1
|
Chen J, Chen Q, Shu Q, Liu Y. The dual role of mannosylerythritol lipid-A: Improving gelling property and exerting antibacterial activity in chicken and beef gel. Food Chem 2024; 464:141835. [PMID: 39504896 DOI: 10.1016/j.foodchem.2024.141835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/24/2024] [Accepted: 10/27/2024] [Indexed: 11/08/2024]
Abstract
Gel meat products are important in the meat market. To develop high-quality meat gel products, mannosylerythritol lipid-A (MEL-A) was added to chicken and beef gels, and their physicochemical and biological properties of the composite gel formed by heating were determined in this study. The results of texture analysis showed that MEL-A could significantly improve the hardness, gumminess and chewiness of meat gels and reduce water loss (P < 0.05). In addition, rheological and differential scanning calorimetry (DSC) analysis showed that MEL-A not only improved the rheological properties of meat gel, but also improved its thermal stability. The results of dynamic rheological analysis also showed that MEL-A improved the gel strength of meat gel, and the gel strength of chicken was the highest after adding 1.5 % MEL-A while the gel strength of beef was the highest after adding 2 % MEL-A. The image of scanning electron microscopy (SEM) and protein molecular weight distribution measurement indicated that MEL-A induced protein aggregation, resulting in fewer pores in the meat gels and a more compact network structure. These results suggest that different meat gels show good gel properties, so MEL-A has a lot of potential for gel product development.
Collapse
Affiliation(s)
- Jiayu Chen
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Qihe Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Qin Shu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China.
| | - Yongfeng Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China.
| |
Collapse
|
2
|
Cohen R, Pirmatova M, Ananth KM, Jacobi G, Zelinger E, Belausov E, Samara M, Shoshani S, Banin E, Mechrez G. Latex-Bridged Inverse Pickering Emulsion for Durable Superhydrophobic Coatings with Dual Antibacterial Activity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59156-59173. [PMID: 39344674 DOI: 10.1021/acsami.4c09487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
There is agreement that every colloidal structure produces its own set of unique characteristics, properties, and applications. A colloidal phenomenon of latex-bridged water in a dimethyl carbonate (DMC) Pickering emulsion stabilized by R202 hydrophobic silica was investigated for its ability to act as a superhydrophobic coating (SHC) for cellulose substrates. First, various emulsion compositions were screened for their stability and droplet size. The final composition was then cross-examined by cryogenic scanning electron microscopy and optical and fluorescent microscopy to verify the colloidal structure. The drying pattern of the coating was investigated by using labeled samples under a fluorescent microscope and by scanning electron microscopy on a paper substrate. After the final ∼3 μm of dry coating was applied, it exhibited superhydrophobicity (advancing contact angle = 155°) and full functionality after 5 min at room temperature (RT). Coated samples maintained superhydrophobicity after 20 abrasion cycles and mechanical integrity after 50 s of water immersion. The SHC-coated paper demonstrated compatibility with a standard laser printer, and the coated paper demonstrated superhydrophobicity after printing. Finally, a propolis/DMC extract was produced and then analyzed by gas chromatography-mass spectroscopy (GC-MS) and infused into the SHC (PSHC). The newly formed PSHC demonstrated its ability to act effectively against E. coli biofilm and S. aureus planktonic cells and reduce their viability by over 90% and 99.99%, respectively.
Collapse
Affiliation(s)
- Raz Cohen
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Center, 68 HaMaccabim Road, Rishon LeZion 7505101, Israel
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, POB 12, Rehovot 7610001, Israel
| | - Madina Pirmatova
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Center, 68 HaMaccabim Road, Rishon LeZion 7505101, Israel
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, POB 12, Rehovot 7610001, Israel
| | - Karthik Mani Ananth
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Center, 68 HaMaccabim Road, Rishon LeZion 7505101, Israel
| | - Gila Jacobi
- The Mina and Everard Goodman Faculty of Life Sciences, The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Bldg 206, Ramat-Gan 82900, Israel
| | - Einat Zelinger
- The Interdepartmental Equipment Unit, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, POB 12, Rehovot 7610001, Israel
| | - Eduard Belausov
- Plant Sciences, Ornamental Plants and Agricultural Biotechnology, Agricultural Research Organization (ARO), Volcani Center, 68 HaMaccabim Road, Rishon Letzion 7505101, Israel
| | - Mohamed Samara
- The Interinstitutional Analytical Unit, The Volcani Center, 68 HaMaccabim Road, Rishon LeZion 7505101, Israel
| | - Sivan Shoshani
- The Mina and Everard Goodman Faculty of Life Sciences, The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Bldg 206, Ramat-Gan 82900, Israel
| | - Ehud Banin
- The Mina and Everard Goodman Faculty of Life Sciences, The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Bldg 206, Ramat-Gan 82900, Israel
| | - Guy Mechrez
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Center, 68 HaMaccabim Road, Rishon LeZion 7505101, Israel
| |
Collapse
|
3
|
Ghahari A, Khosravi‐Darani K. Hurdle technology using enzymes and essential oil to remove biofilm and increase the effectiveness of this process with the microencapsulation method. Food Sci Nutr 2024; 12:8483-8492. [PMID: 39479686 PMCID: PMC11521719 DOI: 10.1002/fsn3.4377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/13/2024] [Accepted: 07/16/2024] [Indexed: 11/02/2024] Open
Abstract
The formation of biofilm in different places and the failure to effectively remove it by the usual disinfection methods is due to its structure and the rich genetic resource available in it to deal with disinfectants. These impenetrable structures and diverse microbial genetics have caused biofilm pollution in different industries like the food industry, the medicine industry, the hospitals and the water distribution system, resulting in pathogenicity and reduction of industrial quality. An efficient way to deal with the resistant population of biofilm-forming microbes is the use of hurdle technology including enzymes and essential oils. Enzymes reduce the resistance of the biofilm structure due to degradation of its extracellular polymer matrix (EPS) by their abilities to break down the organic molecules, and then the essential oils weaken the cells by penetrating the lipid membrane of the cell and destroying its integrity; as a result, the biofilm will be destroyed. The advantage of this hurdle technology is the environmental friendly of both methods, which reduces concerns about the use of chemical disinfection methods, but on the other hand, due to the sensitivity of enzymes as biological agents also the expensiveness of this technique and the considerations of working with essential oils as volatile and unstable liquids should abandon the routine methods of applying this disinfectant to biofilm and go for the microencapsulation method, which as a protective system increases the effectiveness of enzymes and essential oils as antibiofilm agents.
Collapse
Affiliation(s)
- Ayda Ghahari
- Bioprocess Engineering DepartmentInstitute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and BiotechnologyTehranIran
| | - Kianoush Khosravi‐Darani
- Research Department of Food Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food TechnologyShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
4
|
Samaniego LVB, Scandelau SL, Silva CR, Pratavieira S, de Oliveira Arnoldi Pellegrini V, Dabul ANG, Esmerino LA, de Oliveira Neto M, Hernandes RT, Segato F, Pileggi M, Polikarpov I. Thermothelomyces thermophilus exo- and endo-glucanases as tools for pathogenic E. coli biofilm degradation. Sci Rep 2024; 14:22576. [PMID: 39343957 PMCID: PMC11439960 DOI: 10.1038/s41598-024-70144-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/13/2024] [Indexed: 10/01/2024] Open
Abstract
The escalating prevalence of drug-resistant pathogens not only jeopardizes the effectiveness of existing treatments but also increases the complexity and severity of infectious diseases. Escherichia coli is one the most common pathogens across all healthcare-associated infections. Enzymatic treatment of bacterial biofilms, targeting extracellular polymeric substances (EPS), can be used for EPS degradation and consequent increase in susceptibility of pathogenic bacteria to antibiotics. Here, we characterized three recombinant cellulases from Thermothelomyces thermophilus: a cellobiohydrolase I (TthCel7A), an endoglucanase (TthCel7B), and a cellobiohydrolase II (TthCel6A) as tools for hydrolysis of E. coli and Gluconacetobacter hansenii biofilms. Using a design mixture approach, we optimized the composition of cellulases, enhancing their synergistic activity to degrade the biofilms and significantly reducing the enzymatic dosage. In line with the crystalline and ordered structure of bacterial cellulose, the mixture of exo-glucanases (0.5 TthCel7A:0.5 TthCel6A) is effective in the hydrolysis of G. hansenii biofilm. Meanwhile, a mixture of exo- and endo-glucanases is required for the eradication of E. coli 042 and clinical E. coli biofilms with significantly different proportions of the enzymes (0.56 TthCel7B:0.44 TthCel6A and 0.6 TthCel7A:0.4 TthCel7B, respectively). X-ray diffraction pattern and crystallinity index of E. coli cellulose are comparable to those of carboxymethyl cellulose (CMC) substrate. Our results illustrate the complexity of E. coli biofilms and show that successful hydrolysis is achieved by a specific combination of cellulases, with consistent recurrence of TthCel7B endoglucanase.
Collapse
Affiliation(s)
| | - Samuel Luis Scandelau
- Sao Carlos Institute of Physics, University of Sao Paulo, 1100 João Dagnone Avenue, São Carlos, SP, 13563-120, Brazil
| | - Caroline Rosa Silva
- Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
| | - Sebastião Pratavieira
- Sao Carlos Institute of Physics, University of Sao Paulo, 1100 João Dagnone Avenue, São Carlos, SP, 13563-120, Brazil
| | | | - Andrei Nicoli Gebieluca Dabul
- Sao Carlos Institute of Physics, University of Sao Paulo, 1100 João Dagnone Avenue, São Carlos, SP, 13563-120, Brazil
| | - Luís Antônio Esmerino
- Microbiology Laboratory, Clinical Analysis Department, Life Sciences and Health Institute, Ponta Grossa State University, Ponta Grossa, Brazil
| | - Mario de Oliveira Neto
- Institute of Biosciences, Sao Paulo State University, District of Rubiao Jr., Botucatu, SP, 18618-970, Brazil
| | - Rodrigo Tavanelli Hernandes
- Institute of Biosciences, Sao Paulo State University, District of Rubiao Jr., Botucatu, SP, 18618-970, Brazil
| | - Fernando Segato
- Lorena School of Engineering, University of Sao Paulo, Estrada Municipal do Campinho, Lorena, SP, 12602-810, Brazil
| | - Marcos Pileggi
- Environmental Microbiology Laboratory, Structural and Molecular Biology, and Genetics Department, Life Sciences and Health Institute, Ponta Grossa State University, Ponta Grossa, Brazil
| | - Igor Polikarpov
- Sao Carlos Institute of Physics, University of Sao Paulo, 1100 João Dagnone Avenue, São Carlos, SP, 13563-120, Brazil.
| |
Collapse
|
5
|
Li Y, Liang X, Chen N, Yuan X, Wang J, Wu Q, Ding Y. The promotion of biofilm dispersion: a new strategy for eliminating foodborne pathogens in the food industry. Crit Rev Food Sci Nutr 2024:1-25. [PMID: 39054781 DOI: 10.1080/10408398.2024.2354524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Food safety is a critical global concern due to its direct impact on human health and overall well-being. In the food processing environment, biofilm formation by foodborne pathogens poses a significant problem as it leads to persistent and high levels of food contamination, thereby compromising the quality and safety of food. Therefore, it is imperative to effectively remove biofilms from the food processing environment to ensure food safety. Unfortunately, conventional cleaning methods fall short of adequately removing biofilms, and they may even contribute to further contamination of both equipment and food. It is necessary to develop alternative approaches that can address this challenge in food industry. One promising strategy in tackling biofilm-related issues is biofilm dispersion, which represents the final step in biofilm development. Here, we discuss the biofilm dispersion mechanism of foodborne pathogens and elucidate how biofilm dispersion can be employed to control and mitigate biofilm-related problems. By shedding light on these aspects, we aim to provide valuable insights and solutions for effectively addressing biofilm contamination issues in food industry, thus enhancing food safety and ensuring the well-being of consumers.
Collapse
Affiliation(s)
- Yangfu Li
- State Key Laboratory of Applied Microbiology Southern China, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xinmin Liang
- State Key Laboratory of Applied Microbiology Southern China, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Department of Food Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Nuo Chen
- State Key Laboratory of Applied Microbiology Southern China, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xiaoming Yuan
- State Key Laboratory of Applied Microbiology Southern China, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Department of Food Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology Southern China, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yu Ding
- Department of Food Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
6
|
Zhang J, Liu M, Guo H, Gao S, Hu Y, Zeng G, Yang D. Nanotechnology-driven strategies to enhance the treatment of drug-resistant bacterial infections. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1968. [PMID: 38772565 DOI: 10.1002/wnan.1968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/04/2024] [Accepted: 05/02/2024] [Indexed: 05/23/2024]
Abstract
The misuse of antibiotics has led to increased bacterial resistance, posing a global public health crisis and seriously endangering lives. Currently, antibiotic therapy remains the most common approach for treating bacterial infections, but its effectiveness against multidrug-resistant bacteria is diminishing due to the slow development of new antibiotics and the increase of bacterial drug resistance. Consequently, developing new a\ntimicrobial strategies and improving antibiotic efficacy to combat bacterial infection has become an urgent priority. The emergence of nanotechnology has revolutionized the traditional antibiotic treatment, presenting new opportunities for refractory bacterial infection. Here we comprehensively review the research progress in nanotechnology-based antimicrobial drug delivery and highlight diverse platforms designed to target different bacterial resistance mechanisms. We also outline the use of nanotechnology in combining antibiotic therapy with other therapeutic modalities to enhance the therapeutic effectiveness of drug-resistant bacterial infections. These innovative therapeutic strategies have the potential to enhance bacterial susceptibility and overcome bacterial resistance. Finally, the challenges and prospects for the application of nanomaterial-based antimicrobial strategies in combating bacterial resistance are discussed. This article is categorized under: Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
- Junjie Zhang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, China
| | - Ming Liu
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, China
| | - Haiyang Guo
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, China
| | - Shuwen Gao
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, China
| | - Yanling Hu
- College of Life and Health, Nanjing Polytechnic Institute, Nanjing, China
| | - Guisheng Zeng
- Infectious Diseases Labs (ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Dongliang Yang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, China
| |
Collapse
|
7
|
Kim JS, Lim MC, Kim SM, Lee JY. Extracellular matrix-degrading enzymes as a biofilm control strategy for food-related microorganisms. Food Sci Biotechnol 2023; 32:1745-1761. [PMID: 37780595 PMCID: PMC10533455 DOI: 10.1007/s10068-023-01373-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 06/01/2023] [Accepted: 06/15/2023] [Indexed: 10/03/2023] Open
Abstract
Biofilm is one of the major problems in food industries and is difficult to be removed or prevented by conventional sanitizers. In this review, we discussed the extracellular matrix-degrading enzymes as a strategy to control biofilms of foodborne pathogenic and food-contaminating bacteria. The biofilms can be degraded by using the enzymes targeting proteins, polysaccharides, extracellular DNA, or lipids which mainly constitute the extracellular polymeric substances of biofilms. However, the efficacy of enzymes varies by the growth medium, bacterial species, strains, or counterpart microorganisms due to a high variation in the composition of extracellular polymeric substances. Several studies demonstrated that the combined treatment using conventional sanitizers or multiple enzymes can synergistically enhance the biofilm removal efficacies. In this review, the application of the immobilized enzymes on solid substrates is also discussed as a potential strategy to prevent biofilm formation on food contact surfaces.
Collapse
Affiliation(s)
- Joo-Sung Kim
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365 Republic of Korea
- Department of Food Biotechnology, Korea University of Science and Technology, 217, Gajeong-ro, Yuseong-gu, Daejeon, 34113 Republic of Korea
| | - Min-Cheol Lim
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365 Republic of Korea
- Department of Food Biotechnology, Korea University of Science and Technology, 217, Gajeong-ro, Yuseong-gu, Daejeon, 34113 Republic of Korea
| | - Se-Min Kim
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365 Republic of Korea
- Department of Food Science and Technology, Jeonbuk National University, 567, Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896 Republic of Korea
| | - Joo-Young Lee
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365 Republic of Korea
- Department of Food Science and Biotechnology, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419 Republic of Korea
| |
Collapse
|
8
|
Pant KJ, Cotter PD, Wilkinson MG, Sheehan JJ. Towards sustainable Cleaning-in-Place (CIP) in dairy processing: Exploring enzyme-based approaches to cleaning in the Cheese industry. Compr Rev Food Sci Food Saf 2023; 22:3602-3619. [PMID: 37458296 DOI: 10.1111/1541-4337.13206] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 09/13/2023]
Abstract
Cleaning-in-place (CIP) is the most commonly used cleaning and sanitation system for processing lines, equipment, and storage facilities such as milk silos in the global dairy processing industry. CIP employs thermal treatments and nonbiodegradable chemicals (acids and alkalis), requiring appropriate neutralization before disposal, resulting in sustainability challenges. In addition, biofilms are a major source of contamination and spoilage in dairy industries, and it is believed that current chemical CIP protocols do not entirely destroy biofilms. Use of enzymes as effective agents for CIP and as a more sustainable alternative to chemicals and thermal treatments is gaining interest. Enzymes offer several advantages when used for CIP, such as reduced water usage (less rinsing), lower operating temperatures resulting in energy savings, shorter cleaning times, and lower costs for wastewater treatment. Additionally, they are typically derived from natural sources, are easy to neutralize, and do not produce hazardous waste products. However, even with such advantages, enzymes for CIP within the dairy processing industry remain focused mainly on membrane cleaning. Greater adoption of enzyme-based CIP for cheese industries is projected pending a greater knowledge relating to cost, control of the process (inactivation kinetics), reusability of enzyme solutions, and the potential for residual activity, including possible effects on the subsequent product batches. Such studies are essential for the cheese industry to move toward more energy-efficient and sustainable cleaning solutions.
Collapse
Affiliation(s)
- Karan J Pant
- Department of Food Chemistry and Technology, Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
- Department of Biological Sciences, University of Limerick, Castletroy, Limerick, Ireland
| | - Paul D Cotter
- Department of Food Chemistry and Technology, Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
| | - Martin G Wilkinson
- Department of Biological Sciences, University of Limerick, Castletroy, Limerick, Ireland
| | - Jeremiah J Sheehan
- Department of Food Chemistry and Technology, Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
| |
Collapse
|
9
|
Mukherjee S, Bhattacharjee S, Paul S, Nath S, Paul S. Biofilm-a Syntrophic Consortia of Microbial Cells: Boon or Bane? Appl Biochem Biotechnol 2023; 195:5583-5604. [PMID: 35829902 DOI: 10.1007/s12010-022-04075-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/05/2022] [Indexed: 11/30/2022]
Abstract
Biofilm is the conglomeration of microbial cells which is associated with a surface. In the recent times, the study of biofilm has gained popularity and vivid research is being done to know about the effects of biofilm and that it consists of many organisms which are symbiotic in nature, some of which are human pathogens. Here, in this study, we have discussed about biofilms, its formation, relevance of its presence in the biosphere, and the possible remediations to cope up with its negative effects. Since removal of biofilm is difficult, emphasis has been made to suggest ways to prevent biofilm formation and also to devise ways to utilize biofilm in an economically and environment-friendly method.
Collapse
Affiliation(s)
- Susmita Mukherjee
- Department of Biotechnology, University of Engineering and Management, University Area, Plot No. III - B/5, New Town, Action Area - III, Kolkata, West Bengal, 700160, India
| | - Shreya Bhattacharjee
- Department of Biotechnology, University of Engineering and Management, University Area, Plot No. III - B/5, New Town, Action Area - III, Kolkata, West Bengal, 700160, India
| | - Sharanya Paul
- Department of Biotechnology, University of Engineering and Management, University Area, Plot No. III - B/5, New Town, Action Area - III, Kolkata, West Bengal, 700160, India
| | - Somava Nath
- Department of Biotechnology, University of Engineering and Management, University Area, Plot No. III - B/5, New Town, Action Area - III, Kolkata, West Bengal, 700160, India
| | - Sonali Paul
- Department of Biotechnology, University of Engineering and Management, University Area, Plot No. III - B/5, New Town, Action Area - III, Kolkata, West Bengal, 700160, India.
| |
Collapse
|
10
|
Yan X, Xu Y, Shen C, Chen D. Inactivation of Staphylococcus aureus by Levulinic Acid Plus Sodium Dodecyl Sulfate and their Antibacterial Mechanisms on S. aureus Biofilms by Transcriptomic Analysis. J Food Prot 2023; 86:100050. [PMID: 36916557 DOI: 10.1016/j.jfp.2023.100050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 01/27/2023]
Abstract
The combination of levulinic acid (LVA) and sodium dodecyl sulfate (SDS) in recent years has shown a considerable potential to use as an antimicrobial intervention. The objectives of this study were to evaluate the antimicrobial efficacy of the combination against Staphylococcus aureus in both planktonic and biofilm states and to investigate the transcriptional changes in S. aureus biofilms coincubated with sublethal concentrations of LVA and/or SDS. The minimum inhibitory concentrations (MICs) of LVA and SDS determined by the microdilution method were 3.125 and 0.039 mg/mL, respectively. An additive bacteriostatic interaction (fractional inhibitory concentration index = 1) between the two compounds was observed by the checkerboard assay, whereas a synergistic bactericidal activity was displayed by the time-kill assay. The biomass and viable cells in the biofilms were reduced by both antimicrobials either alone or in combination in a dose-dependent manner. Transcriptomics indicated that more differentially expressed (DE) genes were observed in the biofilm treated with SDS (103 up- and 205 downregulated DE genes) and LVA + SDS (187 up and 162 down) than that coincubated with LVA (34 up and 32 down). The SDS and LVA + SDS treatments mainly affected the expression of genes responsible for cell surface proteins, virulence factors, adhesins, and capsular polysaccharides. Both the antibiofilm assay and the transcriptomics indicated that SDS, not LVA, was the major chemical contributing to the antibacterial efficacy of the combination. This study reveals the behavioral responses and protective mechanisms of S. aureus to LVA and SDS applied individually or in combination.
Collapse
Affiliation(s)
- Xiaoxue Yan
- College of Food Science, Southwest University, 2 Tiansheng Rd, Beibei, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, 400715, China
| | - Yiwei Xu
- College of Food Science, Southwest University, 2 Tiansheng Rd, Beibei, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, 400715, China
| | - Cangliang Shen
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506, USA
| | - Dong Chen
- College of Food Science, Southwest University, 2 Tiansheng Rd, Beibei, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, 400715, China.
| |
Collapse
|
11
|
Nguyen Trang P, Thi Anh Ngoc T, Masuda Y, Hohjoh KI, Miyamoto T. Biofilm Formation From Listeria monocytogenes Isolated From Pangasius Fish-processing Plants. J Food Prot 2023; 86:100044. [PMID: 36916551 DOI: 10.1016/j.jfp.2023.100044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 01/02/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023]
Abstract
Biofilm formation of Listeria monocytogenes in food processing environments cause potential source of cross-contamination to foodstuffs; hence, the control of biofilm is currently addressed to find effective solutions for preventing biofilm formation or eliminating the established one. Forty-five strains of Listeria monocytogenes isolated from Pangasius fish-processing plants were studied for their capability to form a biofilm on 96-well microtiter plate by using the conventional crystal violet staining. Additionally, the inhibitory effect of biofilm formation by food additives including monascus pigment and ε-polylysine was examined. The average OD value showing biofilm mass of all 45 strains L. monocytogenes increased with an increasing temperature and time (p < 0.05). Monascus pigment and ε-polylysine significantly decreased biofilm formation by 80 ± 5.5% and 20 ± 5.9%, respectively, at the tested concentration (p < 0.05) Further, the effects of lysozyme (0.1 mg/mL) alone or in combination with slightly acidic hypochlorous water (SAHW) with 40 mg/L available chlorine or sodium hypochlorite (NaOCl) with 100 mg/L available chlorine against 7-d established biofilm of L. monocytogenes were investigated. The results indicated that slightly acidic hypochlorous water alone exhibited significant antibacterial activity (p < 0.05), decreasing the viable count by 5.2 ± 0.5 log CFU/mL. It seems that sequential treatment of lysozyme and SAHW showed an additional efficacy against biofilm of L. monocytogenes on polystyrene plate surface, reducing 70% of biomass of biofilm and 7.6 ± 0.3 log of biofilm viable cells (p < 0.05). Additionally, SAHW exhibited greater bactericidal activity against viable biofilm cells than NaOCl did. This result reveals that SAHW is a promising disinfectant agent against L. monocytogenes and the potential alternative to NaOCl in practice.
Collapse
Affiliation(s)
- Phan Nguyen Trang
- Division of Food Science and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Department of Food Technology, College of Agriculture, Can Tho University, Campus II, 3/2 Street, Ninh Kieu District, Can Tho, Viet Nam
| | - Tong Thi Anh Ngoc
- Department of Food Technology, College of Agriculture, Can Tho University, Campus II, 3/2 Street, Ninh Kieu District, Can Tho, Viet Nam
| | - Yoshimitsu Masuda
- Division of Food Science and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ken-Ichi Hohjoh
- Division of Food Science and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takahisa Miyamoto
- Division of Food Science and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
12
|
Hamilton AN, Gibson KE. Efficacy of Manufacturer Recommendations for the Control of Salmonella Typhimurium and Listeria monocytogenes in Food Ink Capsules Utilized in 3D Food Printing Systems. J Food Prot 2023; 86:100030. [PMID: 36916570 DOI: 10.1016/j.jfp.2022.100030] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
The adoption of 3D food printing systems has allowed for the personalization of food properties such as color, shape, and texture. This study aimed to determine if manufacturer cleaning recommendations for stainless steel food ink capsules utilized in 3D food printers adequately control foodborne pathogens of concern, as the recommendations have not been tested. A cocktail of ∼9 log10 CFU/mL each of Salmonella Typhimurium and Listeria monocytogenes was inoculated onto the interior surface of the capsules. Capsules were either unsoiled or soiled with one of the following: butter, protein powder solution, powdered sugar solution, or a mixture containing all three food components. The prepared capsules underwent one of three hygienic protocols: manual washing (MW), a dishwasher speed cycle (DSC), or a dishwasher heavy cycle (DHC). The interaction effect between DSC and the soil mixture was significant (P = 0.01), with the combination achieving an estimated mean log reduction of 5.28 (95% CI: 4.61, 6.05) for L. monocytogenes and 6.69 (95% CI: 6.03, 7.41) for S. Typhimurium. The DSC was the least effective method of cleaning when compared with MW and the DHC. No significant differences were found by placing capsules on the right or left side of the dishwasher (P > 0.1). The interaction effect between wash type and capsule position was significant (P = 0.0007), with the soil mixture and DSC combination achieving an estimated mean log reduction of 3.48 (95% CI: 2.72, 4.45) for the front-most position versus 7.92 (95% CI: 6.72, 9.31) for the back-most position. Soil matrix, cleaning protocol, and capsule position all significantly impact capsule cleanability and therefore food safety risk. The DHC is recommended, and the corners should be avoided during dishwasher loading. The current study provides practical information for consumers, restaurants, industry, and regulatory industries regarding the best practices for cleaning 3D food printers.
Collapse
Affiliation(s)
- Allyson N Hamilton
- Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, Fayetteville, AR 72704, USA
| | - Kristen E Gibson
- Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, Fayetteville, AR 72704, USA.
| |
Collapse
|
13
|
Pepsin and Trypsin Treatment Combined with Carvacrol: An Efficient Strategy to Fight Pseudomonas aeruginosa and Enterococcus faecalis Biofilms. Microorganisms 2023; 11:microorganisms11010143. [PMID: 36677435 PMCID: PMC9863883 DOI: 10.3390/microorganisms11010143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/21/2022] [Accepted: 12/30/2022] [Indexed: 01/08/2023] Open
Abstract
Biofilms consist of microbial communities enclosed in a self-produced extracellular matrix which is mainly responsible of biofilm virulence. Targeting this matrix could be an effective strategy to control biofilms. In this work, we examined the efficacy of two proteolytic enzymes, pepsin and trypsin, to degrade P. aeruginosa and E. faecalis biofilms and their synergistic effect when combined with carvacrol. The minimum dispersive concentrations (MDCs) and the contact times of enzymes, as well as the minimal inhibitory concentrations (MICs) and contact times of carvacrol, were determined against biofilms grown on polystyrene surfaces. For biofilms grown on stainless steel surfaces, the combined pepsin or trypsin with carvacrol treatment showed more significant reduction of both biofilms compared with carvacrol treatment alone. This reduction was more substantial after sequential treatment of both enzymes, followed by carvacrol with the greatest reduction of 4.7 log CFU mL−1 (p < 0.05) for P. aeruginosa biofilm and 3.3 log CFU mL−1 (p < 0.05) for E. faecalis biofilm. Such improved efficiency was also obvious in the epifluorescence microscopy analysis. These findings demonstrate that the combined effect of the protease-dispersing activity and the carvacrol antimicrobial activity could be a prospective approach for controlling P. aeruginosa and E. faecalis biofilms.
Collapse
|
14
|
Genomic characterization and application of a novel bacteriophage STG2 capable of reducing planktonic and biofilm cells of Salmonella. Int J Food Microbiol 2023; 385:109999. [DOI: 10.1016/j.ijfoodmicro.2022.109999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
|
15
|
The Use of Natural Methods to Control Foodborne Biofilms. Pathogens 2022; 12:pathogens12010045. [PMID: 36678393 PMCID: PMC9865977 DOI: 10.3390/pathogens12010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/20/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022] Open
Abstract
Biofilms are large aggregates of various species of bacteria or other microorganisms tightly attached to surfaces through an intricate extracellular matrix. These complex microbial communities present quite the challenge in the food processing industry, as conditions such as raw meats and diverse food product content in contact with workers, drains, machinery, and ventilation systems, make for prime circumstances for contamination. Adding to the challenge is the highly resistant nature of these biofilm growths and the need to keep in mind that any antimicrobials utilized in these situations risk health implications with human consumption of the products that are being processed in these locations. For that reason, the ideal means of sanitizing areas of foodborne biofilms would be natural means. Herein, we review a series of innovative natural methods of targeting foodborne biofilms, including bacteriocins, bacteriophages, fungi, phytochemicals, plant extracts, essential oils, gaseous and aqueous control, photocatalysis, enzymatic treatments, and ultrasound mechanisms.
Collapse
|
16
|
Mechmechani S, Gharsallaoui A, El Omari K, Fadel A, Hamze M, Chihib NE. Hurdle technology based on the use of microencapsulated pepsin, trypsin and carvacrol to eradicate Pseudomonas aeruginosa and Enterococcus faecalis biofilms. BIOFOULING 2022; 38:903-915. [PMID: 36451605 DOI: 10.1080/08927014.2022.2151361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
The biofilm lifestyle plays a major role in the resistance and virulence of Pseudomonas aeruginosa and Enterococcus faecalis. In this study, two microencapsulated proteases (pepsin ME-PEP and trypsin ME-TRYP) were evaluated for their biofilm dispersal activity and their synergistic effect with microencapsulated carvacrol (ME-CARV). Spray-drying was used to protect enzymes and essential oil and enhance their activities. Cell count analysis proved the synergistic activity of enzymes and carvacrol treatment as biofilms were further reduced after combined treatment in comparison to ME-CARV or enzymes alone. Furthermore, results showed that sequential treatment in the order ME-TRYP - ME-PEP - ME-CARV resulted in more efficient biofilm removal with a maximum reduction of 5 log CFU mL-1 for P. aeruginosa and 4 log CFU mL-1 for E. faecalis. This study proposes that the combination of microencapsulated proteases with ME-CARV could be useful for the effective control of P. aeruginosa and E. faecalis biofilms.
Collapse
Affiliation(s)
- Samah Mechmechani
- CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, Univ. Lille, Lille, France
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Adem Gharsallaoui
- Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, Univ Lyon, Villeurbanne, France
| | - Khaled El Omari
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
- Quality Control Center Laboratories at the Chamber of Commerce, Industry & Agriculture of Tripoli & North Lebanon, Tripoli, Lebanon
| | - Alexandre Fadel
- CNRS, INRAE, Centrale Lille, Université d'Artois, FR 2638 - IMEC -Institut Michel-Eugene Chevreul, Univ Lille, Lille, France
| | - Monzer Hamze
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Nour-Eddine Chihib
- CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, Univ. Lille, Lille, France
| |
Collapse
|
17
|
Mendoza IC, Luna EO, Pozo MD, Vásquez MV, Montoya DC, Moran GC, Romero LG, Yépez X, Salazar R, Romero-Peña M, León JC. Conventional and non-conventional disinfection methods to prevent microbial contamination in minimally processed fruits and vegetables. Lebensm Wiss Technol 2022; 165:113714. [PMID: 35783661 PMCID: PMC9239846 DOI: 10.1016/j.lwt.2022.113714] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/17/2022] [Accepted: 06/24/2022] [Indexed: 12/22/2022]
Abstract
Pandemic COVID-19 warned the importance of preparing the immune system to prevent diseases. Therefore, consuming fresh fruits and vegetables is essential for a healthy and balanced diet due to their diverse compositions of vitamins, minerals, fiber, and bioactive compounds. However, these fresh products grew close to manure and irrigation water and are harvested with equipment or by hand, representing a high risk of microbial, physical, and chemical contamination. The handling of fruits and vegetables exposed them to various wet surfaces of equipment and utensils, an ideal environment for biofilm formation and a potential risk for microbial contamination and foodborne illnesses. In this sense, this review presents an overview of the main problems associated with microbial contamination and the several chemicals, physical, and biological disinfection methods concerning their ability to avoid food contamination. This work has discussed using chemical products such as chlorine compounds, peroxyacetic acid, and quaternary ammonium compounds. Moreover, newer techniques including ozone, electrolyzed water, ultraviolet light, ultrasound, high hydrostatic pressure, cold plasma technology, and microbial surfactants have also been illustrated here. Finally, future trends in disinfection with a sustainable approach such as combined methods were also described. Therefore, the fruit and vegetable industries can be informed about their main microbial risks to establish optimal and efficient procedures to ensure food safety.
Collapse
Affiliation(s)
- Iana Cruz Mendoza
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería Mecánica y Ciencias de la Producción, Campus Gustavo Galindo, Km 30.5, Via Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Esther Ortiz Luna
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería Mecánica y Ciencias de la Producción, Campus Gustavo Galindo, Km 30.5, Via Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - María Dreher Pozo
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería Mecánica y Ciencias de la Producción, Campus Gustavo Galindo, Km 30.5, Via Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Mirian Villavicencio Vásquez
- Escuela Superior Politécnica del Litoral, ESPOL, Centro de Investigaciones Biotecnológicas del Ecuador (CIBE), Campus Gustavo Galindo, Km 30.5, Via Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Diana Coello Montoya
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería Mecánica y Ciencias de la Producción, Campus Gustavo Galindo, Km 30.5, Via Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Galo Chuchuca Moran
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería Mecánica y Ciencias de la Producción, Campus Gustavo Galindo, Km 30.5, Via Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Luis Galarza Romero
- Escuela Superior Politécnica del Litoral, ESPOL, Centro de Investigaciones Biotecnológicas del Ecuador (CIBE), Campus Gustavo Galindo, Km 30.5, Via Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Ximena Yépez
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería Mecánica y Ciencias de la Producción, Campus Gustavo Galindo, Km 30.5, Via Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Rómulo Salazar
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería Mecánica y Ciencias de la Producción, Campus Gustavo Galindo, Km 30.5, Via Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - María Romero-Peña
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería Mecánica y Ciencias de la Producción, Campus Gustavo Galindo, Km 30.5, Via Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Jonathan Coronel León
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería Mecánica y Ciencias de la Producción, Campus Gustavo Galindo, Km 30.5, Via Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
- Escuela Superior Politécnica del Litoral, ESPOL, Centro de Investigaciones Biotecnológicas del Ecuador (CIBE), Campus Gustavo Galindo, Km 30.5, Via Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| |
Collapse
|
18
|
Anti-Biofilms’ Activity of Garlic and Thyme Essential Oils against Salmonella typhimurium. Molecules 2022; 27:molecules27072182. [PMID: 35408576 PMCID: PMC9000680 DOI: 10.3390/molecules27072182] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/17/2022] [Accepted: 03/23/2022] [Indexed: 01/23/2023] Open
Abstract
Biofilm control by essential oil (EO) application has recently increased to preclude biofilm production on foods and environmental surfaces. In this work, the anti-biofilm effects of garlic and thyme essential oils using the minimum inhibitory concentration (MIC) method against Salmonella typhimurium recovered from different abattoir samples were investigated along with the virulence genes (InvA, SdiA and Stn genes), and the antimicrobial susceptibility profile of S. typhimurium as well. The obtained results revealed that S. typhimurium contaminated abattoir samples to varying degrees. The InvA gene was investigated in all isolates, whereas the SdiA and Stn genes were observed in four and three isolates, respectively. Utilizing the disc diffusion method, S. typhimurium isolates demonstrated substantial resistance to most of the examined antibiotics with a high multiple antibiotic resistance index. S. typhimurium isolates demonstrated biofilm formation abilities to various degrees at varied temperatures levels (4 °C and 37 °C). In conclusion, the obtained samples from the research area are regarded as a potential S. typhimurium contamination source. Furthermore, garlic essential oil (GEO) has more potential to inhibit S. typhimurium biofilm at different sub-minimum inhibitory concentrations as compared to thyme essential oil (TEO). Therefore, these EOs are considered as potential natural antibacterial options that could be applied in food industry.
Collapse
|
19
|
Mechmechani S, Khelissa S, Gharsallaoui A, Omari KE, Hamze M, Chihib NE. Hurdle technology using encapsulated enzymes and essential oils to fight bacterial biofilms. Appl Microbiol Biotechnol 2022; 106:2311-2335. [PMID: 35312826 DOI: 10.1007/s00253-022-11875-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/25/2022] [Accepted: 03/06/2022] [Indexed: 11/02/2022]
Abstract
Biofilm formation on abiotic surfaces has become a major public health concern because of the serious problems they can cause in various fields. Biofilm cells are extremely resistant to stressful conditions, because of their complex structure impedes antimicrobial penetration to deep-seated cells. The increased resistance of biofilm to currently applied control strategies underscores the urgent need for new alternative and/or supplemental eradication approaches. The combination of two or more methods, known as Hurdle technology, offers an excellent option for the highly effective control of biofilms. In this perspective, the use of functional enzymes combined with biosourced antimicrobial such as essential oil (EO) is a promising alternative anti-biofilm approach. However, these natural antibiofilm agents can be damaged by severe environmental conditions and lose their activity. The microencapsulation of enzymes and EOs is a promising new technology for enhancing their stability and improving their biological activity. This review article highlights the problems related to biofilm in various fields, and the use of encapsulated enzymes with essential oils as antibiofilm agents. KEY POINTS: • Problems associated with biofilms in the food and medical sectors and their subsequent risks on health and food quality. • Hurdle technology using enzymes and essential oils is a promising strategy for an efficient biofilms control. • The microencapsulation of enzymes and essential oils ensures their stability and improves their biological activities.
Collapse
Affiliation(s)
- Samah Mechmechani
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux Et Transformations, Lille, France.,Laboratoire Microbiologie Santé Et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Simon Khelissa
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux Et Transformations, Lille, France
| | - Adem Gharsallaoui
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, Villeurbanne, France
| | - Khaled El Omari
- Laboratoire Microbiologie Santé Et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Monzer Hamze
- Laboratoire Microbiologie Santé Et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Nour-Eddine Chihib
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux Et Transformations, Lille, France.
| |
Collapse
|
20
|
Haloalkaline Lipase from Bacillus flexus PU2 Efficiently Inhibits Biofilm Formation of Aquatic Pathogen Vibrio parahaemolyticus. Probiotics Antimicrob Proteins 2022; 14:664-674. [DOI: 10.1007/s12602-022-09908-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2022] [Indexed: 10/18/2022]
|
21
|
Chitlapilly Dass S, Wang R. Biofilm through the Looking Glass: A Microbial Food Safety Perspective. Pathogens 2022; 11:346. [PMID: 35335670 PMCID: PMC8954374 DOI: 10.3390/pathogens11030346] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 02/06/2023] Open
Abstract
Food-processing facilities harbor a wide diversity of microorganisms that persist and interact in multispecies biofilms, which could provide an ecological niche for pathogens to better colonize and gain tolerance against sanitization. Biofilm formation by foodborne pathogens is a serious threat to food safety and public health. Biofilms are formed in an environment through synergistic interactions within the microbial community through mutual adaptive response to their long-term coexistence. Mixed-species biofilms are more tolerant to sanitizers than single-species biofilms or their planktonic equivalents. Hence, there is a need to explore how multispecies biofilms help in protecting the foodborne pathogen from common sanitizers and disseminate biofilm cells from hotspots and contaminate food products. This knowledge will help in designing microbial interventions to mitigate foodborne pathogens in the processing environment. As the global need for safe, high-quality, and nutritious food increases, it is vital to study foodborne pathogen behavior and engineer new interventions that safeguard food from contamination with pathogens. This review focuses on the potential food safety issues associated with biofilms in the food-processing environment.
Collapse
Affiliation(s)
| | - Rong Wang
- Roman L. Hruska U.S. Meat Animal Research Center, Agricultural Research Service, U.S. Department of Agriculture, Clay Center, NE 68933, USA;
| |
Collapse
|
22
|
Enhanced inactivation of Salmonella enterica Enteritidis biofilms on the stainless steel surface by proteinase K in the combination with chlorine. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108519] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Alves Coelho Trevisan D, Aline Zanetti Campanerut-Sa P, da Silva AF, Farias Pereira Batista A, Seixas FAV, Peralta RM, de Sa-Nakanishi AB, de Abreu Filho BA, Machinski Junior M, Graton Mikcha JM. Action of carvacrol in Salmonella Typhimurium biofilm: A proteomic study. J Appl Biomed 2021; 18:106-114. [PMID: 34907763 DOI: 10.32725/jab.2020.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 09/08/2020] [Indexed: 11/05/2022] Open
Abstract
Carvacrol presents action in Salmonella Typhimurium biofilms, however the antibiofilm mechanism of this compound has not been fully established yet. In the present study, the aim was to evaluate protein profile changes in S. Typhimurium biofilm treated with carvacrol. Proteomic analysis of treated versus untreated biofilm showed several changes in proteins involved with S. Typhimurium biofilm and antioxidant activity. The proteins DsbA (thiol: disulfide interchange protein DsbA), LuxS (S-ribosylhomocysteine lyase), DksA (RNA polymerase binding transcription factor DksA), and SODs (superoxide dismutases) A, B and C had their synthesis decreased after treatment with carvacrol. These proteins play a key role in S. Typhimurium biofilm formation, demonstrating the dynamic antibiofilm action of carvacrol. The differentially expressed proteins identified provide possible action targets for future studies in order to gain more insight into the mechanism of action of carvacrol on S. Typhimurium biofilm.
Collapse
Affiliation(s)
| | | | - Alex Fiori da Silva
- State University of Minas Gerais, Department of Biological Sciences, Ituiutaba, Brasil
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Rather MA, Gupta K, Mandal M. Microbial biofilm: formation, architecture, antibiotic resistance, and control strategies. Braz J Microbiol 2021; 52:1701-1718. [PMID: 34558029 PMCID: PMC8578483 DOI: 10.1007/s42770-021-00624-x] [Citation(s) in RCA: 142] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 09/19/2021] [Indexed: 01/08/2023] Open
Abstract
The assembly of microorganisms over a surface and their ability to develop resistance against available antibiotics are major concerns of interest. To survive against harsh environmental conditions including known antibiotics, the microorganisms form a unique structure, referred to as biofilm. The mechanism of biofilm formation is triggered and regulated by quorum sensing, hostile environmental conditions, nutrient availability, hydrodynamic conditions, cell-to-cell communication, signaling cascades, and secondary messengers. Antibiotic resistance, escape of microbes from the body's immune system, recalcitrant infections, biofilm-associated deaths, and food spoilage are some of the problems associated with microbial biofilms which pose a threat to humans, veterinary, and food processing sectors. In this review, we focus in detail on biofilm formation, its architecture, composition, genes and signaling cascades involved, and multifold antibiotic resistance exhibited by microorganisms dwelling within biofilms. We also highlight different physical, chemical, and biological biofilm control strategies including those based on plant products. So, this review aims at providing researchers the knowledge regarding recent advances on the mechanisms involved in biofilm formation at the molecular level as well as the emergent method used to get rid of antibiotic-resistant and life-threatening biofilms.
Collapse
Affiliation(s)
- Muzamil Ahmad Rather
- Department of Molecular Biology and Biotechnology, Tezpur University (A Central University), Napaam, Tezpur, 784028, Assam, India
| | - Kuldeep Gupta
- Department of Molecular Biology and Biotechnology, Tezpur University (A Central University), Napaam, Tezpur, 784028, Assam, India
| | - Manabendra Mandal
- Department of Molecular Biology and Biotechnology, Tezpur University (A Central University), Napaam, Tezpur, 784028, Assam, India.
| |
Collapse
|
25
|
Maayan M, Mani KA, Yaakov N, Natan M, Jacobi G, Atkins A, Zelinger E, Fallik E, Banin E, Mechrez G. Fluorine-Free Superhydrophobic Coating with Antibiofilm Properties Based on Pickering Emulsion Templating. ACS APPLIED MATERIALS & INTERFACES 2021; 13:37693-37703. [PMID: 34337945 DOI: 10.1021/acsami.1c10125] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This study presents antibiofilm coating formulations based on Pickering emulsion templating. The coating contains no bioactive material because its antibiofilm properties stem from passive mechanisms that derive solely from the superhydrophobic nature of the coating. Moreover, unlike most of the superhydrophobic formulations, our system is fluorine-free, thus making the method eminently suitable for food and medical applications. The coating formulation is based on water in toluene or xylene emulsions that are stabilized using commercial hydrophobic silica, with polydimethylsiloxane (PDMS) dissolved in toluene or xylene. The structure of the emulsions and their stability was characterized by confocal microscopy and cryogenic-scanning electron microscopy (cryo-SEM). The most stable emulsions are applied on polypropylene (PP) surfaces and dried in an oven to form PDMS/silica coatings in a process called emulsion templating. The structure of the resulting coatings was investigated by atomic force microscopy (AFM) and SEM. The surface of the coatings shows a honeycomb-like structure that exhibits a combination of micron-scale and nanoscale roughness, which endows it with its superhydrophobic properties. After tuning, the superhydrophobic properties of the coatings demonstrated highly efficient passive antibiofilm activity. In vitro antibiofilm trials with E. coli indicate that the coatings reduced the biofilm accumulation by 83% in the xylene-water-based surfaces and by 59% in the case of toluene-water-based surfaces.
Collapse
Affiliation(s)
- Mor Maayan
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute, 68 HaMaccabim Road, Rishon Lezion 7505101, Israel
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, POB 12, Rehovot 7610001, Israel
| | - Karthik Ananth Mani
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute, 68 HaMaccabim Road, Rishon Lezion 7505101, Israel
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, POB 12, Rehovot 7610001, Israel
| | - Noga Yaakov
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute, 68 HaMaccabim Road, Rishon Lezion 7505101, Israel
| | - Michal Natan
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
- Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Gila Jacobi
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
- Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Ayelet Atkins
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
- Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Einat Zelinger
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, POB 12, Rehovot 7610001, Israel
| | - Elazar Fallik
- Department of Postharvest Science, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute, 68 HaMaccabim Road, Rishon Lezion 7505101, Israel
| | - Ehud Banin
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
- Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Guy Mechrez
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute, 68 HaMaccabim Road, Rishon Lezion 7505101, Israel
| |
Collapse
|
26
|
Damrongsaktrakul P, Ruengvisesh S, Rahothan A, Sukhumrat N, Tuitemwong P, Phung-on I. Removal of Salmonella Typhimurium Biofilm from Food Contact Surfaces Using Quercus infectoria Gall Extract in Combination with a Surfactant. J Microbiol Biotechnol 2021; 31:439-446. [PMID: 33526753 PMCID: PMC9706028 DOI: 10.4014/jmb.2101.01014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/28/2021] [Accepted: 01/31/2021] [Indexed: 12/15/2022]
Abstract
Quercus infectoria (nutgall) has been reported to possess antimicrobial activities against a wide range of pathogens. Nevertheless, the biofilm removal effect of nutgall extract has not been widely investigated. In this study, we therefore evaluated the effect of nutgall extract in combination with cetrimonium bromide (CTAB) against preformed biofilm of Salmonella Typhimurium on polypropylene (PP) and stainless steel (SS) coupons in comparison with other sanitizers. The minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) of nutgall extract and surfactants (CTAB and sodium dodecyl sulfate; SDS) were assessed. CTAB showed a more efficient antimicrobial activity than SDS and was selected to use in combination with nutgall extract for removing biofilm. To determine the biofilm removal efficacy, the PP and SS coupons were individually submerged in 2x MBC of nutgall extract (256 mg/ml) + 2x MBC of CTAB (2.5 mg/ml), nutgall extract alone (256 mg/ml), CTAB alone (2.5 mg/ml), distilled water, and 100 ppm sodium hypochlorite for 5, 15, and 30 min. The remaining sessile cells in biofilm were determined. Overall, the greatest biofilm removal efficacy was observed with nutgall extract + CTAB; the biofilm removal efficacy of sanitizers tended to increase with the exposure time. The SEM analysis demonstrated that S. Typhimurium biofilm on PP and SS coupons after exposure to nutgall extract + CTAB for 30 min displayed morphological alterations with wrinkles. This study suggests nutgall extract + CTAB may be an alternative to commonly used sanitizers to remove biofilm from food contact surfaces in the food industry and household.
Collapse
Affiliation(s)
- Peetitas Damrongsaktrakul
- Department of Microbiology, Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok 10140, Thailand
| | - Songsirin Ruengvisesh
- Department of Microbiology, Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok 10140, Thailand,Corresponding author Phone: +662470-8884 Fax: +662470-8891
| | - Arewan Rahothan
- Department of Microbiology, Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok 10140, Thailand
| | - Nuttamon Sukhumrat
- Department of Microbiology, Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok 10140, Thailand
| | - Pravate Tuitemwong
- Food Safety Center, Institute for Scientific and Technological Research and Services (ISTRS), KMUTT, Bangkok 10140, Thailand
| | - Isaratat Phung-on
- Maintenance Technology Center, ISTRS, KMUTT, Bangkok 10140, Thailand
| |
Collapse
|
27
|
Yuan L, Sadiq FA, Wang N, Yang Z, He G. Recent advances in understanding the control of disinfectant-resistant biofilms by hurdle technology in the food industry. Crit Rev Food Sci Nutr 2020; 61:3876-3891. [DOI: 10.1080/10408398.2020.1809345] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Lei Yuan
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Faizan A. Sadiq
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ni Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Zhenquan Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Guoqing He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
28
|
Siccibacter turicensis from Kangaroo Scats: Possible Implication in Cellulose Digestion. Microorganisms 2020; 8:microorganisms8050635. [PMID: 32349400 PMCID: PMC7284360 DOI: 10.3390/microorganisms8050635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 11/19/2022] Open
Abstract
Microbiota in the kangaroo gut degrade cellulose, contributing to the kangaroo’s energy and survival. In this preliminary study, to discover more about the gut microbes that contribute to the survival of kangaroos, cellulose-degrading bacteria were isolated from kangaroo scats by selection on solidified media containing carboxymethyl cellulose as the main carbon source. One frequently occurring aerobic bacterium was Siccibacter turicensis, a microbe previously isolated in fruit powder and from a patient with angular cheilitis. The whole genome sequence of the kangaroo isolate was obtained using the Illumina MiSeq platform. Its sequence shared 97.98% identity of the S. turicensis Type strain, and the ability of the Type strain to degrade cellulose was confirmed. Analysis of the genomic data focused on the cellulose operon. In addition to genes from the operon, we suggest that a gene following the operon may have an important role in regulating cellulose metabolism by signal transduction. This is the first report of S. turicensis found within microbiota of the animal gut. Because of its frequent presence in the kangaroo gut, we suggest that S. turicensis plays a role in cellulose digestion for kangaroos.
Collapse
|
29
|
Liu F, Sun Z, Wang F, Liu Y, Zhu Y, Du L, Wang D, Xu W. Inhibition of biofilm formation and exopolysaccharide synthesis of Enterococcus faecalis by phenyllactic acid. Food Microbiol 2020; 86:103344. [DOI: 10.1016/j.fm.2019.103344] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 07/23/2019] [Accepted: 09/27/2019] [Indexed: 12/15/2022]
|
30
|
Ripolles-Avila C, Ramos-Rubio M, Hascoët AS, Castillo M, Rodríguez-Jerez JJ. New approach for the removal of mature biofilms formed by wild strains of Listeria monocytogenes isolated from food contact surfaces in an Iberian pig processing plant. Int J Food Microbiol 2020; 323:108595. [PMID: 32224347 DOI: 10.1016/j.ijfoodmicro.2020.108595] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/20/2020] [Accepted: 03/18/2020] [Indexed: 12/15/2022]
Abstract
One of the main objectives of the food industry is to guarantee food safety by providing innocuous food products. Therefore, this sector must consider all the possible biotic or abiotic contamination routes from the entry of raw materials to the release of the final product. Currently, one important problem in this regard is the presence of biofilms on food contact surfaces which can transmit pathogens such as L. monocytogenes. In industrial conditions biofilms are found in a mature state, so it is essential that when carrying out removal effectiveness studies in vitro the tests are realized with models that produce these structures in a similarly mature state. The main objective of this study was to evaluate the effectiveness of an alternative treatment (i.e. enzymatic detergent that include natural antimicrobial agents) and a conventional treatment (i.e. chlorinated alkaline) for the elimination of mature L. monocytogenes biofilms. The results showed a cell detachment from the formed mature biofilms with an effectivity of between 74.75%-97.73% and 53.94%-94.02% for the enzymatic treatment and the chlorinated alkaline detergent, respectively. On a qualitative level, it was observed that the dispersion in the structure was much higher for the enzymatic treatment than for the chlorinated alkaline, which continued to show obvious structure integrity. All this leads to the conclusion that treatments with an enzymatic detergent have a significantly greater impact on the removal of mature L. monocytogenes biofilms, although a further disinfection process would be needed, enhancing even more the treatment effectivity. This may imply that the industrial approach to addressing this problem should be modified to include new perspectives that are more effective than traditional ones.
Collapse
Affiliation(s)
- C Ripolles-Avila
- Area of Human Nutrition and Food Science, Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), CP 08193 Barcelona, Spain
| | - M Ramos-Rubio
- Area of Human Nutrition and Food Science, Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), CP 08193 Barcelona, Spain
| | - A S Hascoët
- Area of Human Nutrition and Food Science, Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), CP 08193 Barcelona, Spain
| | - M Castillo
- Area of Human Nutrition and Food Science, Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), CP 08193 Barcelona, Spain
| | - J J Rodríguez-Jerez
- Area of Human Nutrition and Food Science, Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), CP 08193 Barcelona, Spain.
| |
Collapse
|
31
|
Ripolles-Avila C, García-Hernández N, Cervantes-Huamán BH, Mazaheri T, Rodríguez-Jerez JJ. Quantitative and Compositional Study of Monospecies Biofilms of Spoilage Microorganisms in the Meat Industry and Their Interaction in the Development of Multispecies Biofilms. Microorganisms 2019; 7:E655. [PMID: 31817368 PMCID: PMC6956169 DOI: 10.3390/microorganisms7120655] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/24/2019] [Accepted: 11/25/2019] [Indexed: 11/17/2022] Open
Abstract
Food spoilage is a serious problem in the food industry, since it leads to significant economic losses. One of its main causes is the cross-contamination of food products from industrial surfaces. Three spoilage bacterial species which are highly present in meat and the gastrointestinal tract of chickens were selected: Pseudomonas fragi, Leuconostoc gasicomitatum, and Lactobacillus reuteri. The dual aim was to determine their ability to form monospecies biofilms and to examine how they interact when they coexist together. To do so, mature monospecies biofilms were produced statically for seven days at a temperature of 30 °C. L. gasicomitatum was also used to investigate the behavior of P. fragi and L. reuteri in the formation of multispecies biofilms. The structure and composition of the monospecies biofilms were evaluated by direct epifluorescence microscopy, and the multispecies biofilms were evaluated by plate counting. Both L. gasicomitatum and L. reuteri were able to form biofilms, with counts of approximately 7 Log CFU/cm2 and a defined structure. However, P. fragi obtained counts to the order of 4 Log CFU/cm2, which is significantly different from the previous species (P < 0.05), and it had no network of cell conglomerates. The content of the L. gasicomitatum and L. reuteri biofilm matrices were 70-80% protein, unlike P. fragi, which presented a higher polysaccharide content (P < 0.05). In the multispecies biofilms, the presence of P. fragi did not affect the growth of L. gasicomitatum, which remained at between 5.76 to 6.1 Log CFU/cm2. However, L. reuteri was able to displace L. gasicomitatum growth after 24 h of coexisting in a mixed biofilm, presenting differences in counts of approximately 2 Log CFU/cm2. The study of the biofilms constructed by food industry resident microbiota can help to understand the ecological relations that exist between species, characterize them, and propose strategies to eliminate them. The name of genes and species should be written in italic.
Collapse
Affiliation(s)
| | | | | | | | - José Juan Rodríguez-Jerez
- Area of Human Nutrition and Food Science, Department of Food and Animal Science, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (C.R.-A.); (N.G.-H.); (B.H.C.-H.); (T.M.)
| |
Collapse
|
32
|
Bio-enzymes for inhibition and elimination of Escherichia coli O157:H7 biofilm and their synergistic effect with sodium hypochlorite. Sci Rep 2019; 9:9920. [PMID: 31289312 PMCID: PMC6616338 DOI: 10.1038/s41598-019-46363-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 06/21/2019] [Indexed: 12/17/2022] Open
Abstract
Escherichia coli O157:H7 is one of the most important pathogens worldwide. In this study, three different kinds of enzymes, DNase I, proteinase K and cellulase were evaluated for inhibitory or degrading activity against E. coli O157:H7 biofilm by targeting extracellular DNA, proteins, and cellulose, respectively. The cell number of biofilms formed under proteinase K resulted in a 2.43 log CFU/cm2 reduction with an additional synergistic 3.72 log CFU/cm2 reduction after NaClO post-treatment, while no significant reduction occurred with NaClO treatment alone. It suggests that protein degradation could be a good way to control the biofilm effectively. In preformed biofilms, all enzymes showed a significant reduction of 16.4–36.7% in biofilm matrix in 10-fold diluted media (p < 0.05). The sequential treatment with proteinase K, cellulase, and NaClO showed a significantly higher synergistic inactivation of 2.83 log CFU/cm2 compared to 1.58 log CFU/cm2 in the sequence of cellulase, proteinase K, and NaClO (p < 0.05). It suggests that the sequence of multiple enzymes can make a significant difference in the susceptibility of biofilms to NaClO. This study indicates that the combination of extracellular polymeric substance-degrading enzymes with NaClO could be useful for the efficient control of E. coli O157:H7 biofilms.
Collapse
|
33
|
Shen Y, Li P, Chen X, Zou Y, Li H, Yuan G, Hu H. Activity of Sodium Lauryl Sulfate, Rhamnolipids, and N-Acetylcysteine Against Biofilms of Five Common Pathogens. Microb Drug Resist 2019; 26:290-299. [PMID: 31211651 DOI: 10.1089/mdr.2018.0385] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bacteria in biofilms are more resistant to antibacterial agents than bacteria in planktonic form. Hence, antibacterial agents should be able to eradicate biofilms to ensure the best outcomes. Little is known about how well many antibacterial agents can disrupt biofilms. In this study, we compared sodium lauryl sulfate (SDS), rhamnolipids (RHL), and N-acetylcysteine (NAC) for their ability to eradicate mature biofilms and inhibit new biofilm formation against Helicobacter pylori, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Streptococcus mutans. SDS and RHL effectively inhibited formation of five bacterial biofilms in a dose-dependent manner, even at concentrations below the minimal inhibitory concentrations (MICs), suggesting that their antibiofilm activities are unrelated to their antibacterial activities. In contrast, NAC at certain concentrations promoted biofilm formation by all bacteria except P. aeruginosa, whereas at supra-MIC concentrations, it inhibited biofilm formation against the four bacteria, suggesting that its antibiofilm activity depends on its antibacterial activity. NAC was ineffective at eradicating mature H. pylori biofilms, and it actually promoted their formation at concentrations >10 mg/mL. Our results suggest that RHL is superior at eradicating biofilms of H. pylori, E. coli, and S. mutans; SDS is more effective against S. aureus biofilms; and NAC is more effective against P. aeruginosa biofilms. Our results may help determine which antibiofilm agents are effective against certain bacterial strains and develop agents effective against specific bacterial threats.
Collapse
Affiliation(s)
- Yuanna Shen
- Lab of Pharmaceutics, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Pengyu Li
- Lab of Pharmaceutics, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Xiaonan Chen
- Lab of Pharmaceutics, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Yiqing Zou
- Lab of Pharmaceutics, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Huatian Li
- Lab of Pharmaceutics, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Gang Yuan
- Department of Gastroenterology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Haiyan Hu
- Lab of Pharmaceutics, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China
| |
Collapse
|
34
|
Biofilm formation by Salmonella sp. in the poultry industry: Detection, control and eradication strategies. Food Res Int 2019; 119:530-540. [DOI: 10.1016/j.foodres.2017.11.024] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/06/2017] [Accepted: 11/19/2017] [Indexed: 12/23/2022]
|
35
|
Kim MJ, Lim ES, Kim JS. Enzymatic Inactivation of Pathogenic and Nonpathogenic Bacteria in Biofilms in Combination with Chlorine. J Food Prot 2019; 82:605-614. [PMID: 30907667 DOI: 10.4315/0362-028x.jfp-18-244] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This study investigated the effects of enzyme application on biofilms of bacterial isolates from a cafeteria kitchen and foodborne pathogens and the susceptibility of Salmonella biofilms to proteinase K combined with chlorine treatment. For four isolates from a cafeteria kitchen ( Acinetobacter, Enterobacter, and Kocuria) and six strains of foodborne pathogens ( Salmonella enterica, Staphylococcus aureus, and Vibrio parahaemolyticus), the inhibitory effect of enzymes on biofilm formation at 25°C for 24 h or the degradative efficacy of enzymes on 24-h mature biofilm at 37°C for 1 h in tryptic soy broth (TSB) was examined in a polystyrene microtiter plate. The effect of enzymes was also evaluated on a subset of these strains in 20 times diluted TSB (1/20 TSB) at 25°C. The working concentrations of five enzymes were 1 U/100 μL for α-amylase, amyloglucosidase, cellulase, and DNase and 1 milli-Anson unit/100 μL for proteinase K. In addition, 24-h mature Salmonella Typhimurium biofilm on a stainless steel coupon was treated with proteinase K for 1 h at 25°C followed by 20 ppm of chlorine for 1 min at 25°C. The results showed that certain enzymes inhibited biofilm formation by the kitchen-originated bacteria; however, the enzymatic effect was diminished on the mature biofilms. Biofilm formation of V. parahaemolyticus was suppressed by all tested enzymes, whereas the mature biofilm was degraded by α-amylase, DNase I, and proteinase K. Proteinase K was effective in controlling Salmonella biofilms, whereas a strain-dependent variation was observed in S. aureus biofilms. In 1/20 TSB, Enterobacter cancerogenus and Kocuria varians were more susceptible to certain enzymes during biofilm formation than those in TSB, whereas the enzymatic effect was much decreased on 24-h mature biofilms, regardless of nutrient conditions. Furthermore, synergistic inactivation of Salmonella Typhimurium in biofilms was observed in the combined treatment of proteinase K followed by chlorine. Live/Dead assays also revealed a decrease in density and loss of membrane integrity in Salmonella Typhimurium biofilms exposed to the combined treatment. Therefore, certain enzymes can control biofilms of isolates residing in a cafeteria kitchen and foodborne pathogens. This study demonstrates the potential of enzymes for the sanitation of food processing environments and of proteinase K combined with chlorine to control Salmonella biofilms on food contact surfaces.
Collapse
Affiliation(s)
- Min-Jeong Kim
- 1 Research Group of Consumer Safety, Research Division of Strategic Food Technology, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Eun Seob Lim
- 2 Department of Food Biotechnology, Korea University of Science and Technology, 217, Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Joo-Sung Kim
- 1 Research Group of Consumer Safety, Research Division of Strategic Food Technology, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea.,2 Department of Food Biotechnology, Korea University of Science and Technology, 217, Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| |
Collapse
|
36
|
Humayoun SB, Hiott LM, Gupta SK, Barrett JB, Woodley TA, Johnston JJ, Jackson CR, Frye JG. An assay for determining the susceptibility of Salmonella isolates to commercial and household biocides. PLoS One 2018; 13:e0209072. [PMID: 30571686 PMCID: PMC6301668 DOI: 10.1371/journal.pone.0209072] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 11/29/2018] [Indexed: 12/17/2022] Open
Abstract
Poultry and meat products contaminated with Salmonella enterica are a major cause of foodborne illness in the United States. The food industries use a wide variety of antimicrobial interventions to reduce bacterial contamination. However, little is known about Salmonella susceptibility to these compounds and some studies have shown a concerning link between biocide resistance and antibiotic resistance. To investigate this, a 96 well panel of 17 common household and commercially used biocides was designed to determine the minimum inhibitory concentrations (MIC) of these compounds for Salmonella. The panel contained two-fold serial dilutions of chemicals including Dodecyltrimethylammonium chloride (DC), Benzalkonium chloride (BKC), Cetylpyridinium chloride (CPC), Hexadecyltrimethylammonium bromide (HB), Hexadecyltrimethylammonium chloride (HC), Acetic acid (AA), Lactic acid (LA), Citric acid (CA), Peroxyacetic acid (PXA), Acidified sodium chlorite (ASC), Sodium hypochlorite (SHB), 1,3 dibromo, 5,5 dimethylhydantoin (DBH), Chlorhexidine (CHX), Sodium metasilicate (SM), Trisodium phosphate (TSP), Arsenite (ARI), and Arsenate (ARA). The assay was used to test the susceptibility of 88 multidrug resistant (MDR) Salmonella isolates from animal sources. Bacteria are defined as multidrug resistant (MDR) if it exhibited non-susceptibility to at least one agent in three or more antimicrobial categories. The concentration of biocide at which ≥50% of the isolates could not grow was designated as the minimum inhibitory concentration or MIC50 and was used as the breakpoint in this study. The MIC50 (μg ml-1) for the tested MDR Salmonella was 256 for DC, 40 for BKC, 80 for CPC. HB and HC, 1,640 for AA, 5664 for LA, 3,156 for CA, 880 for PXA, 320 for ASC, 3.0 for CHX, 1,248 for DBH, 3,152 (6%) for SHB, 60,320 for SM, 37,712 for TSP, 56 for ARI and 832 for ARA. A few isolates were not susceptible at the MIC50 breakpoint to some chemicals indicating possible resistance. Isolates with MICs of two 2-fold dilutions above the MIC50 were considered resistant. Biocides for which resistant isolates were detected included CPC (n = 1 isolate), HB (1), CA (18), ASC (7), CHX (22), ARA (16), and ARI (4). There was no correlation detected between the biocide susceptibility of Salmonella isolates and antibiotic resistance. This assay can determine the MICs of bacteria to 17 biocides in a single test and will be useful in evaluating the efficacy of biocides and to detect the development of resistance to them.
Collapse
Affiliation(s)
- Shaheen B. Humayoun
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, United States Department of Agriculture, Agricultural Research Service, United States National Poultry Research Center, Athens, GA, United States of America
| | - Lari M. Hiott
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, United States Department of Agriculture, Agricultural Research Service, United States National Poultry Research Center, Athens, GA, United States of America
| | - Sushim K. Gupta
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, United States Department of Agriculture, Agricultural Research Service, United States National Poultry Research Center, Athens, GA, United States of America
| | - John B. Barrett
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, United States Department of Agriculture, Agricultural Research Service, United States National Poultry Research Center, Athens, GA, United States of America
| | - Tiffanie A. Woodley
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, United States Department of Agriculture, Agricultural Research Service, United States National Poultry Research Center, Athens, GA, United States of America
| | - John J. Johnston
- United States Department of Agriculture, Food Safety and Inspection Service, Fort Collins, CO, United States of America
| | - Charlene R. Jackson
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, United States Department of Agriculture, Agricultural Research Service, United States National Poultry Research Center, Athens, GA, United States of America
| | - Jonathan G. Frye
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, United States Department of Agriculture, Agricultural Research Service, United States National Poultry Research Center, Athens, GA, United States of America
| |
Collapse
|
37
|
Huang H, Peng C, Peng P, Lin Y, Zhang X, Ren H. Towards the biofilm characterization and regulation in biological wastewater treatment. Appl Microbiol Biotechnol 2018; 103:1115-1129. [DOI: 10.1007/s00253-018-9511-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 11/07/2018] [Indexed: 12/24/2022]
|
38
|
Nahar S, Mizan MFR, Ha AJW, Ha SD. Advances and Future Prospects of Enzyme-Based Biofilm Prevention Approaches in the Food Industry. Compr Rev Food Sci Food Saf 2018; 17:1484-1502. [DOI: 10.1111/1541-4337.12382] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/22/2018] [Accepted: 06/27/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Shamsun Nahar
- Dept. of Food Science and Technology; Chung-Ang Univ.; Anseong Gyeonggi-Do 456-756 Republic of Korea
| | | | - Angela Jie-won Ha
- Dept. of Food Science and Technology; Chung-Ang Univ.; Anseong Gyeonggi-Do 456-756 Republic of Korea
| | - Sang-Do Ha
- Dept. of Food Science and Technology; Chung-Ang Univ.; Anseong Gyeonggi-Do 456-756 Republic of Korea
| |
Collapse
|
39
|
Parkes LO, Hota SS. Sink-Related Outbreaks and Mitigation Strategies in Healthcare Facilities. Curr Infect Dis Rep 2018; 20:42. [PMID: 30128678 DOI: 10.1007/s11908-018-0648-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE OF REVIEW In this review, we summarize recent outbreaks attributed to hospital sinks and examine design features and behaviors that contributed to these outbreaks. The effectiveness of various risk mitigation strategies is presented. Finally, we examine investigational strategies targeted at reducing the risk of sink-related infections. RECENT FINDINGS Outbreaks of hospital sink-related infections involve a diverse spectrum of microorganisms. They can be attributed to defects in sink design and hospital wastewater systems that promote the formation and dispersion of biofilm, as well as healthcare practitioner and patient behaviors. Risk mitigation strategies are often bundled; while they may reduce clinical cases, sink colonization may persist. Novel approaches targeting biofilms show promise but require more investigation. Emphasis should be placed on optimizing best practices in sink design and placement to prevent infections. Hospitals should consider developing a rational surveillance and prevention strategy based on the current design and state of their sinks.
Collapse
Affiliation(s)
- Leighanne O Parkes
- Department of Medicine, Division of Infectious Diseases, Jewish General Hospital, McGill University, Pavilion E-0054, 3755 Chemin de la Cote-Sainte-Catherine, Montreal, QC, H3T 1E2, Canada
| | - Susy S Hota
- Department of Medicine, Division of Infectious Diseases, University of Toronto, Toronto, ON, Canada.
- Department of Infection Prevention and Control, University Health Network, 9th Floor - 8 PMB 102, 585 University Avenue, Toronto, ON, M5G 2C4, Canada.
| |
Collapse
|
40
|
Lamas A, Regal P, Vázquez B, Miranda JM, Cepeda A, Franco CM. Salmonella and Campylobacter biofilm formation: a comparative assessment from farm to fork. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:4014-4032. [PMID: 29424050 DOI: 10.1002/jsfa.8945] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/16/2018] [Accepted: 02/02/2018] [Indexed: 06/08/2023]
Abstract
It takes several steps to bring food from the farm to the fork (dining table), and contamination with food-borne pathogens can occur at any point in the process. Campylobacter spp. and Salmonella spp. are the main microorganisms responsible for foodborne disease in the EU. These two pathogens are able to persist throughout the food supply chain thanks to their ability to form biofilms. Owing to the high prevalence of Salmonella and especially of Campylobacter in the food supply chain and the huge efforts of food authorities to reduce these levels, it is of great importance to fully understand their mechanisms of persistence. Diverse studies have evaluated the biofilm-forming capacity of foodborne pathogens isolated at different steps of food production. Nonetheless, the principal obstacle of these studies is to reproduce the real conditions that microorganisms encounter in the food supply chain. While there are a wide number of Salmonella biofilm studies, information on Campylobacter biofilms is still limited. A comparison between the two microorganisms could help to develop new research in the field of Campylobacter biofilms. Therefore, this review evaluates relevant work in the field of Salmonella and Campylobacter biofilms and the applicability of the data obtained from these studies to real working conditions. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Alexandre Lamas
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Universidad de Santiago de Compostela, Lugo, Spain
| | - Patricia Regal
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Universidad de Santiago de Compostela, Lugo, Spain
| | - Beatriz Vázquez
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Universidad de Santiago de Compostela, Lugo, Spain
| | - José M Miranda
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Universidad de Santiago de Compostela, Lugo, Spain
| | - Alberto Cepeda
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Universidad de Santiago de Compostela, Lugo, Spain
| | - Carlos M Franco
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Universidad de Santiago de Compostela, Lugo, Spain
| |
Collapse
|
41
|
Li J, Zhang K, Ruan L, Chin SF, Wickramasinghe N, Liu H, Ravikumar V, Ren J, Duan H, Yang L, Chan-Park MB. Block Copolymer Nanoparticles Remove Biofilms of Drug-Resistant Gram-Positive Bacteria by Nanoscale Bacterial Debridement. NANO LETTERS 2018; 18:4180-4187. [PMID: 29902011 DOI: 10.1021/acs.nanolett.8b01000] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Biofilms and the rapid evolution of multidrug resistance complicate the treatment of bacterial infections. Antibiofilm agents such as metallic-inorganic nanoparticles or peptides act by exerting antibacterial effects and, hence, do not combat biofilms of antibiotics-resistant strains. In this Letter, we show that the block copolymer DA95B5, dextran- block-poly((3-acrylamidopropyl) trimethylammonium chloride (AMPTMA)- co-butyl methacrylate (BMA)), effectively removes preformed biofilms of various clinically relevant multidrug-resistant Gram-positive bacteria including methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococci (VRE V583), and Enteroccocus faecalis (OG1RF). DA95B5 self-assembles into core-shell nanoparticles with a nonfouling dextran shell and a cationic core. These nanoparticles diffuse into biofilms and attach to bacteria but do not kill them; instead, they promote the gradual dispersal of biofilm bacteria, probably because the solubility of the bacteria-nanoparticle complex is enhanced by the nanoparticle dextran shell. DA95B5, when applied as a solution to a hydrogel pad dressing, shows excellent in vivo MRSA biofilm removal efficacy of 3.6 log reduction in a murine excisional wound model, which is significantly superior to that for vancomycin. Furthermore, DA95B5 has very low in vitro hemolysis and negligible in vivo acute toxicity. This new strategy for biofilm removal (nanoscale bacterial debridement) is orthogonal to conventional rapidly developing resistance traits in bacteria so that it is as effective toward resistant strains as it is toward sensitive strains and may have widespread applications.
Collapse
Affiliation(s)
- Jianghua Li
- Centre for Antimicrobial Bioengineering, School of Chemical and Biomedical Engineering , Nanyang Technological University , 62 Nanyang Drive , 637459 Singapore
| | - Kaixi Zhang
- Centre for Antimicrobial Bioengineering, School of Chemical and Biomedical Engineering , Nanyang Technological University , 62 Nanyang Drive , 637459 Singapore
| | - Lin Ruan
- Centre for Antimicrobial Bioengineering, School of Chemical and Biomedical Engineering , Nanyang Technological University , 62 Nanyang Drive , 637459 Singapore
| | - Seow Fong Chin
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE) , Nanyang Technological University , 60 Nanyang Drive , SBS-01N-27, 637551 Singapore
| | - Nirmani Wickramasinghe
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE) , Nanyang Technological University , 60 Nanyang Drive , SBS-01N-27, 637551 Singapore
| | - Hanbin Liu
- Centre for Antimicrobial Bioengineering, School of Chemical and Biomedical Engineering , Nanyang Technological University , 62 Nanyang Drive , 637459 Singapore
| | - Vikashini Ravikumar
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE) , Nanyang Technological University , 60 Nanyang Drive , SBS-01N-27, 637551 Singapore
| | - Jinghua Ren
- Cancer Center, Union Hospital , Huazhong University of Science & Technology , Wuhan , 430022 China
| | - Hongwei Duan
- Centre for Antimicrobial Bioengineering, School of Chemical and Biomedical Engineering , Nanyang Technological University , 62 Nanyang Drive , 637459 Singapore
| | - Liang Yang
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE) , Nanyang Technological University , 60 Nanyang Drive , SBS-01N-27, 637551 Singapore
| | - Mary B Chan-Park
- Centre for Antimicrobial Bioengineering, School of Chemical and Biomedical Engineering , Nanyang Technological University , 62 Nanyang Drive , 637459 Singapore
- Lee Kong Chian School of Medicine , Nanyang Technological University , 59 Nanyang Drive , 636921 Singapore
| |
Collapse
|
42
|
Galié S, García-Gutiérrez C, Miguélez EM, Villar CJ, Lombó F. Biofilms in the Food Industry: Health Aspects and Control Methods. Front Microbiol 2018; 9:898. [PMID: 29867809 PMCID: PMC5949339 DOI: 10.3389/fmicb.2018.00898] [Citation(s) in RCA: 444] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 04/18/2018] [Indexed: 12/18/2022] Open
Abstract
Diverse microorganisms are able to grow on food matrixes and along food industry infrastructures. This growth may give rise to biofilms. This review summarizes, on the one hand, the current knowledge regarding the main bacterial species responsible for initial colonization, maturation and dispersal of food industry biofilms, as well as their associated health issues in dairy products, ready-to-eat foods and other food matrixes. These human pathogens include Bacillus cereus (which secretes toxins that can cause diarrhea and vomiting symptoms), Escherichia coli (which may include enterotoxigenic and even enterohemorrhagic strains), Listeria monocytogenes (a ubiquitous species in soil and water that can lead to abortion in pregnant women and other serious complications in children and the elderly), Salmonella enterica (which, when contaminating a food pipeline biofilm, may induce massive outbreaks and even death in children and elderly), and Staphylococcus aureus (known for its numerous enteric toxins). On the other hand, this review describes the currently available biofilm prevention and disruption methods in food factories, including steel surface modifications (such as nanoparticles with different metal oxides, nanocomposites, antimicrobial polymers, hydrogels or liposomes), cell-signaling inhibition strategies (such as lactic and citric acids), chemical treatments (such as ozone, quaternary ammonium compounds, NaOCl and other sanitizers), enzymatic disruption strategies (such as cellulases, proteases, glycosidases and DNAses), non-thermal plasma treatments, the use of bacteriophages (such as P100), bacteriocins (such us nisin), biosurfactants (such as lichenysin or surfactin) and plant essential oils (such as citral- or carvacrol-containing oils).
Collapse
Affiliation(s)
- Serena Galié
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, University of Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Coral García-Gutiérrez
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, University of Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Elisa M. Miguélez
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, University of Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Claudio J. Villar
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, University of Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Felipe Lombó
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, University of Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| |
Collapse
|
43
|
Zhang Y, He S, Simpson BK. Enzymes in food bioprocessing — novel food enzymes, applications, and related techniques. Curr Opin Food Sci 2018. [DOI: 10.1016/j.cofs.2017.12.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
44
|
Liu J, Yu S, Han B, Chen J. Effects of benzalkonium chloride and ethanol on dual-species biofilms of Serratia liquefaciens S1 and Shewanella putrefaciens S4. Food Control 2017. [DOI: 10.1016/j.foodcont.2017.02.063] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
45
|
Han Q, Song X, Zhang Z, Fu J, Wang X, Malakar PK, Liu H, Pan Y, Zhao Y. Removal of Foodborne Pathogen Biofilms by Acidic Electrolyzed Water. Front Microbiol 2017. [PMID: 28638370 PMCID: PMC5461821 DOI: 10.3389/fmicb.2017.00988] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Biofilms, which are complex microbial communities embedded in the protective extracellular polymeric substances (EPS), are difficult to remove in food production facilities. In this study, the use of acidic electrolyzed water (AEW) to remove foodborne pathogen biofilms was evaluated. We used a green fluorescent protein-tagged Escherichia coli for monitoring the efficiency of AEW for removing biofilms, where under the optimal treatment conditions, the fluorescent signal of cells in the biofilm disappeared rapidly and the population of biofilm cells was reduced by more than 67%. Additionally, AEW triggered EPS disruption, as indicated by the deformation of the carbohydrate C-O-C bond and deformation of the aromatic rings in the amino acids tyrosine and phenylalanine. These deformations were identified by EPS chemical analysis and Raman spectroscopic analysis. Scanning electron microscopy (SEM) images confirmed that the breakup and detachment of biofilm were enhanced after AEW treatment. Further, AEW also eradicated biofilms formed by both Gram-negative bacteria (Vibrio parahaemolyticus) and Gram-positive bacteria (Listeria monocytogenes) and was observed to inactivate the detached cells which are a potential source of secondary pollution. This study demonstrates that AEW could be a reliable foodborne pathogen biofilm disrupter and an eco-friendly alternative to sanitizers traditionally used in the food industry.
Collapse
Affiliation(s)
- Qiao Han
- College of Food Science and Technology, Shanghai Ocean UniversityShanghai, China
| | - Xueying Song
- College of Food Science and Technology, Shanghai Ocean UniversityShanghai, China
| | - Zhaohuan Zhang
- College of Food Science and Technology, Shanghai Ocean UniversityShanghai, China
| | - Jiaojiao Fu
- College of Food Science and Technology, Shanghai Ocean UniversityShanghai, China
| | - Xu Wang
- College of Food Science and Technology, Shanghai Ocean UniversityShanghai, China
| | - Pradeep K Malakar
- College of Food Science and Technology, Shanghai Ocean UniversityShanghai, China
| | - Haiquan Liu
- College of Food Science and Technology, Shanghai Ocean UniversityShanghai, China.,Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of AgricultureShanghai, China.,Shanghai Engineering Research Center of Aquatic-Product Processing and PreservationShanghai, China.,Engineering Research Center of Food Thermal-processing Technology, Shanghai Ocean UniversityShanghai, China
| | - Yingjie Pan
- College of Food Science and Technology, Shanghai Ocean UniversityShanghai, China.,Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of AgricultureShanghai, China.,Shanghai Engineering Research Center of Aquatic-Product Processing and PreservationShanghai, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean UniversityShanghai, China.,Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of AgricultureShanghai, China.,Shanghai Engineering Research Center of Aquatic-Product Processing and PreservationShanghai, China
| |
Collapse
|
46
|
Kuda T, Koyanagi T, Shibata G, Takahashi H, Kimura B. Effect of carrot residue on the desiccation and disinfectant resistances of food related pathogens adhered to a stainless steel surfaces. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2016.07.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
47
|
Yu Q, Huang H, Ren H, Ding L, Geng J. In situ activity recovery of aging biofilm in biological aerated filter: Surfactants treatment and mechanisms study. BIORESOURCE TECHNOLOGY 2016; 219:403-410. [PMID: 27513646 DOI: 10.1016/j.biortech.2016.07.122] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 07/22/2016] [Accepted: 07/27/2016] [Indexed: 06/06/2023]
Abstract
In situ activity recovery of aging biofilm in the biological aerated filter (BAF) is an important but underappreciated problem. Lab-scaled BAFs were established in this study and three kinds of surfactants containing sodium dodecyl sulfate (SDS), sodium dodecyl benzene sulfonate (SDBS) and rhamnolipid were employed. Multiple indicators including effluent qualities, dissolved organic matters, biofilm physiology and morphology characteristics were investigated to explore the mechanisms. Results showed that removal rates of effluent COD in test groups significantly recovered to the level before aging. Compared with the control, effluent in SDBS and rhamnolipid-treated groups obtained more protein-like and humic-like substances, respectively. Furthermore, great live cell ratio, smooth surface and low adhesion force of biofilm were observed after rhamnolipid treatment, which was in consistent with good effluent qualities in the same group. This is the first report of applying rhamnolipid for in situ activity recovery of aging biofilm in bioreactors.
Collapse
Affiliation(s)
- Qisheng Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Hui Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China.
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China.
| | - Lili Ding
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Jinju Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| |
Collapse
|
48
|
Coughlan LM, Cotter PD, Hill C, Alvarez-Ordóñez A. New Weapons to Fight Old Enemies: Novel Strategies for the (Bio)control of Bacterial Biofilms in the Food Industry. Front Microbiol 2016; 7:1641. [PMID: 27803696 PMCID: PMC5067414 DOI: 10.3389/fmicb.2016.01641] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 10/03/2016] [Indexed: 12/14/2022] Open
Abstract
Biofilms are microbial communities characterized by their adhesion to solid surfaces and the production of a matrix of exopolymeric substances, consisting of polysaccharides, proteins, DNA and lipids, which surround the microorganisms lending structural integrity and a unique biochemical profile to the biofilm. Biofilm formation enhances the ability of the producer/s to persist in a given environment. Pathogenic and spoilage bacterial species capable of forming biofilms are a significant problem for the healthcare and food industries, as their biofilm-forming ability protects them from common cleaning processes and allows them to remain in the environment post-sanitation. In the food industry, persistent bacteria colonize the inside of mixing tanks, vats and tubing, compromising food safety and quality. Strategies to overcome bacterial persistence through inhibition of biofilm formation or removal of mature biofilms are therefore necessary. Current biofilm control strategies employed in the food industry (cleaning and disinfection, material selection and surface preconditioning, plasma treatment, ultrasonication, etc.), although effective to a certain point, fall short of biofilm control. Efforts have been explored, mainly with a view to their application in pharmaceutical and healthcare settings, which focus on targeting molecular determinants regulating biofilm formation. Their application to the food industry would greatly aid efforts to eradicate undesirable bacteria from food processing environments and, ultimately, from food products. These approaches, in contrast to bactericidal approaches, exert less selective pressure which in turn would reduce the likelihood of resistance development. A particularly interesting strategy targets quorum sensing systems, which regulate gene expression in response to fluctuations in cell-population density governing essential cellular processes including biofilm formation. This review article discusses the problems associated with bacterial biofilms in the food industry and summarizes the recent strategies explored to inhibit biofilm formation, with special focus on those targeting quorum sensing.
Collapse
Affiliation(s)
- Laura M. Coughlan
- Teagasc Food Research CentreCork, Ireland
- School of Microbiology, University College CorkCork, Ireland
| | - Paul D. Cotter
- Teagasc Food Research CentreCork, Ireland
- APC Microbiome InstituteCork, Ireland
| | - Colin Hill
- School of Microbiology, University College CorkCork, Ireland
- APC Microbiome InstituteCork, Ireland
| | | |
Collapse
|