increased particle size of emulsion droplets and change in zeta potential by the action of digestive enzymes. ACE inhibitory activity and antioxidant activity [determined by ABTS (99.58 ± 7.24 mM/mL), DPPH (76.93 ± 0.93 µM/mL) and FRAP (6.34 ± 0.13 mM/mL)] was observed on the higher side in the intestinal digesta of EEO-encapsulated DE (EEODE) as compared to salivary and gastric digesta. However, reverse trend was observed in control sample (unencapsulated-EEO). Phagocytic activity of EEODE increased with increasing its concentration of 2-10 µL. These results indicated that the developed DE matrix was effective in protecting active components of EEO during harsh digestive conditions as evident by sustained/target release. This newly developed EEODE formulation can be used as functional ingredient in the preparation of different dairy and food based functional products. GRAPHIC ABSTRACT
Collapse
Affiliation(s)
- Neha Chaudhary
- Dairy Technology Division, ICAR-National Dairy Research Institute, Karnal, Haryana 132 001 India
| | - Latha Sabikhi
- Dairy Technology Division, ICAR-National Dairy Research Institute, Karnal, Haryana 132 001 India
| | - Shaik Abdul Hussain
- Dairy Technology Division, ICAR-National Dairy Research Institute, Karnal, Haryana 132 001 India
| |
Collapse
|
41
|
Eisinaitė V, Leskauskaitė D, Pukalskienė M, Venskutonis PR. Freeze-drying of black chokeberry pomace extract-loaded double emulsions to obtain dispersible powders. J Food Sci 2020; 85:628-638. [PMID: 32052434 DOI: 10.1111/1750-3841.14995] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 12/15/2022]
Abstract
Black chokeberry pomace extract is rich in polyphenolic antioxidants, including anthocyanins. Added to foods, bioactive compounds of the extract can undergo undesirable changes both during food handling and digestion. In this study, we examined the possibility of encapsulating a considerable amount of black chokeberry pomace extract in the inner water phase of double emulsion (water-in-oil-in-water), for intended use in food applications. Furthermore, this study investigated the feasibility of double emulsions loaded with the extract for freeze-drying to obtain dispersible powders. A substantial amount (2.1%) of black chokeberry pomace extract was efficiently encapsulated in the inner water phase of double emulsion and remained entrapped during 60 days of storage (<97%) as well as during the freeze-drying of emulsions. Reconstituted emulsions obtained after the rehydration process were found to show monomodal droplet size distribution, decent creaming stability (approximately 97%), and good encapsulation efficiency (95.36%). Such characteristics of powdered double emulsions loaded by black chokeberry pomace extract make them suitable for food application as retainer and preservative of bioactive polyphenolic-rich extracts. PRACTICAL APPLICATION: Powders of double emulsions loaded by black chokeberry pomace extract could be used as a source of bioactive polyphenolic compounds.
Collapse
Affiliation(s)
- Viktorija Eisinaitė
- Dept. of Food Science and Technology, Kaunas Univ. of Technology, Radvilenu pl 19, Kaunas, LT-50254, Lithuania
| | - Daiva Leskauskaitė
- Dept. of Food Science and Technology, Kaunas Univ. of Technology, Radvilenu pl 19, Kaunas, LT-50254, Lithuania
| | - Milda Pukalskienė
- Dept. of Food Science and Technology, Kaunas Univ. of Technology, Radvilenu pl 19, Kaunas, LT-50254, Lithuania
| | - Petras Rimantas Venskutonis
- Dept. of Food Science and Technology, Kaunas Univ. of Technology, Radvilenu pl 19, Kaunas, LT-50254, Lithuania
| |
Collapse
|
42
|
Robert P, Vergara C, Silva-Weiss A, Osorio FA, Santander R, Sáenz C, Giménez B. Influence of gelation on the retention of purple cactus pear extract in microencapsulated double emulsions. PLoS One 2020; 15:e0227866. [PMID: 31945132 PMCID: PMC6964817 DOI: 10.1371/journal.pone.0227866] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 01/01/2020] [Indexed: 11/18/2022] Open
Abstract
A purple cactus pear (Opuntia ficus-indica) extract (CP) was encapsulated in double emulsions (DE) gelled with gelatin (DE-CP-G) and with gelatin and transglutaminase (DE-CP-GT), as well as in a DE with a liquid external aqueous phase (DE-CP), in order to study the retention of betanin as colorant agent. Both gelled DEs showed a predominantly elastic behavior, in contrast with DE-CP. The degradation rate constant of betanin was significantly higher in DE-CP-GT (90.2 x 10−3 days-1) than in DE-CP-G (11.0 x 10−3 days-1) and DE-CP (14.6 x 10−3 days-1) during cold-storage (4 °C). A shift towards yellow color was found in all the systems during cold-storage (4 °C) and after thermal treatment (70°C/30 min), especially in DE-CP-GT, denoting a higher degradation of betanin. Betalamic acid, cyclo-Dopa 5-O-β-glucoside, 17-decarboxy-betanin and neobetanin were identified by UHPLC-MS/MS as degradation products of betanin.
Collapse
Affiliation(s)
- Paz Robert
- Dpto. Ciencia de los Alimentos y Tecnología Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Cristina Vergara
- INIA La Platina, Instituto de Investigaciones Agropecuarias, Santiago, Chile
| | - Andrea Silva-Weiss
- Dpto. Ciencia y Tecnología de los Alimentos, Facultad Tecnológica, Universidad de Santiago de Chile, Santiago, Chile
| | - Fernando A. Osorio
- Dpto. Ciencia y Tecnología de los Alimentos, Facultad Tecnológica, Universidad de Santiago de Chile, Santiago, Chile
| | - Rocío Santander
- Dpto. de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Carmen Sáenz
- Dpto. de Agroindustria y Enología, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago, Chile
| | - Begoña Giménez
- Dpto. Ciencia y Tecnología de los Alimentos, Facultad Tecnológica, Universidad de Santiago de Chile, Santiago, Chile
- * E-mail:
| |
Collapse
|
43
|
Keršienė M, Jasutienė I, Eisinaitė V, Venskutonis PR, Leskauskaitė D. Designing multiple bioactives loaded emulsions for the formulations for diets of elderly. Food Funct 2020; 11:2195-2207. [DOI: 10.1039/d0fo00021c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In this study, a stable double emulsion loaded with essential bioactives for the elderly was prepared using a two-step mechanical emulsification process.
Collapse
Affiliation(s)
- Milda Keršienė
- Department of Food Science and Technology
- Kaunas University of technology
- Kaunas
- Lithuania
| | - Ina Jasutienė
- Department of Food Science and Technology
- Kaunas University of technology
- Kaunas
- Lithuania
| | - Viktorija Eisinaitė
- Department of Food Science and Technology
- Kaunas University of technology
- Kaunas
- Lithuania
| | | | - Daiva Leskauskaitė
- Department of Food Science and Technology
- Kaunas University of technology
- Kaunas
- Lithuania
| |
Collapse
|
44
|
Guzmán-Díaz DA, Treviño-Garza MZ, Rodríguez-Romero BA, Gallardo-Rivera CT, Amaya-Guerra CA, Báez-González JG. Development and Characterization of Gelled Double Emulsions Based on Chia ( Salvia hispanica L.) Mucilage Mixed with Different Biopolymers and Loaded with Green Tea Extract ( Camellia sinensis). Foods 2019; 8:foods8120677. [PMID: 31847092 PMCID: PMC6963928 DOI: 10.3390/foods8120677] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/04/2019] [Accepted: 12/09/2019] [Indexed: 02/08/2023] Open
Abstract
The aim of this research was to develop and characterize five gelled double emulsions based on chia mucilage (CM) and different biopolymers (κ-carrageenan, C; locust bean gum, L; thixogum, T; and whey protein concentrate, W) loaded with green tea extract (GTE). Gelled double emulsions consisted of W1 (whey-protein-concentrate/sodium-azide/NaCl/GTE)/O and (PGPR/canola-oi)/W2 (CM, CMC, CML, CMT and CMW), and were characterized based on physicochemical properties during 35 days of storage. Optical microscopy clearly showed the drops of the internal phase surrounded by droplets of oil dispersed in the second aqueous phase; the droplet size was higher for CMT and lowest for CMW. In addition, all emulsions were highly stable at creaming and were effective in reducing the loss of antioxidant activity (88.82%) and total phenols (64.26%) during storage; CMT, CML and CM were the most effective. Furthermore, all emulsions showed a protective effect by modulating the release of the GTE in a simulated gastrointestinal environment, allowing a controlled release during the gastric-intestinal digestion phases and reaching its maximum release in the intestinal phase (64.57–83.31%). Thus, gelled double emulsions are an alternative for the preservation of GTE and could be a potential alternative for their application in the development of functional foods.
Collapse
Affiliation(s)
- Diana A. Guzmán-Díaz
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Departamento de Alimentos, Av. Pedro de Alba s/n, Cd. Universitaria, C.P. 66455 San Nicolás de los Garza, NL, Mexico; (D.A.G.-D.); (M.Z.T.-G.); (C.T.G.-R.); (C.A.A.-G.)
| | - Mayra Z. Treviño-Garza
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Departamento de Alimentos, Av. Pedro de Alba s/n, Cd. Universitaria, C.P. 66455 San Nicolás de los Garza, NL, Mexico; (D.A.G.-D.); (M.Z.T.-G.); (C.T.G.-R.); (C.A.A.-G.)
| | - Beatriz A. Rodríguez-Romero
- Universidad Autónoma de Nuevo León, Facultad de Agronomía, Francisco I. Madero S/N, Ex Hacienda el Cañada, 66050 Cd. Gral. Escobedo, NL, Mexico;
| | - Claudia T. Gallardo-Rivera
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Departamento de Alimentos, Av. Pedro de Alba s/n, Cd. Universitaria, C.P. 66455 San Nicolás de los Garza, NL, Mexico; (D.A.G.-D.); (M.Z.T.-G.); (C.T.G.-R.); (C.A.A.-G.)
| | - Carlos Abel Amaya-Guerra
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Departamento de Alimentos, Av. Pedro de Alba s/n, Cd. Universitaria, C.P. 66455 San Nicolás de los Garza, NL, Mexico; (D.A.G.-D.); (M.Z.T.-G.); (C.T.G.-R.); (C.A.A.-G.)
| | - Juan G. Báez-González
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Departamento de Alimentos, Av. Pedro de Alba s/n, Cd. Universitaria, C.P. 66455 San Nicolás de los Garza, NL, Mexico; (D.A.G.-D.); (M.Z.T.-G.); (C.T.G.-R.); (C.A.A.-G.)
- Correspondence: ; Tel.: +52-81-8329-4000 (ext. 3654)
| |
Collapse
|
45
|
Duque‐Estrada P, School E, van der Goot AJ, Berton‐Carabin CC. Double emulsions for iron encapsulation: is a high concentration of lipophilic emulsifier ideal for physical and chemical stability? JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:4540-4549. [PMID: 30868581 PMCID: PMC6618118 DOI: 10.1002/jsfa.9691] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/11/2019] [Accepted: 03/11/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Worldwide iron deficiency in diets has led to a growing interest in the development of food-compatible encapsulation systems for soluble iron, which are able to prevent iron's undesirable off-taste and pro-oxidant activity. Here, we explore the use of double emulsions for this purpose, and in particular, how the lipophilic emulsifier (polyglycerol polyricinoleate, PGPR) concentration influences the physicochemical stability of water-in-oil-in-water (W1 /O/W2 ) double emulsions containing ferrous sulphate in the inner water droplets. Double emulsions were prepared with sunflower oil containing 10 to 70 g kg-1 PGPR in the oil phase, and were monitored for droplet size distribution, morphology, encapsulation efficiency (EE) and oxidative stability over time. RESULTS Fresh double emulsions showed an initial EE higher than 88%, but EE decreased upon storage, which occurred particularly fast and to a high extent in the emulsions prepared with low PGPR concentrations. All double emulsions underwent lipid oxidation, in particular those with the highest PGPR concentration, which could be due to the small inner droplet size and thus promoted contact between oil and the internal water phase. CONCLUSION These results show that a too high PGPR concentration is not needed, and sometimes even adverse, when developing double emulsions as iron encapsulation systems. © 2019 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Eefje School
- Food Process EngineeringWageningen University & ResearchWageningenThe Netherlands
| | | | | |
Collapse
|
46
|
Huang Y, Zhou W. Microencapsulation of anthocyanins through two-step emulsification and release characteristics during in vitro digestion. Food Chem 2019; 278:357-363. [DOI: 10.1016/j.foodchem.2018.11.073] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 10/20/2018] [Accepted: 11/13/2018] [Indexed: 12/29/2022]
|
47
|
Jo YJ, Karbstein HP, van der Schaaf US. Collagen peptide-loaded W1/O single emulsions and W1/O/W2 double emulsions: influence of collagen peptide and salt concentration, dispersed phase fraction and type of hydrophilic emulsifier on droplet stability and encapsulation efficiency. Food Funct 2019; 10:3312-3323. [DOI: 10.1039/c8fo02467g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Collagen peptide-loaded double emulsions are developed by using various formulation parameters to utilize as food-grade functional ingredients with excellent droplet stability and encapsulation efficiency of collagen peptide.
Collapse
Affiliation(s)
- Yeon-Ji Jo
- Department of Agricultural
- Food and Nutritional Science
- University of Alberta
- Alberta
- Canada
| | - Heike Petra Karbstein
- Institute of Process Engineering in Life Science
- Chair for Food Process Engineering
- Karlsruhe Institute of Technology
- Karlsruhe
- Germany
| | - Ulrike Sabine van der Schaaf
- Institute of Process Engineering in Life Science
- Chair for Food Process Engineering
- Karlsruhe Institute of Technology
- Karlsruhe
- Germany
| |
Collapse
|
48
|
Xu W, Yang Y, Xue SJ, Shi J, Lim LT, Forney C, Xu G, Bamba BSB. Effect of In Vitro Digestion on Water-in-Oil-in-Water Emulsions Containing Anthocyanins from Grape Skin Powder. Molecules 2018; 23:E2808. [PMID: 30380666 PMCID: PMC6278365 DOI: 10.3390/molecules23112808] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/26/2018] [Accepted: 10/27/2018] [Indexed: 01/01/2023] Open
Abstract
The effects of in vitro batch digestion on water-in-oil-in-water (W/O/W) double emulsions encapsulated with anthocyanins (ACNs) from grape skin were investigated. The double emulsions exhibited the monomodal distribution (d = 686 ± 25 nm) showing relatively high encapsulation efficiency (87.74 ± 3.12%). After in vitro mouth digestion, the droplet size (d = 771 ± 26 nm) was significantly increased (p < 0.05). The double W₁/O/W₂ emulsions became a single W₁/O emulsion due to proteolysis, which were coalesced together to form big particles with significant increases (p < 0.01) of average droplet sizes (d > 5 µm) after gastric digestion. During intestinal digestion, W₁/O droplets were broken to give empty oil droplets and released ACNs in inner water phase, and the average droplet sizes (d < 260 nm) decreased significantly (p < 0.05). Our results indicated that ACNs were effectively protected by W/O/W double emulsions against in vitro mouth digestion and gastric, and were delivered in the simulated small intestine phase.
Collapse
Affiliation(s)
- Weili Xu
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Yang Yang
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Sophia Jun Xue
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9, Canada.
| | - John Shi
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9, Canada.
| | - Loong-Tak Lim
- Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Charles Forney
- Kentville Research and Development Centre, Agriculture and Agri-Food Canada, Kentville, NS B4N 1J5, Canada.
| | - Guihua Xu
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9, Canada.
| | - Bio Sigui Bruno Bamba
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9, Canada.
| |
Collapse
|
49
|
Microencapsulation of Purple Cactus Pear Fruit (Opuntia ficus indica) Extract by the Combined Method W/O/W Double Emulsion-Spray Drying and Conventional Spray Drying: A Comparative Study. Processes (Basel) 2018. [DOI: 10.3390/pr6100189] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The aim of this study was to microencapsulate an optimized extract of purple cactus pear fruit (Opuntia ficus indica), rich in phenolic compounds (PC), betacyanins (BC), and betaxanthins (BX), with antioxidant capacity (AC), by two methodologies: combined water-in-oil-in water double emulsions-spray drying (W/O/W-SP) and conventional spray drying, studying the effect of spray drying (SP) on PC and AC. Optimal extraction conditions for bioactive compounds were: 52 °C, for 30 min, using aqueous ethanol (40%) as the solvent, with a 0.85 desirability function, obtaining 17.39 ± 0.11 mg GAE/gdw (gallic acid equivalents per gram of dry weight) for PC, 0.35 mg BE/gdw (betanin equivalents per gram of dry weight) for BC, and 0.26 mg IE/gdw (indicaxanthin equivalents per gram of dry weight) for BX. The best combination of temperatures for conventional SP and W/O/W-SP was 160–80 °C obtaining the highest retention and encapsulation efficiencies for PC. For conventional SP, results were: 107% and 100% PC and AC retention efficiencies (RE-PC and RE-AC), respectively, with 97% of PC encapsulation efficiency (EE-PC), meanwhile for the W/O/W-SP results were: 78% and 103% RE-PC and RE-AC, respectively, with 70% of EE-PC. Microcapsules obtained with W/O/W-SP maintained their structure and integrity and showed a considerable reduction in globule size in the reconstituted W/O/W emulsions due to the spray drying stress. Despite having lower EE-PC than conventional SP, spray dried W/O/W emulsions seems to be a promising controlled-delivery vehicle for antioxidant compounds.
Collapse
|
50
|
Teixé-Roig J, Oms-Oliu G, Velderrain-Rodríguez GR, Odriozola-Serrano I, Martín-Belloso O. The Effect of Sodium Carboxymethylcellulose on the Stability and Bioaccessibility of Anthocyanin Water-in-Oil-in-Water Emulsions. FOOD BIOPROCESS TECH 2018. [DOI: 10.1007/s11947-018-2181-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|