1
|
Lee JA, Gu MJ, Lee YR, Kim Y, Choi I, Kim D, Ha SK. Lindera obtusiloba Blume Alleviates Non-Alcoholic Fatty Liver Disease Promoted by N ε-(carboxymethyl)lysine. Nutrients 2024; 16:2330. [PMID: 39064772 PMCID: PMC11280000 DOI: 10.3390/nu16142330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a major issue because it is closely associated with metabolic diseases. Advanced glycation end products (AGEs) are implicated as risk factors for steatosis during NAFLD progression. AGEs influence NAFLD progression through a receptor-independent pathway involving AGE cross-link formation and a receptor-dependent pathway that binds to receptors like receptors for advanced glycation end products (RAGE). The objectives of this study are to examine the effect of Lindera obtusiloba Blume (LO) on NAFLD promoted by Nε-(carboxymethyl)lysine (CML), one of the most common dietary AGEs. The anti-glycation effects of LO were evaluated by inhibiting the AGEs formation and AGEs-collagen cross-links breaking. The efficacy of LO against NAFLD promoted by CML was assessed using both in vitro and in vivo models. NAFLD was induced in mice by feeding a high-fat diet and orally administering CML over a period of 12 weeks, and the effects of LO on lipid metabolism and its regulatory mechanisms were investigated. LO showed the effect of inhibited AGEs formation and breakage, and collagen cross-linking. Fed a high-fat diet with administered CML by gavage, LO administration resulted in a reduction in body weight, fat mass, serum triglycerides, total cholesterol, and low-density lipoprotein cholesterol levels. LO reduced hepatic CML accumulation and RAGE expression in mice fed a high-fat diet and orally administered CML. LO alleviated hepatic steatosis accompanied by lipid accumulation and histological damage by suppressing the expression of sterol regulatory element-binding protein 1c, carbohydrate response element binding protein, fatty acid synthase, stearoyl-CoA desaturase1, tumor necrosis factor-α, and interleukin-1β. LO alleviated the MAPK/NF-κB expression by attenuating CML and RAGE expression. Taken together, our results demonstrate that LO alleviates the progression of NAFLD by lowering the levels of AGEs by downregulating CML/RAGE expression.
Collapse
Affiliation(s)
- Jin-Ah Lee
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun 55365, Republic of Korea; (J.-A.L.); (M.J.G.); (Y.R.L.); (Y.K.); (I.C.)
| | - Min Ji Gu
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun 55365, Republic of Korea; (J.-A.L.); (M.J.G.); (Y.R.L.); (Y.K.); (I.C.)
| | - Yu Ra Lee
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun 55365, Republic of Korea; (J.-A.L.); (M.J.G.); (Y.R.L.); (Y.K.); (I.C.)
| | - Yoonsook Kim
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun 55365, Republic of Korea; (J.-A.L.); (M.J.G.); (Y.R.L.); (Y.K.); (I.C.)
| | - Inwook Choi
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun 55365, Republic of Korea; (J.-A.L.); (M.J.G.); (Y.R.L.); (Y.K.); (I.C.)
| | - Donghwan Kim
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun 55365, Republic of Korea; (J.-A.L.); (M.J.G.); (Y.R.L.); (Y.K.); (I.C.)
| | - Sang Keun Ha
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun 55365, Republic of Korea; (J.-A.L.); (M.J.G.); (Y.R.L.); (Y.K.); (I.C.)
- Division of Food Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
2
|
Chen Q, Lu K, He J, Zhou Q, Li S, Xu H, Su Y, Wang M. Effects of seasoning addition and cooking conditions on the formation of free and protein-bound heterocyclic amines and advanced glycation end products in braised lamb. Food Chem 2024; 446:138850. [PMID: 38452502 DOI: 10.1016/j.foodchem.2024.138850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/08/2024] [Accepted: 02/22/2024] [Indexed: 03/09/2024]
Abstract
The accumulation of heterocyclic amines (HAs) and advanced glycation end products (AGEs) in thermally processed meats has been arising safety concerns. The effects of cooking conditions and seasoning addition on the formation of HAs and AGEs in Chinese traditional braised lamb were investigated by UPLC-MS/MS analysis. Soy sauce significantly increased the formation of HAs and AGEs, among which light soy sauce had the greatest promoting effect (69.45-15300.62 %). Conversely, spices inhibited HAs and AGEs formation, the inhibition rate of free HAs and AGEs reached 22.06-34.72 % when using 70 % ethanol extract. Hot blanching treatment and adding soy sauce and spices at a later stage could significantly suppress HAs and AGEs production. Flavonoids, including galangin, hesperidin, narirutin, etc., were identified as key effectors in spices. These findings help to promote awareness of the formation of HAs and AGEs in braised lamb and provide valuable insights for optimizing processing techniques to minimize their production.
Collapse
Affiliation(s)
- Qiaochun Chen
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China
| | - Keyu Lu
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China
| | - Jiayi He
- College of Chemistry and Environmental Engineering, Shenzhen 518060, PR China
| | - Qian Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China
| | - Siqian Li
- College of Chemistry and Environmental Engineering, Shenzhen 518060, PR China
| | - Hui Xu
- College of Chemistry and Environmental Engineering, Shenzhen 518060, PR China
| | - Yuting Su
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China.
| | - Mingfu Wang
- College of Chemistry and Environmental Engineering, Shenzhen 518060, PR China; Shenzhen Key Laboratory of Food Nutrition and Health, Shenzhen University, Shenzhen 518060, PR China.
| |
Collapse
|
3
|
Liang Y, Du R, Zhao X, Xu Y, Xiang Q, Wu H, Lu Y, Lv L. Scavenging Glyoxal and Methylglyoxal by Synephrine Alone or in Combination with Neohesperidin at High Temperatures. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5828-5841. [PMID: 38442256 DOI: 10.1021/acs.jafc.3c08652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
α-Dicarbonyl compounds, such as glyoxal (GO) and methylglyoxal (MGO), are a series of chemical hazards that exist in vivo and in vitro, posing a threat to human health. We aimed to explore the scavenging effects on GO/MGO by synephrine (SYN) alone or in combination with neohesperidin (NEO). First, through LC-MS/MS, we confirmed that both SYN and NEO could effectively remove GO and form GO adducts, while NEO could also clear MGO by forming MGO adducts, and its ability to clear MGO was stronger than that of GO. Second, a synergistic inhibitory effect on GO was found when SYN and NEO were used in combination by using the Chou-Talalay method; on the other hand, SYN could promote NEO to clear more MGO, although SYN could not capture MGO. Third, after synthesizing four GO/MGO-adducts (SYN-GO-1, SYN-GO-3, NEO-GO-7, and NEO-MGO-2) and identifying their structure through NMR, strict correlations between the GO/MGO-adducts and the GO/MGO-clearance rate were found when using SYN and NEO alone or in combination. Furthermore, it was inferred that the synergistic effect between SYN and NEO stems from their mutual promotion in capturing more GO by the quantitative analysis of the adducts in the combined model. Finally, a study was conducted on flowers of Citrus aurantium L. var. amara Engl. (FCAVA, an edible tea) rich in SYN and NEO, which could serve as an effective GO and MGO scavenger in the presence of both GO and MGO. Therefore, our study provided well-defined evidence that SYN and NEO, alone or in combination, could efficiently scavenge GO/MGO at high temperatures, whether in the pure form or located in FCAVA.
Collapse
Affiliation(s)
- Yu Liang
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2# Xuelin Road, Nanjing 210023, P. R. China
| | - Ruoying Du
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2# Xuelin Road, Nanjing 210023, P. R. China
| | - Xinyu Zhao
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2# Xuelin Road, Nanjing 210023, P. R. China
| | - Yujia Xu
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2# Xuelin Road, Nanjing 210023, P. R. China
| | - Qi Xiang
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2# Xuelin Road, Nanjing 210023, P. R. China
| | - Hanying Wu
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2# Xuelin Road, Nanjing 210023, P. R. China
| | - Yonglin Lu
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2# Xuelin Road, Nanjing 210023, P. R. China
| | - Lishuang Lv
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2# Xuelin Road, Nanjing 210023, P. R. China
| |
Collapse
|
4
|
Li B, Wang J, Cheng Z, Song B, Shu C, Chen Y, Chen W, Yang S, Yang Y, Tian J. Flavonoids mitigation of typical food thermal processing contaminants: Potential mechanisms and analytical strategies. Food Chem 2023; 416:135793. [PMID: 36898335 DOI: 10.1016/j.foodchem.2023.135793] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/12/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023]
Abstract
Due to unique chemical structure, flavonoids are secondary metabolites with numerous biological activities. Thermal processing of food usually produces some chemical contaminants, which cause an adverse effect on food quality and nutrition. Therefore, it is vital to reduce these contaminants in food processing. In this study, current researches around the inhibitory effect of flavonoids on acrylamide, furans, α-dicarbonyl compounds and heterocyclic amines (HAs) were summarized. It has been shown that flavonoids inhibited the formation of these contaminants to varying degrees in chemical or food models. The mechanism was mainly associated with natural chemical structure and partly with antioxidant activity of flavonoids. Additionally, methods and tools of analyzing interactions between flavonoids and contaminants were discussed. In summary, this review demonstrated potential mechanisms and analytical strategies of flavonoids in food thermal processing, providing new insight of flavonoids applying on the food engineering.
Collapse
Affiliation(s)
- Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Jiaxin Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Zhen Cheng
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Baoge Song
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Chi Shu
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Wei Chen
- Faculty of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Shufang Yang
- Zhejiang Lanmei Technology Co., Ltd, Zhuji, China
| | - Yiyun Yang
- Zhejiang Lanmei Technology Co., Ltd, Zhuji, China
| | - Jinlong Tian
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| |
Collapse
|
5
|
Gharibi S, Matkowski A, Sarfaraz D, Mirhendi H, Fakhim H, Szumny A, Rahimmalek M. Identification of Polyphenolic Compounds Responsible for Antioxidant, Anti- Candida Activities and Nutritional Properties in Different Pistachio ( Pistacia vera L.) Hull Cultivars. Molecules 2023; 28:4772. [PMID: 37375327 DOI: 10.3390/molecules28124772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/18/2023] [Accepted: 05/18/2023] [Indexed: 06/29/2023] Open
Abstract
The use of by-products from the agri-food industry is a promising approach for production of value-added, polyphenol-rich dietary supplements or natural pharmaceutical preparations. During pistachio nut processing, a great amount of husk is removed, leaving large biomass for potential re-use. The present study compares antiglycative, antioxidant, and antifungal activities as well as nutritional values of 12 genotypes belonging to four pistachio cultivars. Antioxidant activity was measured using DPPH and ABTS assays. Antiglycative activity was evaluated as inhibition of advanced glycation end product (AGE) formation in the bovine serum albumin/methylglyoxal model. HPLC analysis was performed to determine the major phenolic compounds. Cyanidin-3-O-galactoside (120.81-181.94 mg/100 g DW), gallic acid (27.89-45.25), catechin (7.2-11.01), and eriodictyol-7-O-glucoside (7.23-16.02) were the major components. Among genotypes, the highest total flavonol content (14.8 mg quercetin equivalents/g DW) and total phenolic content (262 mg tannic acid equivalent/g DW) were in KAL1 (Kaleghouchi) and FAN2 (Fandoghi), respectively. The highest antioxidant (EC50 = 375 μg/mL) and anti-glycative activities were obtained for Fan1. Furthermore, potent inhibitory activity against Candida species was recorded with MIC values of 3.12-12.5 µg/mL. The oil content ranged from 5.4% in Fan2 to 7.6% in Akb1. The nutritional parameters of the tested cultivars were highly variable: crude protein (9.8-15.8%), ADF (acid detergent fiber 11.9-18.2%), NDF (neutral detergent fiber, 14.8-25.6%), and condensed tannins (1.74-2.86%). Finally, cyanidin-3-O-galactoside was considered an effective compound responsible for antioxidant and anti-glycative activities.
Collapse
Affiliation(s)
- Shima Gharibi
- Core Research Facilities (CRF), Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Adam Matkowski
- Department of Pharmaceutical Biology and Botany, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
| | - Danial Sarfaraz
- Department of Plant Breeding, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Hossein Mirhendi
- Department of Medical Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
- Mycology Reference Laboratory, Research Core Facilities Laboratory, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Hamed Fakhim
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Antoni Szumny
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
| | - Mehdi Rahimmalek
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
- Department of Horticulture, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| |
Collapse
|
6
|
Gao Q, Ma R, Shi L, Wang S, Liang Y, Zhang Z. Anti-glycation and anti-inflammatory activities of anthocyanins from purple vegetables. Food Funct 2023; 14:2034-2044. [PMID: 36723267 DOI: 10.1039/d2fo03645b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Anthocyanins may be effective bioactive constituents to reduce the potential risk of chronic diseases induced by glycation and inflammation. In the present study, the anti-glycation and anti-inflammatory activities of anthocyanins derived from purple cabbage (PCA), purple sweet potato (PSP), purple corn (PCO) and gynura bicolor (GB) were evaluated. According to the results from the bovine serum albumin (BSA)-fructose and BSA-methylglyoxal (MGO) model, the inhibition effects of anthocyanins on non-enzymatic glycosylation not only acted on the intermediate stage, but also played a certain role in the entire non-enzymatic glycosylation process, among which anthocyanins from PCA exhibited the best inhibitory effect. The anthocyanins from all four purple vegetables could trap MGO effectively (p > 0.05). The anthocyanins also presented a good inhibitory effect on amyloid beta peptide (Aβ)1-42 fibrillation, even better than that of aminoguanidine (AG), in a thermal induction assay. Furthermore, anthocyanins from PCA, PSP, PCO and GB showed significant anti-inflammatory effects, inhibiting pro-inflammatory factor (i.e., NO and TNF-α) production, among which the anthocyanins from PCA and PSP exhibited a higher inhibition effect than the others. This is probably due to the suppression of the TLR4-mediated MyD88 signaling pathway in the lipopolysaccharide (LPS)-induced BV2 cells based on the western blot analysis. Anthocyanins from purple vegetables could be used as a value-added food ingredient for the food industry. Food fortification with anthocyanins might be a promising way to protect humans against various chronic diseases caused by glycation and inflammation.
Collapse
Affiliation(s)
- Qingchao Gao
- Jiangsu Key Laboratory for Food Quality and Safety, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China.
| | - Rong Ma
- College of agriculture and animal husbandry, Qinghai University, Xining, 810016, China
| | - Lu Shi
- Jiangsu Key Laboratory for Food Quality and Safety, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China.
| | - Shulin Wang
- College of agriculture and animal husbandry, Qinghai University, Xining, 810016, China
| | - Ying Liang
- Jiangsu Key Laboratory for Food Quality and Safety, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China.
| | - Zhiyong Zhang
- Jiangsu Key Laboratory for Food Quality and Safety, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China.
| |
Collapse
|
7
|
Taha M, Rahim F, Khan IU, Uddin N, Farooq RK, Wadood A, Rehman AU, Khan KM. Synthesis of thiazole-based-thiourea analogs: as anticancer, antiglycation and antioxidant agents, structure activity relationship analysis and docking study. J Biomol Struct Dyn 2023; 41:12077-12092. [PMID: 36695088 DOI: 10.1080/07391102.2023.2171134] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/27/2022] [Indexed: 01/26/2023]
Abstract
This work reports the convenient approach for the synthesis of thiazole based thiourea derivatives (1-21) from 2-bromo-1-(4-fluorophenyl)thiazole-1-one and phenyl isothiocyanates. The scope and diversity were achieved from readily available phenyl isothiocyanates. This protocol involves an oxidative C-S bond formation. Moreover, hybrid thiazole based thiourea scaffolds (1-21) according to literature known protocol were screened in vitro for anticancer Potential against breast cancer, antiglycation and antioxidant inhibitory profile. All newly developed scaffolds were showed moderate to good inhibitory potentials ranging from 0.10 ± 0.01 µM to 11.40 ± 0.20 µM, 64.20 ± 0.40 µM to 385.10 ± 1.70 µM and 8.90 ± 0.20 µM to 39.20 ± 0.50 µM against anticancer, antiglycation and antioxidant respectively. Among the series, compounds 12 (IC50 = 0.10 ± 0.01 µM), 10 (IC50 = 64.20 ± 0.40 µM) and 12 (IC50 = 8.90 ± 0.20 µM) with flouro substitution at phenyl ring of thiourea were identified to be the most potent among the series having excellent anticancer, antiglycation and antioxidant potential. The structure of all the newly synthetics scaffolds were confirmed by using different types of spectroscopic techniques such as HREI-MS, 1H- and 13C-NMR spectroscopy. To find structure-activity relationship, molecular docking studies were carried out to understand the binding mode of active inhibitors with active site of enzymes and results supported the experimental data.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Muhammad Taha
- Department of clinical pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Fazal Rahim
- Department of Chemistry, Hazara University, Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - Ihsan Ullah Khan
- Department of Chemistry, Hazara University, Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - Nizam Uddin
- Department of Chemistry, University of Karachi, Karachi, Pakistan
| | - Rai Khalid Farooq
- Department of Neuroscience Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Ashfaq Ur Rehman
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
8
|
Allicin Alleviates Diabetes Mellitus by Inhibiting the Formation of Advanced Glycation End Products. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248793. [PMID: 36557926 PMCID: PMC9787121 DOI: 10.3390/molecules27248793] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
Advanced glycation end products (AGEs) cause damage to pancreatic β-cells and trigger oxidative stress and inflammation, which promotes the development and progression of diabetes and its complications. Therefore, it is important to inhibit the formation of AGEs as part of the treatment of diabetes. Allicin is a natural antimicrobial agent with abundant pharmacological activities, and recent studies have reported its therapeutic effects in diabetes; however, the mechanism of these therapeutic effects is still unclear. Thus, the purpose of this study was to further investigate the association between allicin treatment of diabetes and AGEs. First, we established a streptozocin (STZ)-induced diabetic rat model and treated the rats with allicin for six weeks. We measured glycolipid metabolism, AGE levels, receptor of advanced glycation end products (RAGE) levels, oxidative stress, and other related indicators. The results showed that allicin improved blood glucose and body weight, reduced lipid accumulation, and inhibited AGE formation in rats. Treatment with allicin also inhibited RAGEs and thereby prevented AGE activity, which, in turn, alleviated oxidative stress and promoted insulin secretion. To further verify the effect of allicin on AGEs, we also performed in vitro nonenzymatic glycation simulation experiments. These results showed that allicin inhibited the production of AGEs by suppressing the production of AGEs intermediates. Thus, our research suggests that allicin may alleviate diabetes by inhibiting the formation of AGEs and reducing RAGE levels to relieve oxidative stress and promote insulin secretion.
Collapse
|
9
|
Han Z, Zhu M, Wan X, Zhai X, Ho CT, Zhang L. Food polyphenols and Maillard reaction: regulation effect and chemical mechanism. Crit Rev Food Sci Nutr 2022; 64:4904-4920. [PMID: 36382683 DOI: 10.1080/10408398.2022.2146653] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Maillard reaction is a non-enzymatic thermal reaction during food processing and storage. It massively contributes to the flavor, color, health benefits and safety of foods and could be briefly segmented into initial, intermediate and final stages with the development of a cascade of chemical reactions. During thermal reaction of food ingredients, sugar, protein and amino acids are usually the main substrates, and polyphenols co-existed in food could also participate in the Maillard reaction as a modulator. Polyphenols including flavan-3-ols, hydroxycinnamic acids, flavonoids, and tannins have shown various effects throughout the process of Maillard reaction, including conjugating amino acids/sugars, trapping α-dicarbonyls, capturing Amadori rearrangement products (ARPs), as well as decreasing acrylamide and 5-hydroxymethylfurfural (5-HMF) levels. These effects significantly influenced the flavor, taste and color of processed foods, and also decreased the hazard products' level. The chemical mechanism of polyphenols-Maillard products involved the scavenging of radicals, as well as nucleophilic addition and substitution reactions. In the present review, we concluded and discussed the interaction of polyphenols and Maillard reaction, and proposed some perspectives for future studies.
Collapse
Affiliation(s)
- Zisheng Han
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| | - Mengting Zhu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Xiaoting Zhai
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| |
Collapse
|
10
|
Chen YT, Lin YY, Pan MH, Ho CT, Hung WL. Inhibitory effects of rooibos (Aspalathus linearis) against reactive carbonyl species and advanced glycation end product formation in cookies. Food Chem X 2022; 16:100515. [DOI: 10.1016/j.fochx.2022.100515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/18/2022] Open
|
11
|
Inhibitory effects of polyphenols from black chokeberry on advanced glycation end-products (AGEs) formation. Food Chem 2022; 392:133295. [PMID: 35636190 DOI: 10.1016/j.foodchem.2022.133295] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/25/2022] [Accepted: 05/21/2022] [Indexed: 11/20/2022]
Abstract
Plant-based polyphenols are known to exert mitigating effects on the harmful consequences of advanced glycation. In this study, the antioxidant and antiglycation properties of purified black chokeberry polyphenol and its dominant monomers were studied. The phenolics of black chokeberry had a significant inhibitory effect on glycation products at all stages. The highest inhibition of fructosamine (72.27%) was achieved by chlorogenic acid (CA). Epigallocatechin gallate (EGCG) showed an 84.47% inhibition of α-dicarbonyl and 54.44% inhibition of AGEs (advanced glycation end-products). However, the inhibition of α-dicarbonyl was impacted by the presence of Cu2+. In addition, an EGCG-induced increase in the protein α-helical structure to 21.43% was observed. Overall, EGCG was the main component inhibited protein glycosylation in the simulated glycation system. Furthermore, the mechanism of inhibition was a combination of scavenging free radicals, capturing metal ions, and alleviating changes in the secondary structure of proteins.
Collapse
|
12
|
Dedvisitsakul P, Watla-iad K. Antioxidant activity and antidiabetic activities of Northern Thai indigenous edible plant extracts and their phytochemical constituents. Heliyon 2022; 8:e10740. [PMID: 36185148 PMCID: PMC9519484 DOI: 10.1016/j.heliyon.2022.e10740] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/25/2022] [Accepted: 09/15/2022] [Indexed: 12/31/2022] Open
Abstract
Diabetes mellitus is the most common non-infective disease characterized by hyperglycemia (high level of blood glucose). Formation of advanced glycation end products (AGEs) in long termed-hyperglycemia and oxidative stress are the key factors to accelerate diabetic complications. To screen potential candidates for treating diabetes, total phenolic content, total flavonoid content, antioxidant activity from crude extracts of some Thai edible plants were primarily assessed, and the inhibiting potential of diabetes and its complications provided from some of these plants were evaluated in terms of their inhibitory activities of α-amylase, α-glycosidase, and AGEs formation. The highest amounts of phenolic and flavonoid compounds were found in the ethanolic extract of Caesalpinia mimosoides (S20, 12.63 ± 1.70 mg GAE/g DW) and Glochidion hirsutum (S8, 3.02 ± 0.25 mg CE/g DW), respectively. The highest antioxidant activity was found in Schinus terebinthifolius Raddi (S26, 217.94 ± 32.30 μg AAE/g DW) whereas the highest inhibitory activities of α-amylase and α-glycosidase were obtained from Basella alba L. (S11, IC50 = 0.21 ± 0.01 mg/ml) and S. terebinthifolius (S26, IC50 = 0.05 ± 0.02 mg/ml) respectively. The inhibitory effects of AGEs formation were studied in vitro using two model systems: BSA-glucose and BSA-methylglycoxal (MGO). The extracts of Glochidion hirsutum (Roxb.) Voigt (S8, IC50 = 0.20 ± 0.01 mg/ml) and Polygonum odoratum Lour. (S13, IC50 = 0.03 ± 0.01 mg/ml) exhibited the inhibitory activity of AGEs formation derived from glucose (BSA-glucose system) stronger than aminoguanidine (AG) (0.26 ± 0.00 mg/ml), which is a common AGEs formation inhibitory drug. By BSA-MGO assay, the inhibition of some selected extracts in this study (G. hirsutum, G. sphaerogynum, and S. terebinthifolius with IC50 = 0.11 ± 0.01, 0.11 ± 0.01, and 0.10 ± 0.00 mg/ml, respectively) were slightly less efficient than AG (the IC50 = 0.06 ± 0.00 mg/ml). These results indicated that some selected Thai edible plants in this present study provided potential applications towards the prevention of diabetes and their complications via the inhibitory of α-amylase, α-glycosidase, AGEs formation, and oxidative stress. This fundamental information would be important for alternative drug discovery and nutritional recommendations for diabetic patients.
Collapse
Affiliation(s)
- Plaipol Dedvisitsakul
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Microbial Products and Innovation (MP&I) Research Unit, School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Kanchana Watla-iad
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Center of Chemical Innovation for Sustainability, School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Corresponding author.
| |
Collapse
|
13
|
Chen M, Liu P, Zhou H, Huang C, Zhai W, Xiao Y, Ou J, He J, El-Nezami H, Zheng J. Formation and metabolism of 6-(1-acetol)-8-(1-acetol)-rutin in foods and in vivo, and their cytotoxicity. Front Nutr 2022; 9:973048. [PMID: 35983484 PMCID: PMC9378861 DOI: 10.3389/fnut.2022.973048] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Methylglyoxal (MGO) is a highly reactive precursor which forms advanced glycation end-products (AGEs) in vivo, which lead to metabolic syndrome and chronic diseases. It is also a precursor of various carcinogens, including acrylamide and methylimidazole, in thermally processed foods. Rutin could efficiently scavenge MGO by the formation of various adducts. However, the metabolism and safety concerns of the derived adducts were paid less attention to. In this study, the optical isomers of di-MGO adducts of rutin, namely 6-(1-acetol)-8-(1-acetol)-rutin, were identified in foods and in vivo. After oral administration of rutin (100 mg/kg BW), these compounds reached the maximum level of 15.80 μg/L in plasma at 15 min, and decreased sharply under the quantitative level in 30 min. They were detected only in trace levels in kidney and fecal samples, while their corresponding oxidized adducts with dione structures presented as the predominant adducts in kidney, heart, and brain tissues, as well as in urine and feces. These results indicated that the unoxidized rutin-MGO adducts formed immediately after rutin ingestion might easily underwent oxidation, and finally deposited in tissues and excreted from the body in the oxidized forms. The formation of 6-(1-acetol)-8-(1-acetol)-rutin significantly mitigated the cytotoxicity of MGO against human gastric epithelial (GES-1), human colon carcinoma (Caco-2), and human umbilical vein endothelial (HUVEC) cells, which indicated that rutin has the potential to be applied as a safe and effective MGO scavenger and detoxifier, and AGEs inhibitor.
Collapse
Affiliation(s)
- Min Chen
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Pengzhan Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Hua Zhou
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Caihuan Huang
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Weiye Zhai
- Dongguan Silang Foods Co., Ltd., Dongguan, China
| | - Yuantao Xiao
- Dongguan Silang Foods Co., Ltd., Dongguan, China
| | - Juanying Ou
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Jun He
- Institute of Laboratory Animal Science, Jinan University, Guangzhou, China
| | - Hani El-Nezami
- School of Biological Sciences, University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China.,School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Jie Zheng
- Department of Food Science and Engineering, Jinan University, Guangzhou, China.,Guangdong-Hong Kong Joint Innovation Platform for the Safety of Bakery Products, Guangzhou, China
| |
Collapse
|
14
|
Identification and cytotoxic evaluation of the novel rutin-methylglyoxal adducts with dione structures in vivo and in foods. Food Chem 2022; 377:132008. [PMID: 34999458 DOI: 10.1016/j.foodchem.2021.132008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/17/2021] [Accepted: 12/12/2021] [Indexed: 11/24/2022]
Abstract
Flavonoids with meta-hydroxyl groups have been proven to react with methylglyoxal (MGO) and form mono- and di-MGO adducts via nucleophilic addition reactions. Rutin, a rutinoside of quercetin with typical meta-phenol structure, is widely distributed in plant-sourced materials. Interestingly, different from the adducts reported between flavonoids and MGO, new rutin-MGO adducts with dione structures on the moiety of MGO were identified and proven to occur in various foods (0.66-6.58 mg/kg in total) and in vivo (up to 5.01 μg/L in plasma of rats administered with 100 mg/kg bodyweight of rutin). The three adducts discovered were assigned as 6-(1,2-propanedione)-8-(1-acetol)-rutin, 6-(1-acetol)-8-(1,2-propanedione)-rutin, and 6-(1,2-propanedione)-8-(1,2-propanedione)-rutin. Cytotoxicity evaluation in different cell lines indicated that the formation of these rutin-MGO adducts remarkably reduced the toxicity of MGO, which provide further promise for the application of rutin as a scavenger of dicarbonyl compounds by dietary supplement and addition in foods.
Collapse
|
15
|
Wu Q, Liang Y, Kong Y, Zhang F, Feng Y, Ouyang Y, Wang C, Guo Z, Xiao J, Feng N. Role of glycated proteins in vivo: Enzymatic glycated proteins and non-enzymatic glycated proteins. Food Res Int 2022; 155:111099. [DOI: 10.1016/j.foodres.2022.111099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/24/2022] [Accepted: 03/03/2022] [Indexed: 11/04/2022]
|
16
|
Wei J, Wu Z, Chai T, He F, Chen Y, Dong X, Shi Y. Effect of the combination of low temperature vacuum heating with tea polyphenol on AGEs in sturgeon fillets. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jianling Wei
- School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou Zhejiang 310035 China
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition Zhejiang Gongshang University Hangzhou Zhejiang 310035 China
| | - Zhengyang Wu
- School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou Zhejiang 310035 China
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition Zhejiang Gongshang University Hangzhou Zhejiang 310035 China
| | - Tingting Chai
- School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou Zhejiang 310035 China
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition Zhejiang Gongshang University Hangzhou Zhejiang 310035 China
| | - Fanyu He
- School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou Zhejiang 310035 China
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition Zhejiang Gongshang University Hangzhou Zhejiang 310035 China
| | - Yuewen Chen
- School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou Zhejiang 310035 China
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition Zhejiang Gongshang University Hangzhou Zhejiang 310035 China
| | - Xiuping Dong
- School of Food Science and Technology Dalian Polytechnic University Dalian 116034 China
- National Engineering Research Center of Seafood Dalian 116034 China
| | - Yugang Shi
- School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou Zhejiang 310035 China
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition Zhejiang Gongshang University Hangzhou Zhejiang 310035 China
| |
Collapse
|
17
|
Physicochemical Characterization of In Vitro LDL Glycation and Its Inhibition by Ellagic Acid (EA): An In Vivo Approach to Inhibit Diabetes in Experimental Animals. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5583298. [PMID: 35097119 PMCID: PMC8791751 DOI: 10.1155/2022/5583298] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/12/2021] [Accepted: 12/24/2021] [Indexed: 12/15/2022]
Abstract
Hundreds of millions of people around the globe are afflicted by diabetes mellitus. The alteration in glucose fixation process might result into hyperglycaemia and could affect the circulating plasma proteins to undergo nonenzymatic glycation reaction. If it is unchecked, it may lead to diabetes with increase in advanced glycation end products (AGEs). Therefore, the present study was designed to inhibit the diabetes and glycation by using natural antioxidant “ellagic acid” (EA). In this study, we explored the antidiabetes and antiglycation potential of EA in both in vitro (EA at micromolar concentration) and in vivo systems. The EA concentrations of 10 and 20 mg kg−1B.W./day were administered orally for 25 days to alloxan-induced diabetic rats, a week after confirmation of stable diabetes in animals. Intriguingly, EA supplementation in diabetic rats reversed the increase in fasting blood sugar (FBS) and hemoglobin A1c (HbA1c) level. EA also showed an inhibitory role against glycation intermediates including dicarbonyls, as well as AGEs, investigated in a glycation mixture with in vitro and in vivo animal plasma samples. Additionally, EA treatment resulted in inhibition of lipid peroxidation-mediated malondialdehyde (MDA) and conjugated dienes (CD). Furthermore, EA exhibited an antioxidant property, increased the level of plasma glutathione (GSH), and also helped to decrease histological changes evaluated by histoimmunostaining of animal kidney tissues. The results from our investigation clearly indicates the antiglycative property of EA, suggesting EA as an adequate inhibitor of glycation and diabetes, which can be investigated further in preclinical settings for the treatment and management of diabetes-associated complications.
Collapse
|
18
|
Sarmah S, Roy AS. A review on prevention of glycation of proteins: Potential therapeutic substances to mitigate the severity of diabetes complications. Int J Biol Macromol 2022; 195:565-588. [DOI: 10.1016/j.ijbiomac.2021.12.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 12/21/2022]
|
19
|
Singh IR, Yesylevskyy SO, Mitra S. Dietary polyphenols inhibit plasma protein arabinosylation: Biomolecular interaction of genistein and ellagic acid with serum albumins. Biophys Chem 2021; 277:106651. [PMID: 34217110 DOI: 10.1016/j.bpc.2021.106651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 01/08/2023]
Abstract
The mode of interaction of polyphenolic compounds like genistein (GTN) and ellagic acid (EGA) with human and bovine serum albumin (HSA and BSA, respectively) was found to differ significantly. Stern-Volmer (SV) analysis of the fluorescence quenching data revealed that the binding strength of EGA (1.9 ± 0.09 × 105 M-1) to HSA is about one order of magnitude higher than GTN (2.24 ± 0.06 × 104 M-1). While the static quenching of HSA fluorescence was found to proceed through simple Stern-Volmer (SV) mechanism, a quenching sphere-of-action model was indispensable for BSA. Temperature dependent fluorescence along with a series of other biophysical experiments and ensemble docking calculation revealed that EGA and GTN bind to the serum proteins primarily through the entropy driven process. The α-helical content and the microenvironment near Trp residue of HSA and BSA did not show any appreciable change due to the binding of either GTN or EGA. Interestingly, both GTN and EGA were found to inhibit the formation of advanced glycated end (AGE) product of serum proteins up to the extent of 70-90% within 12-24 h. Relatively moderate binding propensity along with the anti-glycation ability of the polyphenols confirmed that GTN and EGA can be used either as an alternative or towards development of suitable drugs in the prevention of many diabetic-related complications.
Collapse
Affiliation(s)
| | - Semen O Yesylevskyy
- Department of Physics of Biological Systems, Institute of Physics of the National Academy of Sciences of Ukraine, Prospect Nauky 46, 03028 Kyiv, Ukraine
| | - Sivaprasad Mitra
- Department of Chemistry, North-Eastern Hill University, Shillong 793 022, India.
| |
Collapse
|
20
|
Bednarska K, Fecka I. Potential of Vasoprotectives to Inhibit Non-Enzymatic Protein Glycation, and Reactive Carbonyl and Oxygen Species Uptake. Int J Mol Sci 2021; 22:ijms221810026. [PMID: 34576189 PMCID: PMC8465384 DOI: 10.3390/ijms221810026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/14/2022] Open
Abstract
Reactive carbonyl species (RCS) such as methylglyoxal (MGO) or glyoxal (GO) are the main precursors of the formation of advanced glycation end products (AGEs). AGEs are a major factor in the development of vascular complications in diabetes. Vasoprotectives (VPs) exhibit a wide range of activities beneficial to cardiovascular health. The present study aimed to investigate selected VPs and their structural analogs for their ability to trap MGO/GO, inhibit AGE formation, and evaluate their antioxidant potential. Ultra-high-performance liquid chromatography coupled with an electrospray ionization mass spectrometer (UHPLC-ESI-MS) and diode-array detector (UHPLC-DAD) was used to investigate direct trapping capacity and kinetics of quenching MGO/GO, respectively. Fluorimetric and colorimetric measurements were used to evaluate antiglycation and antioxidant action. All tested substances showed antiglycative effects, but hesperetin was the most effective in RCS scavenging. We demonstrated that rutin, diosmetin, hesperidin, and hesperetin could trap both MGO and GO by forming adducts, whose structures we proposed. MGO-derived AGE formation was inhibited the most by hesperetin, and GO-derived AGEs by diosmetin. High reducing and antiradical activity was confirmed for quercetin, rutin, hesperetin, and calcium dobesilate. Therefore, in addition to other therapeutic applications, some VPs could be potential candidates as antiglycative agents to prevent AGE-related complications of diabetes.
Collapse
|
21
|
Chen J, Sridhar K, Tsai P. Anti‐glycation and inhibition of starch hydrolyzing enzymes by enzymatically hydrolysed djulis (
Chenopodium formosanum
Koidz.) hull, leaf and seedling. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jing‐Yu Chen
- Department of Food Science National Pingtung University of Science and Technology 1 Shuefu Road Neipu, Pingtung 91201 Taiwan
| | - Kandi Sridhar
- Department of Food Science Fu Jen Catholic University New Taipei City, Taipei 24205 Taiwan
| | - Pi‐Jen Tsai
- Department of Food Science National Pingtung University of Science and Technology 1 Shuefu Road Neipu, Pingtung 91201 Taiwan
| |
Collapse
|
22
|
Influence of In Vitro Human Digestion Simulation on the Phenolics Contents and Biological Activities of the Aqueous Extracts from Turkish Cistus Species. Molecules 2021; 26:molecules26175322. [PMID: 34500753 PMCID: PMC8434344 DOI: 10.3390/molecules26175322] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 11/16/2022] Open
Abstract
Oxidative stress is one of the significant precursors of various metabolic diseases such as diabetes, Parkinson's disease, cardiovascular diseases, cancer, etc. Various scientific reports have indicated that secondary plant metabolites play an important role in preventing oxidative stress and its harmful effects. In this respect, this study was planned to investigate the phenolic profile and antioxidant and antidiabetic potentials of the aqueous extracts from Turkish Cistus species by employing in vitro methods. In vitro digestion simulation procedure was applied to all extracts to estimate the bioavailability of their phenolic contents. Total phenolic, flavonoid, phenolic acid and proanthocyanidin contents were determined for all phases of digestion. In addition, changes in the quantity of the assigned marker flavonoids (tiliroside, hyperoside and quercitrin) were monitored by High-Performance Thin Layer Chromatography (HPTLC) analysis. The antioxidant activity potentials of the extracts were studied by various methods to reveal their detailed activity profiles. On the other hand, in vitro α-amylase and α-glucosidase enzymes and advanced-glycation end product (AGE) inhibitory activities of the extracts were determined to evaluate the antidiabetic potentials of extracts. The results showed that aqueous extracts obtained from the aerial parts of Turkish Cistus species have rich phenolic contents and potential antioxidant and antidiabetic activities; however, their bioactivity profiles and marker flavonoid concentrations might significantly be affected by human digestion. The results exhibited that total phenolic contents, antioxidant activities and diabetes-related enzyme inhibitions of the bioavailable samples were lower than non-digested samples in all extracts.
Collapse
|
23
|
Serina JJC, Castilho PCMF. Using polyphenols as a relevant therapy to diabetes and its complications, a review. Crit Rev Food Sci Nutr 2021; 62:8355-8387. [PMID: 34028316 DOI: 10.1080/10408398.2021.1927977] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Diabetes is currently a worldwide health concern. Hyperglycemia, hypertension, obesity, and oxidative stress are the major risk factors that inevitably lead to all the complications from diabetes. These complications severely impact the quality of life of patients, and they can be managed, reduced, or even reverted by several polyphenols, plant extracts and foods rich in these compounds. The goal of this review is to approach diabetes not as a single condition but rather an interconnected combination of risk factors and complications. This work shows that polyphenols have multi target action and effects and they have been systematically proven to be relevant in the reduction of each risk factor and improvement of associated complication.
Collapse
|
24
|
Efficient Separation of Phytochemicals from Muehlenbeckia volcanica (Benth.) Endl. by Polarity-Stepwise Elution Counter-Current Chromatography and Their Antioxidant, Antiglycation, and Aldose Reductase Inhibition Potentials. Molecules 2021; 26:molecules26010224. [PMID: 33406776 PMCID: PMC7796107 DOI: 10.3390/molecules26010224] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 12/28/2020] [Accepted: 12/31/2020] [Indexed: 12/24/2022] Open
Abstract
Muehlenbeckia volcanica (Benth.) Endl. (M. volcanica), native to South America, is a traditional Peruvian medicinal plant that has multi-therapeutic properties; however, no phytochemicals have been identified from it yet. In this study, a five-step polarity-stepwise elution counter-current chromatography (CCC) was developed using methanol/water (1:5, v/v) as the stationary phase and different ratios of n-hexane, ethyl acetate, and n-butanol as mobile phases to separate the compounds from the 70% methanol extract of M. volcanica, by which six compounds with a wide range of polarities were separated in a single run of CCC and were identified as gallic acid, protocatechuic acid, 4,4'-dihydroxy-3,3'-imino-di-benzoic acid, rutin, quercitrin, and quercetin. Then, two compounds from the fractions of stepwise elution CCC were separated using conventional high-speed CCC, pH-zone-refining CCC, and preparative high-performance liquid chromatography, and identified as shikimic acid and miquelianin. These compounds are reported from M. volcanica for the first time. Notably, except for shikimic acid, all other compounds showed anti-diabetic potentials via antioxidant, antiglycation, and aldose reductase inhibition. The results suggest that the polarity-stepwise elution CCC can be used to efficiently separate or fractionate compounds with a wide range of polarities from natural products. Moreover, M. volcanica and its bioactive compounds are potent anti-diabetic agents.
Collapse
|
25
|
Liu J, Yang Z, Hao Y, Wang Z, Han L, Li M, Zhang N, Chen H, Liu Y, Li H, Wang J. Effect of alkylresorcinols on the formation of Nε-(carboxymethyl)lysine and sensory profile of wheat bread. Food Sci Nutr 2021; 9:489-498. [PMID: 33473310 PMCID: PMC7802564 DOI: 10.1002/fsn3.2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/28/2020] [Accepted: 11/02/2020] [Indexed: 12/28/2022] Open
Abstract
Alkylresorcinols (ARs) are important bioactive components in wheat bran which have been used as biomarkers for whole grain wheat consumption. In this study, the impact of ARs on the formation of Nε-(carboxymethyl)lysine (CML), the main component of dietary advanced glycation end products which could induce chronic disease was analyzed. Moreover, the influence of the addition of ARs on the sensory profiles of wheat bread was evaluated. ARs supplementation (0.03%, 0.1%, and 0.3% w/w) could significantly decrease the formation of CML by 21.70%, 35.11%, and 42.18%, respectively, compared with the control. Moreover, ARs-supplemented bread achieved a higher score in overall acceptability and buttery-like aroma through sensory evaluation. The volatile compounds in bread supplemented with ARs were characterized by headspace solid phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS), among which acetoin, 2,3-butanedione, 3-methyl-1-butanol, 2-phenylethanol, and 2-methylbutanal were confirmed as the main volatile compounds through determination of odor activity value. In addition, ARs supplementation had no negative impact on the chewiness, hardness, and springiness of bread. These findings demonstrated that ARs could be applied as potential food additives to improve the quality and sensory profile of bread.
Collapse
Affiliation(s)
- Jie Liu
- China‐Canada Joint Lab of Food Nutrition and Health (Beijing)Beijing Technology & Business University (BTBU)BeijingChina
| | - Zihui Yang
- China‐Canada Joint Lab of Food Nutrition and Health (Beijing)Beijing Technology & Business University (BTBU)BeijingChina
| | - Yiming Hao
- China‐Canada Joint Lab of Food Nutrition and Health (Beijing)Beijing Technology & Business University (BTBU)BeijingChina
| | - Ziyuan Wang
- China‐Canada Joint Lab of Food Nutrition and Health (Beijing)Beijing Technology & Business University (BTBU)BeijingChina
| | - Lin Han
- China‐Canada Joint Lab of Food Nutrition and Health (Beijing)Beijing Technology & Business University (BTBU)BeijingChina
| | - Meng Li
- China‐Canada Joint Lab of Food Nutrition and Health (Beijing)Beijing Technology & Business University (BTBU)BeijingChina
| | - Ning Zhang
- China‐Canada Joint Lab of Food Nutrition and Health (Beijing)Beijing Technology & Business University (BTBU)BeijingChina
| | - Haitao Chen
- China‐Canada Joint Lab of Food Nutrition and Health (Beijing)Beijing Technology & Business University (BTBU)BeijingChina
| | - Yingli Liu
- China‐Canada Joint Lab of Food Nutrition and Health (Beijing)Beijing Technology & Business University (BTBU)BeijingChina
| | - Hongyan Li
- China‐Canada Joint Lab of Food Nutrition and Health (Beijing)Beijing Technology & Business University (BTBU)BeijingChina
| | - Jing Wang
- China‐Canada Joint Lab of Food Nutrition and Health (Beijing)Beijing Technology & Business University (BTBU)BeijingChina
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Technology & Business UniversityBeijingChina
| |
Collapse
|
26
|
Sobhy R, Shen Q, Abd-Elrahman AA, Khalifa I, Liang H, Li B. In vitro evaluation of anti-methylglyoxal/glyoxal activity of three phytosterols using glycated bovine serum albumin models. Steroids 2020; 161:108678. [PMID: 32565405 DOI: 10.1016/j.steroids.2020.108678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/04/2020] [Accepted: 06/12/2020] [Indexed: 10/24/2022]
Abstract
Reactive intermediate dicarbonyls, such as methylglyoxal (MGO) and glyoxal (GO), have received extensive attention recently due to their high reactivity and capability to form advanced glycation end products (AGEs) in foods, which have been implicated in the progression of age-related complaints. We aimed to investigate the effects of three structurally different phytosterols (PS), including stigmasterol (SS), β-sitosterol (βS), and γ-oryzanol (γO), on AGEs-formation by measuring their anti-GO/MGO activity. The glycoxidation-based products, SDS-PAGE intensity, free lysine, protein thiols, fluorescence microscopy clicks, scavenging of dicarbonyl activity, and protein aggregation in bovine serum albumin (BSA) models were therefore measured. The results showed that PS could strongly inhibit fluorescent-AGEs, lysine residues, intermediate di-carbonyls, beside their disaggregation effects in a dose and structure dependent manner. Additionally, γ-oryzanol strongly inhibited AGEs more than the other PS, mostly due to its distinctive structure. Our results will provide a new foundation for development of different structure of PS as natural AGEs-inhibitors.
Collapse
Affiliation(s)
- Remah Sobhy
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Department of Biochemistry, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt
| | - Qian Shen
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Ahmed A Abd-Elrahman
- Department of Biochemistry, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt
| | - Ibrahim Khalifa
- Food Technology Department, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt
| | - Hongshan Liang
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei 430070, China
| | - Bin Li
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei 430070, China.
| |
Collapse
|
27
|
Zhou Q, Cheng KW, Xiao J, Wang M. The multifunctional roles of flavonoids against the formation of advanced glycation end products (AGEs) and AGEs-induced harmful effects. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.06.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
28
|
González I, Morales MA, Rojas A. Polyphenols and AGEs/RAGE axis. Trends and challenges. Food Res Int 2020; 129:108843. [PMID: 32036875 DOI: 10.1016/j.foodres.2019.108843] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/07/2019] [Accepted: 11/18/2019] [Indexed: 02/07/2023]
Abstract
The formation of advanced glycation end-products (AGEs) is a key pathophysiological event linked not only to the onset and progression of diabetic complications, but also to neurodegeneration, cardiovascular diseases, cancer, and others important human diseases. AGEs contributions to pathophysiology are mainly through the formation of cross-links and by engaging the receptor for advanced glycation end-products (RAGE). Polyphenols are secondary metabolites found largely in fruits, vegetables, cereals, and beverages, and during many years, important efforts have been made to elucidate their beneficial effects on human health, mainly ascribed to their antioxidant activities. In the present review, we highlighted the beneficial actions of polyphenols aimed to diminish the harmful consequences of advanced glycation, mainly by the inhibition of ROS formation during glycation, the inhibition of Schiff base, Amadori products, and subsequent dicarbonyls group formation, the activation of the glyoxalase system, as well as by blocking either AGEs-RAGE interaction or cell signaling.
Collapse
Affiliation(s)
- Ileana González
- Biomedical Research Laboratories, Medicine Faculty, Catholic University of Maule, Talca, Chile
| | - Miguel A Morales
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chil
| | - Armando Rojas
- Biomedical Research Laboratories, Medicine Faculty, Catholic University of Maule, Talca, Chile.
| |
Collapse
|
29
|
Study of reactions of Nε-(carboxymethyl) lysine with o-benzoquinones by cyclic voltammetry. Food Chem 2020; 307:125554. [PMID: 31648176 DOI: 10.1016/j.foodchem.2019.125554] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 09/15/2019] [Accepted: 09/16/2019] [Indexed: 11/22/2022]
Abstract
The reaction of Nε-(carboxymethyl) lysine (CML) with eight kinds of non-flavonoid o-benzoquinones and five kinds of flavonoid o-benzoquinones were investigated by cyclic voltammetry at pH 5.0, 7.0 and 8.0 and scan rate of 10, 50 and 100 mV/s. The reactivity of o-benzoquinones towards CML is weakened by the electron-donating substituent and strengthened by the electron-withdrawing substituent on the o-benzoquinone rings. The steric hindrance of the substituents on o-benzoquinone rings also weakens the quinone reactivity. Reaction of 4-methylbenzoquinone with CML (38.0 ± 1.3%) was found to be faster than that with l-lysine (31.3 ± 1.5%) and Nα-acetyl-l-lysine (14.5 ± 0.1%) but slower than that with l-cysteine (≥100.0%) and Nα-acetyl-l-cysteine (≥100.0%) at pH 7.0 and scan rate of 10 mV/s. Products obtained by the reaction of CML with o-benzoquinones were found to include a CML-quinone adduct according to the cyclic voltammetry and UPLC-QTOF-MS/MS analysis.
Collapse
|
30
|
Fernandes ACF, Martins IM, Moreira DKT, Macedo GA. Use of agro‐industrial residues as potent antioxidant, antiglycation agents, and α‐amylase and pancreatic lipase inhibitory activity. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14397] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Isabela Mateus Martins
- Bioprocesses Laboratory Faculty of Food Engineering University of Campinas Campinas Brazil
| | | | - Gabriela Alves Macedo
- Bioprocesses Laboratory Faculty of Food Engineering University of Campinas Campinas Brazil
| |
Collapse
|
31
|
Khalifa I, Xia D, Dutta K, Peng J, Jia Y, Li C. Mulberry anthocyanins exert anti-AGEs effects by selectively trapping glyoxal and structural-dependently blocking the lysyl residues of β-lactoglobulins. Bioorg Chem 2020; 96:103615. [PMID: 32007726 DOI: 10.1016/j.bioorg.2020.103615] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/23/2019] [Accepted: 01/21/2020] [Indexed: 02/09/2023]
Abstract
Advanced glycation end-products (AGEs), which instigate many disorders, are mostly mediated by dicarbonyl rearrangements. We studied the corresponding mechanisms of the anti-glycation effects of two anthocyanins purified from mulberry fruits, namely cyanidin 3-glucoside (C3G) and cyanidin 3-rutinoside (C3R), on glycated β-lactoglobulins (β-Lg). Both mulberry anthocyanins (MAs) inhibited the AGEs-formation in a dose-dependent manner, but the effect of C3R was significantly stronger than that of C3G (p < 0.05). MAs inhibited AGEs-formation by selectively trapping dicarbonyls, especially glyoxal. The UPLC-ESI-Q-TOF-MS results characterized that C3R formed mono- and di-glyoxal adducts, where C3G only created di-glyoxal adducts. Additionally, C3R could directly interact with some of the glycation sites of β-Lg. Overall, GO-trapping and β-Lg-MAs covalent/noncovalent binding are disclosed as the key mechanisms of the anti-AGEs activity of MAs on β-Lg, which could be valorised as effectual AGEs inhibitors in proteins-rich matrices.
Collapse
Affiliation(s)
- Ibrahim Khalifa
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Food Technology Department, Faculty of Agriculture, 13736 Moshtohor, Benha University, Egypt
| | - Du Xia
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Kunal Dutta
- Microbiology and Immunology Laboratory, Department of Human Physiology with Community Health, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Jinmeng Peng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yangyang Jia
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunmei Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Environment Correlative Food Science (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China.
| |
Collapse
|
32
|
The noncovalent conjugations of bovine serum albumin with three structurally different phytosterols exerted antiglycation effects: A study with AGEs-inhibition, multispectral, and docking investigations. Bioorg Chem 2020; 94:103478. [DOI: 10.1016/j.bioorg.2019.103478] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/27/2019] [Accepted: 11/24/2019] [Indexed: 11/15/2022]
|
33
|
Liang Z, Chen X, Li L, Li B, Yang Z. The fate of dietary advanced glycation end products in the body: from oral intake to excretion. Crit Rev Food Sci Nutr 2019; 60:3475-3491. [PMID: 31760755 DOI: 10.1080/10408398.2019.1693958] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Advanced glycation end products (AGEs), which are closely associated with various chronic diseases, are formed through the Maillard reaction when aldehydes react with amines in heated foods or in living organisms. The fate of dietary AGEs after oral intake plays a crucial role in regulating the association between dietary AGEs and their biological effects. However, the complexity and diversity of dietary AGEs make their fate ambiguous. Glycated modifications can impair the digestion, transport and uptake of dietary AGEs. High and low molecular weight AGEs may exhibit individual differences in their distribution, metabolism and excretion. Approximately 50-60% of free AGEs are excreted after dietary intake, whereas protein-bound AGEs exhibit a limited excretion rate. In this article, we summarize several AGE classification criteria and their abundance in foods, and in the body. A standardized static in vitro digestion method is strongly recommended to obtain comparable results of AGE digestibility. Sophisticated hypotheses regarding the intestinal transportation and absorption of drugs, as well as calculated physicochemical parameters, are expected to alleviate the difficulties determining the digestion, transport and uptake of dietary AGEs. Orally supplied AGEs with low or high molecular weights must be supported by well-defined amounts in investigations of excretion. Furthermore, unequivocal evidence should be obtained regarding the degradation and metabolism products of dietary AGEs.
Collapse
Affiliation(s)
- Zhili Liang
- School of Food Science, Guangdong Food and Drug Vocational College, Guangzhou, China
| | - Xu Chen
- Engineering Research Center of Health Food Design & Nutrition Regulation, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan, China
| | - Lin Li
- Engineering Research Center of Health Food Design & Nutrition Regulation, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan, China
| | - Bing Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
| | - Zhao Yang
- School of Food Science, Guangdong Food and Drug Vocational College, Guangzhou, China
| |
Collapse
|
34
|
Huang HS, Yu HS, Yen CH, Liaw ET. HPLC-DAD-ESI-MS Analysis for Simultaneous Quantitation of Phenolics in Taiwan Elderberry and Its Anti-Glycation Activity. Molecules 2019; 24:E3861. [PMID: 31717735 PMCID: PMC6864441 DOI: 10.3390/molecules24213861] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/15/2019] [Accepted: 10/24/2019] [Indexed: 11/16/2022] Open
Abstract
Sambucus formosana is most commonly used as a traditional herb medicine in Taiwan. In this study, high performance liquid chromatography equipped with photodiode array detection-mass (HPLC-DAD-ESI-MS) method was developed for the identification and quantification of bioactive phenolics. The developed method was also validated for accuracy, precision, limit of detection, and quantification. In this method, chlorogenic acid, rutin, isoquercetrin, nictoflorin, astragalin, and quercetin were quantified in linearity range of 10-100 (μg/mL) with a correlation coefficient of greater than 0.996. High recovery (86.5-93.1%) and good reproducibility were obtained for six phenolics with the relative standard deviation ranging from 1.7-3.1%. Therefore, the proposed method for simultaneous quantification of six bioactive phenolics in the extract and fractions of S. formosana using HPLC-DAD-ESI-MS detection under the optimized conditions is accurate and validated. Among the results, methanol extract showed the greatest values of total phenolic content (93.1 mg gallic acid equivalent/g). Additionally, the methanol extract revealed best antioxidant capacity based on the DPPH scavenging activity and anti-glycation activity (IC50 was observed at 97.1 and 77.9 μg/mL, respectively).
Collapse
Affiliation(s)
- Ho-Shin Huang
- R&D Center, King Herb BioMed., Tainan 71201, Taiwan;
| | - Hsu-Sheng Yu
- Department of Food Science, National Pingtung University of Science & Technology, Pingtung 91201, Taiwan;
| | - Chia-Hung Yen
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan;
| | - Ean-Tun Liaw
- Department of Food Science, National Pingtung University of Science & Technology, Pingtung 91201, Taiwan;
| |
Collapse
|
35
|
Zhang H, Zhang H, Troise AD, Fogliano V. Melanoidins from Coffee, Cocoa, and Bread Are Able to Scavenge α-Dicarbonyl Compounds under Simulated Physiological Conditions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10921-10929. [PMID: 31496242 PMCID: PMC6876928 DOI: 10.1021/acs.jafc.9b03744] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Free amino residues react with α-dicarbonyl compounds (DCs) contributing to the formation of advanced glycation end products (AGEs). Phenolic compounds can scavenge DCs, thus controlling the dietary carbonyl load. This study showed that high-molecular weight cocoa melanoidins (HMW-COM), HMW bread melanoidins (HMW-BM), and especially HMW coffee melanoidins (HMW-CM) are effective DC scavengers. HMW-CM (1 mg/mL) scavenged more than 40% DCs within 2 h under simulated physiological conditions, suggesting some physiological relevance. Partial acid hydrolysis of HMW-CM decreased the dicarbonyl trapping capacity, demonstrating that the ability to react with glyoxal, methylglyoxal (MGO), and diacetyl was mainly because of polyphenols bound to macromolecules. Caffeic acid (CA) and 3-caffeoylquinic acid showed a DC-scavenging kinetic profile similar to that of HMW-CM, while mass spectrometry data confirmed that hydroxyalkylation and aromatic substitution reactions led to the formation of a stable adduct between CA and MGO. These findings corroborated the idea that antioxidant-rich indigestible materials could limit carbonyl stress and AGE formation across the gastrointestinal tract.
Collapse
Affiliation(s)
- Hao Zhang
- School
of Food Science and Technology, Jiangnan
University, Wuxi 214122, China
- Food
Quality & Design Group, Wageningen University
& Research, Wageningen NL-6708 WG, Netherlands
| | - Hui Zhang
- School
of Food Science and Technology, Jiangnan
University, Wuxi 214122, China
| | - Antonio Dario Troise
- Department
of Agricultural Sciences, University of
Naples ‘‘Federico II’’, 80055 Portici, Italy
| | - Vincenzo Fogliano
- Food
Quality & Design Group, Wageningen University
& Research, Wageningen NL-6708 WG, Netherlands
- E-mail: .
Phone: +31 317485171
| |
Collapse
|
36
|
Starowicz M, Zieliński H. Inhibition of Advanced Glycation End-Product Formation by High Antioxidant-Leveled Spices Commonly Used in European Cuisine. Antioxidants (Basel) 2019; 8:antiox8040100. [PMID: 30991695 PMCID: PMC6523868 DOI: 10.3390/antiox8040100] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 01/13/2023] Open
Abstract
Spices and herbs, as good sources of polyphenols, could be strong inhibitors of advanced glycation end-product (AGE) formation. The aim of this research was to measure the ability of various spices to inhibit AGEs and to study the correlation of AGE inhibition with total phenolic (TP) content and antioxidant capacity. Fourteen spices commonly used in European cuisine were extracted with a 50% ethanol solution, and their water and total phenolic contents and antioxidant capacities were examined. Antioxidant capacity was evaluated using three methods: (1) Measurement of the radical scavenging ability of 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) and (2) 2,2-diphenyl-1-picrylhydrazyl (DPPH●); and (3) photochemiluminescence (PCL) assay. Antiglycation properties were studied in vivo using two model systems: Bovine serum albumin-glucose (BSA-glucose) and bovine serum albumin-methylglyoxal (BSA-MGO). The most potent glycation inhibitors, according to the BSA-MGO assay, were star anise (88%), cinnamon (85%), allspice (81%), and cloves (79%), whereas in the BSA-glucose measurement, oregano was noted to be a very effective inhibitor of the glycation process. The ability to inhibit glycation was highly correlated with TP values in the BSA-MGO and BSA-glucose assay (r = 0.84 and 0.76, respectively). Our research showed the high antiglycation ability of cinnamon, cloves, and allspice, and we suggest, for the first time, that anise could also be considered a good glycation inhibitor.
Collapse
Affiliation(s)
- Małgorzata Starowicz
- Department of Chemistry and Biodynamics of Food, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland.
| | - Henryk Zieliński
- Department of Chemistry and Biodynamics of Food, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland.
| |
Collapse
|
37
|
Afshari M, Rahimmalek M, Miroliaei M. Variation in Polyphenolic Profiles, Antioxidant and Antimicrobial Activity of Different Achillea Species as Natural Sources of Antiglycative Compounds. Chem Biodivers 2018; 15:e1800075. [PMID: 29779268 DOI: 10.1002/cbdv.201800075] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 05/15/2018] [Indexed: 11/08/2022]
Abstract
A comparative study was carried out on the methanolic extracts from six Achillea species and the examined polyphenols from these plants on the formation of advanced glycation end-products (AGE) in vitro. A. pachycephala which was richer in flavonoids (15 mg quercetin/g W) and phenolics (111.10 mg tannic acid/g DW) with substantial antioxidant activity (IC50 = 365.5 μg/ml) presented strong anti-AGE properties. Chlorogenic acid, luteolin, quercetin and caffeic acid were identified as the major polyphenols in the extracts by HPLC. In general, polyphenolic content follows the order of A. pachycephalla > A. nobilis > A. filipendulina > A. santolina > A. aucheri > A. millefolium. Most extracts exhibited marked anti-AGE ability in the bovine serum albumin (BSA)/methylglyoxal (MG) system, though A. pachycephala showed the highest potential. The formation of AGEs was assessed by monitoring the production of fluorescent products and circular dichroism (CD) spectroscopy. Diminution in free radical production (assessed by 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays) is discussed as potential mechanism for delay or reduced AGE. The results demonstrate the antiglycative, antioxidant and antimicrobial potential of Achillea species which can be attributed to polyphenols content and the effectiveness on generation of AGEs, thus Achillea species can be considered as natural sources for slowing down glycation related diseases.
Collapse
Affiliation(s)
- Mahvash Afshari
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, 84156 83111, Iran
| | - Mehdi Rahimmalek
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, 84156 83111, Iran
| | - Mehran Miroliaei
- Biochemistry and Molecular Biology Division, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| |
Collapse
|
38
|
Kim JH, Baek JS, Park JK, Lee BJ, Kim MS, Hwang SJ, Lee JY, Cho CW. Development of Houttuynia cordata Extract-Loaded Solid Lipid Nanoparticles for Oral Delivery: High Drug Loading Efficiency and Controlled Release. Molecules 2017; 22:molecules22122215. [PMID: 29236057 PMCID: PMC6149848 DOI: 10.3390/molecules22122215] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/05/2017] [Accepted: 12/12/2017] [Indexed: 01/04/2023] Open
Abstract
Houttuynia cordata (H. cordata) has been used for diuresis and detoxification in folk medicine as well as a herbal medicine with antiviral and antibacterial activities. H. cordata extract-loaded solid lipid nanoparticles (H-SLNs) were prepared with various concentration of poloxamer 188 or poloxamer 407 by a hot homogenization and ultrasonication method. H-SLNs dispersion was freeze-dried with or without trehalose as a cryoprotectant. The physicochemical characteristics of H-SLNs were evaluated by dynamic laser scattering (DLS), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM). Additionally, the in vitro release and in vitro cytotoxicity of H-SLNs were measured. Encapsulation efficiencies of H-SLNs (as quercitrin) were 92.9–95.9%. The SEM images of H-SLNs showed that H-SLNs have a spherical morphology. DSC and FT-IR showed that there were no interactions between ingredients. The increased extent of particle size of freeze-dried H-SLNs with trehalose was significantly lower than that of H-SLNs without trehalose. H-SLNs provided sustained release of quercitrin from H. cordata extracts. Cell viability of Caco-2 cells was over 70% according to the concentration of various formulation. Therefore, it was suggested that SLNs could be good carrier for administering H. cordata extracts.
Collapse
Affiliation(s)
- Ju-Heon Kim
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Jong-Suep Baek
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Jin-Kyu Park
- Wissen Co., Ltd., #410 Bio Venture Town, 461-8, Daejeon 305-811, Korea.
| | - Bong-Joo Lee
- College of Veterinary Medicine, Chonnam National University, Gwangju 500-757, Korea.
| | - Min-Soo Kim
- College of Pharmacy, Pusan National University, 63 Busandaehak-ro, Geumjeong-gu, Busan 609-735, Korea.
| | - Sung-Joo Hwang
- College of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 162-1 Songdo-dong, Yeonsu-gu, Incheon 406-840, Korea.
| | - Jae-Young Lee
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Cheong-Weon Cho
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| |
Collapse
|
39
|
Crascì L, Lauro MR, Puglisi G, Panico A. Natural antioxidant polyphenols on inflammation management: Anti-glycation activity vs metalloproteinases inhibition. Crit Rev Food Sci Nutr 2017; 58:893-904. [PMID: 27646710 DOI: 10.1080/10408398.2016.1229657] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The diet polyphenols are a secondary metabolites of plants able to act on inflammation process. Their anti-inflammatory activity is articulated through several mechanisms that are related to their antioxidative and radical scavengers properties. Our work is focused on a novel approach to inflammatory disease management, based on anti-glycative and matrix metalloproteinases (MMPs) inhibition effects, as a connected phenomena. To better understand these correlation, polyphenols Structure-Activity Relationship (SAR) studies were also reported. The antioxidant polyphenols inhibit the AGEs at different levels of the glycation process in the following ways: (1) prevention of Amadori adduct oxidation; (2) trapping reactive dycarbonyl compounds; (3) attenuation of receptor for AGEs (RAGE) expression. Moreover, several flavonoids with radical scavenging property showed also MMPs inhibition interact directly with MMPs or indirectly via radical scavengers and AGEs reduction. The essential polyphenols features involved in these mechanisms are C2-C3 double bond and number and position of hydroxyl, glycosyl and O-methyl groups. These factors induce a change in molecular planarity interfering with the hydrogen bond formation, electron delocalization and metal ion chelation. In particular, C2-C3 double bond improve the antioxidant and MMPs inhibition, while the hydroxylation, glycosylation and methylation induce a positive and negative correlation, respectively.
Collapse
Affiliation(s)
- Lucia Crascì
- a Department of Drug Science , University of Catania , Viale A. Doria , Catania , Italy
| | - Maria Rosaria Lauro
- b Department of Pharmacy , University of Salerno , Via Giovanni Paolo II, Fisciano ( SA ), Italy
| | - Giovanni Puglisi
- a Department of Drug Science , University of Catania , Viale A. Doria , Catania , Italy
| | - Annamaria Panico
- a Department of Drug Science , University of Catania , Viale A. Doria , Catania , Italy
| |
Collapse
|
40
|
Rapid Identification and Isolation of Inhibitors of Rat Lens Aldose Reductase and Antioxidant in Maackia amurensis. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4941825. [PMID: 28484711 PMCID: PMC5397615 DOI: 10.1155/2017/4941825] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/02/2017] [Indexed: 12/29/2022]
Abstract
Oxidative stress and aldose reductase activity have been implicated in the development of diabetic complications. In this study, the antioxidant and aldose reductase (AR) inhibitory effects of Maackia amurensis (MA) were investigated. The ethyl acetate fraction of the MA extract showed the highest inhibitory activity in antioxidant and rat lens AR (RLAR). To identify and isolate the active components in the ethyl acetate fraction of the MA extract, high-speed countercurrent chromatography and Sephadex LH-20 column chromatography were performed and guided by an offline HPLC-ABTS assay and HPLC microfractionation AR assay. Four antioxidants, namely, piceatannol (IC50 = 6.73 μM), resveratrol (IC50 = 11.05 μM), trans-ferulic acid (IC50 = 13.51 μM), and chlorogenic acid (IC50 = 27.23 μM), and six AR inhibitors, namely, chlorogenic acid (IC50 = 4.2 μM), tectoridin (IC50 = 50.4 μM), genistein (IC50 = 57.1 μM), formononetin (IC50 = 69.2 μM), resveratrol (IC50 = 117.6 μM), and daidzein (IC50 = 151.9 μM), were isolated and identified. The screening results of the offline HPLC-ABTS assay and HPLC microfractionation AR assay matched the activity of isolated compounds. Thus, MA is potentially valuable for antioxidant and AR inhibitor discovery and efficient drug design for the prevention and treatment of diabetic complications.
Collapse
|
41
|
Bhuiyan MNI, Mitsuhashi S, Sigetomi K, Ubukata M. Quercetin inhibits advanced glycation end product formation via chelating metal ions, trapping methylglyoxal, and trapping reactive oxygen species. Biosci Biotechnol Biochem 2017; 81:882-890. [PMID: 28388357 DOI: 10.1080/09168451.2017.1282805] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Physiological concentration of Mg2+, Cu2+, and Zn2+ accelerated AGE formation only in glucose-mediated conditions, which was effectively inhibited by chelating ligands. Only quercetin (10) inhibited MGO-mediated AGE formation as well as glucose- and ribose-mediated AGE formation among 10 polyphenols (1-10) tested. We performed an additional structure-activity relationship (SAR) study on flavanols (10, 11, 12, 13, and 14). Morin (12) and kaempherol (14) showed inhibitory activity against MGO-mediated AGE formation, whereas rutin (11) and fisetin (13) did not. These observations indicate that 3,5,7,4'-tetrahydroxy and 4-keto groups of 10 are important to yield newly revised mono-MGO adducts (16 and 17) and di-MGO adduct (18) having cyclic hemiacetals, while 3'-hydroxy group is not essential. We propose here a comprehensive inhibitory mechanism of 10 against AGE formation including chelation effect, trapping of MGO, and trapping of reactive oxygen species (ROS), which leads to oxidative degradation of 18 to 3,4-dihydroxybenzoic acid (15) and other fragments.
Collapse
Affiliation(s)
| | - Shinya Mitsuhashi
- a Division of Applied Bioscience, Graduate School of Agriculture , Hokkaido University , Sapporo , Japan
| | - Kengo Sigetomi
- a Division of Applied Bioscience, Graduate School of Agriculture , Hokkaido University , Sapporo , Japan
| | - Makoto Ubukata
- a Division of Applied Bioscience, Graduate School of Agriculture , Hokkaido University , Sapporo , Japan
| |
Collapse
|
42
|
Kang S, Zhao X, Yue L, Liu L. Main anthraquinone components in Aloe vera
and their inhibitory effects on the formation of advanced glycation end-products. J FOOD PROCESS PRES 2016. [DOI: 10.1111/jfpp.13160] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Shimo Kang
- The College of Food Science; Shenyang Agricultural University; Shenyang Liaoning 110866 China
| | - Xin Zhao
- The College of Food Science; Shenyang Agricultural University; Shenyang Liaoning 110866 China
| | - Lu Yue
- The College of Food Science; Shenyang Agricultural University; Shenyang Liaoning 110866 China
| | - Ling Liu
- The College of Food Science; Shenyang Agricultural University; Shenyang Liaoning 110866 China
| |
Collapse
|
43
|
Inhibitory effect of different fennel ( Foeniculum vulgare ) samples and their phenolic compounds on formation of advanced glycation products and comparison of antimicrobial and antioxidant activities. Food Chem 2016; 213:196-205. [DOI: 10.1016/j.foodchem.2016.06.070] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 05/24/2016] [Accepted: 06/21/2016] [Indexed: 12/19/2022]
|
44
|
Zamora R, Hidalgo FJ. The triple defensive barrier of phenolic compounds against the lipid oxidation-induced damage in food products. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.06.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
45
|
Sompong W, Adisakwattana S. Inhibitory effect of herbal medicines and their trapping abilities against methylglyoxal-derived advanced glycation end-products. Altern Ther Health Med 2015; 15:394. [PMID: 26520793 PMCID: PMC4628390 DOI: 10.1186/s12906-015-0897-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/05/2015] [Indexed: 12/12/2022]
Abstract
Background Methylglyoxal (MG) is one of the most reactive glycating agents, which result the formation of advanced glycation end-products (AGEs) that have been implicated in the progression of age-related diseases. Inhibition of MG-induced AGE formation is the imperative approach for alleviating diabetic complications. The objective of this study was to investigate the MG-trapping abilities of herbal medicines and their inhibitory activities on the formation of MG-derived AGEs. Methods The aqueous extract of herbal medicines was measured for the content of total phenolic compounds and the antioxidant activity by Folin-Ciocalteu assay and the 1,1-diphenyl 2-picrylhydrazyl (DPPH) radical scavenging activity, respectively. The extracts were investigated the MG-trapping ability by high performance liquid chromatography (HPLC). The extracts were incubated with BSA and MG at 37 °C for 1 day. The formation of MG-derived AGEs was measured. Results Total phenolic compounds of eleven herbal medicines showed marked variations, ranging from 12.16 to 272.36 mg gallic acid equivalents/g extract. All extracts (1 mg/mL) markedly exhibited the DPPH radical scavenging activity (0.31–73.52 %) and the MG-trapping abilities (13.97–58.97 %). In addition, they also inhibited the formation of MG-derived AGEs by 4.01–79.98 %. The results demonstrated that Rhinacanthus nasutus, Syzygium aromaticum, and Phyllanthus amarus were the potent inhibitors against the formation of MG-derived AGEs. The positive correlations between the contents of phenolics and % MG trapping (r = 0.912, p < 0.01) and % inhibition of MG-derived AGEs (r = 0.716, p < 0.01) were observed in the study. Furthermore, there was a moderate positive correlation between % MG trapping and % inhibition of MG-derived AGEs (r =0.584, p < 0.01). Conclusions Rhinacanthus nasutus, Syzygium aromaticum, and Phyllanthus amarus could reduce the formation of MG-derived AGEs through their MG-trapping abilities. These findings are relevant for focusing on potential herbal medicines to prevent or ameliorate AGE-mediated diabetic complications.
Collapse
|