1
|
Xiong S, Tao P, Yu Y, Wu W, Li Y, Chen G, Si J, Yang H. Effect of Polygonatum cyrtonema Hua polysaccharides on gluten structure, in vitro digestion and shelf-life of fresh wet noodle. Int J Biol Macromol 2024; 279:135475. [PMID: 39260637 DOI: 10.1016/j.ijbiomac.2024.135475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/14/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024]
Abstract
This study aimed to investigate the effects of raw Polygonatum cyrtonema Hua polysaccharides (RPCPs) and "zhi" P. cyrtonema Hua polysaccharides (ZPCPs) on the gluten structure, in vitro digestion, and shelf life of fresh wet noodles (FWN). The results demonstrated that incorporating PCPs improved the cooking and sensory qualities of FWN. Moreover, the shelf life of FWN was extended by 6 days with 1.5 % RPCPs (w/w) compared with the control FWN. Furthermore, incorporating 1.5 % ZPCPs led to a 1.2- and 0.2-fold increase in the disulfide bond and α-helix content, respectively, compared with the control FWN. This resulted in enhanced gluten structure, improved springiness and viscidity, and reduced cooking loss by 14.47 %-52.19 %. The scanning electron microscopy analysis revealed that the starch particles were entrapped by PCPs, leading to higher gelatinization temperature and lower setback value of FWN, thereby reducing the starch digestion ratio to 55.50 %. In summary, the findings suggested that FWN containing PCPs can extend shelf life, improve taste, and slow starch digestion staple.
Collapse
Affiliation(s)
- Siqing Xiong
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Pengcheng Tao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Yuanguo Yu
- Hemudu Yuanguo Agricultural Products Development Co., Ltd, Yuyao 315414, China
| | - Wenbing Wu
- Hunan Fenggu Food Technology Co., Ltd, Loudi 417612, China
| | - Yongxin Li
- College of Food and Health, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Gang Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Jinping Si
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China.
| | - Huqing Yang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
2
|
Yang X, Guo J, Niu M, Lu C, Wang P, Luo D. Mitigating effect of fucoidan versus sodium alginate on quality degradation of frozen dough and final steamed bread. Food Chem X 2024; 23:101608. [PMID: 39071935 PMCID: PMC11282935 DOI: 10.1016/j.fochx.2024.101608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024] Open
Abstract
The impact of fucoidan (FD) and sodium alginate (SA) addition (0.3, 0.6, and 0.9 g/100 g wheat flour, dry basis) and freezing time on the rheology, water, structural characteristics of dough, and the quality of end steamed bread was explored in this study. The results showed FD was more effective in improving the textural characteristics of frozen dough compared with SA. Meanwhile, the freezable and free water content of SA dough were lower than those of FD dough, with the most pronounced effect observed at 0.9%. Adding SA increased the storage modulus, loss modulus, and disulfide bond content of the dough. The addition of FD induced a denser gluten protein network with fewer pores. Furthermore, the addition of FD reduced the hardness and chewiness of steamed bread and increased its specific volume and lightness. Overall, FD could alleviate the quality deterioration of frozen dough and the corresponding steamed bread.
Collapse
Affiliation(s)
- Xue Yang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, Henan, PR China
| | - Jinying Guo
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, Henan, PR China
| | - Mengli Niu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, Henan, PR China
| | - Can Lu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, Henan, PR China
| | - Ping Wang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, Henan, PR China
| | - Denglin Luo
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, Henan, PR China
| |
Collapse
|
3
|
Yang C, Shuaibu A, Lan H, Zhao Y, Xu Y, Gao Y, Deng S. Substitution of NaCl by organic sodium salts in cured large yellow croaker (Larimichthys crocea): Improvement of the quality and flavor characteristic. Food Chem 2024; 464:141704. [PMID: 39447266 DOI: 10.1016/j.foodchem.2024.141704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/05/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
For lowering the daily intake of salt, the study evaluated the impact of various organic sodium salts (OSS), including sodium acetate (SA), sodium citrate (SC), and sodium lactate (SL), on the quality and volatile flavor profiles of large yellow croaker. The results showed that the 5 % SC and 5 % SL treatments significantly improved water holding capacity (WHC), texture, and color (p < 0.05). These groups also demonstrated compact microstructures and maintained strong sensory acceptability. However, as the curing concentration increased, protein unfolding and oxidation intensified, and the transition from bound and immobile water to free water was observed. This shift negatively affected WHC, texture, and cell structure. Additionally, gas chromatography-ion mobility spectrometry (GC-IMS) identified 27 volatile compounds, with OSS treatments notably enhancing flavor intensity. These findings offer valuable insights for developing low-sodium practices in the seafood industry.
Collapse
Affiliation(s)
- Chao Yang
- College of Food Science and Pharmacy, Zhejiang Ocean University, China
| | - Abubakar Shuaibu
- College of Food Science and Pharmacy, Zhejiang Ocean University, China
| | - Hao Lan
- Faculty of Food Science, Zhejiang Pharmaceutical University, China
| | - Yuying Zhao
- College of Food Science and Pharmacy, Zhejiang Ocean University, China
| | - Yi Xu
- College of Food Science and Pharmacy, Zhejiang Ocean University, China
| | - Yuanpei Gao
- College of Food Science and Pharmacy, Zhejiang Ocean University, China.
| | - Shanggui Deng
- College of Food Science and Pharmacy, Zhejiang Ocean University, China
| |
Collapse
|
4
|
Lin P, Wang Q, Wang Q, Chen J, He L, Qin Z, Li S, Han J, Yao X, Yu Y, Yao Z. Evaluation of the anti-atherosclerotic effect for Allium macrostemon Bge. Polysaccharides and structural characterization of its a newly active fructan. Carbohydr Polym 2024; 340:122289. [PMID: 38858004 DOI: 10.1016/j.carbpol.2024.122289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 06/12/2024]
Abstract
Allium Macrostemon Bge. (AMB) is a well-known homology of herbal medicine and food that has been extensively used for thousands of years to alleviate cardiovascular diseases. It contains a significant amount of polysaccharides, yet limited research exists on whether these polysaccharides are responsible for its cardiovascular protective effects. In this study, the anti-atherosclerosis effect of the crude polysaccharides of AMB (AMBP) was evaluated using ApoE-/- mice fed a high-fat diet, along with ox-LDL-induced Thp-1 foam cells. Subsequently, guided by the inhibitory activity of foam cells formation, a major homogeneous polysaccharide named AMBP80-1a was isolated and purified, yielding 11.1 % from AMB. The molecular weight of AMBP80-1a was determined to be 10.01 kDa. AMBP80-1a was firstly characterized as an agavin-type fructan with main chains consisting of →1)-β-d-Fruf-(2→ and →1,6)-β-d-Fruf-(2→ linked to an internal glucose moiety, with →6)-β-d-Fruf-(2→ and β-d-Fruf-(2→ serving as side chains. Furthermore, the bio-activity results indicated that AMBP80-1a reduced lipid accumulation and cholesterol contents in ox-LDL-induced Thp-1 foam cell. These findings supported the role of AMBP in alleviating atherosclerosis in vivo/vitro. AMBP80-1a, as the predominant homogeneous polysaccharide in AMB, was expected to be developed as a functional agent to prevent atherosclerosis.
Collapse
Affiliation(s)
- Pei Lin
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Qiqi Wang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Qi Wang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jiayun Chen
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Liangliang He
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Zifei Qin
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Shaoping Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Jingyan Han
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xinsheng Yao
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Yang Yu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Zhihong Yao
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
5
|
Canale M, Sanfilippo R, Strano MC, Bavaro AR, Amenta M, Bizzini M, Allegra M, Blangiforti S, Spina A. Technological Properties of Inulin-Enriched Doughs and Breads, Influence on Short-Term Storage and Glycemic Response. Foods 2024; 13:2711. [PMID: 39272477 PMCID: PMC11395101 DOI: 10.3390/foods13172711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
The use of inulin in food is highly appreciated by consumers because of its prebiotic effect. In this study, the effects of increasing additions (5, 10 and 20%) of inulin as a substitute for wheat flour in bread production were investigated with regard to the physical, technological and rheological properties of the flour blends. Inulin reduced the water-binding capacity from 1.4 g/100 g with 0 flour to 0.80 g/100 g with the 20% inulin addition, while there were no statistical differences in the oil-binding capacity. The addition of inulin also influenced the yeast rates, especially in the samples with 5 and 10% addition. On the farinograph, inulin caused a reduction in water absorption (40.75 g/100 g with 20% inulin), an increase in dough development time (18.35 min with 10% inulin) and dough stability (13.10 min with 10% inulin). The mixograph showed a longer kneading time for the sample with 20% inulin (8.70 min) than for the control (4.61 min). In addition, there was an increase in dough firmness and tightness due to the addition of inulin (W: 203 × 10-4 J; P/L: 4.55 for the 20% inulin sample) compared with the control. The physical and technological properties of the loaves were evaluated at time 0 and after 4 days (T4). The addition of inulin reduced the volume of the bread while increasing the weight, albeit with a weight loss at T4 (compared to T0) of 4.8% for the 20% inulin and 14.7% for the control. The addition of inulin caused a darkening of the crust of the enriched bread, proportional to the increase in inulin content. In addition, the inulin content ranged from 0.82 g/100 g in the control to 14.42 g/100 g in the 20% inulin bread, while the predicted glycemic index ranged from 94.52 in the control to 89.39 in the 20% inulin bread. The available data suggest that the formulation with 5% inulin provides the highest performance.
Collapse
Affiliation(s)
- Michele Canale
- Research Centre for Cereal and Industrial Crops, Council for Agricultural Research and Economics (CREA), Corso Savoia, 190, 95024 Acireale, Italy
| | - Rosalia Sanfilippo
- Research Centre for Cereal and Industrial Crops, Council for Agricultural Research and Economics (CREA), Corso Savoia, 190, 95024 Acireale, Italy
| | - Maria Concetta Strano
- Research Centre for Olive, Fruit and Citrus Crops, Council for Agricultural Research and Economics (CREA), Corso Savoia, 190, 95024 Acireale, Italy
| | - Anna Rita Bavaro
- Institute of Sciences of Food Productions (ISPA), National Research Council (CNR), Via G. Amendola, 122/O, 70126 Bari, Italy
| | - Margherita Amenta
- Research Centre for Olive, Fruit and Citrus Crops, Council for Agricultural Research and Economics (CREA), Corso Savoia, 190, 95024 Acireale, Italy
| | - Michele Bizzini
- Stazione Consorziale Sperimentale di Granicoltura per la Sicilia, Via Sirio, 1, 95041 Caltagirone, Italy
| | - Maria Allegra
- Research Centre for Olive, Fruit and Citrus Crops, Council for Agricultural Research and Economics (CREA), Corso Savoia, 190, 95024 Acireale, Italy
| | - Sebastiano Blangiforti
- Stazione Consorziale Sperimentale di Granicoltura per la Sicilia, Via Sirio, 1, 95041 Caltagirone, Italy
| | - Alfio Spina
- Research Centre for Cereal and Industrial Crops, Council for Agricultural Research and Economics (CREA), Corso Savoia, 190, 95024 Acireale, Italy
| |
Collapse
|
6
|
Sinsuwan S. Effect of Inulin on Rheological Properties and Emulsion Stability of a Reduced-Fat Salad Dressing. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2024; 2024:4229514. [PMID: 39015432 PMCID: PMC11251795 DOI: 10.1155/2024/4229514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 06/03/2024] [Accepted: 06/11/2024] [Indexed: 07/18/2024]
Abstract
This study is aimed at investigating the potential use of inulin in a reduced-fat salad dressing to improve its rheological properties, fat globule size distribution, and emulsion stability. The reduced-fat salad dressing, which has 50% less fat compared to the full-fat counterpart (control), was prepared with varying inulin concentrations (10, 12.5, 15, 17.5, and 20% w/w). The full-fat and reduced-fat salad dressings exhibited a non-Newtonian shear-thinning behavior. Power law model was used to describe the rheological properties. Results showed that the flow behavior index (n) and consistency coefficient (K) were greatly affected by the concentration of inulin. A greater pseudoplasticity and apparent viscosity of the reduced-fat samples were achieved with a higher concentration of inulin. Oscillatory tests showed that the storage modulus (G') and loss modulus (G ″) values increased with increasing inulin concentration. All samples displayed characteristics of a viscoelastic solid, as evidenced by a greater G' than G ″. Regarding the size distribution of the oil droplets, the reduced-fat salad dressing containing a higher inulin content was observed to have a larger droplet size. All reduced-fat samples, similar to the full-fat counterparts, exhibited stability with no cream separation over one month of storage at 4°C, as determined by visual observation. Additionally, the reduced-fat salad dressings supplemented with 17.5 and 20% inulin exhibited stability against cream separation, comparable to the full-fat counterpart (p > 0.05), as measured by the thermal stress test (80°C for 30 min) with centrifugation. The sensory acceptance scores for reduced-fat salad dressing with 15 and 17.5% inulin, ranging from approximately 6.28 to 7.63 on a 9-point hedonic scale for all evaluated attributes (appearance, color, aroma, texture, taste, and overall acceptability), were not significantly different from those of the full-fat counterpart (p > 0.05). This study demonstrated that inulin may be a suitable ingredient in reduced-fat salad dressings.
Collapse
Affiliation(s)
- Sornchai Sinsuwan
- School of Human Ecology (Program in FoodNutrition and Applications)Sukhothai Thammathirat Open University, Nonthaburi 11120, Thailand
| |
Collapse
|
7
|
Yang Q, Guo J, Zhang F, Zhao F, Zhang G. Inulin with different degrees of polymerization as a functional ingredient: Evaluation of flour, dough, and steamed bread characteristics during freezing. Food Chem X 2024; 22:101431. [PMID: 38764781 PMCID: PMC11101675 DOI: 10.1016/j.fochx.2024.101431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/04/2024] [Accepted: 04/29/2024] [Indexed: 05/21/2024] Open
Abstract
In the study, the effects of short-chain inulin (OP), natural inulin (OH), and long-chain inulin (OHP) at substitution levels of 3%, 6%, and 9%, as well as freezing of 0, 15, and 30 days, on the farinograph and extensograph characteristics of flour, the rheological properties, water distribution, and microstructure of dough, as well as the quality of the final steamed bread, were investigated. The findings revealed that inulin led to a reduction in the water absorption of the dough while increasing its stable time. Furthermore, inulin delayed the alteration of freezable water within the frozen dough. Notably, the addition of inulin resulted in a more cohesive and evenly arranged network structure within the frozen dough. Steamed bread supplemented with 6% OP, 6% OH, and 3% OHP consistently dislayed a higher specific volume and spread ratio. These findings offer valuable insights into the utilization of inulin in frozen wheat foods.
Collapse
Affiliation(s)
- Qing Yang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, Henan Province, PR China
| | - Jinying Guo
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, Henan Province, PR China
| | - Fan Zhang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, Henan Province, PR China
| | - Fen Zhao
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, Henan Province, PR China
| | - Gege Zhang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, Henan Province, PR China
| |
Collapse
|
8
|
Wei X, Ren G, Liu W, Zhao M, Xu D. Effects of component ratios on the properties of sweet potato-oat composite dough and the quality of its steamed cake. J Food Sci 2024; 89:3248-3259. [PMID: 38709869 DOI: 10.1111/1750-3841.17081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 03/24/2024] [Accepted: 04/02/2024] [Indexed: 05/08/2024]
Abstract
To enhance the value proposition of sweet potato and oat while broadening their applicability in further processing, this study systematically investigated the impact of oat flour incorporation ratios (5%-25% of sweet potato dry weight) on the quality attributes of sweet potato-oat composite dough and its resulting steamed cake products. The results showed that the addition of oat flour could promote the rheological, water retention, and thermomechanical properties of the composite dough and improve the internal microstructure, specific volume, texture, and other processing properties of the steamed cake products. The rheology, water retention, and protein stability of the dough were maximized when the proportion of oat flour was 25%. The textural properties of steamed cakes, hardness, elasticity, cohesion, adhesion, chewiness, and recovery significantly increased (p < 0.05) and viscosity significantly decreased (p < 0.05) with the addition of oat flour. It is noteworthy that thermodynamic properties, internal structure of the dough, and air holding capacity, which are critical for processing, showed the best results at 20% oat flour addition. Therefore, the addition of 20%-25% oats is recommended to produce composite doughs with optimal quality and processing characteristics. PRACTICAL APPLICATION: As living standards improve, traditional cereals may no longer able to meet people's health needs. Therefore, there is an urgent consumer demand for nutritious, tasty alternatives to staple foods. In this study, oat flour and sweet potato mash were mixed to make sweet potato-oat cake, and the effect of ingredient ratio on the performance and quality of composite dough containing sweet potato-oat flour was analyzed, thus proposing an innovative approach to the research, development, and industrial production of sweet potato and oat food products.
Collapse
Affiliation(s)
- Xinyu Wei
- College of Food and Biological Engineering, Henan University of Science and Technology, Luoyang, China
| | - Guangyue Ren
- College of Food and Biological Engineering, Henan University of Science and Technology, Luoyang, China
- Collaorative Innovation Center of Grain Storage Security, Luoyang, China
| | - Wenchao Liu
- College of Food and Biological Engineering, Henan University of Science and Technology, Luoyang, China
| | - Mengyue Zhao
- College of Food and Biological Engineering, Henan University of Science and Technology, Luoyang, China
| | - Duan Xu
- College of Food and Biological Engineering, Henan University of Science and Technology, Luoyang, China
- Collaorative Innovation Center of Grain Storage Security, Luoyang, China
| |
Collapse
|
9
|
Hashemi S, Mollakhalili‐Meybodi N, Akrami Mohajeri F, Fallahzadeh H, Khalili Sadrabad E. Effect of goji berry incorporation on the texture, physicochemical, and sensory properties of wheat bread. Food Sci Nutr 2024; 12:3982-3992. [PMID: 38873473 PMCID: PMC11167144 DOI: 10.1002/fsn3.4056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 06/15/2024] Open
Abstract
The regular intake of Lycium barbarum (goji berry) is supposed to play an important role in the promotion of human health. Regarding, its incorporation into staple foods, including bread, seems to be effective. However, it requires the evaluation of dough behavior and final product quality. This study investigated the effect of goji berry incorporation at levels of 10, 15, 20, 25, and 30% ww-1 on the textural, physicochemical, and sensory properties of wheat bread. Results indicated a significant enhancement of water absorption and gelatinization temperature in composite flour via the inclusion of goji berry powder (p < 0.05). Using goji berry powder up to 20% ww-1 has shown to obtain the structure able to restore gases through the baking process and provide enhancement in a specific volume at about 10%. Alongside, the hardness of composite bread decreased, and the optimal hardness was observed at formulations containing 20% w/w goji berry powder with a value equal to 1199.95 ± 0.05 g, which is supposed to be induced by the higher specific volume and lower moisture content of bread samples. Moreover, color and sensory perception have been found to be significantly changed by goji berry substitution. Goji berry substitution up to 20% ww-1 is found to be preferred by the consumer, and a drop in overall acceptability was observed at its higher inclusion. The technological characteristic changes induced by goji berry incorporation are induced by its gluten dilution impact. However, the gel-like structure formed by the high fiber content of goji berries compensates for this adverse impact up to 20% w/w substitution level.
Collapse
Affiliation(s)
- Saba Hashemi
- Research Center for Food Hygiene and Safety, School of Public HealthShahid Sadoughi University of Medical ScienceYazdIran
- Department of Food Hygiene and Safety, School of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
| | - Neda Mollakhalili‐Meybodi
- Research Center for Food Hygiene and Safety, School of Public HealthShahid Sadoughi University of Medical ScienceYazdIran
- Department of Food Science and Technology, School of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
| | - Fateme Akrami Mohajeri
- Research Center for Food Hygiene and Safety, School of Public HealthShahid Sadoughi University of Medical ScienceYazdIran
- Department of Food Hygiene and Safety, School of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
- Infectious Diseases Research Center, Shahid Sadoughi HospitalShahid Sadoughi University of Medical SciencesYazdIran
| | - Hossein Fallahzadeh
- Research Center for Healthcare Data Modeling, Department of Biostatistics and Epidemiology, School of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
| | - Elham Khalili Sadrabad
- Research Center for Food Hygiene and Safety, School of Public HealthShahid Sadoughi University of Medical ScienceYazdIran
- Department of Food Hygiene and Safety, School of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
- Infectious Diseases Research Center, Shahid Sadoughi HospitalShahid Sadoughi University of Medical SciencesYazdIran
| |
Collapse
|
10
|
Yang S, Zhao X, Liu T, Cai Y, Deng X, Zhao M, Zhao Q. Effects of apple fiber on the physicochemical properties and baking quality of frozen dough during frozen storage. Food Chem 2024; 440:138194. [PMID: 38104447 DOI: 10.1016/j.foodchem.2023.138194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
The effects of apple fiber on gluten structure and corresponding frozen dough quality during frozen storage were studied. The addition of 0.50% and 0.75% apple fiber effectively preserved gluten structure by inhibiting the breakage of disulfide bonds and promoting the formation of hydrogen bonds. Notably, the presence of 0.75% apple fiber increased the β-turn of gluten from 29.60% to 33.84%. Fiber-enriched frozen dough exhibited a smoother and more compact microstructure, but excessive fiber addition (more than 1.00%) had adverse effects. The freezable water content of frozen dough decreased as fiber addition increased. Correspondingly, the addition of 1.50% apple fiber resulted in a 56.08% increase in storage modulus, indicating improved viscoelasticity of the dough. Consequently, the addition of 0.50% and 0.75% apple fiber alleviated the quality deterioration of frozen dough bread in terms of larger specific volume, softer and more uniform crumb.
Collapse
Affiliation(s)
- Shuo Yang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiujie Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Tongxun Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yongjian Cai
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xinlun Deng
- Guangdong Wenbang Biotechnology Co., Ltd, Zhaoqing 526000, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Qiangzhong Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
11
|
Gong Y, Sui W, Wang H, Wang Y, Li S, Cui J, Xie R, Liu R, Wu T, Zhang M. In-depth understanding of the effects of different molecular weight pullulan interacting with protein and starch on dough structure and application properties. Int J Biol Macromol 2024; 268:131556. [PMID: 38631579 DOI: 10.1016/j.ijbiomac.2024.131556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/25/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
This work clarified the positive effects of pullulan on dough structure and application properties varied with its molecular weight. Pullulan with different molecular weights were introduced into dough system to explore their intervention effects on structural and technological properties of dough as well as physical and digestion properties of biscuits. Results showed that HPL (pullulan with molecule weight of 100- 300 kDa) could increase the intermolecular collisions, prompt the protein aggregation and limit the water migration in dough system, resulting in an integrate, continuous and dense network structure of the gel with strengthened elasticity and weakened extensibility, which caused an increase in biscuit thickness, hardness and crispness. On the contrary, LPL (pullulan with molecule weight of 3- 100 kDa) could go against the formation of stable and elastic dough through breaking down cross-linkage between protein and starch so as to provide biscuits with decreased hardness and crispness during baking. Both HPL and LPL delayed starch pasting and retrogradation process while HPL had the stronger retarding effect on starch digestibility of biscuits than LPL. These findings dedicated to a better understanding of pullulan function in dough system and provide suggestions for fractionation applications of pullulan in food field.
Collapse
Affiliation(s)
- Ying Gong
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China.
| | - Wenjie Sui
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China.
| | - Huiting Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China.
| | - Yijin Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Shunqin Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Jiayi Cui
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China.
| | - Ruijia Xie
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Rui Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China.
| | - Tao Wu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Min Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China; China-Russia Agricultural Processing Joint Laboratory, Tianjin Agricultural University, Tianjin 300392, PR China.
| |
Collapse
|
12
|
Ni D, Zhang S, Liu X, Zhu Y, Xu W, Zhang W, Mu W. Production, effects, and applications of fructans with various molecular weights. Food Chem 2024; 437:137895. [PMID: 37924765 DOI: 10.1016/j.foodchem.2023.137895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/06/2023]
Abstract
Fructan, a widespread functional polysaccharide, has been used in the food, pharmaceutical, cosmetic, and material production fields because of its versatile physicochemical properties and biological activities. Inulin from plants and levan from microorganisms are two of the most extensively studied fructans. Fructans from different plants or microorganisms have inconsistent molecular weights, and the molecular weight of fructan affects its properties, functions, and applications. Recently, increasing attention has been paid to the production and application of fructans having various molecular weights, and biotechnological processes have been explored to produce tailor-made fructans from sucrose. This review encompasses the introduction of extraction, enzymatic transformation, and fermentation production processes for fructans with diverse molecular weights. Notably, it highlights the enzymes involved in fructan biosynthesis and underscores their physiological effects, with a special emphasis on their prebiotic properties. Moreover, the applications of fructans with varying molecular weights are also emphasized.
Collapse
Affiliation(s)
- Dawei Ni
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Shuqi Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaoyong Liu
- Shandong Haizhibao Ocean Technology Co., Ltd, Weihai, Shandong 264333, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
13
|
Yang Q, Li M, Gu C, Lu A, Dong L, Zhang X, Hu X, Liu Y, Lu J. Effect of Fucoidan on Structure and Bioactivity of Chinese Steamed Bread. Foods 2024; 13:1057. [PMID: 38611362 PMCID: PMC11011307 DOI: 10.3390/foods13071057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/23/2024] [Accepted: 03/24/2024] [Indexed: 04/14/2024] Open
Abstract
Fucoidan refers to a group of sulphated polysaccharides obtained from brown seaweed, with numerous biological activities. In this study, fucoidan was fortified into Chinese steamed bread (CSB) at different concentrations (0, 1%, 3% and 5%) and the effect of fucoidan on the dough properties, structure properties and bioactivity were investigated. The results showed that fucoidan could change the viscosity of unfermented dough, and a high concentration of fucoidan could remove the free radicals produced by the SH-SS exchange reaction (GS-) in the dough, which significantly reduced the content of disulfide bond and reduced the expanded volume of fermented dough (p < 0.05). In addition, fucoidan forms a physical barrier on the surface of starch particles and hinders the reaction between protein-to-protein; therefore, fucoidan increased the hardness, gumminess and chewiness in CSB, and reduced the specific volume in CSB. Furthermore, the fucoidan-fortified CSB samples were found to have both the ability to significantly reduce the predicted glycemic index (pGI) (p < 0.05) and improve antioxidant activity (p < 0.05). Collectively, these findings could provide a theoretical basis for the applications of fucoidan as a functional component in fermented foods.
Collapse
Affiliation(s)
- Qingyu Yang
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China; (Q.Y.)
- State Key Laboratory of Food Nutrition and Safety, Shenyang Normal University, Shenyang 110034, China
| | - Man Li
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China; (Q.Y.)
- State Key Laboratory of Food Nutrition and Safety, Shenyang Normal University, Shenyang 110034, China
| | - Chenqi Gu
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China; (Q.Y.)
- State Key Laboratory of Food Nutrition and Safety, Shenyang Normal University, Shenyang 110034, China
| | - Anni Lu
- Pinehurst School, Albany, Auckland 302-308, New Zealand
| | - Lijun Dong
- Beijing Imperial Food Garden Food Co., Ltd., Beijing 101407, China
| | - Xiling Zhang
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China; (Q.Y.)
- State Key Laboratory of Food Nutrition and Safety, Shenyang Normal University, Shenyang 110034, China
| | - Xiufa Hu
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China; (Q.Y.)
- State Key Laboratory of Food Nutrition and Safety, Shenyang Normal University, Shenyang 110034, China
| | - Yao Liu
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China; (Q.Y.)
- State Key Laboratory of Food Nutrition and Safety, Shenyang Normal University, Shenyang 110034, China
| | - Jun Lu
- Auckland Bioengineering Institute, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- Department of Food and Agriculture Technology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, China
| |
Collapse
|
14
|
Cravero F, Cavallini N, Arrigo R, Savorani F, Frache A. The Effect of Processing Conditions on the Microstructure of Homopolymer High-Density Polyethylene Blends: A Multivariate Approach. Polymers (Basel) 2024; 16:870. [PMID: 38611128 PMCID: PMC11013753 DOI: 10.3390/polym16070870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
In this work, a multivariate approach was utilized for gaining some insights into the processing-structure-properties relationships in polyethylene-based blends. In particular, two high-density polyethylenes (HDPEs) with different molecular weights were melt-compounded using a twin-screw extruder, and the effects of the screw speed, processing temperature and composition on the microstructure of the blends were evaluated based on a Design of Experiment-multilinear regression (DoE-MLR) approach. The results of the thermal characterization, interpreted trough the MLR (multilinear regression) response surfaces, demonstrated that the composition of the blends and the screw rotation speed are the two most important parameters in determining the crystallinity of the materials. Furthermore, the rheological data were examined using a Principal Component Analysis (PCA) multivariate approach, highlighting also in this case the most prominent effect of the weight ratio of the two base polymers and the screw rotation speed.
Collapse
Affiliation(s)
- Fulvia Cravero
- Department of Applied Science and Technology, Politecnico di Torino, Viale Teresa Michel 5, 15121 Alessandria, Italy; (F.C.); (A.F.)
- Local INSTM Unit, 15121 Alessandria, Italy
| | - Nicola Cavallini
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (N.C.); (F.S.)
| | - Rossella Arrigo
- Department of Applied Science and Technology, Politecnico di Torino, Viale Teresa Michel 5, 15121 Alessandria, Italy; (F.C.); (A.F.)
- Local INSTM Unit, 15121 Alessandria, Italy
| | - Francesco Savorani
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (N.C.); (F.S.)
| | - Alberto Frache
- Department of Applied Science and Technology, Politecnico di Torino, Viale Teresa Michel 5, 15121 Alessandria, Italy; (F.C.); (A.F.)
- Local INSTM Unit, 15121 Alessandria, Italy
| |
Collapse
|
15
|
Wan L, Wang X, Liu H, Xiao S, Ding W, Pan X, Fu Y. Retrogradation inhibition of wheat starch with wheat oligopeptides. Food Chem 2023; 427:136723. [PMID: 37385058 DOI: 10.1016/j.foodchem.2023.136723] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 06/18/2023] [Accepted: 06/23/2023] [Indexed: 07/01/2023]
Abstract
Starch staling greatly reduces the cereal products quality, and the staling retardation becomes a focus in current research. The effect of wheat oligopeptide (WOP) on anti-staling properties of wheat starch (WS) was studied. Rheology property indicated that WOP reduced WS viscosity, showing more liquid-like behavior. WOP improved the water holding capacity, inhibited swelling power, and reduced the hardness of WS gels, which decreased from 1200 gf to 800 gf compared with the control after 30 days storage. Meanwhile, the water migration of WS gels were also reduced with WOP incorporation. The relative crystallinity of WS gel with 1% WOP was reduced by 13.3%, and the pore size and the microstructure of gels was improved with WOP. Besides, the short-range order degree reached the lowest value with 1% WOP. In conclusion, this study explained the interaction between WOP and WS, which was beneficial to the application of WOP in WS-based food.
Collapse
Affiliation(s)
- Liuyu Wan
- Key Laboratory for Deep Processing of Major Grain and Oil, Wuhan Polytechnic University, Ministry of Education, Wuhan 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xuedong Wang
- Key Laboratory for Deep Processing of Major Grain and Oil, Wuhan Polytechnic University, Ministry of Education, Wuhan 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Hongyan Liu
- Key Laboratory for Deep Processing of Major Grain and Oil, Wuhan Polytechnic University, Ministry of Education, Wuhan 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shensheng Xiao
- Key Laboratory for Deep Processing of Major Grain and Oil, Wuhan Polytechnic University, Ministry of Education, Wuhan 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Wenping Ding
- Key Laboratory for Deep Processing of Major Grain and Oil, Wuhan Polytechnic University, Ministry of Education, Wuhan 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiuyun Pan
- Yiyantang (Yingcheng) Healthy Salt Manufacturing Co. LTD, Yingcheng 432400, China
| | - Yang Fu
- Key Laboratory for Deep Processing of Major Grain and Oil, Wuhan Polytechnic University, Ministry of Education, Wuhan 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
16
|
Liu X, Chen L, Chen L, Liu D, Liu H, Jiang D, Fu Y, Wang X. The Effect of Terminal Freezing and Thawing on the Quality of Frozen Dough: From the View of Water, Starch, and Protein Properties. Foods 2023; 12:3888. [PMID: 37959007 PMCID: PMC10648450 DOI: 10.3390/foods12213888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Frozen dough is suitable for industrial cold chain transportation, but usually experiences temperature fluctuations through the cold chain to the store after being refrigerated in a factory, seriously damaging the product yield. In order to analyze the influence mechanism of temperature fluctuation during the terminal cold chain on frozen dough, the effects of terminal freezing and thawing (TFT) on the quality (texture and rheology) and component (water, starch, protein) behaviors of dough were investigated. Results showed that the TFT treatment significantly increased the hardness and decreased the springiness of dough and that the storage modules were also reduced. Furthermore, TFT increased the content of freezable water and reduced the bound water with increased migration. Additionally, the peak viscosity and breakdown value after TFT with the increased number of cycles were also increased. Moreover, the protein characteristics showed that the low-molecular-weight region and the β-sheet in the gluten secondary structure after the TFT treatment were increased, which was confirmed by the increased number of free sulfhydryl groups. Microstructure results showed that pores and loose connection were observed during the TFT treatment. In conclusion, the theoretical support was provided for understanding and eliminating the influence of the terminal nodes in a cold chain.
Collapse
Affiliation(s)
- Xiaorong Liu
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China; (X.L.); (L.C.); (H.L.)
| | - Luncai Chen
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China; (L.C.); (D.J.)
| | - Lei Chen
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China; (X.L.); (L.C.); (H.L.)
| | - Dezheng Liu
- Hubei Selenium Grain Technology Group Co., Ltd., Enshi 445600, China;
| | - Hongyan Liu
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China; (X.L.); (L.C.); (H.L.)
| | - Dengyue Jiang
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China; (L.C.); (D.J.)
| | - Yang Fu
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China; (X.L.); (L.C.); (H.L.)
| | - Xuedong Wang
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China; (L.C.); (D.J.)
| |
Collapse
|
17
|
Naji‐Tabasi S, Shahidi‐Noghabi M, Modiri Dovom A, Davtalab M. The use of hydrogel structures in production of extruded rice and investigation of its qualitative characteristics. Food Sci Nutr 2023; 11:5873-5881. [PMID: 37823096 PMCID: PMC10563678 DOI: 10.1002/fsn3.3466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 10/13/2023] Open
Abstract
The aim of this study was to investigate the quality parameters of extruded rice containing hydrogel and comparing with natural rice (Hashemi variety rice). Extruded rice was produced with composite hydrogel (gellan, xanthan and sodium alginate) at the concentrations of 0.0 (control sample), gellan (0.5%)-alginate (0.5%) (GA1), gellan (1%)-alginate (1%) (GA2), gellan (0.5%)-alginate (0.5%)-xanthan (0.1%) (GAX 1%), and gellan (1%)-alginate (1%)-xanthan (0.2%) (GAX2%). The use of hydrogels had no significant effect on moisture content, ash content, cooking time, and color properties of extruded rice (p ≥ .05). In contrast, hydrogel significantly increased water absorption ratio (WAR), water solubility index (WSI), water absorption index (WAI), and textural properties (p ˂ .05) of extruded rice. This observation supports the highest score found for extruded rice containing GA2% and GAX2% in sensory properties, which were similar to natural rice. GA2% rice sample showed the similar texture characteristic, cooking feature, and color parameter to natural rice, ultimately, showing better organoleptic properties.
Collapse
Affiliation(s)
- Sara Naji‐Tabasi
- Department of Food NanotechnologyResearch Institute of Food Science and Technology (RIFST)MashhadIran
| | - Mostafa Shahidi‐Noghabi
- Department of Food ChemistryResearch Institute of Food Science and Technology (RIFST)MashhadIran
| | - Atena Modiri Dovom
- Department of Food NanotechnologyResearch Institute of Food Science and Technology (RIFST)MashhadIran
| | - Maryam Davtalab
- Department of Food NanotechnologyResearch Institute of Food Science and Technology (RIFST)MashhadIran
| |
Collapse
|
18
|
Sherpa K, Priyadarshini MB, Mehta NK, Waikhom G, Surasani VKR, Tenali DR, Vaishnav A, Sharma S, Debbarma S. Blue agave inulin-soluble dietary fiber: effect on technological quality properties of pangasius mince emulsion-type sausage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023. [PMID: 37005347 DOI: 10.1002/jsfa.12594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND The aim of the work was to investigate the influence of supplementing pangasius mince-based emulsion sausages with blue agave-derived inulin at 1% (T1), 2% (T2), 3% (T3), 4% (T4), and 5% (T5) on its technological quality attributes and acceptability. RESULTS The cooking yield of T-2, T-3, and T-4 sausages (96-97%) exhibited no significant difference (P > 0.05), which was higher than the other lots. The T-2 batter exhibited a significant difference with all other treatments, showing the lowest total expressible fluid (12.20%) value, indicating the highest emulsion stability of the batter. There was a significant effect on the diameter reduction of the cooked sausages as the level of inulin increased. Sodium dodecyl sulfate polyacrylamide gel electrophoresis revealed the proteolysis of raw mince without inulin and new bands in cooked sausage samples were observed. Increasing inulin content increased the hardness of the sausages from 2510.81 ± 114.31 g to 3415.54 ± 75.88. The differential scanning calorimetry melting temperatures of peak 2 of the T-1, T-2, T-3, and T-4 increased as the inulin content increased from 1 to 4%. The scanning electron microscope images exhibited a smooth appearance on the surface as the inulin level increased. CONCLUSION The sausages incorporated with the 2% and 3% blue agave plant-derived inulin (T-2 and T-3) showed better sensory overall acceptability scores than the control. The results suggested that the blue agave plant-derived inulin could be efficiently utilized at the 2% and 3% levels to enhance the quality of emulsion-type pangasius sausage. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kusang Sherpa
- Department of Fish Processing Technology and Engineering, College of Fisheries, West Tripura, India
| | | | - Naresh Kumar Mehta
- Department of Fish Processing Technology and Engineering, College of Fisheries, West Tripura, India
| | | | | | | | - Anand Vaishnav
- Department of Fish Processing Technology and Engineering, College of Fisheries, West Tripura, India
| | - Sanjeev Sharma
- Department of Fish Processing Technology and Engineering, College of Fisheries, West Tripura, India
| | - Sourabh Debbarma
- Department of Aquatic Health & Environment, College of Fisheries, West Tripura, India
| |
Collapse
|
19
|
Study on the quality characteristics of hot-dry noodles by microbial polysaccharides. Food Res Int 2023; 163:112200. [PMID: 36596138 DOI: 10.1016/j.foodres.2022.112200] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
The effect of curdlan gum (CG), gellan gum (GG), and xanthan gum (XG) on the quality characteristics of hot-dry noodles (HDN) was investigated. The rheology properties were used to evaluate the quality of the dough, the textural, viscosity, cooking characteristics and water states were investigated to study the quality changes of HDN. Three microbial polysaccharides were found that it could improve the quality of wheat flour and significantly increase the starch viscosity of HDN and delay the water migration rate of HDN. When 0.2% CG, 0.5% GG, and 0.5% XG were added, the HDN showed the best flour swelling power, texture, and tensile properties, and the structure of gluten network was significantly improved. The flourier transform infrared spectroscopy results showed that microbial polysaccharides with appropriate concentrations changed the formation of hydrogen bond in HDN, decreased α-helix and increased β-turn content. Meanwhile, the relative continuous and complete gluten network was formed, which could be proven by microstructure observation. This study provides a reference for functionality applications of HDN with microbial polysaccharides.
Collapse
|
20
|
Liu H, Wan L, Xiao S, Fu Y, Wang X. Changes in the physicochemical and protein distribution properties of dough with the wheat oligopeptide incorporation. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
21
|
Hingsamer M, Kulmer V, de Roode M, Kernitzkyi M. Environmental and socio-economic impacts of new plant breeding technologies: A case study of root chicory for inulin production. Front Genome Ed 2022; 4:919392. [PMID: 36275198 PMCID: PMC9582860 DOI: 10.3389/fgeed.2022.919392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/09/2022] [Indexed: 11/05/2022] Open
Abstract
In Europe, root chicory and other plants are cultivated for their prebiotic food fiber, inulin, which boosts the growth of beneficial gut bacteria and stimulates the human immune system. CHIC, a H2020 project, develops new chicory variants which produce more and reported to be healthier inulin as well as medicinal terpenes. This paper presents an environmental and socio-economic assessment of the whole value chain of the new chicory variants and their derived products using a case study based in the Netherlands. Two scenarios based on new chicory variants using new plant breeding technologies (NPBT) are analyzed and impacts thereof are compared to the reference scenario; the current commercial inulin process from conventional chicory. Both scenarios show higher inulin content, but the inulin adsorption process differs. While one aims to optimize inulin yield, the other one explores the potential of a multipurpose use, yielding inulin and health beneficial terpenes. Methodologically, we employ multi-regional input-output (MRIO) analysis to estimate additional economic benefits, added value and job creation, while by means of life cycle assessment (LCA) effects on greenhouse gas (GHG) emissions and primary energy demand are derived. Both methods, MRIO and LCA, are well suited to analyze the raised issues and draw on the same data. Generally, the results highlight the importance of inulin production at a national and EU-level in the reference scenario. In case of the two scenarios, we find that the related socio-economic impacts are much higher than in the reference scenario and thus highlight their ability to boost economic activity and increase competiveness of the EU, i.e. over 80% of the generated value added stays in the EU. In terms of environmental impacts, the two scenarios show lower GHG emissions and primary energy demand due to the higher efficiencies of the process in the scenarios compared to the reference inulin process. Additionally, regarding the goal of climate neutral production, we find that the majority of GHG emissions stem from the electricity mix and natural gas demand. Replacing these sources of energy with more renewable ones will contribute to this goal.
Collapse
Affiliation(s)
- Maria Hingsamer
- Joanneum Research Forschungsgesellschaft mbH, LIFE—Institute for Climate, Energy and Society, Graz, Austria,*Correspondence: Maria Hingsamer,
| | - Veronika Kulmer
- Joanneum Research Forschungsgesellschaft mbH, LIFE—Institute for Climate, Energy and Society, Graz, Austria
| | | | - Michael Kernitzkyi
- Joanneum Research Forschungsgesellschaft mbH, LIFE—Institute for Climate, Energy and Society, Graz, Austria
| |
Collapse
|
22
|
Impact of garlic oligosaccharide fractions on microcosmic, mesoscopic, or macroscopic characteristics of dough. Food Res Int 2022; 160:111739. [DOI: 10.1016/j.foodres.2022.111739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/08/2022] [Accepted: 07/21/2022] [Indexed: 11/21/2022]
|