1
|
Du Q, Yu H, Zhang Y, Qiao Q, Wang J, Zhang T, Xue L, Lei J. Uncovering fruit flavor and genetic diversity across diploid wild Fragaria species via comparative metabolomics profiling. Food Chem 2024; 456:140013. [PMID: 38878536 DOI: 10.1016/j.foodchem.2024.140013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 07/24/2024]
Abstract
Wild Fragaria resources exhibit extensive genetic diversity and desirable edible traits, such as high soluble solid content and flavor compounds. However, specific metabolites in different wild strawberry fruits remain unknown. In this study, we characterized 1008 metabolites covering 11 subclasses among 13 wild diploid resources representing eight species, including F. vesca, F. nilgerrensis, F. viridis, F. nubicola, F. pentaphylla, F. mandschurica, F. chinensis, and F. emeiensis. Fifteen potential metabolite biomarkers were identified to distinguish fruit flavors among the 13 diploid wild Fragaria accessions. A total of nine distinct modules were employed to explore key metabolites related to fruit quality through weighted gene co-expression module analysis, with significant enrichment in amino acid biosynthesis pathway. Notably, the identified significantly different key metabolites highlighted the close association of amino acids, sugars, and anthocyanins with flavor formation. These findings offer valuable resources for improving fruit quality through metabolome-assisted breeding.
Collapse
Affiliation(s)
- Qiuling Du
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Haoming Yu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Yuanyuan Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Qin Qiao
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming 650201, China
| | - Jian Wang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Ticao Zhang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Li Xue
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China.
| | - Jiajun Lei
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
2
|
Jia S, Zheng P, Li M, Chen C, Li X, Zhang N, Ji H, Yu J, Dong C, Liang L. The effect of cold plasma treatment on the fruit quality and aroma components of winter jujubes (Ziziphus jujuba Mill. 'Dongzao'). J Food Sci 2024; 89:6350-6361. [PMID: 39261646 DOI: 10.1111/1750-3841.17329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/13/2024]
Abstract
Cold plasma (CP) is a novel environmental-friendly preservation technology that causes minimal damage to fruits. The flavor and quality of winter jujubes have decreased with the extended storage time. Currently, the research on the use of CP on winter jujubes (Ziziphus jujuba Mill. 'Dongzao') mainly focuses on the effect of the treatment on storage quality. There is limited research on the effect of CP treatment on the flavor of winter jujubes. This study used different CP (80 kV) treatment durations (0, 5, and 10 min) to treat winter jujubes. The appropriate treatment time was selected by observing the changes in color, respiratory intensity, soluble sugar content, total acid content, and vitamin C (VC) content of winter jujubes. Amino acid analyzer and headspace solid-phase microextraction in combination with gas chromatography coupled with mass spectrometric detection were used to analyze the effect of CP treatment on the flavor compounds of winter jujubes. The results showed that the 5-min CP treatment could significantly slow down the red coloration of winter jujube while maintaining high soluble sugar, total acid, and VC content. At the respiration peak, the respiratory intensity of the 5-min CP treatment group was 0.74 mg CO2·kg-1·h-1 lower than that of the control group (p < 0.05). CP treatment slowed down the decrease in the content of amino acids and volatile organic compounds (such as 2-methyl-4-pentenal, 2-hexenal, and 3-hexenal) in winter jujubes. This study will provide basic data for applying CP preservation technology in postharvest winter jujubes.
Collapse
Affiliation(s)
- Sitong Jia
- Institute of Agricultural Products Preservation and Processing Technology (National Engineering Technology Research Center for Preservation of Agriculture Products), Tianjin Academy of Agricultural Sciences/Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin, China
- College of Food Science and Biological Engineering, Tianjin Agricultural University, Tianjin, China
| | - Pufan Zheng
- Institute of Agricultural Products Preservation and Processing Technology (National Engineering Technology Research Center for Preservation of Agriculture Products), Tianjin Academy of Agricultural Sciences/Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin, China
| | - Mo Li
- School of Agriculture and Environment, College of Sciences, Massey University, Palmerston North, New Zealand
| | - Cunkun Chen
- Institute of Agricultural Products Preservation and Processing Technology (National Engineering Technology Research Center for Preservation of Agriculture Products), Tianjin Academy of Agricultural Sciences/Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin, China
| | - Xiaoxue Li
- Institute of Agricultural Products Preservation and Processing Technology (National Engineering Technology Research Center for Preservation of Agriculture Products), Tianjin Academy of Agricultural Sciences/Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin, China
| | - Na Zhang
- Institute of Agricultural Products Preservation and Processing Technology (National Engineering Technology Research Center for Preservation of Agriculture Products), Tianjin Academy of Agricultural Sciences/Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin, China
| | - Haipeng Ji
- Institute of Agricultural Products Preservation and Processing Technology (National Engineering Technology Research Center for Preservation of Agriculture Products), Tianjin Academy of Agricultural Sciences/Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin, China
| | - Jinze Yu
- Institute of Agricultural Products Preservation and Processing Technology (National Engineering Technology Research Center for Preservation of Agriculture Products), Tianjin Academy of Agricultural Sciences/Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin, China
| | - Chenghu Dong
- Institute of Agricultural Products Preservation and Processing Technology (National Engineering Technology Research Center for Preservation of Agriculture Products), Tianjin Academy of Agricultural Sciences/Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin, China
| | - Liya Liang
- College of Food Science and Biological Engineering, Tianjin Agricultural University, Tianjin, China
| |
Collapse
|
3
|
Gol-Soltani M, Ghasemi-Fasaei R, Ronaghi A, Zarei M, Zeinali S, Haderlein SB. Natural solution for the remediation of multi-metal contamination: application of natural amino acids, Pseudomonas fluorescens and Micrococcus yunnanensis to increase the phytoremediation efficiency. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:2021-2033. [PMID: 38949066 DOI: 10.1080/15226514.2024.2372688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Natural amino acids (NAA) have been rarely investigated as chelators, despite their ability to chelate heavy metals (HMs). In the present research, the effects of extracted natural amino acids, as a natural and environmentally friendly chelate agent and the inoculation of Pseudomonas fluorescens (PF) and Micrococcus yunnanensis (MY) bacteria were investigated on some responses of quinoa in a soil polluted with Pb, Ni, Cd, and Zn. Inoculation of PGPR bacteria enhanced plant growth and phytoremediation efficiency. Pb and Cd were higher in quinoa roots, while Ni and Zn were higher in the shoots. The highest efficiencies were observed with NAA treatment and simultaneous inoculation of PF and MY bacteria for Ni, Cd, Pb, and Zn. The highest values of phytoremediation efficiency and uptake efficiency of Ni, Cd, Pb, and Zn were 21.28, 19.11, 14.96 and 18.99 μg g-1, and 31.52, 60.78, 51.89, and 25.33 μg g-1, respectively. Results of present study well demonstrated NAA extracted from blood powder acted as strong chelate agent due to their diversity in size, solubilizing ability, abundant functional groups, and potential in the formation of stable complexes with Ni, Cd, Pb, and Zn, increasing metal availability in soil and improving phytoremediation efficiency in quinoa.
Collapse
Affiliation(s)
| | - Reza Ghasemi-Fasaei
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Abdolmajid Ronaghi
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Mehdi Zarei
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Sedigheh Zeinali
- Department of Nanochemical Engineering, Shiraz University, Shiraz, Iran
| | - Stefan B Haderlein
- Department of Environmental Mineralogy, Center for Applied Geosciences, University of Tübingen, Tübingen, Germany
| |
Collapse
|
4
|
Qiao M, Xiong H, Cai X, Jiang Y, Zhao X, Miao B. Evaluation of Loquat Jam Quality at Different Cooking Times Based on Physicochemical Parameters, GC-IMS and Intelligent Senses. Foods 2024; 13:340. [PMID: 38275707 PMCID: PMC10815106 DOI: 10.3390/foods13020340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/09/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
The study compared and analyzed the quality of loquat jam with different cooking times through physicochemical parameters, headspace-gas chromatography-ion migration spectroscopy (HS-GC-IMS) and intelligent senses. The results showed that with the prolongation of the cooking time, the color of loquat jam slowly deepened, the energy significantly increased, the adhesiveness, gumminess, hardness and chewiness enhanced, the free amino acid content increased from 22.40 to 65.18 mg/g. The organic acid content increased from 1.64 to 9.82 mg/g. Forty-seven volatile flavor compounds were identified in five types of loquat jam using HS-GC-IMS, among which the relative content of aldehydes was sharply higher than that of other chemical substances, playing an important role in the flavor formation of loquat jam. LJ0, LJ1 and LJ2 had higher aldehyde content, followed by LJ3 and LJ4 had the lowest aldehyde content. The orthogonal partial least squares-discriminant analysis (OPLS-DA) screened 15 marker compounds that could distinguish five types of loquat jam. The E-nose results showed a significant difference in olfactory sense between loquat jam cooked for 100 and 120 min. The E-tongue results corroborated the results of free amino acids (FAAs) and organic acids, indicating that the gustatory sense of loquat jam changed significantly when the cooking time reached 120 min. The results provided a basis for further research on the relationship between the cooking process and quality characteristics of loquat jam.
Collapse
Affiliation(s)
- Mingfeng Qiao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science & Technology Center, Chengdu 610213, China; (M.Q.); (Y.J.); (X.Z.)
- Culinary Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China; (H.X.); (X.C.)
| | - Huan Xiong
- Culinary Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China; (H.X.); (X.C.)
- College of Life Science, Dalian Minzu University, Dalian 116600, China
| | - Xuemei Cai
- Culinary Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China; (H.X.); (X.C.)
| | - Yuqin Jiang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science & Technology Center, Chengdu 610213, China; (M.Q.); (Y.J.); (X.Z.)
| | - Xinxin Zhao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science & Technology Center, Chengdu 610213, China; (M.Q.); (Y.J.); (X.Z.)
| | - Baohe Miao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science & Technology Center, Chengdu 610213, China; (M.Q.); (Y.J.); (X.Z.)
| |
Collapse
|
5
|
Yang F, Zhao R, Suo J, Ding Y, Tan J, Zhu Q, Ma Y. Understanding quality differences between kiwifruit varieties during softening. Food Chem 2024; 430:136983. [PMID: 37527582 DOI: 10.1016/j.foodchem.2023.136983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/17/2023] [Accepted: 07/22/2023] [Indexed: 08/03/2023]
Abstract
Research into variations between kiwifruit varieties particularly their softening quality during storage is important in improving kiwifruit quality. The potential reasons for ripening quality differences between 'Cuixiang' (CX) and 'Hayward' (HWD) kiwifruit were analyzed by physiology and metabolomic data combined with the random forests learning algorithm. The results showed that the storability difference between the two varieties mainly resulted from differences in polygalacturonase (PG) and β-galactosidase activities. The 1 °C slowed the fruit softening process of both varieties by decreasing their PG activities. A total of 368 metabolites were identified and amino acid, carbohydrate, cofactors and vitamins, as well as nucleotide metabolism are key metabolic modules that affect the ripening differences of CX and HWD kiwifruit. A total of 30 metabolites showed remarkable ability in distinguish the ripening quality of CX and HWD kiwifruit, in which d-glucose, d-maltose, 2-hydroxybutyric acid, phenyllactate, and vitamin B2 were noteworthy for their potential application on the evaluation of kiwifruit taste and nutritional value. These findings provide positive insights into the underlying mechanism of ripening quality differences between CX and HWD kiwifruit and new ideas for identifying key metabolic markers in kiwifruit.
Collapse
Affiliation(s)
- Fan Yang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Renkai Zhao
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Jiangtao Suo
- Shaanxi Bairui Kiwi Research Institute Co., Ltd., in China, Xi'an, Shaanxi 710000, PR China
| | - Yuduan Ding
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Jiawei Tan
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Qinggang Zhu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Yanping Ma
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
6
|
Zhou X, Obel HO, Liu S, Yang Y, Liu J, Zhuang Y. Comparative Analysis of Metabolic Variation in Eggplant Fruit of Different Varieties Reveals Metabolites Important for Quality Traits. Foods 2023; 12:4383. [PMID: 38137187 PMCID: PMC10742729 DOI: 10.3390/foods12244383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/02/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Eggplant is one of the most important vegetable crops worldwide and has been considered to have great antioxidant activity. However, little information is available about the primary metabolic composition of the nutritional values of eggplant. Using a widely targeted metabolome approach, the current study investigated primary metabolic variation in 13 eggplant varieties with different morphologies. A total of 503 primary metabolites (amino acids, lipids, nucleotides, organic acids, vitamin, saccharides, and alcohols) and 170 phenolic acids were detected, among which 211 metabolites were differently accumulated. Metabolic pathway analysis of the differential metabolites revealed the significant enrichment of phenylpropanoid biosynthesis, arginine biosynthesis, alpha-linolenic acid metabolism, and linoleic acid metabolism. The higher levels of amino acids and lipids were related to the umami, soft, and waxy taste of eggplant fruit. The present work substantially contributes to the knowledge of primary metabolite compositions regarding fruit-eating quality and provides useful information for the future breeding of eggplant.
Collapse
Affiliation(s)
- Xiaohui Zhou
- Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (X.Z.); (H.O.O.); (S.L.); (Y.Y.); (J.L.)
- Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Hesbon Ochieng Obel
- Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (X.Z.); (H.O.O.); (S.L.); (Y.Y.); (J.L.)
- Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Songyu Liu
- Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (X.Z.); (H.O.O.); (S.L.); (Y.Y.); (J.L.)
- Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Yan Yang
- Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (X.Z.); (H.O.O.); (S.L.); (Y.Y.); (J.L.)
- Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Jun Liu
- Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (X.Z.); (H.O.O.); (S.L.); (Y.Y.); (J.L.)
- Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Yong Zhuang
- Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (X.Z.); (H.O.O.); (S.L.); (Y.Y.); (J.L.)
- Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| |
Collapse
|
7
|
Zhou J, Kong L, Li D, Zhang X, Fu Z, Pan T, Yu Y. Nutritional and volatile profiles of pulp and flavedo from four local pummelo cultivars grown in Fujian province of China. J Food Sci 2023; 88:3357-3372. [PMID: 37458289 DOI: 10.1111/1750-3841.16701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/29/2023] [Accepted: 06/25/2023] [Indexed: 08/05/2023]
Abstract
The nutritional and volatile profiles of pulp and flavedo samples from four distinct local pummelo landraces ("Siji," "Pingshan," "Wendan," and "Guanxi") cultivated in Fujian province of China were investigated. "Guanxi" pummelo exhibited relatively high contents of vitamin C (42.01 mg/100 mL) and phenols (360.61 mg/L) and displayed a robust antioxidant capacity (41.15 mg/100 mL). Conversely, the red pulp from "Pingshan" demonstrated relatively high values of carotenoids (55.96 µg/g) and flavonoids (79.79 mg/L). Considerable differences were observed in volatile compositions between the two fruit tissues and among the four genotypes. A total of 166 and 255 volatile compounds were detected in the pulp and flavedo samples, respectively. Notably, limonene and β-myrcene were identified as the principal volatile compounds in flavedo, whereas hexanal was highly abundant in the pulp of "Siji," "Pingshan," and "Guanxi." "Wendan" displayed distinct separation from the other three pummelo cultivars in principal component analysis based on the pulp volatile compositions. This distinction was attributed to the higher number and content of volatile compounds in "Wendan" pulp, particularly the remarkable enrichment of β-myrcene. The newly characterized pummelo landraces and genotype/tissue-dependent variations in volatiles provide essential information for the genetic improvement of pummelo aroma, as well as for fruit processing and utilization.
Collapse
Affiliation(s)
- Jinyu Zhou
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lingchao Kong
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Debao Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xinxin Zhang
- FAFU-UCR Joint Center for Horticultural Plant Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhijun Fu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- FAFU-UCR Joint Center for Horticultural Plant Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tengfei Pan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuan Yu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- FAFU-UCR Joint Center for Horticultural Plant Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
8
|
Chen C, Huang Q, Peng X, Wan C, Zeng J, Zhang Y, Chen J. Alleviatory effects of salicylic acid on postharvest softening and cell wall degradation of 'Jinshayou' pummelo (Citrus maxima Merr.): A comparative physiological and transcriptomic analysis. Food Chem 2023; 424:136428. [PMID: 37247595 DOI: 10.1016/j.foodchem.2023.136428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 05/11/2023] [Accepted: 05/18/2023] [Indexed: 05/31/2023]
Abstract
The regulatory mechanisms underlying the salicylic acid (SA)-mediated inhibition of senescence in pummelo fruit, the largest known citrus variety, remain unclear. Herein, postharvest 0.3% SA treatment was demonstrated to delay postharvest 'Jinshayou' pummelo senescence, as evidenced by the inhibitions in firmness loss, electrolyte leakage increase, and color change. Using comparative transcriptomic data, a total of 4367, 3769, and 1659 DEGs were identified between CK0 and CK60, CK0 and SA60, and CK60 and SA60, respectively. Further GO analysis revealed that DEGs were mainly implicated in the processes of cell wall modification and phenylpropanoid pathway during fruit senescence. More importantly, postharvest exogenous 0.3% SA treatment was observed to inhibit CWDEs activities and their encoding gene expression, retain higher protopectin, cellulose, and hemicelluloses contents, as well as reduce WSP content, thus maintaining cell wall structure. These findings collectively indicated that postharvest SA treatment was a green and useful preservative for alleviating fruit senescence and prolonging the storage life of harvested 'Jiashayou' pummelo fruit.
Collapse
Affiliation(s)
- Chuying Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Qiang Huang
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Xuan Peng
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Jiangxi Agricultural University, Nanchang 330045, PR China; College of Materials and Chemical Engineering, Pingxiang University, Pingxiang 330075, PR China
| | - Chunpeng Wan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Jiaoke Zeng
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Yajie Zhang
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Jinyin Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Jiangxi Agricultural University, Nanchang 330045, PR China; College of Materials and Chemical Engineering, Pingxiang University, Pingxiang 330075, PR China.
| |
Collapse
|
9
|
Tuntiworadet T, Yoksan R. Property improvement of a thermoplastic starch/poly(butylene adipate-co-terephthalate) blown film by the addition of sodium nitrite. Int J Biol Macromol 2023; 242:124991. [PMID: 37211073 DOI: 10.1016/j.ijbiomac.2023.124991] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/23/2023]
Abstract
Recently, global awareness of the adverse environmental impacts of single-use plastics has risen due to their nonbiodegradability and likelihood of ending up in the ocean. Thermoplastic starch (TPS) is an alternative material employed for manufacturing single-use products because of its high biodegradability, nontoxicity, and low cost. However, TPS is moisture sensitive and has poor mechanical properties and processability. Blending TPS with biodegradable polyesters, including poly(butylene adipate-co-terephthalate) (PBAT), can expand its practical applications. This research aims to improve the performance of TPS/PBAT blends by adding sodium nitrite, a food additive, and considering its effect on the morphological characteristics and properties of TPS/PBAT blends. TPS/PBAT/sodium nitrite (TPS/PBAT/N) blends with a TPS:PBAT weight ratio of 40:60 and sodium nitrite concentrations of 0.5, 1, 1.5, and 2 wt% were prepared by extrusion and then blown into films. The acids generated from the sodium nitrite during extrusion led to the molecular weight reduction of starch and PBAT polymers, causing the increased melt flow ability of the TPS/PBAT/N blends. The incorporation of sodium nitrite improved the blends' homogeneity and the compatibility between the TPS and PBAT phases, resulting in the increased tensile strength, extensibility, impact strength, and oxygen barrier properties of the TPS/PBAT blend film.
Collapse
Affiliation(s)
- Thanatcha Tuntiworadet
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
| | - Rangrong Yoksan
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand; Center for Advanced Studies for Agriculture and Food (CASAF), Kasetsart University Institute for Advanced Studies, Kasetsart University, Bangkok 10900, Thailand.
| |
Collapse
|
10
|
Metabolic Variations among Three New Tea Varieties Cultivated in Shandong, China. Foods 2023; 12:foods12061299. [PMID: 36981225 PMCID: PMC10048610 DOI: 10.3390/foods12061299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/22/2023] Open
Abstract
Cultivar identification is a necessary step in tea breeding programs. Rapid identification methods would greatly improve these breeding processes. To preliminarily identify the three new Lucha tea varieties (LC6, LC7, and LC17) cultivated in Shandong, we measured their main agronomic characters and biochemical components. Then, we analyzed the metabolic profiles of these tea varieties and Fuding Dabaicha (FD) using a UPLC-ESI-MS/MS system. Their biochemical components indicated that the Lucha varieties had excellent varietal characteristics, with higher amino acid contents. Furthermore, secondary metabolism changed a lot in the Lucha tea varieties compared with that in the FD, with their accumulations of flavonoids and phenolic acids showing significant differences. These differential flavonoids were dominated by flavones and flavanone, flavonols, flavonoid carbonosides, and flavanols monomer. Flavanols especially, including epicatechin glucoside, epicatechin-3-(3″-O-methyl)gallate, epigallocatechin-3-O-(3,5-O-dimethyl)gallate, and epitheaflavic acid-3-O-Gallate, showed higher levels in the Lucha varieties. The phenolic acids containing caffeoyl groups showed higher levels in the Lucha varieties than those in the FD, while those containing galloyl groups showed a reverse pattern. Nitrogen metabolism, including amino acids, also showed obvious differences between the Lucha varieties and FD. The differential amino acids were mainly higher in the Lucha varieties, including 5-L-glutamyl-L-amino acid, N-monomethyl-L-arginine, and N-α-acetyl-L-ornithine. By using these approaches, we found that LC6, LC7, and LC17 were excellent varieties with a high yield and high quality for making green teas in Shandong.
Collapse
|
11
|
Zhao Y, Ariefandie Febrianto N, Zhu F. Characterization of physicochemical properties, flavor volatiles and phenolic compounds of feijoa fruit varieties. Food Chem 2023; 419:136074. [PMID: 37044055 DOI: 10.1016/j.foodchem.2023.136074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 02/01/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Thirteen varieties of feijoa (Feijoa sellowiana) fruit were collected and the physical and chemical properties of feijoa peel, flesh, seed, and leaf were analyzed. Large diversities in the physicochemical characteristics and phenolic and volatile composition among various parts and between different varieties of feijoa were observed. Degrees Brix of whole fruits ranged from 10.1 (Anatoki) to 18.0 (No. 2) °Brix. Procyanidin B-type tetramer, procyanidin B-type dimer, and procyanidin C-type trimer had the highest concentrations in all parts and varieties of feijoa. Caffeoyl glucose, dihydroferulic acid 4-O-glucuronide, galloyl glucose, and lariciresinol-sesquilignan were detected in feijoa fruits and leaves. A total of 105 esters, 68 terpenes, 20 alcohols, 31 hydrocarbons, 12 aldehydes, and 11 ketones were related to aromatic attributes of fruits and leaves. Early season and mid-season varieties had larger variations in the chemical properties than late-season varieties. Anatoki, Kakariki, and No.1, have the potential to be developed for attractive flavor and functional properties.
Collapse
Affiliation(s)
- Yimeng Zhao
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Noor Ariefandie Febrianto
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Indonesian Coffee and Cocoa Research Institute (ICCRI), Jl. PB Sudirman No. 90, Jember, East Java, Indonesia
| | - Fan Zhu
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
12
|
Pan T, Kong L, Zhang X, Wang Y, Zhou J, Fu Z, Pan H, She W, Yu Y. Fruit quality and volatile constituents of a new very early-ripening pummelo ( Citrus maxima) cultivar 'Liuyuezao'. FRONTIERS IN PLANT SCIENCE 2023; 13:1089009. [PMID: 36699855 PMCID: PMC9868557 DOI: 10.3389/fpls.2022.1089009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
'Liuyuezao' (LYZ) pummelo (Citrus maxima) originated from a spontaneous bud sport on a 'Guanxi' (GXB) pummelo tree and was released as a new very early-season cultivar. The objective of this study was to present the sensory and nutritional profiles of LYZ fruits, and compare it with other major commercialized pummelo cultivars including GXB, 'Sanhong' (SH) and 'Hongrou' (HR). LYZ had higher contents of organic acids (12.01 mg/g), phenols (669.01 mg/L), vitamin C (75.73 mg/100 mL) and stronger antioxidant capacity (77.65 mg/100 mL) but lower levels of soluble sugars (62.85 mg/g), carotenoids (0.25 mg/L) and flavonoids (46.3 mg/L) when compared to the other pummelos. Moreover, a smaller number (49) and much less content (7.63) of fruit volatiles were detected in LYZ than them in GXB, SH and HR. The relatively high levels of fructose (20.6 mg/g) and organic acids and low levels of volatile compounds in LYZ mainly contributed to its sweet and mildly sour taste and moderate aroma of pummelo note. LYZ is presented as an alternative pummelo cultivar with the potential for commercialization.
Collapse
Affiliation(s)
- Tengfei Pan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Lingchao Kong
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xinxin Zhang
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yanhui Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jinyu Zhou
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Zhijun Fu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Heli Pan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Wenqin She
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yuan Yu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
13
|
Zhao R, Xiao H, Liu C, Wang H, Wu Y, Ben A, Wang Y. Dynamic changes in volatile and non-volatile flavor compounds in lemon flavedo during freeze-drying and hot-air drying. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
14
|
Chen T, Pubu D, Zhang W, Meng S, Yu C, Yin X, Liu J, Zhang Y. Optimization of the extraction process and metabonomics analysis of uric acid-reducing active substances from Gymnadenia R.Br. and its protective effect on hyperuricemia zebrafish. Front Nutr 2022; 9:1054294. [PMID: 36545468 PMCID: PMC9760756 DOI: 10.3389/fnut.2022.1054294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022] Open
Abstract
Background As Gymnadenia R.Br. (Gym) has an obvious uric acid-lowering effect, but its specific bioactive substances and mechanism are still unclear. The key metabolites and pathways used by Gym to reduce uric acid (UA) were identify. Methods An optimized extraction process for urate-lowering active substances from Gym was firstly been carried out based on the xanthine oxidase (XOD) inhibition model in vitro; then, the Ultra-high-performance liquid chromatography and Q-Exactive mass spectrometry (UHPLC-QE-MS) based on non-targeted metabolomics analysis of Traditional Chinese Medicine were performed for comparison of Gym with ethanol concentration of 95% (low extraction rate but high XOD inhibition rate) and 75% (high extraction rate but low XOD inhibition rate), respectively; finally, the protective effect of ethanolic extract of Gym on zebrafish with Hyperuricemia (referred to as HUA zebrafish) was explored. Results We found that the inhibition rate of Gym extract with 95% ethanol concentration on XOD was 84.02%, and the extraction rate was 4.32%. Interestingly, when the other conditions were the same, the XOD inhibition rate of the Gym extract with 75% ethanol concentration was 76.84%, and the extraction rate was 14.68%. A total of 539 metabolites were identified, among them, 162 different metabolites were screened, of which 123 were up-regulated and 39 were down-regulated. Besides significantly reducing the contents of UA, BUN, CRE, ROS, MDA, and XOD activity in HUA zebrafish by Gym and acutely reduce the activity of SOD. Conclusion Along with the flavonoids, polyphenols, alkaloids, terpenoids, and phenylpropanoids, the ethanolic extract of Gym may be related to reduce the UA level of Gym.
Collapse
|
15
|
Jia X, Ren J, Fan G, Reineccius GA, Li X, Zhang N, An Q, Wang Q, Pan S. Citrus juice off-flavor during different processing and storage: Review of odorants, formation pathways, and analytical techniques. Crit Rev Food Sci Nutr 2022; 64:3018-3043. [PMID: 36218250 DOI: 10.1080/10408398.2022.2129581] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
As the most widespread juice produced and consumed globally, citrus juice (mandarin juice, orange juice, and grapefruit juice) is appreciated for its attractive and distinct aroma. While the decrease of characteristic aroma-active compounds and the formation of off-flavor compounds are easy to occur in processing and storage conditions. This review provides a comprehensive literature of recent research and discovery on citrus juice off-flavor, primarily focusing on off-flavor compounds induced during processing and storage (i.e., thermal, storage, light, oxygen, package, fruit maturity, diseases, centrifugal pretreatment, and debittering process), formation pathways (i.e., terpene acid-catalyzed hydration, caramelization reaction, Maillard reaction, Strecker degradation, and other oxidative degradation) of the off-flavor compounds, effective inhibitor pathway to off-flavor (i.e., electrical treatments, high pressure processing, microwave processing, ultrasound processing, and chemical treatment), as well as odor assessment techniques based on molecular sensory science. The possible precursors (terpenes, sulfur-containing amino acids, carbohydrates, carotenoids, vitamins, and phenolic acids) of citrus juice off-flavor are listed and are also proposed. This review intends to unravel the regularities of aroma variations and even off-flavor formation of citrus juice during processing and storage. Future aroma analysis techniques will evolve toward a colorimetric sensor array for odor visualization to obtain a "marker" of off-flavor in citrus juice.
Collapse
Affiliation(s)
- Xiao Jia
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Jingnan Ren
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Gang Fan
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Gary A Reineccius
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota, USA
| | - Xiao Li
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Nawei Zhang
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Qi An
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Qingshan Wang
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Siyi Pan
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| |
Collapse
|
16
|
Dynamic Changes in Volatile Flavor Compounds, Amino Acids, Organic Acids, and Soluble Sugars in Lemon Juice Vesicles during Freeze-Drying and Hot-Air Drying. Foods 2022; 11:foods11182862. [PMID: 36140987 PMCID: PMC9498367 DOI: 10.3390/foods11182862] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/06/2022] [Accepted: 09/10/2022] [Indexed: 11/26/2022] Open
Abstract
Lemon juice vesicles have abundant flavor components that can undergo complex changes during drying. Three drying methods, including integrated freeze-drying (IFD), conventional freeze-drying (CFD), and hot-air drying (AD), were studied to determine their effects on the dynamic changes in the flavor compounds in lemon juice vesicles. Compared with the fresh samples, the final dried samples that underwent IFD, CFD, and AD lost seven, seven, and six volatile flavor compounds and three, four, and five amino acids, respectively; the order of the loss ratios with respect to the volatile compound content was: 82.73% in CFD > 71.22% in IFD > 28.78% in AD. AD resulted in the highest total amino acid content (10.83 ± 0.20 mg/g), which was 1.39 and 5.54 mg/g higher than that of IFD and CFD, respectively; CFD resulted in the highest total organic acid content (45.94 ± 0.34 mg/g), which was 8.01 and 7.87 mg/g higher than that of IFD and AD, respectively; and AD contributed to the highest total soluble sugars (17.12 ± 0.20 mg/g), which was 1.24 and 1.49 mg/g higher than that of IFD and CFD, respectively. A correlation analysis demonstrated that most of the amino acids and the soluble sugars were closely related to the profiles of the volatile compounds in the lemon juice vesicles during drying.
Collapse
|
17
|
Isolation of a novel characterized Issatchenkia terricola from red raspberry fruits on the degradation of citric acid and enrichment of flavonoid and volatile profiles in fermented red raspberry juice. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Wei L, Wei S, Hu D, Feng L, Liu Y, Liu H, Liao W. Comprehensive Flavor Analysis of Volatile Components During the Vase Period of Cut Lily ( Lilium spp. 'Manissa') Flowers by HS-SPME/GC-MS Combined With E-Nose Technology. FRONTIERS IN PLANT SCIENCE 2022; 13:822956. [PMID: 35783924 PMCID: PMC9247614 DOI: 10.3389/fpls.2022.822956] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Volatile compounds could affect the flavor and ornamental quality of cut flowers, but the flavor change occurring during the vase period of the cut flower is unclear. To clarify the dynamic changes during the vase period of cut lily (Lilium spp. 'Manissa') flowers, comprehensive flavor profiles were characterized by the electronic nose (E-nose) and headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME/GC-MS). The response value of sensor W2W was significantly higher than other sensors, and its response value reached the highest on day 4. A total of 59 volatiles were detected in cut lilies by HS-SPME/GC-MS, mainly including aldehydes, alcohols, and esters. There were 19 volatiles with odor activity values (OAVs) greater than 1. Floral and fruity aromas were stronger, followed by a pungent scent. Principal component analysis (PCA) and hierarchical cluster analysis (HCA) could effectively discriminate lily samples derived from different vase times on the basis of E-nose and HS-SPME-GC-MS. In summary, our study investigates the flavor change profile and the diversity of volatile compounds during the vase period of cut lilies, and lilies on day 4 after harvest exhibited excellent aroma and flavor taking into consideration of the flavor intensity and diversity. This provided theoretical guidance for the assessment of scent volatiles and flavor quality during the vase period of cut lily flowers and will be helpful for the application of cut lilies during the postharvest process.
Collapse
|
19
|
Lin Q, Zhong Q, Zhang Z. A comparative metabolomics study of anthocyanins and taste components in Chinese bayberry ( Morella rubra) with different flesh colors. PeerJ 2022; 10:e13466. [PMID: 35669961 PMCID: PMC9165596 DOI: 10.7717/peerj.13466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 04/28/2022] [Indexed: 01/14/2023] Open
Abstract
The Chinese bayberry (Morella rubra Sieb. et Zucc.) is grown commercially in China and other Asian countries for its flavorful and appealing fruit. Here, two bayberry varieties differing in both color and flavor, namely, BDK ('Baidongkui') and DK ('Dongkui'), in China were compared. A total of 18 anthocyanins, three proanthocyanidins, and 229 primary metabolites were identified in the pulp of the two varieties; these were analyzed and compared using ultra-performance liquid chromatography-tandem mass spectrometry. The DK pulp showed higher concentrations of all 18 anthocyanins compared with BDK, apart from peonidin-3,5-O-diglucoside which was not detected in BDK and which was responsible for the formation of pink pulp in BDK. Principal component analysis and cluster analysis of the primary metabolites indicated that the two bayberry varieties had distinct metabolite profiles with approximately 37% (85/229) of the primary metabolome being significantly different. Of these, 62 metabolites were down-regulated and 23 metabolites were up-regulated in BDK relative to DK. Our results suggested that the flavor of the BDK fruit was different from DK, which could be explained by the reduced saccharide, organic acid, amino acid, and proanthocyanidin contents. These findings enhance our understanding of the metabolites responsible for color and taste differences in the Chinese bayberry.
Collapse
|
20
|
Cheng H, Kong W, Tang T, Ren K, Zhang K, Wei H, Lin T. Identification of Key Gene Networks Controlling Soluble Sugar and Organic Acid Metabolism During Oriental Melon Fruit Development by Integrated Analysis of Metabolic and Transcriptomic Analyses. FRONTIERS IN PLANT SCIENCE 2022; 13:830517. [PMID: 35646021 PMCID: PMC9135470 DOI: 10.3389/fpls.2022.830517] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/13/2022] [Indexed: 06/15/2023]
Abstract
Oriental melon (Cucumis melo var. acidulus) is one of the most economically important fruit crops worldwide. To elucidate the molecular basis related to soluble sugar and organic acid metabolism in the fruits of two oriental melon cultivars with different sweetness, we performed integrated metabolomic and transcriptomic analyses of the fruits of 'Tianbao' (A) with high sweetness and 'Xiaocuigua' (B) with low sweetness at different ripening stages. The high accumulation of sucrose, D-glucose, D-(+)-raffinose, and the relatively lower citric acid and malic acid might contribute to the sweet taste of A. By screening the differentially expressed genes (DEGs) and correlation analysis of the DEGs and differentially accumulated metabolites, we deduced that the B cultivar might promote the conversion of glucose and fructose into intermediate compounds for downstream processes such as glycolysis. The tricarboxylic acid (TCA) cycle might also be enhanced compared to A, thus resulting in the differential accumulation of soluble sugars and organic acids, ultimately causing the taste difference between the two oriental melon cultivars. Our finding provides important information for further exploring the metabolic mechanisms of soluble sugars and organic acids in oriental melon.
Collapse
Affiliation(s)
- Hong Cheng
- Vegetable Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Weiping Kong
- Vegetable Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Taoxia Tang
- Vegetable Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Kaili Ren
- Vegetable Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Kaili Zhang
- Vegetable Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Huxia Wei
- Vegetable Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Tao Lin
- College of Horticulture, China Agricultural University, Beijing, China
| |
Collapse
|
21
|
Liu Y, Sang Y, Guo J, Zhang W, Zhang T, Wang H, Cheng S, Chen G. Analysis of volatility characteristics of five jujube varieties in Xinjiang Province, China, by HS-SPME-GC/MS and E-nose. Food Sci Nutr 2021; 9:6617-6626. [PMID: 34925791 PMCID: PMC8645734 DOI: 10.1002/fsn3.2607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/09/2021] [Accepted: 09/16/2021] [Indexed: 11/06/2022] Open
Abstract
In this study, headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME-GC/MS) was used to identify individual volatile compounds in five jujube varieties, and E-nose was used to identify their flavor. The results showed that a total of 45 volatile compounds were detected by GC-MS in the five varieties, and the proportion of acids was the highest (38.29%-54.95%), followed by that of aldehydes (22.94%-47.93%) and esters (6.33%-26.61%). Moreover, different varieties had obviously different volatile components. E-nose analysis showed that the R7 and R9 sensors were more sensitive to the aroma of jujube than other sensors. The strong response of R7 sensor was attributed to terpenes (or structurally similar substances) in jujube fruit, such as 1-penten-3-one, 2-octenal, (E)-2-heptanaldehyde, and (E)-2-hexenal and that of R9 sensor was attributed to the cyclic volatile components such as benzaldehyde, benzoic acid, and methyl benzoate. The multivariate data analysis (PCA, OPLS-DA, and HCA) of the results of GC/MS and E-nose showed that the five varieties could be divided into three groups: (1) Ziziphus jujuba Mill. cv. Huizao (HZ) and Z. jujuba cv. Junzao (JZ). Acids were the main volatile components for this group (accounting for 47.44% and 54.95%, respectively); (2) Z. jujuba cv. Hamidazao (HMDZ). This group had the most abundant volatile components (41), and the concentrations were also the highest (1285.43 µg/kg); (3) Winter jujube 1 (Z. jujuba cv. Dongzao, WJ1) and Winter jujube 2 (Z. jujuba cv. Dongzao, WJ2). The proportion of acids (38.38% and 38.29%) and aldehydes (40.35% and 38.19%) were similar in the two varieties. Therefore, the combination of headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry and E-nose could quickly and accurately identify the volatile components in jujube varieties from macro- and microperspectives. This study can provide guidance for the evaluation and distinguishing of jujube varieties and jujube cultivation and processing.
Collapse
Affiliation(s)
- Yuxing Liu
- School of Food Science and TechnologyShihezi UniversityShiheziChina
| | - Yueying Sang
- School of Food Science and TechnologyShihezi UniversityShiheziChina
| | - Jingyu Guo
- School of Food Science and TechnologyShihezi UniversityShiheziChina
| | - Weida Zhang
- School of Food Science and TechnologyShihezi UniversityShiheziChina
| | - Tianyu Zhang
- School of Food Science and TechnologyShihezi UniversityShiheziChina
| | - Hai Wang
- Academy of Agricultural Planning and EngineeringBeijingChina
| | - Shaobo Cheng
- School of Food Science and TechnologyShihezi UniversityShiheziChina
| | - Guogang Chen
- School of Food Science and TechnologyShihezi UniversityShiheziChina
| |
Collapse
|
22
|
Nateghpour B, Kavoosi G, Mirakhorli N. Amino acid profile of the peel of three citrus species and its effect on the combination of amino acids and fatty acids Chlorella vulgaris. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.103808] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|