1
|
Tang J, Wu X, Lv D, Huang S, Zhang Y, Kong F. Effect of salt concentration on the quality and microbial community during pickled peppers fermentation. Food Chem X 2024; 23:101594. [PMID: 39040148 PMCID: PMC11261264 DOI: 10.1016/j.fochx.2024.101594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
This work aimed to investigate the effect of salt concentration on the quality and microbial community of pickled peppers during fermentation, and the cross-correlation between microorganisms and quality was also revealed. The results showed that 9 volatile flavor compounds were unique to the low salt concentration group (D group), which also contained higher content of FAA, lactic acid and acetic acid than high salt concentration group (G group). Meanwhile, the samples of D2 group have a better texture properties. Firmicutes, Proteobacteria, Ascomycota, Lactobacillus, Pectobacterium, and Pseudomonas were detected as the main microbial community during the fermentation with different salt concentrations. Furthermore, the correlations analysis results indicated that the salt concentration has a significant effect on the microbial community of pickled peppers (p < 0.001), and Pediococcus, Lactobacillus, Cedecca, Issatchenkia, Pichia, Kazachstania, and Hanseniaspora were significantly correlated with flavors, which played crucial roles in the unique flavor formation of pickled peppers.
Collapse
Affiliation(s)
- Jianbo Tang
- Guizhou Food Processing Institute, Guizhou, Academy of Agricultural Sciences, Guiyang, 550006, China
- Guizhou Key Laboratory of Agricultural Biotechnology, Guiyang, 550006, China
| | - Xiaomeng Wu
- School of Food Science and Technology, Dalian Polytechnic University, Liaoning, 116000, China
| | - Du Lv
- Guizhou Food Processing Institute, Guizhou, Academy of Agricultural Sciences, Guiyang, 550006, China
- Guizhou Key Laboratory of Agricultural Biotechnology, Guiyang, 550006, China
| | - Shan Huang
- Guizhou Food Processing Institute, Guizhou, Academy of Agricultural Sciences, Guiyang, 550006, China
- Guizhou Key Laboratory of Agricultural Biotechnology, Guiyang, 550006, China
| | - Yu Zhang
- Guizhou Food Processing Institute, Guizhou, Academy of Agricultural Sciences, Guiyang, 550006, China
- Guizhou Key Laboratory of Agricultural Biotechnology, Guiyang, 550006, China
| | - Fanhua Kong
- School of Food Science and Technology, Dalian Polytechnic University, Liaoning, 116000, China
| |
Collapse
|
2
|
Zhang L, Wang M, Song H, Liang W, Wang X, Sun J, Wang D. Changes of microbial communities and metabolites in the fermentation of persimmon vinegar by bioaugmentation fermentation. Food Microbiol 2024; 122:104565. [PMID: 38839213 DOI: 10.1016/j.fm.2024.104565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 06/07/2024]
Abstract
To evaluate the effects of bioaugmentation fermentation inoculated with one ester-producing strain (Wickerhamomyces anomalus ZX-1) and two strains of lactic acid bacteria (Lactobacillus plantarum CGMCC 24035 and Lactobacillus acidophilus R2) for improving the flavor of persimmon vinegar, microbial community, flavor compounds and metabolites were analyzed. The results of microbial diversity analysis showed that bioaugmentation fermentation significantly increased the abundance of Lactobacillus, Saccharomyces, Pichia and Wickerhamomyces, while the abundance of Acetobacter, Apiotrichum, Delftia, Komagataeibacter, Kregervanrija and Aspergillus significantly decreased. After bioaugmentation fermentation, the taste was softer, and the sensory irritancy of acetic acid was significantly reduced. The analysis of HS-SPME-GC-MS and untargeted metabolomics based on LC-MS/MS showed that the contents of citric acid, lactic acid, malic acid, ethyl lactate, methyl acetate, isocitrate, acetoin and 2,3-butanediol were significantly increased. By multivariate analysis, 33 differential metabolites were screened out to construct the correlation between the differential metabolites and microorganisms. Pearson correlation analysis showed that methyl acetate, ethyl lactate, betaine, aconitic acid, acetoin, 2,3-butanediol and isocitrate positively associated with Wickerhamomyces and Lactobacillus. The results confirmed that the quality of persimmon vinegar was improved by bioaugmentation fermentation.
Collapse
Affiliation(s)
- Luyao Zhang
- College of Food and Bioengineering, Henan University of Science & Technology, Luoyang, 471023, China
| | - Mengyang Wang
- College of Food and Bioengineering, Henan University of Science & Technology, Luoyang, 471023, China
| | - Hairu Song
- College of Food and Bioengineering, Henan University of Science & Technology, Luoyang, 471023, China
| | - Weina Liang
- College of Food and Bioengineering, Henan University of Science & Technology, Luoyang, 471023, China
| | - Xiaotong Wang
- College of Food and Bioengineering, Henan University of Science & Technology, Luoyang, 471023, China
| | - Jianrui Sun
- College of Food and Bioengineering, Henan University of Science & Technology, Luoyang, 471023, China; Henan Engineering Research Center of Food Microbiology, Luoyang, 471023, China
| | - Dahong Wang
- College of Food and Bioengineering, Henan University of Science & Technology, Luoyang, 471023, China; Henan Engineering Research Center of Food Microbiology, Luoyang, 471023, China.
| |
Collapse
|
3
|
Chen J, Huang Y, Wang X, He J, Li W, Lu M, Sun X, Yin Y. Revealing core functional microorganisms in the fermentation process of Qicaipaojiao (Capsicum annuum L.) based on microbial metabolic network. Food Res Int 2024; 187:114315. [PMID: 38763628 DOI: 10.1016/j.foodres.2024.114315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/09/2024] [Accepted: 04/16/2024] [Indexed: 05/21/2024]
Abstract
Paojiao, a typical Chinese traditional fermented pepper, is favored by consumers for its unique flavor profile. Microorganisms, organic acids, amino acids, and volatile compounds are the primary constituents influencing the development of paojiao's flavor. To elucidate the key flavor compounds and core microorganisms of Qicaipaojiao (QCJ), this study conducted a comprehensive analysis of the changes in taste substances (organic acids and amino acids) and volatile flavor compounds during QCJ fermentation. Key flavor substances in QCJ were identified using threshold aroma value and odor activity value and the core microorganisms of QCJ were determined based on the correlation between dominant microorganisms and the key flavor substances. During QCJ fermentation, 16 key taste substances (12 free amino acids and 4 organic acids) and 12 key aroma substances were identified. The fermentation process involved 10 bacteria and 7 fungal genera, including Lactiplantibacillus, Leuconostoc, Klebsiella, Pichia, Wickerhamomyces, and Candida. Correlation analysis revealed that the core functional microorganisms encompassed representatives from 8 genera, including 5 bacterial genera (Lactiplantibacillus, Weissella, Leuconostoc, Klebsiella, and Kluyvera) and 3 fungal genera (Rhodotorula, Phallus, and Pichia). These core functional microorganisms exhibited significant correlations with approximately 70 % of the key flavor substances (P < 0.05). This study contributes to an enhanced understanding of flavor formation mechanisms and offers valuable insight into flavor quality control in food fermentation processes.
Collapse
Affiliation(s)
- Ju Chen
- Chili Pepper Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Yubing Huang
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Xueya Wang
- Chili Pepper Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China.
| | - Jianwen He
- Chili Pepper Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China.
| | - Wenxin Li
- Chili Pepper Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Min Lu
- Chili Pepper Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Xiaojing Sun
- Chili Pepper Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Yong Yin
- Chili Pepper Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| |
Collapse
|
4
|
Xie J, Yap G, Simpson D, Gänzle M. The effect of seed germination and Bacillus spp. on the ripening of plant cheese analogs. Appl Environ Microbiol 2024; 90:e0227623. [PMID: 38319095 PMCID: PMC10952449 DOI: 10.1128/aem.02276-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/13/2024] [Indexed: 02/07/2024] Open
Abstract
Consumer demand for plant cheeses is increasing, but challenges of improving both flavor and quality remain. This study investigated the microbiological and physicochemical impact of seed germination and fermentation with Bacillus velezensis and Bacillus amyloliquefaciens on the ripening of plant cheese analogs. Chlorine treatment or addition of Lactiplantibacillus plantarum and Lactococcus lactis controlled microbial growth during seed germination. Lp. plantarum and Lc. lactis also served as starter cultures for the acidification of soy and lupine milk and were subsequently present in the unripened plant cheese as dominant microbes. Acidification also inhibited the growth and metabolic activity of bacilli but Bacillus spores remained viable throughout ripening. During plant cheese ripening, Lc. lactis was inactivated before Lp. plantarum and the presence of bacilli during seed germination delayed Lc. lactis inactivation. Metagenomic sequencing of full-length 16S rRNA gene amplicons confirmed that the relative abundance of the inoculated strains in each ripened cheese sample exceeded 99%. Oligosaccharides including raffinose, stachyose, and verbascose were rapidly depleted in the initial stage of ripening. Both germination and the presence of bacilli during seed germination had impact on polysaccharide hydrolysis during ripening. Bacilli but not seed germination enhanced proteolysis of plant cheese during ripening. In conclusion, the use of germination with lactic acid bacteria in combination with Bacillus spp. exhibited the potential to improve the quality of ripened plant cheeses with a positive effect on the reduction of hygienic risks. IMPORTANCE The development of novel plant-based fermented food products for which no traditional templates exist requires the development of starter cultures. Although the principles of microbial flavor formation in plant-based analogs partially overlap with dairy fermentations, the composition of the raw materials and thus likely the selective pressure on the activity of starter cultures differs. Experiments that are described in this study explored the use of seed germination, the use of lactic acid bacteria, and the use of bacilli to reduce hygienic risks, to acidify plant milk, and to generate taste-active compounds through proteolysis and fermentative conversion of carbohydrates. The characterization of fermentation microbiota by culture-dependent and culture-independent methods also confirmed that the starter cultures used were able to control microbial communities throughout 90 d of ripening. Taken together, the results provide novel tools for the development of plant-based analogs of fermented dairy products.
Collapse
Affiliation(s)
- Jin Xie
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Gloria Yap
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | - David Simpson
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Michael Gänzle
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| |
Collapse
|
5
|
Xie J, Gänzle M. Microbiology of fermented soy foods in Asia: Can we learn lessons for production of plant cheese analogues? Int J Food Microbiol 2023; 407:110399. [PMID: 37716309 DOI: 10.1016/j.ijfoodmicro.2023.110399] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/17/2023] [Accepted: 09/10/2023] [Indexed: 09/18/2023]
Abstract
The food industry is facing the challenge of creating innovative, nutritious, and flavored plant-based products, due to consumer's increasing demand for the health and environmental sustainability. Fermentation as a unique and effective tool plays an important role in the innovation of food products. Traditional fermented soy foods are popular in many Asian and African countries as nutritious, digestible and flavorful daily staples or condiments. They are produced by specific microorganisms with the unique fermentation process in which microorganisms convert the ingredients of whole soybean or soybean curd to flavorful and functional molecules. This review provides an overview on traditional fermented food produced from soy, including douchi, natto, tempeh, and sufu as well as stinky tofu, including the background of these products, the manufacturing process, and the microbial diversity involved in fermentation procedures as well as flavor volatiles that were identified in the final products. The contribution of microbes to the quality of these five fermented soy foods is discussed, with the comparison to the role of cheese ripening microorganisms in cheese flavor formation. This communication aims to summarize the microbiology of fermented soy foods in Asia, evoking innovative ideas for the development of new plant-based fermented foods especially plant-based cheese analogues.
Collapse
Affiliation(s)
- Jin Xie
- University of Alberta, Dept. of Agricultural, Food and Nutritional Science, Edmonton, Canada
| | - Michael Gänzle
- University of Alberta, Dept. of Agricultural, Food and Nutritional Science, Edmonton, Canada; Hubei University of Technology, College of Bioengineering and Food Science, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
6
|
Hu X, Liu S, Li E. Microbial community succession and its correlation with the dynamics of flavor compound profiles in naturally fermented stinky sufu. Food Chem 2023; 427:136742. [PMID: 37393638 DOI: 10.1016/j.foodchem.2023.136742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/04/2023] [Accepted: 06/25/2023] [Indexed: 07/04/2023]
Abstract
Wuhan stinky sufu is a traditional fermented soybean product with a short ripening period and unique flavor. The aim of this study was to explore the characteristic flavor compounds and core functional microbiota of naturally fermented Wuhan stinky sufu. The results indicated that 11 volatile compounds including guaiacol, 2-pentylfuran, dimethyl trisulfide, dimethyl disulfide, acetoin, 1-octen-3-ol, (2E)-2-nonenal, indole, propyl 2-methylbutyrate, ethyl 4-methylvalerate, nonanal were characteristic aroma compounds, and 6 free amino acids (Ser, Lys, Arg, Glu, Met and Pro) were identified as taste-contributing compounds. 4 fungal genera (Kodamaea, unclassified_Dipodascaceae, Geotrichum, Trichosporon), and 9 bacterial genera (Lysinibacillus, Enterococcus, Acidipropionibacterium, Bifidobacterium, Corynebacterium, Lactococcus, Pseudomonas, Enterobacter, and Acinetobacter) were identified as the core functional microbiota with positive effects on the production of flavor compounds. These findings would enhance the understanding of core flavor-producing microorganisms in naturally fermented soybean products and potentially provide guidance for enhancing the quality of sufu.
Collapse
Affiliation(s)
- Xuefen Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Shaoquan Liu
- Department of Food Science and Technology, National University of Singapore, Science Drive 2, Singapore 117543, Singapore
| | - Erhu Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| |
Collapse
|
7
|
An F, Wu J, Feng Y, Pan G, Ma Y, Jiang J, Yang X, Xue R, Wu R, Zhao M. A systematic review on the flavor of soy-based fermented foods: Core fermentation microbiome, multisensory flavor substances, key enzymes, and metabolic pathways. Compr Rev Food Sci Food Saf 2023; 22:2773-2801. [PMID: 37082778 DOI: 10.1111/1541-4337.13162] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 04/01/2023] [Accepted: 04/06/2023] [Indexed: 04/22/2023]
Abstract
The characteristic flavor of fermented foods has an important impact on the purchasing decisions of consumers, and its production mechanisms are a concern for scientists worldwide. The perception of food flavor is a complex process involving olfaction, taste, vision, and oral touch, with various senses contributing to specific properties of the flavor. Soy-based fermented products are popular because of their unique flavors, especially in Asian countries, where they occupy an important place in the dietary structure. Microorganisms, known as the souls of fermented foods, can influence the sensory properties of soy-based fermented foods through various metabolic pathways, and are closely related to the formation of multisensory properties. Therefore, this review systematically summarizes the core microbiome and its interactions that play an active role in representative soy-based fermented foods, such as fermented soymilk, soy sauce, soybean paste, sufu, and douchi. The mechanism of action of the core microbial community on multisensory flavor quality is revealed here. Revealing the fermentation core microbiome and related enzymes provides important guidance for the development of flavor-enhancement strategies and related genetically engineered bacteria.
Collapse
Affiliation(s)
- Feiyu An
- College of Food Science, Shenyang Agricultural University, Shenyang, China
- Liaoning Provincial Engineering Research Center of Food Fermentation Technology, Shenyang, China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, China
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, China
- Liaoning Provincial Engineering Research Center of Food Fermentation Technology, Shenyang, China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, China
| | - Yunzi Feng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Guoyang Pan
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Yuanyuan Ma
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Jinhui Jiang
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Xuemeng Yang
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Ruixia Xue
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, China
- Liaoning Provincial Engineering Research Center of Food Fermentation Technology, Shenyang, China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
8
|
Chen Z, Liu L, Du H, Lu K, Chen C, Xue Q, Hu Y. Microbial community succession and their relationship with the flavor formation during the natural fermentation of Mouding sufu. Food Chem X 2023; 18:100686. [PMID: 37168719 PMCID: PMC10164778 DOI: 10.1016/j.fochx.2023.100686] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 05/13/2023] Open
Abstract
Mouding sufu, a traditional fermented soybean product in China, has been recognized by the public in the southwestern regions of China. To reveal the microbial community succession and their relationship with the flavor formation during the natural fermentation of Mouding sufu, microbial community, non-volatile flavor compounds and volatile flavor compounds were analyzed by high-throughput sequencing, high-performance liquid chromatography, gas chromatography ion migration spectroscopy, respectively. The results showed that Lactobacillus and Klebsiella were the most abundant bacterial genus, whereas the main fungal genera were unclassified-f-Dipodascaeae and Issatchenkia. In addition, Glutamic acid, Aspartic acid, Alanine, Valine, Lysine, Histidine, lactic acid, succinic acid, and acetic acid were the main non-volatile flavor substances. Furthermore, the taste activity values of glutamic acid, aspartic acid and lactic acid reached 132, 68.9, 18.18 at H60, respectively, meaning that umami and sour were the key taste compounds. Simultaneously, ethyl 3-methylbutanoate-M, ethyl propanoate, methyl 2-methylbutanoate, ethyl 2-methylbutanoate, ethyl 3-methylbutanoate-D, ethyl isobutyrate, linalool-M, linalool-D, cis-4-heptenal, 2-methylpropanal were the characteristic volatile flavor of Mouding sufu. Finally, correlation analysis showed that g__Erwinia and g__Acremonium correlated with most of the key aroma compounds. 20 bacteria and 21 fungi were identified as core functional microbe for Mouding sufu production.
Collapse
Affiliation(s)
- Zhongai Chen
- College of Food Science and Technology, Yunnan Agricultural University, NO. 452 Fengyuan Road, Panlong District, Kunming, Yunnan 650000, China
- Institute of Food Processing, Guizhou Academy of Agricultural Sciences, NO. 1 Jinnong Road, Huaxi District, Guiyang 550006, China
| | - Lijing Liu
- College of Food Science and Technology, Yunnan Agricultural University, NO. 452 Fengyuan Road, Panlong District, Kunming, Yunnan 650000, China
| | - Huan Du
- College of Food Science and Technology, Yunnan Agricultural University, NO. 452 Fengyuan Road, Panlong District, Kunming, Yunnan 650000, China
| | - Kaixiang Lu
- College of Food Science and Technology, Yunnan Agricultural University, NO. 452 Fengyuan Road, Panlong District, Kunming, Yunnan 650000, China
| | - Cong Chen
- College of Food Science and Technology, Yunnan Agricultural University, NO. 452 Fengyuan Road, Panlong District, Kunming, Yunnan 650000, China
| | - Qiaoli Xue
- Editorial Department of Journal of Yunnan Agricultural University, Yunnan Agricultural University, Kunming 650000, China
- Corresponding authors.
| | - Yongjin Hu
- College of Food Science and Technology, Yunnan Agricultural University, NO. 452 Fengyuan Road, Panlong District, Kunming, Yunnan 650000, China
- Corresponding authors.
| |
Collapse
|
9
|
Wang J, Shi C, Fang D, Che J, Wu W, Lyu L, Li W. The Impact of Storage Temperature on the Development of Microbial Communities on the Surface of Blueberry Fruit. Foods 2023; 12:foods12081611. [PMID: 37107406 PMCID: PMC10137657 DOI: 10.3390/foods12081611] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/21/2023] [Accepted: 04/02/2023] [Indexed: 04/29/2023] Open
Abstract
Microbial contamination is one of the main reasons for the quality deterioration of postharvest blueberries during storage. In this study, we investigated the surface microbiota of blueberry fruits stored at different temperatures via high-throughput sequencing of the 16S and ITS rRNA genes. The results indicated that the α-diversity of the microbial communities in samples stored at 4 °C was much higher than that in samples stored at 25 °C. The composition of the bacterial and fungal communities on the surface of the blueberry fruits varied at different storage temperatures. Ascomycota, Basidiomycota, Anthophyta, Chlorophyta, Proteobacteria, and Cyanobacteria were the most abundant phyla in the bacterial community. Furthermore, five preservation quality indices were measured, and the influence on the α-diversity of the bacterial community was found to be significantly weaker than that of the fungal community. Based on the prediction of the bacterial flora function, the change in blueberry quality during storage was closely related to its surface microbial effect. This study provides a theoretical basis for an understanding of the microbiota on the surface of blueberry fruits to cause fruit spoilage, and the development of a targeted inhibition technology to preserve blueberry fruits under different storage and transportation environments.
Collapse
Affiliation(s)
- Junying Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Forestry College, Nanjing Forestry University, Nanjing 210037, China
- College of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, China
| | - Chong Shi
- Co-Innovation Center for Sustainable Forestry in Southern China, Forestry College, Nanjing Forestry University, Nanjing 210037, China
| | - Donglu Fang
- Co-Innovation Center for Sustainable Forestry in Southern China, Forestry College, Nanjing Forestry University, Nanjing 210037, China
| | - Jilu Che
- Co-Innovation Center for Sustainable Forestry in Southern China, Forestry College, Nanjing Forestry University, Nanjing 210037, China
| | - Wenlong Wu
- Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Lianfei Lyu
- Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Weilin Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Forestry College, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
10
|
Ding S, Tian M, Yang L, Pan Y, Suo L, Zhu X, Ren D, Yu H. Diversity and dynamics of microbial population during fermentation of gray sufu and their correlation with quality characteristics. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
11
|
Microbial community succession and volatile compounds changes during spontaneous fermentation of Cabernet Sauvignon (Vitis vinifera L.) under rain-shelter cultivation. Food Chem X 2023; 17:100618. [PMID: 36974178 PMCID: PMC10039258 DOI: 10.1016/j.fochx.2023.100618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/19/2023] [Accepted: 02/23/2023] [Indexed: 02/27/2023] Open
Abstract
Microbiota succession in spontaneous fermentation of Cabernet Sauvignon cultivated under the rain-shelter was characterized, with open-field cultivation as the control. For both cultivation modes, Saccharomyces, Starmerella, and Mycosphearella were the principal fungi, and Tatumella, Gluconobacter, and Acinetobacter were the prevailing bacteria. Rain-shelter reduced the abundance of Hanseniaspora, Candida, Starmerella, Gluconobacter, and Lactococcus. During fermentation, fungal microbiota diversity in samples from the rain-shelter cultivation decreased more drastically than the control (p < 0.05). In terms of the correlation between microbiota and volatile compounds production, the abundance of Hanseniaspora uvarum, Candida apicola, Starmerella bacillaris, Gluconobacter oxydans, and Lactococcus lactis were positively correlated with the production of esters and higher alcohols. Instead of bacterial microbiota, fungal community succession exhibited a positive correlation with the final wine volatiles under the rain-shelter cultivation. These findings demonstrated rain-shelter cultivation influences the succession pattern of microbial communities and in turn impacts the wine aromas and flavors.
Collapse
|
12
|
Succession and Diversity of Microbial Flora during the Fermentation of Douchi and Their Effects on the Formation of Characteristic Aroma. Foods 2023; 12:foods12020329. [PMID: 36673421 PMCID: PMC9857697 DOI: 10.3390/foods12020329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/30/2022] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
This study aims to understand the development and succession of the microbial community during the production of traditional Aspergillus-type Douchi as well as their effects on the formation and variation of characteristic aroma compounds. High-throughput sequencing technology, solid-phase microextraction, gas chromatography-mass spectrometry, and Spearman correlation analysis were conducted to study the changes in the microbial community and characteristic flavor during the fermentation process. Aspergillus spp. was dominant in the early stage of fermentation, whereas Staphylococcus spp., Bacillus spp., and Millerozyma spp. became dominant later. At the early stage, the main flavor compounds were characteristic soy-derived alcohols and aldehydes, mainly 1-hexanol, 1-octen-3-ol, and nonanal. In the later stage, phenol, 2-methoxy-, and 3-octanone were formed. Correlation analysis showed that six bacterial genera and nine fungal genera were significantly correlated with the main volatile components, with higher correlation coefficients, occurring on fungi rather than bacteria. Alcohols and aldehydes were highly correlated with the relative abundance of bacteria, while that of yeast species such as Millerozyma spp., Kodamaea spp., and Candida spp. was positively correlated with decanal, 3-octanol, 2-methoxy-phenol, 4-ethyl-phenol, 3-octanone, and phenol. The novelty of this work lies in the molds that were dominant in the pre-fermentation stage, whereas the yeasts increased rapidly in the post-fermentation stage. This change was also an important reason for the formation of the special flavor of Douchi. Correlation analysis of fungi and flavor substances was more relevant than that of bacteria. As a foundation of our future focus, this work will potentially lead to improved quality of Douchi and shortening the production cycle by enriching the abundance of key microbes.
Collapse
|
13
|
Que Z, Jin Y, Huang J, Zhou R, Wu C. Flavor compounds of traditional fermented bean condiments: Classes, synthesis, and factors involved in flavor formation. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
14
|
Sun J, Su Y, Wang L, Lv F, Wu H. Nutrients and antioxidant properties of enzymatically hydrolyzed anchovy ( Engraulis japonicus) paste. CYTA - JOURNAL OF FOOD 2022. [DOI: 10.1080/19476337.2022.2129793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Jiang Sun
- School of Environment and Bioengineering, Nantong College of Science and Technology, Nantong, Jiangsu, China
| | - Yongchang Su
- Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian Province, Xiamen, Fujian, China
| | - Linghua Wang
- Technology Department of Zhejiang Eiifne Marine Biological Products Co,Ltd, Taizhou, Zhejiang, China
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhejiang, China
| | - Feng Lv
- School of Environment and Bioengineering, Nantong College of Science and Technology, Nantong, Jiangsu, China
| | - Haiyan Wu
- School of Environment and Bioengineering, Nantong College of Science and Technology, Nantong, Jiangsu, China
| |
Collapse
|
15
|
Chen Z, Song J, Ren L, Wang H, Zhang Y, Suo H. Effect of the succession of the microbial community on physicochemical properties and flavor compounds of Mucor wutungkiao-fermented sufu. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
16
|
Yao D, Yu Q, Xu L, Su T, Ma L, Wang X, Wu M, Li Z, Zhang D, Wang C. Wheat supplement with buckwheat affect gut microbiome composition and circulate short-chain fatty acids. Front Nutr 2022; 9:952738. [PMID: 36147303 PMCID: PMC9486400 DOI: 10.3389/fnut.2022.952738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 08/08/2022] [Indexed: 12/23/2022] Open
Abstract
Buckwheat has beneficial effects on human intestinal health, which is often compounded with wheat to make food. Therefore, the effect of cereals mixture via in vitro fermentation on gut microbes and short-chain fatty acids (SCFAs) were investigated in this study. The mixture of wheat and tartary buckwheat (WT) produced more lactate and acetate, and the mixture of wheat and sweet buckwheat (WE) produced more propionate and butyrate. Compared with wheat (WA), the relative abundance of some beneficial bacteria significantly increased, such as Sutterella in WT and Faecalibacterium in WE. Cereals mixture also affected the expression of functional genes, involved in metabolic pathways and carbohydrate-active enzymes (CAZymes) that modulated SCFAs generation. This study provides new insights into the effects of sweet and tartary buckwheat on intestinal function, which is beneficial to applying both types of buckwheat in practical.
Collapse
Affiliation(s)
- Di Yao
- College of Food, Heilongjiang Bayi Agricultural University, Daqing, China
- *Correspondence: Di Yao,
| | - Qiaoru Yu
- College of Food, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Lei Xu
- College of Food, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Tingting Su
- College of Food, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Lixue Ma
- College of Food, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Xiaoyu Wang
- College of Food, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Mengna Wu
- College of Food, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Zhijiang Li
- College of Food, Heilongjiang Bayi Agricultural University, Daqing, China
- Heilongjiang Engineering Research Center for Coarse Cereals Processing and Quality Safety, Daqing, China
- Key Laboratory of Agro-Products Processing and Quality Safety of Heilongjiang Province, Daqing, China
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Dongjie Zhang
- College of Food, Heilongjiang Bayi Agricultural University, Daqing, China
- Heilongjiang Engineering Research Center for Coarse Cereals Processing and Quality Safety, Daqing, China
- Key Laboratory of Agro-Products Processing and Quality Safety of Heilongjiang Province, Daqing, China
| | - Changyuan Wang
- College of Food, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
17
|
Sun X, Sun L, Su L, Wang H, Wang D, Liu J, Sun E, Hu G, Liu C, Gao A, Jin Y, Zhao L. Effects of Microbial Communities on Volatile Profiles and Biogenic Amines in Beef Jerky from Inner Mongolian Districts. Foods 2022; 11:foods11172659. [PMID: 36076844 PMCID: PMC9455903 DOI: 10.3390/foods11172659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Beef jerky is a traditional fermented meat product from Inner Mongolia, handcrafted by artisans. We investigated the bacteria of the microbial community, volatile flavor components, and biogenic amines of Inner Mongolia beef jerky via high-throughput sequencing, solid-phase microextraction with gas chromatography−mass spectrometry, and high-performance liquid chromatography, respectively. Thirty-three bacteria were identified, predominantly from the genera Pseudomonas (45.4%), Ralstonia (13.4%), and Acinetobacter (7.3%). Fifty-nine volatile flavor compounds and eight biogenic amines were detected. Based on Spearman’s correlation coefficient, 20 bacterial genera were significantly associated with the dominant volatile compounds in the beef jerky samples (p < 0.05). The results demonstrated that beef jerky may be toxic due to cadaverine, putrescine, and histamine; moreover, the amounts of putrescine and cadaverine were positively correlated with the abundance of unclassified_f_Enterobacteriaceae (p < 0.05). These findings shed light on the formation of the microbial community, flavor components, and biogenic amines of beef jerky, thereby providing a basis for improving its quality.
Collapse
|
18
|
Sun Y, Hua Q, Tian X, Xu Y, Gao P, Xia W. Effect of starter cultures and spices on physicochemical properties and microbial communities of fermented fish (Suanyu) after fermentation and storage. Food Res Int 2022; 159:111631. [DOI: 10.1016/j.foodres.2022.111631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/27/2022] [Accepted: 07/05/2022] [Indexed: 11/26/2022]
|
19
|
Zhao C, Tian Z, Yi J, Shi Y, Zhu J, Ji Z, Chen S, Kang Q, Lu J. Characterization and correlation of bacterial community and volatile flavor compounds in xiguajiang, a Chinese traditional fermented condiment. Food Res Int 2022; 162:111904. [DOI: 10.1016/j.foodres.2022.111904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/27/2022]
|
20
|
Exploring Core Microbiota Based on Characteristic Flavor Compounds in Different Fermentation Phases of Sufu. Molecules 2022; 27:molecules27154933. [PMID: 35956884 PMCID: PMC9370341 DOI: 10.3390/molecules27154933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Sufu, a Chinese traditional fermented soybean product, has a characteristic foul smell but a pleasant taste. We determined the core functional microbiota and their metabolic mechanisms during sufu fermentation by examining relationships among bacteria, characteristic flavor compounds, and physicochemical factors. Flavor compounds in sufu were detected through headspace solid-phase microextraction coupled with gas chromatography–mass spectrometry, and the microbial community structure was determined through high-throughput 16S rRNA sequencing. The results showed that the fermentation process of sufu could be divided into early and late stages. The early stage was critical for flavor development. Seven microbiota were screened based on their abundance, microbial relevance, and flavor production capacity. Five microbes were screened in the early stage: Pseudomonas, Tetragenococcus, Lysinibacillus, Pantoea, and Burkholderia–Caballeronia–Paraburkholderia. Three microbes were screened in the late stage: Exiguobacterium, Bacillus, and Pseudomonas. Their metabolic profiles were predicted. The results provided a reference for the selection of enriched bacterial genera in the fermentation process and controlling applicable process conditions to improve the flavor of sufu.
Collapse
|
21
|
Deng W, Wang M, Li Z, Liu G, Liu Z, Yu H, Liu J. Effect of the changs of microbial community on flavor components of traditional soybean paste during storage period. Food Res Int 2022; 161:111866. [DOI: 10.1016/j.foodres.2022.111866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/30/2022] [Accepted: 08/21/2022] [Indexed: 11/04/2022]
|
22
|
Yuan YH, Liu LX, Guo L, Wang L, Hao JW, Liu YG. Changes of bacterial communities and volatile compounds developed from the spoilage of white Hypsizygus marmoreus under different storage conditions. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
23
|
Xi X, Ke J, Ma Y, Liu X, Gu X, Wang Y. Physiochemical and taste characteristics of traditional Chinese fermented food sufu. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaoli Xi
- College of Food Science and Technology Hebei Agricultural University Baoding China
| | - Jingxuan Ke
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation Nanyang Institute of Technology Nanyang China
| | - Yanli Ma
- College of Food Science and Technology Hebei Agricultural University Baoding China
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation Nanyang Institute of Technology Nanyang China
| | - Xu Liu
- College of Food Science and Technology Hebei Agricultural University Baoding China
| | - Xiaodong Gu
- College of Food Science and Technology Hebei Agricultural University Baoding China
| | - Yinzhuang Wang
- College of Food Science and Technology Hebei Agricultural University Baoding China
| |
Collapse
|
24
|
Bacterial communities in home-made Doushen with and without chili pepper. Food Res Int 2022; 156:111321. [PMID: 35651075 DOI: 10.1016/j.foodres.2022.111321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/24/2022]
Abstract
Doushen is a traditional Chinese fermented soybean product prepared with sterilizated soybeans under open conditions. However, little is known on the bacterial community and their influence on the flavor of Doushen. In the present study, Doushen samples with and without chili pepper were collected to reveal the bacterial community and assess a correlation between bacterial community and VFCs in the two kinds of Doushen samples. We identified four phyla and 97 bacterial genera in the two kinds of Doushen samples. In addition, a total of 17 significantly different OTUs were detected by LEfSe (Line Discriminant Analysis (LDA) Effect Size). Results of Principal coordinates analysis (PCoA), unweighted pair-group method (UPGMA) and functional and phenotypes prediction showed that bacterial communities in the two kinds of Doushen were significantly different. Spearman correlation analysis showed that all the dominant genera, except Clostridium Sensu stricto 1, were significantly correlated with the characteristic VFCs. This study provides a theoretical basis for improving the flavour quality of traditional homemade Doushen.
Collapse
|
25
|
Qu A, Zhang Y, Shi H, Wang H, Ding K, Pan ZH, Zhao G, Hadiatullah H. Investigation of gas-producing bacteria in sufu and its effective method to control their growth. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|