1
|
Wang F, Zeng J, Lin L, Wang X, Zhang L, Tao N. Co-delivery of astaxanthin using positive synergistic effect from biomaterials: From structural design to functional regulation. Food Chem 2025; 470:142731. [PMID: 39755039 DOI: 10.1016/j.foodchem.2024.142731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/22/2024] [Accepted: 12/30/2024] [Indexed: 01/06/2025]
Abstract
The powerful antioxidant properties of astaxanthin (AST) face two significant challenges: low water solubility and poor chemical stability. To overcome them, extensive research and development efforts have been directed toward creating effective delivery systems. Among them, the positive synergistic effect between biomaterials can be used to refine the design of delivery systems. Understanding the relationship between structure and function aids in tailoring applications to specific needs. This review outlines the challenges associated with delivering AST and reviews the mechanisms involved in creating delivery systems, specifically focusing on the structure-function relationship of biomaterials. It comprehensively introduces the positive synergistic effect of biomaterials with enhancing the functional properties of AST, and analyzes the impact of designed structures on function regulation and the application prospects of the delivery system in the food industry. The future demand for efficient delivery of AST will increasingly depend on the positive synergistic effect between biomaterials.
Collapse
Affiliation(s)
- Fengqiujie Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jianhua Zeng
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Liu Lin
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Xichang Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
| | - Long Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China.
| | - Ningping Tao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
2
|
Yu B, Ma T, Nawaz M, Chen H, Zheng H. Advances in Metabolic Engineering for the Accumulation of Astaxanthin Biosynthesis. Mol Biotechnol 2024:10.1007/s12033-024-01289-1. [PMID: 39373956 DOI: 10.1007/s12033-024-01289-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/13/2024] [Indexed: 10/08/2024]
Abstract
Astaxanthin, a lipophilic carotenoid renowned for its strong antioxidant activity, holds significant commercial value across industries such as feed, food, and cosmetics. Although astaxanthin can be synthesized through chemical methods, it may contain toxic by-products in the synthesized astaxanthin, limiting its application in medicine or functional food. Natural astaxanthin can be extracted from algae, however, the cultivation cycle of algae is relatively longer compared to microorganisms. With the advancement of synthetic biology and metabolic engineering, the method of microbial fermentation has emerged as a promising strategy for the large-scale production of astaxanthin. This article provides a comprehensive overview of the research progress in astaxanthin biosynthesis, highlighting the use of the natural host Xanthophyllomyces dendrorhous, and the heterologous hosts Yarrowia lipolytica and Saccharomyces cerevisiae. Additionally, future research prospects are also discussed.
Collapse
Affiliation(s)
- Bingxin Yu
- School of Life Science and Technology, China Pharmaceutical University, No. 639 Longmian Dadao, Jiangning District, Nanjing, 210009, People's Republic of China
| | - Tianyue Ma
- School of Life Science and Technology, China Pharmaceutical University, No. 639 Longmian Dadao, Jiangning District, Nanjing, 210009, People's Republic of China
| | - Maryam Nawaz
- School of Life Science and Technology, China Pharmaceutical University, No. 639 Longmian Dadao, Jiangning District, Nanjing, 210009, People's Republic of China
| | - Hailong Chen
- School of Life Science and Technology, China Pharmaceutical University, No. 639 Longmian Dadao, Jiangning District, Nanjing, 210009, People's Republic of China
| | - Heng Zheng
- School of Life Science and Technology, China Pharmaceutical University, No. 639 Longmian Dadao, Jiangning District, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
3
|
Wang XP, Wang CF, Zhao XQ, Ma MJ, Li ZH, Jiang H, Zhang XN, Yuan CZ. Comparison of milk protein concentrate, micellar casein, and whey protein isolate in loading astaxanthin after the treatment of ultrasound-assisted pH shifting. J Dairy Sci 2024; 107:141-154. [PMID: 37690728 DOI: 10.3168/jds.2023-23691] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/08/2023] [Indexed: 09/12/2023]
Abstract
Milk proteins can be used as encapsulation walls to increase the bioavailability of active compounds because they can bind hydrophobic, hydrophilic, and charged compounds. The objective of this study was to investigate the effects of astaxanthin (ASTA) encapsulation and the functional properties of milk protein and ASTA nanocomposites by an ultrasound-assisted pH-shifting treatment of different milk proteins, including milk protein concentrate (MPC), micellar casein (MCC), and whey protein isolate (WPI). The ultrasound-assisted pH-shifting treatment of milk protein helped to improve the encapsulation rate of ASTA. Therein, MCC showed great improvement of encapsulating ASTA after co-treatment with the raised encapsulated rate of 5.11%, followed by WPI and MPC. Furthermore, the nanocomposites of ASTA with milk protein exhibit improved bioavailability, antioxidant capacity, and storage stability. By comparison, MCC-encapsulated ASTA has the best storage stability, followed by MPC, and WPI-encapsulated ASTA has the least stability over a 28-d storage period. The results of intrinsic fluorescence and surface hydrophobicity showed that milk protein underwent fluorescence quenching after binding to ASTA, which was due to the hydrophobic sites of the protein being occupied by ASTA. In general, the nanocomposites of milk protein and ASTA fabricated by using an ultrasound-assisted pH-shifting treatment have the potential to be better nano-delivery systems for ASTA in functional foods, especially MCC, which showed excellent performance in encapsulation after treatment technique.
Collapse
Affiliation(s)
- X P Wang
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, China
| | - C F Wang
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, China.
| | - X Q Zhao
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, China
| | - M J Ma
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, China
| | - Z H Li
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, China
| | - H Jiang
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, China
| | - X N Zhang
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, China
| | - C Z Yuan
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Ji'nan, 250012, China.
| |
Collapse
|
4
|
Xue Y, Liao Y, Wang H, Li S, Gu Z, Adu-Frimpong M, Yu J, Xu X, Smyth HDC, Zhu Y. Preparation and evaluation of astaxanthin-loaded 2-hydroxypropyl-beta-cyclodextrin and Soluplus® nanoparticles based on electrospray technology. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3628-3637. [PMID: 36840513 DOI: 10.1002/jsfa.12527] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/20/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Astaxanthin is a type of food-derived active ingredient with antioxidant, antidiabetic and non-toxicity functions, but its poor solubility and low bioavailability hinder further application in food industry. In the present study, through inclusion technologies, micellar solubilization and electrospray techniques, we prepared astaxanthin nanoparticles before optimizing the formulation to regulate the physical and chemical properties of micelles. We accomplished the preparation of astaxanthin nanoparticle delivery system based on single needle electrospray technology through use of 2-hydroxypropyl-β-cyclodextrin and Soluplus® to improveme the release behavior of the nanocarrier. RESULTS Through this experiment, we successfully prepared astaxanthin nanoparticles with a particle size of approximately 80 nm, which was further verified with scanning electron microscopy and transmission electron microscopy. Furthermore, the encapsulation of astaxanthin molecules into the carrier nanoparticles was verified via the results of attenuated total reflectance intensity and X-ray powder diffraction techniques. The in vitro release behavior of astaxanthin nanoparticles was different in media that contained 0.5% Tween 80 (pH 1.2, 4.5 and 6.8) buffer solution and distilled water. Also, we carried out a pharmacokinetic study of astaxanthin nanoparticles, in which it was observed that astaxanthin nanoparticle showed an effect of immediate release and significant improved bioavailability. CONCLUSION 2-hydroxypropyl-β-cyclodextrin and Soluplus® were used in the present study as a hydrophilic nanocarrier that could provide a simple way of encapsulating natural function food with repsect to improving the solubility and bioavailability of poorly water-soluble ingredients. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuanyuan Xue
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, China
| | - Youwu Liao
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, China
| | - Haiqiao Wang
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, China
| | - Shuang Li
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, China
| | - Zhengqing Gu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, China
| | - Michael Adu-Frimpong
- Department of Biochemistry and Forensic Sciences, School of Chemical and Biochemical Sciences, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Navrongo, Ghana
| | - Jiangnan Yu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, China
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, China
| | - Hugh D C Smyth
- College of Molecular Pharmaceutics & Drug Delivery, The University of Texas at Austin, Austin, TX, USA
| | - Yuan Zhu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
5
|
Borba CM, de Moraes Soares Araújo G, Contessa CR, Dora CL, de Medeiros Burkert JF. Influence of β-Carotene Nanoemulsions on Technological Parameters and Stability in Food Matrices. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-023-03060-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
6
|
Astaxanthin-Loaded Pickering Emulsions Stabilized by Nanofibrillated Cellulose: Impact on Emulsion Characteristics, Digestion Behavior, and Bioaccessibility. Polymers (Basel) 2023; 15:polym15040901. [PMID: 36850184 PMCID: PMC9959445 DOI: 10.3390/polym15040901] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
Astaxanthin (AX) is one of the major bioactives that has been found to have strong antioxidant properties. However, AX tends to degrade due to its highly unsaturated structure. To overcome this problem, a Pickering O/W emulsion using nanofibrillated cellulose (NFC) as an emulsifier was investigated. NFC was used because it is renewable, biodegradable, and nontoxic. The 10 wt% O/W emulsions with 0.05 wt% AX were prepared with different concentrations of NFC (0.3-0.7 wt%). After 30 days of storage, droplet size, ζ-potential values, viscosity, encapsulation efficiency (EE), and color were determined. The results show that more stable emulsions are formed with increasing NFC concentrations, which can be attributed to the formulation of the NFC network in the aqueous phase. Notably, the stability of the 0.7 wt% NFC-stabilized emulsion was high, indicating that NFC can improve the emulsion's stability. Moreover, it was found that fat digestibility and AX bioaccessibility decreased with increasing NFC concentrations, which was due to the limitation of lipase accessibility. In contrast, the stability of AX increased with increasing NFC concentrations, which was due to the formation of an NFC layer that acted as a barrier and prevented the degradation of AX during in vitro digestion. Therefore, high concentrations of NFC are useful for functional foods delivering satiety instead of oil-soluble bioactives.
Collapse
|
7
|
Gao Q, Qiao X, Yang L, Cao Y, Li Z, Xu J, Xue C. Effects of microencapsulation in dairy matrix on the quality characteristics and bioavailability of docosahexaenoic acid astaxanthin. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5711-5719. [PMID: 35396734 DOI: 10.1002/jsfa.11919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/20/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Compared with free astaxanthin (Asta), docosahexaenoic acid astaxanthin monoester (Asta-C22:6) has higher stability and bioavailability. However, Asta-E is still unable to be used in the water system. Hence it is necessary to build a water-soluble delivery system. In this study, Asta-C22:6 microemulsion and microcapsule using whey protein isolate (WPI) and hydroxypropyl-β-cyclodextrin (HPβ-CD) as composite wall material were prepared. They were added to three dairy products (milk powder, yogurt and flavored dairy product). A dairy product rich in Asta-C22:6 with high bioavailability was designed by measuring quality characteristics, sensory evaluation and in vivo experiments. RESULTS Compared with spray drying, the freeze-drying microcapsule had a higher encapsulation efficiency (72.5%), water content (4%) and better solubility, and Asta-C22:6 microcapsule (1 g L-1 ) yogurt had the best quality. The bioavailability of Asta-C22:6 microcapsule yogurt was further evaluated. After a single oral dose in mice, the bioavailability of Asta-C22:6 microcapsule in yogurt was significantly increased (Cmax = 0.31 μg mL-1 , AUC0-T = 3.20 h μg mL-1 ). CONCLUSION We successfully prepared Asta-C22:6 microcapsule yogurt, which improved the stability and bioavailability of Asta. The present research is meaningful for delivering unstable bioactive small molecules based on WPI and HPβ-CD. It provides an experimental basis for the application of Asta-C22:6 and the development of functional dairy products. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qun Gao
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xing Qiao
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Lu Yang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yunrui Cao
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Zhaojie Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
- Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| |
Collapse
|
8
|
Bodbodak S, Nejatian M, Ghandehari Yazdi AP, Kamali Rousta L, Rafiee Z, Jalali-Jivan M, Kharazmi MS, Jafari SM. Improving the thermal stability of natural bioactive ingredients via encapsulation technology. Crit Rev Food Sci Nutr 2022; 64:2824-2846. [PMID: 36178297 DOI: 10.1080/10408398.2022.2127145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Bioactive compounds (bioactives) such as phenolic acids, coumarins, flavonoids, lignans and carotenoids have a marked improvement effect on human health by acting on body tissues or cells. Nowadays, with increasing levels of knowledge, consumers prefer foods that can provide bioactives beside the necessary nutrients (e.g., vitamins, essential fatty acids and minerals). However, an important barrier for incorporating bioactives into foods is their low thermal stability. Nevertheless, thermal processing is widely used by the food industries to achieve food safety and desired texture. The aim of this work is to give an overview of encapsulation technology to improve thermal stability of bioactives incorporated into different food products. Almost all thermal analysis and non-thermal methods in the literature suggest that incorporation of bioactives into different walls can effectively improve the thermal stability of bioactives. The level of such thermal enhancement depends on the strength of the bioactive interaction and wall molecules. Furthermore, contradictory results have been reported in relation to the effect of encapsulation technique using the same wall on thermal stability of bioactives. To date, the potential to increase the thermal resistance of various bioactives by gums, carbohydrates, and proteins have been extensively studied. However, further studies on the comparison of walls and encapsulation methods to form thermally stable carriers seem to be needed. In this regard, the same nature of bioactives and the specific protocol in the report of study results should be considered to compare the data and select the optimum conditions of encapsulation to achieve maximum thermal stability.
Collapse
Affiliation(s)
- Samad Bodbodak
- Department of Food Science and Technology, Ahar Faculty of Agriculture and Natural Resources, University of Tabriz, Tabriz, Iran
| | - Mohammad Nejatian
- Department of Nutrition Science and Food Hygiene, Faculty of Health, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Leila Kamali Rousta
- Department of Food Research and Development, Zar Research and Industrial Development Group, Alborz, Iran
| | - Zahra Rafiee
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
| | - Mehdi Jalali-Jivan
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | | | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Ourense, Spain
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
9
|
Yu F, Chen J, Wei Z, Zhu P, Qing Q, Li B, Chen H, Lin W, Yang H, Qi Z, Hong X, Chen XD. Preparation of carrier-free astaxanthin nanoparticles with improved antioxidant capacity. Front Nutr 2022; 9:1022323. [PMID: 36245512 PMCID: PMC9554632 DOI: 10.3389/fnut.2022.1022323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/06/2022] [Indexed: 11/23/2022] Open
Abstract
Astaxanthin (AST), a red pigment of the carotenoids, has various advantageous biological activities. Nevertheless, the wide application of AST is restricted due to its poor water solubility and highly unsaturated structure. To overcome these limitations, carrier-free astaxanthin nanoparticles (AST-NPs) were fabricated through the anti-solvent precipitation method. The AST-NPs had a small particle size, negative zeta potential and high loading capacity. Analysis of DSC and XRD demonstrated that amorphous AST existed in AST-NPs. In comparison with free AST, AST-NPs displayed enhanced stability during storage. Besides, it also showed outstanding stability when exposed to UV light. Furthermore, the antioxidant capacity of AST-NPs was significantly increased. In vitro release study showed that AST-NPs significantly delayed the release of AST in the releasing medium. These findings indicated that AST-NPs would be an ideal formulation for AST, which could contribute to the development of novel functional foods.
Collapse
Affiliation(s)
- Fei Yu
- Medical College, Guangxi University, Nanning, China
| | - Jiaxin Chen
- Medical College, Guangxi University, Nanning, China
| | - Zizhan Wei
- Medical College, Guangxi University, Nanning, China
| | - Pingchuan Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Qing Qing
- Medical College, Guangxi University, Nanning, China
| | - Bangda Li
- Medical College, Guangxi University, Nanning, China
| | - Huimin Chen
- Medical College, Guangxi University, Nanning, China
| | - Weiying Lin
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Institute of Optical Materials and Chemical Biology, Guangxi University, Nanning, China
| | - Hua Yang
- Medical College, Guangxi University, Nanning, China
| | - Zhongquan Qi
- Medical College, Guangxi University, Nanning, China
- The Fourth People's Hospital of Nanning, Nanning, China
- Zhongquan Qi
| | - Xuehui Hong
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, China
- Xuehui Hong
| | - Xiao Dong Chen
- Suzhou Key Lab of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
- *Correspondence: Xiao Dong Chen
| |
Collapse
|
10
|
Chen Y, Su W, Tie S, Zhang L, Tan M. Advances of astaxanthin-based delivery systems for precision nutrition. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Encapsulation techniques perfect the antioxidant action of carotenoids: A systematic review of how this effect is promoted. Food Chem 2022; 385:132593. [PMID: 35276479 DOI: 10.1016/j.foodchem.2022.132593] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/21/2022] [Accepted: 02/26/2022] [Indexed: 11/22/2022]
Abstract
Considering that antioxidant activities are directly related to carotenoid functionalities, it is necessary to use techniques that promote the stability of these natural pigments. This systematic review aimed to gather evidence on the effect of encapsulation techniques on the maintenance and/or enhancement of the antioxidant activity of carotenoids. The study was registered in PROSPERO (CRD42020142065). Searches were performed in PubMed, Embase, Virtual Health Library, Scopus, ScienceDirect, and Web of Science databases. Assessment of methodological quality was performed using OHAT. A total of 1577 articles were selected, resulting in 20 eligible studies. Overall, results showed that the mechanisms involved are related to the emergence of new chemical interactions, increased surface area, and the controlled release of carotenoids. Thus, evidence proved that encapsulation could preserve and/or enhance bioactivities of carotenoids, allowing the use in foods to promote benefits on population health.
Collapse
|
12
|
Wang H, Hu H, Zhang X, Zheng L, Ruan J, Cao J, Zhang X. Preparation, Physicochemical Characterization, and Antioxidant Activity of Naringin–Silk Fibroin–Alginate Microspheres and Application in Yogurt. Foods 2022; 11:foods11142147. [PMID: 35885390 PMCID: PMC9318321 DOI: 10.3390/foods11142147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/12/2022] [Accepted: 07/18/2022] [Indexed: 02/04/2023] Open
Abstract
Naringin is the major polyphenol in bitter orange peel with antioxidant property. However, its pH sensitivity, low solubility, and bitter taste limit its application in food. In this study, naringin–sodium alginate–silk fibroin microspheres were prepared by the ionic gel method. The loading capacity and encapsulation efficiency of naringin in microspheres were 13.2% and 77.6%, respectively. The morphology of microspheres was characterized by scanning electron microscopy. The X-ray diffractometry and differential scanning calorimetry results showed naringin was amorphous after encapsulation. Fourier-transform infrared spectroscopy and molecular docking analysis confirmed the intermolecular hydrogen bonds between naringin and sodium alginate. Naringin could release from the microspheres continuously under different pH conditions. Compared with free naringin, the 2,2-diphenyl-1-picrylhydrazyl scavenging activity and the stability of naringin microspheres were significantly improved. The application of naringin microspheres in yogurt indicated the precipitation of whey could be effectively reduced and the decline rate of pH was inhibited. The study suggested that naringin encapsulated microspheres were beneficial for improving the shelf life of this bioactive product as well as providing a new idea for functional yogurt.
Collapse
|
13
|
Kandasamy S, Naveen R. A review on the encapsulation of bioactive components using spray‐drying and freeze‐drying techniques. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Sengodan Kandasamy
- Department of Food Technology, Kongu Engineering College Erode Tamil Nadu India
| | - Rajshri Naveen
- Department of Food Technology, Kongu Engineering College Erode Tamil Nadu India
| |
Collapse
|
14
|
Astaxanthin from Crustaceans and Their Byproducts: A Bioactive Metabolite Candidate for Therapeutic Application. Mar Drugs 2022; 20:md20030206. [PMID: 35323505 PMCID: PMC8955251 DOI: 10.3390/md20030206] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 12/12/2022] Open
Abstract
In recent years, the food, pharma, and cosmetic industries have shown considerable interest in bioactive molecules of marine origin that show high potential for application as nutraceuticals and therapeutic agents. Astaxanthin, a lipid-soluble and orange-reddish-colored carotenoid pigment, is one of the most investigated pigments. Natural astaxanthin is mainly produced from microalgae, and it shows much stronger antioxidant properties than its synthetic counterpart. This paper aims to summarize and discuss the important aspects and recent findings associated with the possible use of crustacean byproducts as a source of astaxanthin. In the last five years of research on the crustaceans and their byproducts as a source of natural astaxanthin, there are many new findings regarding the astaxanthin content in different species and new green extraction protocols for its extraction. However, there is a lack of information on the amounts of astaxanthin currently obtained from the byproducts as well as on the cost-effectiveness of the astaxanthin production from the byproducts. Improvement in these areas would most certainly contribute to the reduction of waste and reuse in the crustacean processing industry. Successful exploitation of byproducts for recovery of this valuable compound would have both environmental and social benefits. Finally, astaxanthin’s strong biological activity and prominent health benefits have been discussed in the paper.
Collapse
|
15
|
Fang R, Liang H, Li J, Chen Y, Luo X, Li Y, Li B, Liu S. Microencapsulation of astaxanthin based on emulsion solvent evaporation and subsequent spray drying. J Food Sci 2022; 87:998-1008. [PMID: 35170050 DOI: 10.1111/1750-3841.16063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/16/2021] [Accepted: 01/04/2022] [Indexed: 12/15/2022]
Abstract
Astaxanthin (AXT) is widely used in the food, drug, and cosmetics fields, but its applications are extremely limited by its intrinsic properties. Herein, a novel encapsulation system had been performed to fabricate AXT-loaded microcapsules through emulsion solvent evaporation and spray-dried methodologies. The influence of polylactic acid (PLA) concentrations on the characteristics of AXT-loaded dispersions and resultant microcapsules were investigated. The results showed that the sizes and zeta potentials of dispersions and microcapsules increased with increasing PLA content (9.8 to 24.6 wt%). The encapsulation efficiency (EE) of the microcapsules increased with increasing PLA concentration up to 21.4 wt%. The moisture content values, flowability, and bulk density of the obtained microcapsules decreased with increasing PLA content (9.8 to 24.6 wt%). Furthermore, the cell culture experiment indicated that the obtained microcapsules had no cytotoxicity and possessed excellent antioxidant activity. This work provides a new strategy for fabricating AXT-enriched microcapsules and expands their application in nutritional products. PRACTICAL APPLICATION: This work fabricated a novel encapsulation system for AXT through emulsion solvent evaporation and spray drying methodologies. The obtained AXT-loaded microcapsules possessed great physical stability and could expand potential applications of AXT.
Collapse
Affiliation(s)
- Rongxi Fang
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Hongshan Liang
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jing Li
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yijie Chen
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiaogang Luo
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, Hubei, China.,School of Materials and Engineering, Zhengzhou University, Zhengzhou City, Henan, China
| | - Yan Li
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Bin Li
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shilin Liu
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan, Hubei, China.,School of Materials and Engineering, Zhengzhou University, Zhengzhou City, Henan, China
| |
Collapse
|
16
|
Łupina K, Kowalczyk D, Lis M, Raszkowska-Kaczor A, Drozłowska E. Controlled release of water-soluble astaxanthin from carboxymethyl cellulose/gelatin and octenyl succinic anhydride starch/gelatin blend films. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107179] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
17
|
|
18
|
Sridhar K, Inbaraj BS, Chen BH. Recent Advances on Nanoparticle Based Strategies for Improving Carotenoid Stability and Biological Activity. Antioxidants (Basel) 2021; 10:713. [PMID: 33946470 PMCID: PMC8147144 DOI: 10.3390/antiox10050713] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 01/01/2023] Open
Abstract
Carotenoids are natural pigments widely used in food industries due to their health-promoting properties. However, the presence of long-chain conjugated double bonds are responsible for chemical instability, poor water solubility, low bioavailability and high susceptibility to oxidation. The application of a nanoencapsulation technique has thus become a vital means to enhance stability of carotenoids under physiological conditions due to their small particle size, high aqueous solubility and improved bioavailability. This review intends to overview the advances in preparation, characterization, biocompatibility and application of nanocarotenoids reported in research/review papers published in peer-reviewed journals over the last five years. More specifically, nanocarotenoids were prepared from both carotenoid extracts and standards by employing various preparation techniques to yield different nanostructures including nanoemulsions, nanoliposomes, polymeric/biopolymeric nanoparticles, solid lipid nanoparticles, nanostructured lipid nanoparticles, supercritical fluid-based nanoparticles and metal/metal oxide nanoparticles. Stability studies involved evaluation of physical stability and/or chemical stability under different storage conditions and heating temperatures for varied lengths of time, while the release behavior and bioaccessibility were determined by various in vitro digestion and absorption models as well as bioavailability through elucidating pharmacokinetics in an animal model. Moreover, application of nanocarotenoids for various biological applications including antioxidant, anticancer, antibacterial, antiaging, cosmetics, diabetic wound healing and hepatic steatosis were summarized.
Collapse
Affiliation(s)
| | | | - Bing-Huei Chen
- Department of Food Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan; (K.S.); or (B.S.I.)
| |
Collapse
|
19
|
Ribeiro JS, Veloso CM. Microencapsulation of natural dyes with biopolymers for application in food: A review. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106374] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
20
|
Rodríguez-Sifuentes L, Marszalek JE, Hernández-Carbajal G, Chuck-Hernández C. Importance of Downstream Processing of Natural Astaxanthin for Pharmaceutical Application. FRONTIERS IN CHEMICAL ENGINEERING 2021. [DOI: 10.3389/fceng.2020.601483] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Astaxanthin (ASX) is a xanthophyll pigment considered as a nutraceutical with high antioxidant activity. Several clinical trials have shown the multiple health benefits of this molecule; therefore, it has various pharmaceutical industry applications. Commercial astaxanthin can be produced by chemical synthesis or through biosynthesis within different microorganisms. The molecule produced by the microorganisms is highly preferred due to its zero toxicity and superior therapeutic properties. However, the biotechnological production of the xanthophyll is not competitive against the chemical synthesis, since the downstream process may represent 70–80% of the process production cost. These operations denote then an opportunity to optimize the process and make this alternative more competitive. Since ASX is produced intracellularly by the microorganisms, high investment and high operational costs, like centrifugation and bead milling or high-pressure homogenization, are mainly used. In cell recovery, flocculation and flotation may represent low energy demanding techniques, whereas, after cell disruption, an efficient extraction technique is necessary to extract the highest percentage of ASX produced by the cell. Solvent extraction is the traditional method, but large-scale ASX production has adopted supercritical CO2 (SC-CO2), an efficient and environmentally friendly technology. On the other hand, assisted technologies are extensively reported since the cell disruption, and ASX extraction can be carried out in a single step. Because a high-purity product is required in pharmaceuticals and nutraceutical applications, the use of chromatography is necessary for the downstream process. Traditionally liquid-solid chromatography techniques are applied; however, the recent emergence of liquid-liquid chromatography like high-speed countercurrent chromatography (HSCCC) coupled with liquid-solid chromatography allows high productivity and purity up to 99% of ASX. Additionally, the use of SC-CO2, coupled with two-dimensional chromatography, is very promising. Finally, the purified ASX needs to be formulated to ensure its stability and bioavailability; thus, encapsulation is widely employed. In this review, we focus on the processes of cell recovery, cell disruption, drying, extraction, purification, and formulation of ASX mainly produced in Haematococcus pluvialis, Phaffia rhodozyma, and Paracoccus carotinifaciens. We discuss the current technologies that are being developed to make downstream operations more efficient and competitive in the biotechnological production process of this carotenoid.
Collapse
|
21
|
Ruan J, Pei H, Li T, Wang H, Li S, Zhang X. Preparation and antioxidant activity evaluation of tea polyphenol–collagen–alginate microspheres. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Jingxin Ruan
- School of Function Food and Wine Shenyang Pharmaceutical University Shenyang China
| | - Huimin Pei
- School of Function Food and Wine Shenyang Pharmaceutical University Shenyang China
| | - Ting Li
- School of Traditional Chinese Materia Medica Shenyang Pharmaceutical University Shenyang China
| | - Hongyue Wang
- School of Function Food and Wine Shenyang Pharmaceutical University Shenyang China
| | - Shanfeng Li
- School of Function Food and Wine Shenyang Pharmaceutical University Shenyang China
| | - Xiangrong Zhang
- School of Function Food and Wine Shenyang Pharmaceutical University Shenyang China
- School of Traditional Chinese Materia Medica Shenyang Pharmaceutical University Shenyang China
| |
Collapse
|
22
|
Wang ZC, Qin CQ, Zhang X, Wang Q, Li RX, Ren DF. Effect of whey protein isolate/chitosan/microcrystalline cellulose/PET multilayer bottles on the shelf life of rosebud beverages. Food Chem 2021; 347:129006. [PMID: 33472117 DOI: 10.1016/j.foodchem.2021.129006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 12/07/2020] [Accepted: 12/31/2020] [Indexed: 12/31/2022]
Abstract
Multilayer bottles consisting of chitosan (CS), microcrystalline cellulose (MCC), whey protein isolate (WPI), and polyethylene terephthalate (PET) were tested as novel materials for packaging and extending shelf life of rosebud beverages. We studied the storage stability at 4 °C, 25 °C, 37 °C, and 55 °C by assessing the physical and biochemical parameters. The results show that multilayer PET bottles had better barrier performance and improved soluble solids content, pH, polyphenol content, color indices, and browning degree in rosebud beverages over the control at all studied temperatures. A shelf life model was established based on the Arrhenius equation, and the number of days when polyphenol contents dropped to <50% of the initial content was defined as the shelf life. Our results highlight the reliability of the prediction model, and we conclude that packaging rosebud beverages in multilayer PET bottles significantly extends the product shelf life, and this benefit was further extended at low temperatures.
Collapse
Affiliation(s)
- Zi-Chun Wang
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, 100083 Beijing, People's Republic of China
| | - Chen-Qiang Qin
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, 100083 Beijing, People's Republic of China
| | - Xia Zhang
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, 100083 Beijing, People's Republic of China
| | - Qian Wang
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, 100083 Beijing, People's Republic of China
| | - Ruo-Xuan Li
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, 100083 Beijing, People's Republic of China
| | - Di-Feng Ren
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, 100083 Beijing, People's Republic of China.
| |
Collapse
|
23
|
Recent Advances in Astaxanthin Micro/Nanoencapsulation to Improve Its Stability and Functionality as a Food Ingredient. Mar Drugs 2020; 18:md18080406. [PMID: 32752203 PMCID: PMC7459837 DOI: 10.3390/md18080406] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/26/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022] Open
Abstract
Astaxanthin is a carotenoid produced by different organisms and microorganisms such as microalgae, bacteria, yeasts, protists, and plants, and it is also accumulated in aquatic animals such as fish and crustaceans. Astaxanthin and astaxanthin-containing lipid extracts obtained from these sources present an intense red color and a remarkable antioxidant activity, providing great potential to be employed as food ingredients with both technological and bioactive functions. However, their use is hindered by: their instability in the presence of high temperatures, acidic pH, oxygen or light; their low water solubility, bioaccessibility and bioavailability; their intense odor/flavor. The present paper reviews recent advances in the micro/nanoencapsulation of astaxanthin and astaxanthin-containing lipid extracts, developed to improve their stability, bioactivity and technological functionality for use as food ingredients. The use of diverse micro/nanoencapsulation techniques using wall materials of a different nature to improve water solubility and dispersibility in foods, masking undesirable odor and flavor, is firstly discussed, followed by a discussion of the importance of the encapsulation to retard astaxanthin release, protecting it from degradation in the gastrointestinal tract. The nanoencapsulation of astaxanthin to improve its bioaccessibility, bioavailability and bioactivity is further reviewed. Finally, the main limitations and future trends on the topic are discussed.
Collapse
|
24
|
Microencapsulation Delivery System in Food Industry—Challenge and the Way Forward. ADVANCES IN POLYMER TECHNOLOGY 2020. [DOI: 10.1155/2020/7531810] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Microencapsulation is a promising technique, which provides core materials with protective barrier, good stability, controlled release, and targeting delivery. Compared with the pharmaceutical, cosmetic, and textile industries, food processing has higher requirements for safety and hygiene and calls for quality and nutrition maintenance. This paper reviews the widely used polymers as microcapsule wall materials and the application in different food products, including plant-derived food, animal-derived food, and additives. Also, common preparation technologies (emphasizing advantages and disadvantages), including spray-drying, emulsification, freeze-drying, coacervation, layer-by-layer, extrusion, supercritical, fluidized bed coating, electrospray, solvent evaporation, nanocapsule preparation, and their correlation with selected wall materials in recent 10 years are presented. Personalized design and cheap, efficient, and eco-friendly preparation of microcapsules are urgently required to meet the needs of different processing or storage environments. Moreover, this review may provide a reference for the microencapsulation research interests and development on future exploration.
Collapse
|
25
|
Boonlao N, Shrestha S, Sadiq MB, Anal AK. Influence of whey protein-xanthan gum stabilized emulsion on stability and in vitro digestibility of encapsulated astaxanthin. J FOOD ENG 2020. [DOI: 10.1016/j.jfoodeng.2019.109859] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
26
|
Complex coacervates of cashew gum and gelatin as carriers of green coffee oil: The effect of microcapsule application on the rheological and sensorial quality of a fruit juice. Food Res Int 2020; 131:109047. [DOI: 10.1016/j.foodres.2020.109047] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/21/2019] [Accepted: 01/28/2020] [Indexed: 11/19/2022]
|
27
|
Zhuang Y, Jiang GL, Zhu MJ. Atmospheric and room temperature plasma mutagenesis and astaxanthin production from sugarcane bagasse hydrolysate by Phaffia rhodozyma mutant Y1. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
28
|
Effects of Methanol on Carotenoids as Well as Biomass and Fatty Acid Biosynthesis in Schizochytrium limacinum B4D1. Appl Environ Microbiol 2019; 85:AEM.01243-19. [PMID: 31375482 DOI: 10.1128/aem.01243-19] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 07/12/2019] [Indexed: 12/19/2022] Open
Abstract
Schizochytrium is a promising source for the production of docosahexaenoic acid and astaxanthin. The effects of different methanol concentrations on astaxanthin, biomass, and production of the lipids, squalene, and total sterol in Schizochytrium limacinum B4D1 were investigated. Astaxanthin began to accumulate when the methanol concentration reached 3.2% and peaked at 5.6% methanol, with a 2,000-fold increase over that in the control. However, under cultivation with 5.6% methanol, the biomass, lipids, squalene, and total sterol decreased to various degrees. Transcriptomic analysis was performed to explore the effects of different methanol concentrations (0%, 3.2%, and 5.6%) on the expression profile of B4D1. Three key signaling pathways were found to play important roles in regulating cell growth and metabolism under cultivation with methanol. Five central carbon metabolism-associated genes were significantly downregulated in response to 5.6% methanol and thus were expected to result in less ATP and NADPH being available for cell growth and synthesis. High methanol conditions significantly downregulated three genes involved in fatty acid and squalene/sterol precursor biosynthesis but significantly upregulated geranylgeranyl diphosphate synthase, lycopene β-cyclase, and β-carotene 3-hydroxylase, which are involved in astaxanthin synthesis, thus resulting in an increase in the levels of precursors and the final production of astaxanthin. Additionally, the transcriptional levels of three stress response genes were upregulated. This study investigates gene expression profiles in the astaxanthin producer Schizochytrium when grown under various methanol concentrations. These results broaden current knowledge regarding genetic expression and provide important information for promoting astaxanthin biosynthesis in Schizochytrium IMPORTANCE Schizochytrium strains are usually studied as oil-producing strains, but they can also synthesize other secondary metabolites, such as astaxanthin. In this study, methanol was used as an inducer, and we explored its effects on the production of astaxanthin, a highly valuable substance in Schizochytrium Methanol induced Schizochytrium to synthesize large amounts of astaxanthin. Transcriptomic analysis was used to investigate the regulation of signaling and metabolic pathways (mainly relative gene expression) in Schizochytrium grown in the presence of various concentrations of methanol. These results contribute to the understanding of the underlying molecular mechanisms and may aid in the future optimization of Schizochytrium for astaxanthin biosynthesis.
Collapse
|
29
|
Buitrago Mora HM, Piñeros MA, Espinosa Moreno D, Restrepo Restrepo S, Cardona Jaramillo JEC, Álvarez Solano ÓA, Fernandez-Niño M, González Barrios AF. Multiscale design of a dairy beverage model composed of Candida utilis single cell protein supplemented with oleic acid. J Dairy Sci 2019; 102:9749-9762. [PMID: 31495617 DOI: 10.3168/jds.2019-16729] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/10/2019] [Indexed: 11/19/2022]
Abstract
One of the main challenges in the food industry is to design strategies for the successful incorporation of natural sources of bioactive compounds. Recently, yogurts and other fermented dairy beverages have been proposed as ideal carriers of such bioactive compounds such as fatty acids and antioxidants that could improve consumers' health. However, the incorporation of new ingredients causes functional and structural modifications that may affect the consumers' preferences. In this work, a dairy beverage model supplemented with oleic acid has been designed by partial substitution of milk by Candida utilis single-cell protein extract. The changes in the structural properties of this new beverage were evaluated by following the fermentation process, pH, aggregate size, microstructure, and changes in rheological properties. Furthermore, molecular dynamics simulations were carried out to analyze the interaction between its main components. Our data revealed that samples with a percentage of milk substitution of 30% showed a higher viscosity as compared with the other percentages and less viscosity than the control (no substitution). These samples were then selected for fortification by incorporating oleic acid microcapsules. A concentration of 1.5 g/100 g was shown to be the optimal quantity of microcapsules for oleic acid supplementation. Molecular dynamic simulations revealed glutathione as an important component of the micro-gel structure. The present study forms the basis for novel studies where Candida utilis single-cell protein and microencapsulated essential oils could be used to design innovative bioproducts.
Collapse
Affiliation(s)
- H M Buitrago Mora
- Grupo de Diseño de Productos y Procesos, Department of Chemical Engineering, Universidad de los Andes, Bogotá 111711, Colombia
| | - M A Piñeros
- Grupo de Diseño de Productos y Procesos, Department of Chemical Engineering, Universidad de los Andes, Bogotá 111711, Colombia
| | - D Espinosa Moreno
- Grupo de Diseño de Productos y Procesos, Department of Chemical Engineering, Universidad de los Andes, Bogotá 111711, Colombia
| | - S Restrepo Restrepo
- Vice-rectory of Research and Laboratorio de Micología y Fitopatología, Biological Sciences Department, Universidad de Los Andes, Bogotá 111711, Colombia
| | - J E C Cardona Jaramillo
- Grupo de Diseño de Productos y Procesos, Department of Chemical Engineering, Universidad de los Andes, Bogotá 111711, Colombia
| | - Ó A Álvarez Solano
- Grupo de Diseño de Productos y Procesos, Department of Chemical Engineering, Universidad de los Andes, Bogotá 111711, Colombia
| | - M Fernandez-Niño
- Grupo de Diseño de Productos y Procesos, Department of Chemical Engineering, Universidad de los Andes, Bogotá 111711, Colombia
| | - A F González Barrios
- Grupo de Diseño de Productos y Procesos, Department of Chemical Engineering, Universidad de los Andes, Bogotá 111711, Colombia.
| |
Collapse
|
30
|
Sun R, Xia N, Xia Q. Non-aqueous nanoemulsions as a new strategy for topical application of astaxanthin. J DISPER SCI TECHNOL 2019. [DOI: 10.1080/01932691.2019.1635027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Rui Sun
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing, China
- Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, China
- National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, China
| | - Nan Xia
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing, China
- Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, China
- National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, China
| | - Qiang Xia
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing, China
- Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, China
- National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, China
| |
Collapse
|
31
|
Mao X, Sun R, Tian Y, Wang D, Ma Y, Wang Q, Huang J, Xia Q. Development of a Solid Self‐Emulsification Delivery System for the Oral Delivery of Astaxanthin. EUR J LIPID SCI TECH 2019. [DOI: 10.1002/ejlt.201800258] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Xinyu Mao
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast UniversityNanjing 210096China
- Collaborative Innovation Center of Suzhou Nano Science and TechnologySuzhou 215123China
- National Demonstration Center for Experimental Biomedical Engineering Education, Southeast UniversityNanjing 210096China
| | - Rui Sun
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast UniversityNanjing 210096China
- Collaborative Innovation Center of Suzhou Nano Science and TechnologySuzhou 215123China
- National Demonstration Center for Experimental Biomedical Engineering Education, Southeast UniversityNanjing 210096China
| | - Yuan Tian
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast UniversityNanjing 210096China
- Collaborative Innovation Center of Suzhou Nano Science and TechnologySuzhou 215123China
- National Demonstration Center for Experimental Biomedical Engineering Education, Southeast UniversityNanjing 210096China
| | - Dantong Wang
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast UniversityNanjing 210096China
- Collaborative Innovation Center of Suzhou Nano Science and TechnologySuzhou 215123China
- National Demonstration Center for Experimental Biomedical Engineering Education, Southeast UniversityNanjing 210096China
| | - Yudi Ma
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast UniversityNanjing 210096China
- Collaborative Innovation Center of Suzhou Nano Science and TechnologySuzhou 215123China
- National Demonstration Center for Experimental Biomedical Engineering Education, Southeast UniversityNanjing 210096China
| | - Qiang Wang
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast UniversityNanjing 210096China
- Collaborative Innovation Center of Suzhou Nano Science and TechnologySuzhou 215123China
- National Demonstration Center for Experimental Biomedical Engineering Education, Southeast UniversityNanjing 210096China
| | - Juan Huang
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast UniversityNanjing 210096China
- Collaborative Innovation Center of Suzhou Nano Science and TechnologySuzhou 215123China
- National Demonstration Center for Experimental Biomedical Engineering Education, Southeast UniversityNanjing 210096China
| | - Qiang Xia
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast UniversityNanjing 210096China
- Collaborative Innovation Center of Suzhou Nano Science and TechnologySuzhou 215123China
- National Demonstration Center for Experimental Biomedical Engineering Education, Southeast UniversityNanjing 210096China
| |
Collapse
|