1
|
Fernandes FG, da Costa WKA, Dos Santos Lima M, de Lima Costa IH, Magnani M, da Silva Campelo Borges G. A new plant-based probiotic from juá: Source of phenolics, fibers and antioxidant properties. Food Chem 2024; 458:140162. [PMID: 38943964 DOI: 10.1016/j.foodchem.2024.140162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 05/29/2024] [Accepted: 06/17/2024] [Indexed: 07/01/2024]
Abstract
The objective of this study was to evaluate the viability of juá pulp for fermentation by monoculture L. casei (Lc - 01) and L. acidophilus (La - 05) and co-culture (25 and 37 °C) for 72 h. Viable strain values (> 7 log CFU/g), pH reduction (below 3.7), fructose and glucose and increased of lactic acid showed that the pulp of juá served as a good matrix for fermentation. Catechin, epicatechin, epigallocatechin procyanidin B1, and gallic acid were the main phenolics that contributed to antioxidant activity. Fermentation by mono or co-culture increased or reduced the content of phenolics and antioxidant activity. Results showed that culture, time and temperature have effects in the fermentation of juá pulp. The co-cultivation of La - 05 + Lc - 01 contributed to improving the bioaccessibility of gallic acid (72.9%) of the jua pulp. Finding indicate juá pulp as a promising substrate to obtaining a new probiotic plant-based fermented beverage.
Collapse
Affiliation(s)
- Flávio Gomes Fernandes
- Department of Food Technology, Center of Technology and Regional Development, Federal University of Paraíba, Campus I, 58051-900 João Pessoa, Paraíba, Brazil
| | - Whyara Karoline Almeida da Costa
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Center of Technology, Federal University of Paraíba, Campus I, 58051-900 João Pessoa, Paraíba, Brazil
| | - Marcos Dos Santos Lima
- Federal Institute of Education Science and Technology Sertão Pernambucano, Department of Food Technology, Campus Petrolina, Rod. BR 407 Km 08, S/N, Jardim São Paulo, CEP, 56314-520 Petrolina, Pernambuco, Brazil
| | - Igor Henrique de Lima Costa
- Graduate Program in Food Science and Technology, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Marciane Magnani
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Center of Technology, Federal University of Paraíba, Campus I, 58051-900 João Pessoa, Paraíba, Brazil
| | | |
Collapse
|
2
|
Teslić N, Pojić M, Stupar A, Mandić A, Mišan A, Pavlić B. PhInd database - Polyphenol content in Agri-food by-products and trends in extraction technologies: A critical review. Food Chem 2024; 458:140474. [PMID: 39043067 DOI: 10.1016/j.foodchem.2024.140474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/05/2024] [Accepted: 07/13/2024] [Indexed: 07/25/2024]
Abstract
Sustainable Development Goal 12 and target 12.3 set by the United Nations aims to reduce"food waste" per capita global for 50% losses by 2030. Databases such as the PhInd could help us to achieve set goals via mapping the potential ways for valorization of polyphenols from the agri-food by-products and waste. Fruit by-products (73.2% of the PhInd entries) are the most studied sources of polyphenols and future studies might be more focused on vegetables. More than half (55.8%) of entries were evaluated polyphenols in samples created in laboratory. These samples could have significantly different composition from industrial samples. Solid-liquid extraction (53.5%) and solvents like water, ethanol and aqueous ethanol (51.5%) were the most often used for extraction of polyphenols. Green solvents as NADES (0.4%) are rarely used in studies and should be more explored.
Collapse
Affiliation(s)
- Nemanja Teslić
- University of Novi Sad, Institute of Food Technology, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia.
| | - Milica Pojić
- University of Novi Sad, Institute of Food Technology, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia.
| | - Alena Stupar
- University of Novi Sad, Institute of Food Technology, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia.
| | - Anamarija Mandić
- University of Novi Sad, Institute of Food Technology, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia.
| | - Aleksandra Mišan
- University of Novi Sad, Institute of Food Technology, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia.
| | - Branimir Pavlić
- University of Novi Sad, Faculty of Technology, Bulevar cara Lazara 1, 21000 Novi Sad, BP, Serbia.
| |
Collapse
|
3
|
How YH, Nyam KL. Reutilization of Fruit Waste as Potential Prebiotic for Probiotic or Food-grade Microorganisms in Food Applications: A Review. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10375-4. [PMID: 39379781 DOI: 10.1007/s12602-024-10375-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2024] [Indexed: 10/10/2024]
Abstract
Food waste has been a global issue with 2.5 billion tons generated globally in 2021. Approximately 46% of the food waste is contributed by fruit and vegetable waste. Due to improper waste handling, these fruit by-products have a negative impact on the environment through soil and water pollution, the greenhouse effect, global warming, and eutrophication. However, research has shown the potential to reuse fruit waste in various applications for sustainability owing to their high source of valuable components and potential health benefits. In recent years, researchers have also explored the potential of reutilizing fruit waste as a prebiotic. Hence, literatures from the past 10 years has been critically analyzed and presented in this review. This review focused on the potential of fruit waste as a prebiotic for probiotic and gastrointestinal microorganisms and its food applications. The nutritional composition and bioactive compounds of the fruit wastes had been introduced to reflect their potential as prebiotics. Moreover, the increase in bioactive compounds and bioactivities in probiotics with the presence of fruit wastes has been reviewed. The impact of fruit by-products on the growth of the probiotic and its survivability in food matrices as compared to established prebiotic and the absence of prebiotics have also been extensively discussed in this review. This review also highlighted some of the factors that might contribute to the negative effect of fruit waste on probiotics. The safety concerns and future prospects of reutilizing fruit wastes for food applications have been emphasized. The review article is beneficial for researchers exploring fruit wastes as prebiotics and industrialists who are interested in incorporating fruit wastes as an added-value ingredient for food applications.
Collapse
Affiliation(s)
- Yu Hsuan How
- Department of Food Science With Nutrition, Faculty of Applied Sciences, UCSI University, 1, UCSI Heights, Jalan Puncak Menara Gading, Taman Connaught, 56000, Cheras, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Kar Lin Nyam
- Department of Food Science With Nutrition, Faculty of Applied Sciences, UCSI University, 1, UCSI Heights, Jalan Puncak Menara Gading, Taman Connaught, 56000, Cheras, Wilayah Persekutuan Kuala Lumpur, Malaysia.
| |
Collapse
|
4
|
Yuan X, Wang T, Sun L, Qiao Z, Pan H, Zhong Y, Zhuang Y. Recent advances of fermented fruits: A review on strains, fermentation strategies, and functional activities. Food Chem X 2024; 22:101482. [PMID: 38817978 PMCID: PMC11137363 DOI: 10.1016/j.fochx.2024.101482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 06/01/2024] Open
Abstract
Fruits are recognized as healthy foods with abundant nutritional content. However, due to their high content of sugar and water, they are easily contaminated by microorganisms leading to spoilage. Probiotic fermentation is an effective method to prevent fruit spoilage. In addition, during fermentation, the probiotics can react with the nutrients in fruits to produce new derived compounds, giving the fruit specific flavor, enhanced color, active ingredients, and nutritional values. Noteworthy, the choice of fermentation strains and strategies has a significant impact on the quality of fermented fruits. Thus, this review provides comprehensive information on the fermentation strains (especially yeast, lactic acid bacteria, and acetic acid bacteria), fermentation strategies (natural or inoculation fermentation, mono- or mixed-strain inoculation fermentation, and liquid- or solid-state fermentation), and the effect of fermentation on the shelf life, flavor, color, functional components, and physiological activities of fruits. This review will provide a theoretical guidance for the production of fermented fruits.
Collapse
Affiliation(s)
- Xinyu Yuan
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Tao Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Liping Sun
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhu Qiao
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian, Henan Province 463000, China
| | - Hongyu Pan
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yujie Zhong
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yongliang Zhuang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
5
|
Teslić N, Pojić M, Stupar A, Mandić A, Pavlić B, Mišan A. PhInd-Database on Polyphenol Content in Agri-Food By-Products and Waste: Features of the Database. Antioxidants (Basel) 2024; 13:97. [PMID: 38247521 PMCID: PMC10812704 DOI: 10.3390/antiox13010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
Timely access to topic-relevant datasets is of paramount importance for the development of any successful strategy (food waste reduction strategy), since datasets illuminate opportunities, challenges and development paths. PhInd is the first comprehensive database on polyphenol content in plant-based by-products from the agri-food sector or the wastewater sector and was developed using peer-reviewed papers published in the period of 2015-2021. In total, >450 scientific manuscripts and >6000 compound entries were included. Database inclusion criteria were polyphenol contents = determined using HPLC/UHPLC quantitative methods. PhInd can be explored through several criteria which are either 'open' or checkboxes. Criteria are given in subsections: (a) plant source; (b) by-product industrial processing; (c) pre-treatment of by-products before the isolation of polyphenols; and (d) the extraction step of polyphenols. Database search results could be explored on the website directly or by downloading Excel files and graphs. This unique database content is beneficial to stakeholders-the food industry, academia, government and citizens.
Collapse
Affiliation(s)
- Nemanja Teslić
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (M.P.); (A.S.); (A.M.); (A.M.)
| | - Milica Pojić
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (M.P.); (A.S.); (A.M.); (A.M.)
| | - Alena Stupar
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (M.P.); (A.S.); (A.M.); (A.M.)
| | - Anamarija Mandić
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (M.P.); (A.S.); (A.M.); (A.M.)
| | - Branimir Pavlić
- Faculty of Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia;
| | - Aleksandra Mišan
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (M.P.); (A.S.); (A.M.); (A.M.)
| |
Collapse
|
6
|
Hashemi SMB, Jafarpour D. Lactic acid fermentation of guava juice: Evaluation of nutritional and bioactive properties, enzyme (α-amylase, α-glucosidase, and angiotensin-converting enzyme) inhibition abilities, and anti-inflammatory activities. Food Sci Nutr 2023; 11:7638-7648. [PMID: 38107144 PMCID: PMC10724607 DOI: 10.1002/fsn3.3683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/22/2023] [Accepted: 08/29/2023] [Indexed: 12/19/2023] Open
Abstract
In the present research, the impact of fermentation with two strains of Lactiplantibacillus plantarum subsp. plantarum (PTCC 1896 and PTCC 1745) on physicochemical properties, antioxidant bioactive compounds, and some health-promoting features of guava juice was investigated. Results showed a significant (p < .05) decrease in pH, total soluble solids, glucose and fructose residues, vitamin C, and total carotenoids after 32 h of fermentation. Total phenolic content, free radical scavenging abilities, and ferrous reducing power were markedly enhanced during the fermentation process. Moreover, fermented juice represented good enzyme inhibition abilities (α-amylase and α-glucosidase) and anti-inflammatory activities. The initial amount of angiotensin-converting enzyme inhibitory activity (26.5%) increased to 72.1% and 66.4% in L. plantarum subsp. plantarum 1896 and L. plantarum subsp. plantarum 1745 treatments, respectively. These findings reveal that guava juice fermentation with the studied Lactobacillus strains can be a promising strategy to augment the functional properties of the fruit-based beverage.
Collapse
Affiliation(s)
| | - Dornoush Jafarpour
- Department of Food Science and Technology, Faculty of Agriculture, Fasa BranchIslamic Azad UniversityFasaIran
| |
Collapse
|
7
|
Wei L, Li Y, Hao Z, Zheng Z, Yang H, Xu S, Li S, Zhang L, Xu Y. Fermentation improves antioxidant capacity and γ-aminobutyric acid content of Ganmai Dazao Decoction by lactic acid bacteria. Front Microbiol 2023; 14:1274353. [PMID: 38029167 PMCID: PMC10652878 DOI: 10.3389/fmicb.2023.1274353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Ganmai Dazao Decoction is a traditional Chinese recipe, and is composed of licorice, floating wheat, and jujube. Methods Effects of lactic acid bacteria fermentation on the physicochemical properties, antioxidant activity, and γ-aminobutyric acid of Ganmai Dazao Decoction were studied. The changes of small and medium molecules in Ganmai Dazao Decoction before and after fermentation were determined by LC-MS non-targeted metabolomics. Results The results showed that the contents of lactic acid, citric acid, acetic acid, and total phenol content increased significantly, DPPH free radical clearance and hydroxyl free radical clearance were significantly increased. γ-aminobutyric acid content was 12.06% higher after fermentation than before fermentation. A total of 553 differential metabolites were detected and identified from the Ganmai Dazao Decoction before and after fermentation by partial least squares discrimination and VIP analysis. Discussion Among the top 30 differential metabolites with VIP values, the content of five functional substances increased significantly. Our results showed that lactic acid bacteria fermentation of Ganmai Dazao Decoction improves its antioxidant effects and that fermentation of Ganmai Dazao Decoction with lactic acid bacteria is an innovative approach that improves the health-promoting ingredients of Ganmai Dazao Decoction.
Collapse
Affiliation(s)
- Linya Wei
- Department of Food and Health, Jinzhou Medical University, Jinzhou, China
| | - Yiming Li
- Department of Food and Health, Jinzhou Medical University, Jinzhou, China
| | - Zina Hao
- Department of Food and Health, Jinzhou Medical University, Jinzhou, China
| | - Zhenjie Zheng
- Department of Food and Health, Jinzhou Medical University, Jinzhou, China
| | - Huixin Yang
- Comparative Molecular Biosciences Graduate Program, University of Minnesota, Minneapolis, MN, United States
| | - Suixin Xu
- Department of Food and Health, Jinzhou Medical University, Jinzhou, China
| | - Shihan Li
- Department of Food and Health, Jinzhou Medical University, Jinzhou, China
| | - Lili Zhang
- Department of Food and Health, Jinzhou Medical University, Jinzhou, China
- Comparative Molecular Biosciences Graduate Program, University of Minnesota, Minneapolis, MN, United States
| | - Yunhe Xu
- Department of Food and Health, Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
8
|
Morales-Cortés VI, Domínguez-Soberanes J, Hernández-Lozano LC, Licon CC, Estevez-Rioja A, Peralta-Contreras M. Sensory characterization of functional guava symbiotic petit cheese product. Heliyon 2023; 9:e21747. [PMID: 38034649 PMCID: PMC10681930 DOI: 10.1016/j.heliyon.2023.e21747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023] Open
Abstract
The consumption of functional dairy products continues to rise due to consumer needs. This study aimed to develop a dairy guava functional symbiotic petit cheese product that included probiotics (Bifidobacterium animalis subsp. lactis BB-12, Chr. Hansen, Denmark) and prebiotics (inulin), which had adequate organoleptic characteristics. Moreover, adequate physicochemical, microbiological, and sensory characteristics during its shelf life were expected. A pasteurized skim milk curd flavored with a guava pulp was stabilized with gelatin to formulate this product. As sweeteners, iso maltol, erythritol, and Luo Han Guo extract from monk fruit (Siraitia Grosvenorii) were added. The prebiotic used was inulin, and the probiotic (Bifidobacterium animalis subsp. lactis BB-12, Chr. Hansen, Denmark). The product was kept refrigerated (4 °C) during the shelf life of 28 days. For the organoleptic analysis (100 consumers), the evaluations performed were: (1) overall liking (OL), (2) CATA (Check all that apply) testing 19 attributes, and (3) purchase intention was evaluated. Results were analyzed with FIZZ Software Biosystèmes. During shelf life, (1) physicochemical, microbiological, and sensory tests were performed. The product was evaluated as "liked much'' (7.16 out of 9); it was described as a creamy (71 %) natural product (73 %) with a fruity odor (57 %). It could be suitable for marketing because 82 % of the consumers would buy it. The product's probiotic character (over 1 × 106) was established through a microbiological count. On day one, the CFU was found to be 4.15 × 108, and after 28 days, 1.98 × 108 CFU of viable Bifidobacterium animalis subsp. lactis BB-12, leading us to establish its probiotic characteristics. The shelf life was estimated at 21 days.
Collapse
Affiliation(s)
- Victor Iván Morales-Cortés
- Universidad Panamericana. Escuela de Dirección de Negocios Alimentarios. Jose María Escrivá de Balaguer 101, Villas Bonaterra, Aguascalientes, 20296, México
| | - Julieta Domínguez-Soberanes
- Universidad Panamericana. Facultad de Ingeniería. Jose María Escrivá de Balaguer 101, Villas Bonaterra, Aguascalientes, 20296, México
| | - Linda Carolina Hernández-Lozano
- Universidad Panamericana. Escuela de Dirección de Negocios Alimentarios. Jose María Escrivá de Balaguer 101, Villas Bonaterra, Aguascalientes, 20296, México
| | - Carmen C. Licon
- Dairy Products Technology Center, California Polytechnic State University, 1 Grand Avenue, Building 18A, San Luis Obispo, CA, 93407, USA
| | - Antonio Estevez-Rioja
- Universidad Panamericana. Escuela de Dirección de Negocios Alimentarios. Jose María Escrivá de Balaguer 101, Villas Bonaterra, Aguascalientes, 20296, México
| | - Mayeli Peralta-Contreras
- Universidad Panamericana. Escuela de Dirección de Negocios Alimentarios. Jose María Escrivá de Balaguer 101, Villas Bonaterra, Aguascalientes, 20296, México
| |
Collapse
|
9
|
de Oliveira FL, Morzelle MC, Moretti MMDS, Casarotti SN. Fermentation of araticum, baru, and pequi by-products by probiotic strains: effects on microorganisms, short-chain fatty acids, and bioactive compounds. Lett Appl Microbiol 2023; 76:ovad092. [PMID: 37533204 DOI: 10.1093/lambio/ovad092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/29/2023] [Accepted: 08/01/2023] [Indexed: 08/04/2023]
Abstract
Fruit by-products, due to their unique chemical composition containing dietary fibers and bioactive compounds, may favor the growth of probiotic strains. This study evaluated the fermentation of araticum, baru, and pequi by-products using Lactobacillus acidophilus (La-5, LA3, and NCFM) and Bifidobacterium animalis subsp. lactis (Bb-12) probiotic strains. We assessed probiotic viability, short-chain fatty acid levels, and bioactive compound levels after 48 h of fermentation. Araticum and pequi by-products led to counts higher than 6 log CFU/mL after 48-h fermentation for all Lactobacillus strains, but only the araticum by-product supported the growth of the Bb-12 strain. Fermentation of araticum by-product resulted in greater amounts of acetate (39.97 mM for LA3 and 39.08 mM for NCFM) and propionate (0.20 mM for NCFM), while baru by-product showed greater amounts of butyrate (0.20 mM for La-5 and Bb-12). Fermentation of araticum and baru by-products resulted in an increase in bioactive compounds, with the latter showing total phenolic compounds and antioxidant activity from 1.4 to 1.7 and from 1.3 to 3.1 times higher, respectively, than the negative control treatment. Araticum by-product exhibited a higher potential for prebiotic effects, and fermentation by the tested probiotic strains is essential to increase bioactive compound levels.
Collapse
Affiliation(s)
- Fellipe Lopes de Oliveira
- Federal University of Mato Grosso-UFMT, Department of Food and Nutrition, Faculty of Nutrition, Cuiabá, MT 78060-900, Brazil
| | - Maressa Caldeira Morzelle
- Federal University of Mato Grosso-UFMT, Department of Food and Nutrition, Faculty of Nutrition, Cuiabá, MT 78060-900, Brazil
| | - Marcia Maria de Souza Moretti
- São Paulo State University-UNESP, Department of Food Engineering and Technology, São José do Rio Preto, SP 15054-000, Brazil
| | - Sabrina Neves Casarotti
- Federal University of Rondonópolis-UFR, Faculty of Health Sciences, Rondonópolis, MT 78736-900, Brazil
| |
Collapse
|
10
|
de Oliveira SD, de Souza EL, Araújo CM, Martins ACS, Borges GDSC, Lima MDS, Viera VB, Garcia EF, da Conceição ML, de Souza AL, de Oliveira MEG. Spontaneous fermentation improves the physicochemical characteristics, bioactive compounds, and antioxidant activity of acerola ( Malpighia emarginata D.C.) and guava ( Psidium guajava L.) fruit processing by-products. 3 Biotech 2023; 13:315. [PMID: 37637001 PMCID: PMC10449742 DOI: 10.1007/s13205-023-03738-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/06/2023] [Indexed: 08/29/2023] Open
Abstract
This study aimed to investigate the effects of spontaneous fermentation on physicochemical characteristics, bioactive compounds, and antioxidant activity of acerola and guava fruit industrial by-products. Viable cell counts of lactic acid bacterial (LAB) in acerola and guava by-products were ≥ 5.0 log CFU/mL from 24 h up to 120 h of fermentation. Fermented acerola and guava by-products had increased luminosity and decreased contrast. Contents of total soluble solids and pH decreased, and titrable acidity increased in acerola and guava by-products during fermentation. Ascorbic acid contents decreased in acerola by-product and increased in guava by-product during fermentation. Different phenolic compounds were found in acerola and guava by-products during fermentation. Fermented acerola and guava by-products had increased contents of total flavonoids, total phenolics, and antioxidant activity. The contents of total flavonoids and total phenolics positively correlated with antioxidant activity in fermented acerola and guava by-products. These results indicate that spontaneous fermentation could be a strategy to improve the contents of bioactive compounds and the antioxidant activity of acerola and guava by-products, adding value and functionalities to these agro-industrial residues.
Collapse
Affiliation(s)
- Sabrina Duarte de Oliveira
- Post-Graduate Program in Food Science and Technology, Department of Food Engineering, Federal University of Paraíba, João Pessoa, 58051-900 Brazil
| | - Evandro Leite de Souza
- Laboratory of Food Microbiology, Department of Nutrition, Federal University of Paraíba, João Pessoa, 58051-900 Brazil
| | - Caroliny Mesquita Araújo
- Post-Graduate Program in Nutrition Sciences, Department of Nutrition, Federal University of Paraíba, João Pessoa, 58051-900 Brazil
| | - Ana Cristina Silveira Martins
- Post-Graduate Program in Food Science and Technology, Department of Food Engineering, Federal University of Paraíba, João Pessoa, 58051-900 Brazil
| | - Graciele da Silva Campelo Borges
- Post-Graduate Program in Food Science and Technology, Department of Food Engineering, Federal University of Paraíba, João Pessoa, 58051-900 Brazil
| | - Marcos dos Santos Lima
- Department of Food Technology, Federal Institute of Sertão Pernambucano, Petrolina, 56302-100 Brazil
| | - Vanessa Bordin Viera
- Laboratory of Bromatology, Center of Education and Health, Federal University of Campina Grande, Cuité, 58175-000 Brazil
| | - Estefânia Fernandes Garcia
- Department of Gastronomy, Center for Technology and Regional Development, Federal University of Paraíba, João Pessoa, 58058-600 Brazil
| | - Maria Lúcia da Conceição
- Laboratory of Food Microbiology, Department of Nutrition, Federal University of Paraíba, João Pessoa, 58051-900 Brazil
| | - Antônia Lúcia de Souza
- Post-Graduate Program in Food Science and Technology, Department of Food Engineering, Federal University of Paraíba, João Pessoa, 58051-900 Brazil
| | - Maria Elieidy Gomes de Oliveira
- Laboratory of Bromatology, Department of Nutrition, Center of Health Sciences, Federal University of Paraíba, Campus I, Cidade Universitária, João Pessoa, Paraíba 58051-900 Brazil
| |
Collapse
|
11
|
Meradji M, Bachtarzi N, Mora D, Kharroub K. Characterization of Lactic Acid Bacteria Strains Isolated from Algerian Honeybee and Honey and Exploration of Their Potential Probiotic and Functional Features for Human Use. Foods 2023; 12:2312. [PMID: 37372522 DOI: 10.3390/foods12122312] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/27/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Using culture enrichment methods, 100 strains of bacilli of lactic acid bacteria (LAB) were isolated from honeybee Apis mellifera intermissa and fresh honey, collected from apiaries located in the north-east of Algeria. Amongst all of the isolated LAB, 19 selected strains were closely affiliated to four species-Fructobacillus fructosus (10), Apilactobacillus kunkeei (5), Lactobacillus kimbladii and/or Lactobacillus kullabergensis (4)-using phylogenetic and phenotypic approaches. The in vitro probiotic characteristics (simulated gastrointestinal fluids tolerance, autoaggregation and hydrophobicity abilities, antimicrobial activity and cholesterol reduction) and safety properties (hemolytic activity, antibiotic resistance and absence of biogenic amines) were evaluated. The results indicated that some strains showed promising potential probiotic properties. In addition, neither hemolytic activity nor biogenic amines were produced. The carbohydrate fermentation test (API 50 CHL) revealed that the strains could efficiently use a broad range of carbohydrates; additionally, four strains belonging to Apilactobacillus kunkeei and Fructobacillus fructosus were found to be exopolysaccharides (EPS) producers. This study demonstrates the honeybee Apis mellifera intermissa and one of her products as a reservoir for novel LAB with potential probiotic features, suggesting suitability for promoting host health.
Collapse
Affiliation(s)
- Meriem Meradji
- Laboratoire de Recherche Biotechnologie et Qualité des Aliments (BIOQUAL), Institut de la Nutrition, de l'Alimentation et des Technologies Agro-Alimentaires (INATAA), Université Frères Mentouri Constantine 1 (UFMC1), Route de Ain El Bey, Constantine 25000, Algeria
| | - Nadia Bachtarzi
- Laboratoire de Recherche Biotechnologie et Qualité des Aliments (BIOQUAL), Institut de la Nutrition, de l'Alimentation et des Technologies Agro-Alimentaires (INATAA), Université Frères Mentouri Constantine 1 (UFMC1), Route de Ain El Bey, Constantine 25000, Algeria
| | - Diego Mora
- Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan, 20122 Milan, Italy
| | - Karima Kharroub
- Laboratoire de Recherche Biotechnologie et Qualité des Aliments (BIOQUAL), Institut de la Nutrition, de l'Alimentation et des Technologies Agro-Alimentaires (INATAA), Université Frères Mentouri Constantine 1 (UFMC1), Route de Ain El Bey, Constantine 25000, Algeria
| |
Collapse
|
12
|
Erskine E, Ozkan G, Lu B, Capanoglu E. Effects of Fermentation Process on the Antioxidant Capacity of Fruit Byproducts. ACS OMEGA 2023; 8:4543-4553. [PMID: 36777564 PMCID: PMC9910098 DOI: 10.1021/acsomega.2c07602] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/30/2022] [Indexed: 06/18/2023]
Abstract
A substantial amount of fruit byproducts is lost annually due to lack of valorization applications at industrial scale, resulting in loss of valuable nutrients as well as immense economic consequences. Studies conducted clearly show that if appropriate and dependable methods are applied, there is the potential to acquire various components that are currently being obtained through synthetic manufacturing from fruit byproducts mostly regarded as waste and utilize them in not only the food industry, but pharmaceutical and cosmetic industries as well. This review aims to provide a concise summary of the recent studies regarding the fermentation of fruit byproducts and how their antioxidant activity is affected during this process.
Collapse
Affiliation(s)
- Ezgi Erskine
- Department
of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey
| | - Gulay Ozkan
- Department
of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey
| | - Baiyi Lu
- College
of Biosystems and Food Science, Zhejiang
University, Yuhangtang Road 866#, Hangzhou, 310058 Zhejiang, P. R. China
| | - Esra Capanoglu
- Department
of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey
| |
Collapse
|
13
|
Antioxidant Dietary Fiber Sourced from Agroindustrial Byproducts and Its Applications. Foods 2022; 12:foods12010159. [PMID: 36613377 PMCID: PMC9818228 DOI: 10.3390/foods12010159] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/30/2022] [Accepted: 12/10/2022] [Indexed: 12/29/2022] Open
Abstract
Agroindustrial activities generate various residues or byproducts which are inefficiently utilized, impacting the environment and increasing production costs. These byproducts contain significant amounts of bioactive compounds, including dietary fiber with associated phenolic compounds, known as antioxidant dietary fiber (ADF). Phenolic compounds are related to the prevention of diseases related to oxidative stress, such as neurodegenerative and cardiovascular diseases. The mechanism of ADF depends on its chemical structure and the interactions between the dietary fiber and associated phenolic compounds. This work describes ADF, the main byproducts considered sources of ADF, its mechanisms of action, and its potential use in the formulation of foods destined for human consumption. ADF responds to the demand for low-cost, functional ingredients with great health benefits. A higher intake of antioxidant dietary fiber contributes to reducing the risk of diseases such as type II diabetes, colon cancer, obesity, and kidney stones, and has bile-acid retention-excretion, gastrointestinal laxative, hypoglycemic, hypocholesterolemic, prebiotic, and cardioprotective effects. ADF is a functional, sustainable, and profitable ingredient with different applications in agroindustry; its use can improve the technofunctional and nutritional properties of food, helping to close the cycle following the premise of the circular economy.
Collapse
|
14
|
Kumar M, Kapoor S, Dhumal S, Tkaczewska J, Changan S, Saurabh V, Mekhemar M, Radha, Rais N, Satankar V, Pandiselvam R, Sayed AAS, Senapathy M, Anitha T, Singh S, Tomar M, Dey A, Zengin G, Amarowicz R, Jyoti Bhuyan D. Guava (Psidium guajava L.) seed: A low-volume, high-value byproduct for human health and the food industry. Food Chem 2022; 386:132694. [PMID: 35334323 DOI: 10.1016/j.foodchem.2022.132694] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 02/19/2022] [Accepted: 03/11/2022] [Indexed: 11/04/2022]
Abstract
Guava processing industries generate peel and seeds as primary waste fractions. Guava seeds obtained after fruit processing possess untapped potential in the field of food science due to the presence of a diversity of nutritional and bioactive compounds. Along with offering a detailed understanding of the nutritional attributes of guava seeds, the present review comprehensively elaborates on the therapeutic activities of their bioactive compounds, their techno-functional properties, and their other edible and nonedible applications. The limited molecular and biochemical mechanistic studies outlining the antioxidant, immunomodulatory, anticancer, antimicrobial, neuroprotective and antidiabetic activities of guava seeds available in the literature are also extensively discussed in this review. The use of guava seed constituents as food additives and food functional and structural modulators, primarily as fat reducers, emulsifiers, water and oil holding agents, is also conceptually explained. Additional human intervention and molecular mechanistic studies deciphering the effects of guava seeds on various diseases and human health are warranted.
Collapse
Affiliation(s)
- Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai 400019, India.
| | - Swati Kapoor
- Punjab Horticultural Postharvest Technology Centre, Punjab Agricultural University, Ludhiana, India
| | - Sangram Dhumal
- Division of Horticulture, RCSM College of Agriculture, Kolhapur, 416004, Maharashtra, India.
| | - Joanna Tkaczewska
- Department of Animal Product Technology, Faculty of Food Technology, University of Agriculture, ul. Balicka 122, 30-149 Kraków, Poland
| | - Sushil Changan
- Division of Crop Physiology, Biochemistry and Post-Harvest Technology, ICAR-Central Potato Research Institute, Shimla 171001, India
| | - Vivek Saurabh
- Division of Food Science and Postharvest Technology, ICAR - Indian Agricultural Research Institute, New Delhi 110012, India
| | - Mohamed Mekhemar
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrecht's University, 24105 Kiel, Germany
| | - Radha
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Nadeem Rais
- Department of Pharmacy, Bhagwant University, Ajmer 305004, India
| | - Varsha Satankar
- Ginning Training Centre, ICAR - Central Institute for Research on Cotton Technology, Nagpur, Maharashtra, India
| | - R Pandiselvam
- Division of Physiology, Biochemistry and Post-Harvest Technology, ICAR - Central Plantation Crops Research Institute (CPCRI), Kasaragod, 671 124 Kerala, India
| | - Ali A S Sayed
- Botany Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt; Division of Plant Physiology, ICAR - Indian Agricultural Research Institute, New Delhi 110012, India
| | - Marisennayya Senapathy
- Department of Rural Development and Agricultural Extension, College of Agriculture, Wolaita Sodo University, SNNPR, Wolaita Sodo, Ethiopia
| | - T Anitha
- Department of Postharvest Technology, Horticultural College and Research Institute, Periyakulam, 625604, India
| | - Surinder Singh
- Dr. S.S. Bhatnagar University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh 160014, India
| | - Maharishi Tomar
- Seed Technology Division, ICAR-Indian Grassland and Fodder Research Institute, Jhansi, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, India
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University Campus, 42130 Konya, Turkey
| | - Ryszard Amarowicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Deep Jyoti Bhuyan
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia.
| |
Collapse
|
15
|
The Mechanisms of the Potential Probiotic Lactiplantibacillus plantarum against Cardiovascular Disease and the Recent Developments in its Fermented Foods. Foods 2022; 11:foods11172549. [PMID: 36076735 PMCID: PMC9455256 DOI: 10.3390/foods11172549] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
Cardiovascular disease (CVD) has become the leading cause of death worldwide. Many recent studies have pointed out that Lactiplantibacillus plantarum (Lb. plantarum) has great potential in reducing the risk of CVD. Lb. plantarum is a kind of lactic acid bacteria (LAB) widely distributed in fermented food and the human intestinal tract, some strains of which have important effects on human health and the potential to be developed into probiotics. In this review, we summarize the mechanism of potential probiotic strains of Lb. plantarum against CVD. It could regulate the body’s metabolism at the molecular, cellular, and population levels, thereby lowering blood glucose and blood lipids, regulating blood pressure, and ultimately reducing the incidence of CVD. Furthermore, since Lb. plantarum is widely utilized in food industry, we highlight some of the most important new developments in fermented food for combating CVD; providing an insight into these fermented foods can assist scientists in improving the quality of these foods as well as alleviating patients’ CVD symptoms. We hope that in the future functional foods fermented by Lb. plantarum can be developed and incorporated into the daily diet to assist medication in alleviating CVD to some extent, and maintaining good health.
Collapse
|
16
|
Lopes de Oliveira F, Yanka Portes Arruda T, Caldeira Morzelle M, Paula Aparecida Pereira A, Neves Casarotti S. Fruit by-products as potential prebiotics and promising functional ingredients to produce fermented milk. Food Res Int 2022; 161:111841. [DOI: 10.1016/j.foodres.2022.111841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 11/04/2022]
|
17
|
Cerrato A, Piovesana S, Aita SE, Cavaliere C, Felletti S, Laganà A, Montone CM, Vargas‐de‐la‐Cruz C, Capriotti AL. Detailed investigation of the composition and transformations of phenolic compounds in fresh and fermented Vaccinium floribundum berry extracts by high-resolution mass spectrometry and bioinformatics. PHYTOCHEMICAL ANALYSIS : PCA 2022; 33:507-516. [PMID: 35064611 PMCID: PMC9543071 DOI: 10.1002/pca.3105] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/27/2021] [Indexed: 05/06/2023]
Abstract
INTRODUCTION Blueberries are known for their very high content of biologically active phenolic compounds; nonetheless, differently from the North American and European species of blueberries, Neotropical blueberries have not been extensively studied yet. OBJECTIVES In the present paper, the phenolic composition of Vaccinium floribundum Kunth, which is endemic to the Andean regions and grows 1,600 to 4,500 meters above sea level, was investigated by ultra-high-performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HRMS). Native and fermented berries were compared in terms of phenolic composition as well as antioxidant activity, total phenolic content, and total anthocyanin content. MATERIALS AND METHODS V. floribundum native and fermented berries were extracted and analyzed by UHPLC-HRMS. The acquired datasets were processed by Compound Discoverer 3.1 using a dedicated data analysis workflow that was specifically set up for phenolic compound identification. RESULTS In total, 309 compounds were tentatively identified, including anthocyanins, flavonoids, phenolic acids, and proanthocyanidins. The molecular transformations of phenolic compounds during fermentation were comprehensively investigated for the first time, and by a customized data processing workflow, 13 quinones and quinone methides were tentatively identified in the fermented samples. Compared to other species of the genus Vaccinium, a peculiar phenolic profile is observed, with low abundance of highly methylated compounds. CONCLUSION Andean berries are a rich source of a wide variety of phenolic compounds. Untargeted MS analyses coupled to a dedicated data processing workflow allowed expanding the current knowledge on these berries, improving our understanding of the fate of phenolic compounds after fermentation.
Collapse
Affiliation(s)
- Andrea Cerrato
- Department of ChemistrySapienza University of RomeRomeItaly
| | - Susy Piovesana
- Department of ChemistrySapienza University of RomeRomeItaly
| | - Sara Elsa Aita
- Department of ChemistrySapienza University of RomeRomeItaly
| | | | - Simona Felletti
- Department of Chemistry and Pharmaceutical SciencesUniversity of FerraraFerraraItaly
| | - Aldo Laganà
- Department of ChemistrySapienza University of RomeRomeItaly
- CNR NANOTEC, Campus EcotekneUniversity of SalentoLecceItaly
| | | | - Celia Vargas‐de‐la‐Cruz
- Faculty of Pharmacy and Biochemistry, Academic Department Pharmacology, Toxicology and BromatologyCentro Latinoamericano de Enseñanza e Investigación en Bacteriología Alimentaria‐CLEIBA, Universidad Nacional Mayor de San MarcosLimaPeru
| | | |
Collapse
|
18
|
Morsy MK, Sami R, Algarni E, Al-Mushhin AAM, Benajiba N, A. A, Almasoudi AG, Mekawi E. Phytochemical Profile and Antioxidant Activity of Sesame Seed (Sesamum indicum) By-Products for Stability and Shelf Life Improvement of Refined Olive Oil. Antioxidants (Basel) 2022; 11:antiox11020338. [PMID: 35204220 PMCID: PMC8868781 DOI: 10.3390/antiox11020338] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/30/2022] [Accepted: 02/04/2022] [Indexed: 01/18/2023] Open
Abstract
The by-product of sesame seed coats from the tahini industry was used for the extraction of bioactive compounds as novel antioxidants. This study was designed to evaluate the effect of a natural antioxidant on the quality of refined olive oil (ROO) stored at 60 ± 1 °C for up to 48 days. The lyophilized sesame seed coats extract (LSSCE) was placed into fresh ROO at three levels, i.e., 200, 400, and 600 mg kg−1, and compared with 200 mg kg−1 BHT (reference) and without antioxidant (control). LSSCE exhibited high phenolic (105.9 mg GAE g−1) and lignin (6.3 mg g−1) contents as well as antioxidant activity based on HPLC/DAD. In ROO samples, Including LSSCE, the values of peroxide, p-anisidine, K232, and K270 were remarkably lower than control during storage. The kinetic rate constant (k) of oxidation indicators was the lowest in ROO samples containing BHT and LSSCE 600 mg kg−1compared with other treatments. LSSCE improved the organoleptic acceptability of ROO samples up to 48 days of storage. Moreover, the shelf life (assuming a Q10 value of 2.0 for lipid oxidation) of ROO treated with LSSCE was increased. The findings revealed that LSSCE is a promising natural antioxidant in delaying oxidation, enhancing oil stability, and prolonging the shelf life (~475 days at ambient temperature).
Collapse
Affiliation(s)
- Mohamed K. Morsy
- Department of Food Technology, Faculty of Agriculture, Benha University, Benha 13736, Qaluobia, Egypt
- Correspondence: (M.K.M.); (R.S.)
| | - Rokayya Sami
- Department of Food Science and Nutrition, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
- Correspondence: (M.K.M.); (R.S.)
| | - Eman Algarni
- Department of Food Science and Nutrition, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Amina A. M. Al-Mushhin
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Nada Benajiba
- Department of Basic Health Sciences, Deanship of Preparatory Year, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Almasoudi A.
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box. 42734, Jeddah 21551, Saudi Arabia;
| | - Abeer G. Almasoudi
- Food Science Department, College of Science, Branch of the College at Turbah, Taif University, Taif 21944, Saudi Arabia;
| | - Enas Mekawi
- Department of Agricultural Biochemistry, Faculty of Agriculture, Benha University, Benha 13736, Qaluobia, Egypt;
| |
Collapse
|
19
|
Phenolics Profile, Antioxidant Activity and Flavor Volatiles of Pear Juice: Influence of Lactic Acid Fermentation Using Three Lactobacillus Strains in Monoculture and Binary Mixture. Foods 2021; 11:foods11010011. [PMID: 35010138 PMCID: PMC8750113 DOI: 10.3390/foods11010011] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 12/15/2022] Open
Abstract
The aim of this study was to evaluate the effects of lactic acid fermentation using three Lactobacillus strains (Lactiplantibacillus plantarum 90, Lactobacillus helveticus 76, and Lacticaseibacillus casei 37) in monoculture and binary mixture on phenolics profile, antioxidant activity and flavor volatiles in pear juice. Results showed that the colony counts of binary mixture were higher than monoculture in fermented pear juice. The total content of phenols was increased, while that of flavonoids was decreased significantly during fermentation (p < 0.05). Antioxidant activities in fermented peer juice including DPPH and ABTS radical scavenging abilities and ferric reducing antioxidant power (FRAP) were significantly improved (p < 0.05). Binary mixture of Lactiplantibacillus plantarum 90 and Lacticaseibacillus casei 37 fermentation exhibited strong DPPH radical scavenging ability, due to the increase in vanillic acid and arbutin contents. Furthermore, lactic acid fermentation improved the formation of alcohols, esters, acids and terpenoids, and reduced the contents of aldehydes and ketones. Thirty new compounds including 15 alcohols, seven esters, five acids, and three terpenoids were observed in fermented pear juice. Hierarchical cluster revealed that flavor volatiles in pear juice were improved dramatically by Lactobacillus strains fermentation, and there were dramatic differences between monoculture and binary mixture.
Collapse
|
20
|
Sireswar S, Dey G, Biswas S. Influence of fruit-based beverages on efficacy of Lacticaseibacillus rhamnosus GG (Lactobacillus rhamnosus GG) against DSS-induced intestinal inflammation. Food Res Int 2021; 149:110661. [PMID: 34600663 DOI: 10.1016/j.foodres.2021.110661] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/30/2021] [Accepted: 08/23/2021] [Indexed: 12/19/2022]
Abstract
Different lines of evidences from clinical, epidemiological and biochemical studies have established that optimal nutrition including probiotic and fruit phenolics can mitigate the risk and morbidity associated with some chronic diseases. The basis for this observation is the potential synergies that may exist between probiotic strains and different bioactive components of food matrices. This study was conceptualized to compare the efficiency of a probiotic strain in two different fruit matrices. Two fruits, viz., sea buckthorn (Hippophae rhamnoides) (SBT) and apples (Malus pumila) (APJ) were chosen and the anti-inflammatory effects of L. rhamnosus GG (ATCC 53103) (LR) fortified in SBT and APJ were analysed against dextran sulphate sodium (DSS) induced colitis in zebrafish (Danio rerio). The results showed that administration of probiotic (LR) fortified, malt supplemented SBT beverage (SBT + M + LR) had better restorative potential on the intestinal barrier function and mucosal damage, in comparison to LR fortified, malt supplemented APJ beverage (APJ + M + LR). SBT + M + LR demonstrated adequate anti-oxidant potential by enhancing the CAT, SOD, GPx and GSH activities, impaired due to DSS administration. The increase in the expressions of toll like receptor (TLR)-2, TLR-4 and TLR-5 induced by DSS were significantly inhibited by SBT + M + LR administration. Gene expression of pro-inflammatory markers, (NF-κB, TNF-α, IL-1β, IL-6, IL-8, CCL20, MPO and MMP9) were attenuated by SBT + M + LR treatment in intestinal tissues of DSS-treated zebrafishes. Notably, SBT + M + LR increased the expression of anti-inflammatory cytokine, IL-10. The study provides evidence that specific interactions between fruit matrix and probiotic strain can provide adjunct therapeutic strategy to manage intestinal inflammation.
Collapse
Affiliation(s)
- Srijita Sireswar
- School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to be University, Patia, Bhubaneswar, Odisha 751024. India
| | - Gargi Dey
- School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to be University, Patia, Bhubaneswar, Odisha 751024. India.
| | - Sutapa Biswas
- Care Hospital, Chandrasekharpur, Bhubaneswar, Odisha 751016, India
| |
Collapse
|
21
|
Effect of ripening and variety on the physiochemical quality and flavor of fermented Chinese chili pepper (Paojiao). Food Chem 2021; 368:130797. [PMID: 34399178 DOI: 10.1016/j.foodchem.2021.130797] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/23/2021] [Accepted: 08/04/2021] [Indexed: 02/04/2023]
Abstract
This work monitored the effect of ripening and variety on the physiochemical quality and flavor of fermented Chinese chili pepper (Paojiao). Three commercial varieties of chili pepper (Capsicum frutescens Linn.) at three ripening stages were selected. Physiochemical quality (color, texture, and vitamin C) and flavor properties [capsaicinoids, free amino acid (FAA), and aroma] were determined and compared by multivariate data analysis. The hardness and chewiness decreased, while the contents of vitamin C, capsaicin, and taste-active FAAs increased in Paojiao with ripening. More volatiles were found in green peppers. Fingerprinting and multivariate data analysis revealed that ester, aldehydes, and terpenes were discriminant volatiles that significantly changed in Paojiao during ripening. In general, ripening and variety greatly affect the physiochemical and flavor quality of peppers and their effects intensify after fermentation.
Collapse
|
22
|
Pimentel TC, Gomes de Oliveira LI, de Lourdes Chaves Macedo E, Costa GN, Dias DR, Schwan RF, Magnani M. Understanding the potential of fruits, flowers, and ethnic beverages as valuable sources of techno-functional and probiotics strains: Current scenario and main challenges. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.05.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
23
|
Gustaw K, Niedźwiedź I, Rachwał K, Polak-Berecka M. New Insight into Bacterial Interaction with the Matrix of Plant-Based Fermented Foods. Foods 2021; 10:1603. [PMID: 34359473 PMCID: PMC8304663 DOI: 10.3390/foods10071603] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/24/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
Microorganisms have been harnessed to process raw plants into fermented foods. The adaptation to a variety of plant environments has resulted in a nearly inseparable association between the bacterial species and the plant with a characteristic chemical profile. Lactic acid bacteria, which are known for their ability to adapt to nutrient-rich niches, have altered their genomes to dominate specific habitats through gene loss or gain. Molecular biology approaches provide a deep insight into the evolutionary process in many bacteria and their adaptation to colonize the plant matrix. Knowledge of the adaptive characteristics of microorganisms facilitates an efficient use thereof in fermentation to achieve desired final product properties. With their ability to acidify the environment and degrade plant compounds enzymatically, bacteria can modify the textural and organoleptic properties of the product and increase the bioavailability of plant matrix components. This article describes selected microorganisms and their competitive survival and adaptation in fermented fruit and vegetable environments. Beneficial changes in the plant matrix caused by microbial activity and their beneficial potential for human health are discussed as well.
Collapse
Affiliation(s)
| | | | - Kamila Rachwał
- Department of Biotechnology, Microbiology and Human Nutrition, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, 8 Skromna Street, 20-704 Lublin, Poland; (K.G.); (I.N.); (M.P.-B.)
| | | |
Collapse
|
24
|
Biotransformation of the Brazilian Caatinga fruit-derived phenolics by Lactobacillus acidophilus La-5 and Lacticaseibacillus casei 01 impacts bioaccessibility and antioxidant activity. Food Res Int 2021; 146:110435. [PMID: 34119243 DOI: 10.1016/j.foodres.2021.110435] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/07/2021] [Accepted: 05/21/2021] [Indexed: 01/23/2023]
Abstract
This study aims to evaluate the effect of fermentation of fruit purees (seriguela, mangaba, mango, and acerola) with Lacticaseibacillus casei 01 and/or Lactobacillus acidophilus LA-05 on the profile and bioaccessibility of phenolics and antioxidant activity. The physicochemical parameters and sugar and organic acid contents were also measured for evaluating the fermentation system. Fruit purees were adequate substrates for the growth of probiotic cultures, presenting high viability in the product and after simulated gastrointestinal conditions (≥7 log CFU/g). The fermentation with probiotic cultures increased the lactic acid (8.45-15.44 mg/mL), acetic acid (0.05-1.05 mg/mL), and phenolic contents and bioaccessibility, while the pH values and glucose and fructose contents were decreased (p < 0.05). L. acidophilus was found in higher counts in seriguela puree (8.00 ± 0.03), resulting in a higher consumption of maltose, fructose, and glucose, increased phenolic compounds content and bioacessibility and higher antioxidant activity (p < 0.05). The co-cultivation of both probiotic strains showed promising results for mango, mangaba and seriguela purees, resulting in an increased content and bioaccessibility of phenolics and higher antioxidant activity (p < 0.05). Our findings demonstrate for the first time that the Brazilian Caatinga fruit-derived phenolics can be biotransformed by Lactobacillus and amended genera probiotics to bioaccesible phenolics with antioxidant activity. The knowledge obtained from this study will provide fundamental concepts of the use of synergistic probiotics for future fermentation of other fruit purees to increase the bioaccesibility and antioxidant activity of biotransformed phenolic compounds.
Collapse
|
25
|
Drabińska N, Ogrodowczyk A. Crossroad of Tradition and Innovation – The Application of Lactic Acid Fermentation to Increase the Nutritional and Health-Promoting Potential of Plant-Based Food Products – a Review. POL J FOOD NUTR SCI 2021. [DOI: 10.31883/pjfns/134282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
26
|
Comparative Chemical Profiles of the Essential Oils from Different Varieties of Psidium guajava L. Molecules 2020; 26:molecules26010119. [PMID: 33383905 PMCID: PMC7795193 DOI: 10.3390/molecules26010119] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/24/2020] [Accepted: 12/25/2020] [Indexed: 02/06/2023] Open
Abstract
Guava (Psidium guajava) leaves are commonly used in the treatment of diseases. They are considered a waste product resulting from guava cultivation. The leaves are very rich in essential oils (EOs) and volatiles. This work represents the detailed comparative chemical profiles of EOs derived from the leaves of six guava varieties cultivated in Egypt, including Red Malaysian (RM), El-Qanater (EQ), White Indian (WI), Early (E), El-Sabahya El-Gedida (ESEG), and Red Indian (RI), cultivated on the same farm in Egypt. The EOs from the leaves of guava varieties were extracted by hydro-distillation and analyzed with GC-MS. The EOs were categorized in a holistic manner using chemometric tools. The hydro-distillation of the samples yielded 0.11-0.48% of the EO (v/w). The GC-MS analysis of the extracted EOs showed the presence of 38 identified compounds from the six varieties. The sesquiterpene compounds were recorded as main compounds of E, EQ, ESEG, RI, and WI varieties, while the RM variety attained the highest content of monoterpenes (56.87%). The sesquiterpenes, β-caryophyllene (11.21-43.20%), and globulol (76.17-26.42%) were detected as the major compounds of all studied guava varieties, while trans-nerolidol (0.53-10.14) was reported as a plentiful compound in all of the varieties except for the RM variety. A high concentration of D-limonene was detected in the EOs of the RM (33.96%), WI (27.04%), and ESEG (9.10%) varieties. These major compounds were consistent with those reported for other genotypes from different countries. Overall, the EOs' composition and the chemometric analysis revealed substantial variations among the studied varieties that might be ascribed to genetic variability, considering the stability of the cultivation and climate conditions. Therefore, this chemical polymorphism of the studied varieties supports that these varieties could be considered as genotypes of P. guajava. It is worth mentioning here that the EOs, derived from leaves considered to be agricultural waste, of the studied varieties showed that they are rich in biologically active compounds, particularly β-caryophyllene, trans-nerolidol, globulol, and D-limonene. These could be considered as added value for pharmacological and industrial applications. Further study is recommended to confirm the chemical variations of the studied varieties at a molecular level, as well as their possible medicinal and industrial uses.
Collapse
|