1
|
Dailianis S, Rouni M, Ainali NM, Vlastos D, Kyzas GZ, Lambropoulou DA, Bikiaris DN. New insights into the size-independent bioactive potential of pristine and UV-B aged polyethylene microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170616. [PMID: 38311086 DOI: 10.1016/j.scitotenv.2024.170616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/06/2024]
Abstract
The present study investigates the morphological, physicochemical, and structural changes occurred by the UV-B aging process of low-density polyethylene microplastics (LDPE MPs), as well as the bioactive potential of both pristine and UVaged MPs towards healthy peripheral blood lymphocytes. Specifically, LDPE MPs (100-180 μm) prepared by mechanical milling of LDPE pellets, were UV-B irradiated for 120 days (wavelength 280 nm; temperature 25 °C; relative humidity 50 %) and further examined for alterations in their particle size and surface, their functional groups, thermal stability, and crystallinity (by means of SEM, FTIR spectroscopy, XRD patterns, and TGA measurements, respectively). In parallel, isolated human peripheral blood lymphocytes were treated with different concentrations (25-500 μg mL-1) of either pristine or aged MPs (UVfree and UV120d LDPE MPs) for assessing the cytogenotoxic (by means of trypan blue exclusion test and the cytokinesis-block micronucleus assay using cytochalasin-B) and oxidative effects (using the DCFH-DA staining) in both cases. According to the results, UVfree and UV120d-LDPE MPs, with a size ranging from 100 to 180 μm, can differentially promote cytogenotoxic and oxidative alterations in human lymphocytes. In fact, UVfree LDPE MPs not being able to be internalized by cells due to their size, could indirectly promote the onset of mild oxidative and cytogenotoxic damage in human peripheral lymphocytes, via a dose-dependent but size-independent manner. The latter is more profound in case of the irregular-shaped UV120d-LDPE MPs, bearing improved dispersibility and sharp edges (by means of cracks and holes), as well as oxygen-containing and carbonyl groups. To our knowledge, the present findings provide new data regarding the bioactive behavior of pristine and UV-B aged LDPE MPs, at least in the in vitro biological model tested, thus giving new evidence for their size-independent and/or indirect mode of action.
Collapse
Affiliation(s)
- Stefanos Dailianis
- Department of Biology, School of Natural Sciences, University of Patras, GR-26500, Rio, Patras, Greece.
| | - Maria Rouni
- Department of Biology, School of Natural Sciences, University of Patras, GR-26500, Rio, Patras, Greece
| | - Nina Maria Ainali
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Dimitris Vlastos
- Department of Biology, School of Natural Sciences, University of Patras, GR-26500, Rio, Patras, Greece
| | - George Z Kyzas
- Department of Chemistry, International Hellenic University, GR-65404 Kavala, Greece
| | - Dimitra A Lambropoulou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Dimitrios N Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| |
Collapse
|
2
|
Mittal A, Nenwani M, Sarangi I, Achreja A, Lawrence TS, Nagrath D. Radiotherapy-induced metabolic hallmarks in the tumor microenvironment. Trends Cancer 2022; 8:855-869. [PMID: 35750630 DOI: 10.1016/j.trecan.2022.05.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 10/17/2022]
Abstract
Radiation is frequently administered for cancer treatment, but resistance or remission remains common. Cancer cells alter their metabolism after radiotherapy to reduce its cytotoxic effects. The influence of altered cancer metabolism extends to the tumor microenvironment (TME), where components of the TME exchange metabolites to support tumor growth. Combining radiotherapy with metabolic targets in the TME can improve therapy response. We review the metabolic rewiring of cancer cells following radiotherapy and put these observations in the context of the TME to describe the metabolic hallmarks of radiotherapy in the TME.
Collapse
Affiliation(s)
- Anjali Mittal
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI, 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Minal Nenwani
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI, 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Itisam Sarangi
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Abhinav Achreja
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Theodore S Lawrence
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Deepak Nagrath
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI, 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
3
|
Zuo J, Zhang Z, Luo M, Zhou L, Nice EC, Zhang W, Wang C, Huang C. Redox signaling at the crossroads of human health and disease. MedComm (Beijing) 2022; 3:e127. [PMID: 35386842 PMCID: PMC8971743 DOI: 10.1002/mco2.127] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 02/06/2023] Open
Abstract
Redox biology is at the core of life sciences, accompanied by the close correlation of redox processes with biological activities. Redox homeostasis is a prerequisite for human health, in which the physiological levels of nonradical reactive oxygen species (ROS) function as the primary second messengers to modulate physiological redox signaling by orchestrating multiple redox sensors. However, excessive ROS accumulation, termed oxidative stress (OS), leads to biomolecule damage and subsequent occurrence of various diseases such as type 2 diabetes, atherosclerosis, and cancer. Herein, starting with the evolution of redox biology, we reveal the roles of ROS as multifaceted physiological modulators to mediate redox signaling and sustain redox homeostasis. In addition, we also emphasize the detailed OS mechanisms involved in the initiation and development of several important diseases. ROS as a double-edged sword in disease progression suggest two different therapeutic strategies to treat redox-relevant diseases, in which targeting ROS sources and redox-related effectors to manipulate redox homeostasis will largely promote precision medicine. Therefore, a comprehensive understanding of the redox signaling networks under physiological and pathological conditions will facilitate the development of redox medicine and benefit patients with redox-relevant diseases.
Collapse
Affiliation(s)
- Jing Zuo
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for BiotherapyChengduP. R. China
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for BiotherapyChengduP. R. China
| | - Maochao Luo
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for BiotherapyChengduP. R. China
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for BiotherapyChengduP. R. China
| | - Edouard C. Nice
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVictoriaAustralia
| | - Wei Zhang
- West China Biomedical Big Data CenterWest China HospitalSichuan UniversityChengduP. R. China
- Mental Health Center and Psychiatric LaboratoryThe State Key Laboratory of BiotherapyWest China Hospital of Sichuan UniversityChengduP. R. China
| | - Chuang Wang
- Department of PharmacologyProvincial Key Laboratory of Pathophysiology, Ningbo University School of MedicineNingboZhejiangP. R. China
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for BiotherapyChengduP. R. China
- Department of PharmacologyProvincial Key Laboratory of Pathophysiology, Ningbo University School of MedicineNingboZhejiangP. R. China
| |
Collapse
|
4
|
Kim JS, Han YK, Kong MJ, Park KM. Short-term control of diet affects cisplatin-induced acute kidney injury through modulation of mitochondrial dynamics and mitochondrial GSH. Physiol Rep 2022; 10:e15348. [PMID: 35748040 PMCID: PMC9226808 DOI: 10.14814/phy2.15348] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 05/22/2022] [Indexed: 04/21/2023] Open
Abstract
Obesity affects acute kidney injury (AKI) induced by various clinical settings, including transplantation and cisplatin-cancer therapy. However, the effect of short-term food intake change remains to be defined. Here, we investigated the effects of short-term high-fat diet intake and food restriction on cisplatin-induced AKI. Mice were fed either a high-fat diet (HFD) or a low-fat diet (LFD) for 11 days or were not fed for 40 hh (fasting), before cisplatin administration. Cisplatin-induced functional and structural damages to kidneys in both HFD- and LFD-fed mice, with greater damages in HFD-fed mice than LFD-fed mice. HFD decreased mitochondrial total glutathione (tGSH) level, along with increases in the plasma and kidney cholesterol levels. Cisplatin caused the increase of kidney cholesterol levels and oxidative stress, along with the decrease of mitochondrial tGSH levels. In addition, cisplatin-induced mitochondrial damage and apoptosis of tubular cells in both HFD- and LFD-fed mice. An increase of Fis1 (mitochondria fission 1 protein), whereas a decrease of Opa1 (mitochondria fusion 1 protein) occurred by cisplatin. These cisplatin effects were greater in HFD-fed mice than in LFD-fed mice. Administration of mitochondria-specific antioxidant treatment during HFD feeding inhibited these cisplatin-induced changes. Fasting for 40 h also significantly reduced the cisplatin-induced changes mentioned above. These data demonstrate that short-term HFD intake worsens cisplatin-induced oxidative stress by the reduction of mitochondrial tGSH, resulting in increased cisplatin-induced nephrotoxicity. These data newly indicate that the control of calorie intake, even for a short period, affects kidney susceptibility to injury. Although most studies described the effects of a long-term high-fat diet on the kidneys, in this study, we found that even if a high-fat diet was consumed for a short-term, physiological changes and mitochondria tGSH decrease in the kidneys, and consequently increased cisplatin-nephrotoxic susceptibility. These data suggest the association of calorie intake with kidney susceptibility to cisplatin.
Collapse
Affiliation(s)
- Ji Su Kim
- Department of Anatomy and BK21 PlusSchool of Medicine, Kyungpook National UniversityDaeguRepublic of Korea
| | - Yong Kwon Han
- Department of Anatomy and BK21 PlusSchool of Medicine, Kyungpook National UniversityDaeguRepublic of Korea
| | - Min Jung Kong
- Department of Anatomy and BK21 PlusSchool of Medicine, Kyungpook National UniversityDaeguRepublic of Korea
- Cardiovascular Research Institute, Kyungpook National UniversityDaeguRepublic of Korea
| | - Kwon Moo Park
- Department of Anatomy and BK21 PlusSchool of Medicine, Kyungpook National UniversityDaeguRepublic of Korea
- Cardiovascular Research Institute, Kyungpook National UniversityDaeguRepublic of Korea
| |
Collapse
|
5
|
Remofuscin induces xenobiotic detoxification via a lysosome-to-nucleus signaling pathway to extend the Caenorhabditis elegans lifespan. Sci Rep 2022; 12:7161. [PMID: 35504961 PMCID: PMC9064964 DOI: 10.1038/s41598-022-11325-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/15/2022] [Indexed: 11/09/2022] Open
Abstract
Lipofuscin is a representative biomarker of aging that is generated naturally over time. Remofuscin (soraprazan) improves age-related eye diseases by removing lipofuscin from retinal pigment epithelium (RPE) cells. In this study, the effect of remofuscin on longevity in Caenorhabditis elegans and the underlying mechanism were investigated. The results showed that remofuscin significantly (p < 0.05) extended the lifespan of C. elegans (N2) compared with the negative control. Aging biomarkers were improved in remofuscin-treated worms. The expression levels of genes related to lysosomes (lipl-1 and lbp-8), a nuclear hormone receptor (nhr-234), fatty acid beta-oxidation (ech-9), and xenobiotic detoxification (cyp-34A1, cyp-35A1, cyp-35A2, cyp-35A3, cyp-35A4, cyp-35A5, cyp-35C1, gst-28, and gst-5) were increased in remofuscin-treated worms. Moreover, remofuscin failed to extend the lives of C. elegans with loss-of-function mutations (lipl-1, lbp-8, nhr-234, nhr-49, nhr-8, cyp-35A1, cyp-35A2, cyp-35A3, cyp-35A5, and gst-5), suggesting that these genes are associated with lifespan extension in remofuscin-treated C. elegans. In conclusion, remofuscin activates the lysosome-to-nucleus pathway in C. elegans, thereby increasing the expression levels of xenobiotic detoxification genes resulted in extending their lifespan.
Collapse
|
6
|
Relationship between oxidative stress and lifespan in Daphnia pulex. Sci Rep 2022; 12:2354. [PMID: 35149730 PMCID: PMC8837783 DOI: 10.1038/s41598-022-06279-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 01/04/2022] [Indexed: 11/23/2022] Open
Abstract
Macromolecular damage leading to cell, tissue and ultimately organ dysfunction is a major contributor to aging. Intracellular reactive oxygen species (ROS) resulting from normal metabolism cause most damage to macromolecules and the mitochondria play a central role in this process as they are the principle source of ROS. The relationship between naturally occurring variations in the mitochondrial (MT) genomes leading to correspondingly less or more ROS and macromolecular damage that changes the rate of aging associated organismal decline remains relatively unexplored. MT complex I, a component of the electron transport chain (ETC), is a key source of ROS and the NADH dehydrogenase subunit 5 (ND5) is a highly conserved core protein of the subunits that constitute the backbone of complex I. Using Daphnia as a model organism, we explored if the naturally occurring sequence variations in ND5 correlate with a short or long lifespan. Our results indicate that the short-lived clones have ND5 variants that correlate with reduced complex I activity, increased oxidative damage, and heightened expression of ROS scavenger enzymes. Daphnia offers a unique opportunity to investigate the association between inherited variations in components of complex I and ROS generation which affects the rate of aging and lifespan.
Collapse
|
7
|
Lennicke C, Cochemé HM. Redox metabolism: ROS as specific molecular regulators of cell signaling and function. Mol Cell 2021; 81:3691-3707. [PMID: 34547234 DOI: 10.1016/j.molcel.2021.08.018] [Citation(s) in RCA: 384] [Impact Index Per Article: 128.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/02/2021] [Accepted: 08/12/2021] [Indexed: 12/12/2022]
Abstract
Redox reactions are intrinsically linked to energy metabolism. Therefore, redox processes are indispensable for organismal physiology and life itself. The term reactive oxygen species (ROS) describes a set of distinct molecular oxygen derivatives produced during normal aerobic metabolism. Multiple ROS-generating and ROS-eliminating systems actively maintain the intracellular redox state, which serves to mediate redox signaling and regulate cellular functions. ROS, in particular hydrogen peroxide (H2O2), are able to reversibly oxidize critical, redox-sensitive cysteine residues on target proteins. These oxidative post-translational modifications (PTMs) can control the biological activity of numerous enzymes and transcription factors (TFs), as well as their cellular localization or interactions with binding partners. In this review, we describe the diverse roles of redox regulation in the context of physiological cellular metabolism and provide insights into the pathophysiology of diseases when redox homeostasis is dysregulated.
Collapse
Affiliation(s)
- Claudia Lennicke
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Helena M Cochemé
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK.
| |
Collapse
|
8
|
Huang W, Yin H, Yang Y, Jin L, Lu G, Dang Z. Influence of the co-exposure of microplastics and tetrabromobisphenol A on human gut: Simulation in vitro with human cell Caco-2 and gut microbiota. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146264. [PMID: 33725607 DOI: 10.1016/j.scitotenv.2021.146264] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/20/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
Microplastics (MPs) pollution becomes an emergent threat to the ecosystem, and its joint effect with organic contaminants will cause more severe consequences. Recently, MPs has been observed in human feces, suggesting that we are exposed to an uncertain danger. In this study, the joint effect of polyethylene microplastics particles (PEMPs) and Tetrabromobisphenol A (TBBPA) on human gut was explored through the simulation experiment in vitro with human cell Caco-2 and gut microbiota. The toxicity of TBBPA and PEMPs on Caco-2 human cells was considered by physiological and biochemical indexes such as cell proliferation, cell cycle, reactive oxygen species, lactate dehydrogenase release, and mitochondrial membrane potential. Besides, microbial community diversity, community structure, and function changes of gut microbiota were investigated using Illumina 16S rRNA gene MiSeq sequencing to reveal the influence of TBBPA and PEMPs on human gut microbiota. The results indicated that both PEMPs and TBBPA would deteriorate the status of Caco-2 cells, and TBBPA played a major role in it; meanwhile, PEMPs affected Caco-2 cells at high concentrations. Particularly, TBBPA and PEMPs exhibited a joint effect on Caco-2 cells to a certain degree. TBBPA selectivity inhibited the growth of gram-positive bacteria such as Enterococcus and Lactobacillus, contributing to the thriving of gram-negative bacteria such as Escherichia and Bacteroides. The existence of PEMPs would enhance the proportion of Clostridium, Bacteroides, and Escherichia. Community composition changed dramatically with the interference of PEMPs and TBBPA; this was undesirable to the healthy homeostasis of the human gut. PICRUSt analysis determined both PEMPs and TBBPA interfered with the metabolism pathways of gut microbiota. Hence, the threat of MPs and TBBPA to humans should arouse vigilance.
Collapse
Affiliation(s)
- Wantang Huang
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Hua Yin
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China.
| | - Yuanyu Yang
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Lizhu Jin
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Guining Lu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Zhi Dang
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| |
Collapse
|
9
|
Zia A, Farkhondeh T, Pourbagher-Shahri AM, Samarghandian S. The Roles of mitochondrial dysfunction and Reactive Oxygen Species in Aging and Senescence. Curr Mol Med 2021; 22:37-49. [PMID: 33602082 DOI: 10.2174/1566524021666210218112616] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/16/2020] [Accepted: 12/23/2020] [Indexed: 11/22/2022]
Abstract
The aging process deteriorates organs' function at different levels, causing its progressive decline to resist stress, damage, and disease. In addition to alterations in metabolic control and gene expression, the rate of aging has been connected with the generation of high amounts of Reactive Oxygen Species (ROS). The essential perspective in free radical biology is that reactive oxygen species (ROS) and free radicals are toxic, mostly cause direct biological damage to targets, and are thus a major cause of oxidative stress. Different enzymatic and non-enzymatic compounds in the cells have roles in neutralizing this toxicity. Oxidative damage in aging is mostly high in particular molecular targets, such as mitochondrial DNA and aconitase, and oxidative stress in mitochondria can cause tissue aging across intrinsic apoptosis. Mitochondria's function and morphology are impaired through aging, following a decrease in the membrane potential by an increase in peroxide generation and size of the organelles. Telomeres may be the significant trigger of replicative senescence. Oxidative stress accelerates telomere loss, whereas antioxidants slow it down. Oxidative stress is a crucial modulator of telomere shortening, and that telomere-driven replicative senescence is mainly a stress response. The age-linked mitochondrial DNA mutation and protein dysfunction aggregate in some organs like the brain and skeletal muscle, thus contributing considerably to these post-mitotic tissues' aging. The aging process is mostly due to accumulated damage done by harmful species in some macromolecules such proteins, DNA, and lipids. The degradation of non-functional, oxidized proteins is a crucial part of the antioxidant defenses of cells, in which the clearance of these proteins occurs through autophagy in the cells, which is known as mitophagy for mitochondria.
Collapse
Affiliation(s)
- Aliabbas Zia
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran. Iran
| | - Tahereh Farkhondeh
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand. Iran
| | | | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur. Iran
| |
Collapse
|
10
|
Lennicke C, Cochemé HM. Redox signalling and ageing: insights from Drosophila. Biochem Soc Trans 2020; 48:367-377. [PMID: 32196546 PMCID: PMC7200633 DOI: 10.1042/bst20190052] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/23/2020] [Accepted: 02/25/2020] [Indexed: 12/12/2022]
Abstract
Ageing and age-related diseases are major challenges for the social, economic and healthcare systems of our society. Amongst many theories, reactive oxygen species (ROS) have been implicated as a driver of the ageing process. As by-products of aerobic metabolism, ROS are able to randomly oxidise macromolecules, causing intracellular damage that accumulates over time and ultimately leads to dysfunction and cell death. However, the genetic overexpression of enzymes involved in the detoxification of ROS or treatment with antioxidants did not generally extend lifespan, prompting a re-evaluation of the causal role for ROS in ageing. More recently, ROS have emerged as key players in normal cellular signalling by oxidising redox-sensitive cysteine residues within proteins. Therefore, while high levels of ROS may be harmful and induce oxidative stress, low levels of ROS may actually be beneficial as mediators of redox signalling. In this context, enhancing ROS production in model organisms can extend lifespan, with biological effects dependent on the site, levels, and specific species of ROS. In this review, we examine the role of ROS in ageing, with a particular focus on the importance of the fruit fly Drosophila as a powerful model system to study redox processes in vivo.
Collapse
Affiliation(s)
- Claudia Lennicke
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, U.K
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, U.K
| | - Helena M. Cochemé
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, U.K
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, U.K
| |
Collapse
|
11
|
Vaamonde-García C, López-Armada MJ. Role of mitochondrial dysfunction on rheumatic diseases. Biochem Pharmacol 2019; 165:181-195. [DOI: 10.1016/j.bcp.2019.03.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/07/2019] [Indexed: 02/09/2023]
|
12
|
The effects of rooibos (Aspalathus linearis) on 3T3-L1 preadipocytes after the induction of mitochondrial dysfunction. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.02.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
13
|
Botero-Castro F, Tilak MK, Justy F, Catzeflis F, Delsuc F, Douzery EJP. In Cold Blood: Compositional Bias and Positive Selection Drive the High Evolutionary Rate of Vampire Bats Mitochondrial Genomes. Genome Biol Evol 2018; 10:2218-2239. [PMID: 29931241 PMCID: PMC6127110 DOI: 10.1093/gbe/evy120] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2018] [Indexed: 12/24/2022] Open
Abstract
Mitochondrial genomes of animals have long been considered to evolve under the action of purifying selection. Nevertheless, there is increasing evidence that they can also undergo episodes of positive selection in response to shifts in physiological or environmental demands. Vampire bats experienced such a shift, as they are the only mammals feeding exclusively on blood and possessing anatomical adaptations to deal with the associated physiological requirements (e.g., ingestion of high amounts of liquid water and iron). We sequenced eight new chiropteran mitogenomes including two species of vampire bats, five representatives of other lineages of phyllostomids and one close outgroup. Conducting detailed comparative mitogenomic analyses, we found evidence for accelerated evolutionary rates at the nucleotide and amino acid levels in vampires. Moreover, the mitogenomes of vampire bats are characterized by an increased cytosine (C) content mirrored by a decrease in thymine (T) compared with other chiropterans. Proteins encoded by the vampire bat mitogenomes also exhibit a significant increase in threonine (Thr) and slight reductions in frequency of the hydrophobic residues isoleucine (Ile), valine (Val), methionine (Met), and phenylalanine (Phe). We show that these peculiar substitution patterns can be explained by the co-occurrence of both neutral (mutational bias) and adaptive (positive selection) processes. We propose that vampire bat mitogenomes may have been impacted by selection on mitochondrial proteins to accommodate the metabolism and nutritional qualities of blood meals.
Collapse
Affiliation(s)
- Fidel Botero-Castro
- Institut des Sciences de l'Evolution (ISEM), Univ. Montpellier, CNRS, EPHE, IRD, Montpellier, France.,Division of Evolutionary Biology, Faculty of Biology II, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Marie-Ka Tilak
- Institut des Sciences de l'Evolution (ISEM), Univ. Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Fabienne Justy
- Institut des Sciences de l'Evolution (ISEM), Univ. Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - François Catzeflis
- Institut des Sciences de l'Evolution (ISEM), Univ. Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Frédéric Delsuc
- Institut des Sciences de l'Evolution (ISEM), Univ. Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Emmanuel J P Douzery
- Institut des Sciences de l'Evolution (ISEM), Univ. Montpellier, CNRS, EPHE, IRD, Montpellier, France
| |
Collapse
|
14
|
López-Lluch G, Hernández-Camacho JD, Fernández-Ayala DJM, Navas P. Mitochondrial dysfunction in metabolism and ageing: shared mechanisms and outcomes? Biogerontology 2018; 19:461-480. [PMID: 30143941 DOI: 10.1007/s10522-018-9768-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 08/21/2018] [Indexed: 12/15/2022]
Abstract
Mitochondria are key in the metabolism of aerobic organisms and in ageing progression and age-related diseases. Mitochondria are essential for obtaining ATP from glucose and fatty acids but also in many other essential functions in cells including aminoacids metabolism, pyridine synthesis, phospholipid modifications and calcium regulation. On the other hand, the activity of mitochondria is also the principal source of reactive oxygen species in cells. Ageing and chronic age-related diseases are associated with the deregulation of cell metabolism and dysfunction of mitochondria. Cell metabolism is controlled by three major nutritional sensors: mTOR, AMPK and Sirtuins. These factors control mitochondrial biogenesis and dynamics by regulating fusion, fission and turnover through mito- and autophagy. A complex interaction between the activity of these nutritional sensors, mitochondrial biogenesis rate and dynamics exists and affect ageing, age-related diseases including metabolic disease. Further, mitochondria maintain a constant communication with nucleus modulating gene expression and modifying epigenetics. In this review we highlight the importance of mitochondria in ageing and the repercussion in the progression of age-related diseases and metabolic disease.
Collapse
Affiliation(s)
- Guillermo López-Lluch
- Centro Andaluz de Biología del Desarrollo, CABD-CSIC, CIBERER, Instituto de Salud Carlos III, Universidad Pablo de Olavide, Carretera de Utrera km. 1, 41013, Seville, Spain.
| | - Juan Diego Hernández-Camacho
- Centro Andaluz de Biología del Desarrollo, CABD-CSIC, CIBERER, Instituto de Salud Carlos III, Universidad Pablo de Olavide, Carretera de Utrera km. 1, 41013, Seville, Spain
| | - Daniel J Moreno Fernández-Ayala
- Centro Andaluz de Biología del Desarrollo, CABD-CSIC, CIBERER, Instituto de Salud Carlos III, Universidad Pablo de Olavide, Carretera de Utrera km. 1, 41013, Seville, Spain
| | - Plácido Navas
- Centro Andaluz de Biología del Desarrollo, CABD-CSIC, CIBERER, Instituto de Salud Carlos III, Universidad Pablo de Olavide, Carretera de Utrera km. 1, 41013, Seville, Spain
| |
Collapse
|
15
|
Giorgi C, Marchi S, Simoes IC, Ren Z, Morciano G, Perrone M, Patalas-Krawczyk P, Borchard S, Jȩdrak P, Pierzynowska K, Szymański J, Wang DQ, Portincasa P, Wȩgrzyn G, Zischka H, Dobrzyn P, Bonora M, Duszynski J, Rimessi A, Karkucinska-Wieckowska A, Dobrzyn A, Szabadkai G, Zavan B, Oliveira PJ, Sardao VA, Pinton P, Wieckowski MR. Mitochondria and Reactive Oxygen Species in Aging and Age-Related Diseases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 340:209-344. [PMID: 30072092 PMCID: PMC8127332 DOI: 10.1016/bs.ircmb.2018.05.006] [Citation(s) in RCA: 214] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Aging has been linked to several degenerative processes that, through the accumulation of molecular and cellular damage, can progressively lead to cell dysfunction and organ failure. Human aging is linked with a higher risk for individuals to develop cancer, neurodegenerative, cardiovascular, and metabolic disorders. The understanding of the molecular basis of aging and associated diseases has been one major challenge of scientific research over the last decades. Mitochondria, the center of oxidative metabolism and principal site of reactive oxygen species (ROS) production, are crucial both in health and in pathogenesis of many diseases. Redox signaling is important for the modulation of cell functions and several studies indicate a dual role for ROS in cell physiology. In fact, high concentrations of ROS are pathogenic and can cause severe damage to cell and organelle membranes, DNA, and proteins. On the other hand, moderate amounts of ROS are essential for the maintenance of several biological processes, including gene expression. In this review, we provide an update regarding the key roles of ROS-mitochondria cross talk in different fundamental physiological or pathological situations accompanying aging and highlighting that mitochondrial ROS may be a decisive target in clinical practice.
Collapse
Affiliation(s)
- Carlotta Giorgi
- Department of Morphology Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Saverio Marchi
- Department of Morphology Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Ines C.M. Simoes
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Ziyu Ren
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London, United Kingdom
| | - Giampaolo Morciano
- Department of Morphology Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
- Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Ravenna, Italy
- Maria Pia Hospital, GVM Care & Research, Torino, Italy
| | - Mariasole Perrone
- Department of Morphology Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Paulina Patalas-Krawczyk
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Sabine Borchard
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Paulina Jȩdrak
- Department of Molecular Biology, University of Gdańsk, Gdańsk, Poland
| | | | - Jȩdrzej Szymański
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - David Q. Wang
- Department of Medicine, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Dept. of Biomedical Sciences & Human Oncology, University of Bari "Aldo Moro" Medical School, Bari, Italy
| | - Grzegorz Wȩgrzyn
- Department of Molecular Biology, University of Gdańsk, Gdańsk, Poland
| | - Hans Zischka
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, Munich, Germany
| | - Pawel Dobrzyn
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Massimo Bonora
- Departments of Cell Biology and Gottesman Institute for Stem Cell & Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Jerzy Duszynski
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Alessandro Rimessi
- Department of Morphology Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | | | | | - Gyorgy Szabadkai
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Barbara Zavan
- Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Ravenna, Italy
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Paulo J. Oliveira
- CNC - Center for Neuroscience and Cell Biology, UC-Biotech, Biocant Park, University of Coimbra, Cantanhede, Portugal
| | - Vilma A. Sardao
- CNC - Center for Neuroscience and Cell Biology, UC-Biotech, Biocant Park, University of Coimbra, Cantanhede, Portugal
| | - Paolo Pinton
- Department of Morphology Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
- Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Ravenna, Italy
| | - Mariusz R. Wieckowski
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
16
|
Negi H, Saikia SK, Pandey R. 3β-Hydroxy-urs-12-en-28-oic Acid Modulates Dietary Restriction Mediated Longevity and Ameliorates Toxic Protein Aggregation in C. elegans. J Gerontol A Biol Sci Med Sci 2017; 72:1614-1619. [PMID: 28673026 PMCID: PMC5861981 DOI: 10.1093/gerona/glx118] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 06/29/2017] [Indexed: 01/09/2023] Open
Abstract
Species from lower invertebrates to a spectrum of mammals show antiaging health benefits of phytochemical(s). Here, we explored the pro-longevity effects of a natural triterpenoid, ursolic acid (3β-hydroxy-urs-12-en-28-oic acid; UA) in Caenorhabditis elegans with maximal life span being evident at 25 µM UA. Similar to eat-2 mutants, UA uptake by worm results in reduced fat storage and attenuation of reactive oxygen species (ROS), independent of superoxide dismutase(s) activation. The genetic requirements for UA-mediated longevity are quite similar to dietary restriction (DR) achieved through SKN-1/NRF-2 exhibiting upregulation of downstream target genes gcs-1 and daf-9. Longevity mechanism was independent of PHA-4/FOXA and attributed to partial dependence on sir-2.1. Altogether, our study suggests differential use of UA-elicited signaling cascades in nutrient sensing for longevity. Both the redox state and the proteostasis of an organism play critical role in aging and disease resistance. Interestingly, we observed a reduction of toxic protein aggregation in transgenic polyglutamine (polyQ) C. elegans model and UA-mediated JNK-1 (c-Jun-NH2-terminal kinase) activation in wild-type animals. Thus, our study demonstrates a small extent of prevention against proteotoxic stress by UA coupled with positive aspects of DR-mediated longevity.
Collapse
Affiliation(s)
- Hema Negi
- Microbial Technology and Nematology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Shilpi Khare Saikia
- Microbial Technology and Nematology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Rakesh Pandey
- Microbial Technology and Nematology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| |
Collapse
|
17
|
Chen HF, Chen YH, Liu CH, Wang L, Chen X, Yu BY, Qi J. Integrated chemometric fingerprints of antioxidant activities and HPLC-DAD-CL for assessing the quality of the processed roots of Polygonum multiflorum Thunb. (Heshouwu). Chin Med 2016; 11:18. [PMID: 27076840 PMCID: PMC4830048 DOI: 10.1186/s13020-016-0087-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 03/23/2016] [Indexed: 01/23/2023] Open
Abstract
Background The processed roots of Polygonum multiflorum Thunb. (Heshouwu; processed HSW) are commonly used in anti-aging medicine. Few reports have combined chemical profiles with bioactivity to evaluate the quality of the processed HSW. This study aims to integrate chemometric fingerprints of antioxidant activities and high-performance liquid chromatography–diode array detection–chemiluminescence (HPLC–DAD–CL) to assess the quality of processed HSW. Methods An online HPLC–DAD–CL based on the three reactive oxygen species (ROS), superoxide anion, hydrogen peroxide, and peroxynitriteanion, was developed to screen the potential anti-aging constituents for a comprehensive quality evaluation of processed HSW. Additionally, antioxidant-activity-integrated fingerprints were constructed and hierarchical cluster analysis and principal component analysis were used to evaluate the variations among 14 batches of processed HSW samples purchased from drug stores in different habitats. Results Fourteen batches of processed HSW samples were highly similar and classified into two clusters using hierarchical cluster analysis. Twelve active compounds exhibited antioxidant activity on the ROS with different degrees of sensitivity that constituted specific fingerprints. Among them, protocatechuic acid, catechin, trans-2,3,5,4′-tetrahydroxy-stilbene-2-O-β-d-glucoside, 2,3,5, 4′-tetrahydroxy-stilbene-2-O-β-d-(2′′-galloyl)-glucoside, torachrysone-8-O-glucoside, and emodin-8-O-β-d-glucoside exerted relatively large influences on the differences between processed HSW samples. Conclusion Our study established the antioxidative activity-integrated fingerprint for processed HSW and achieved a screening of the potential anti-aging constituents using the online HPLC–DAD–CL method with H2O2, O2•−, and ONOO−scavenging experiments. Electronic supplementary material The online version of this article (doi:10.1186/s13020-016-0087-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hai Fang Chen
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, 639 Longmian Road, Nanjing, 210009 China ; Key Laboratory of Modern Preparation of TCM of Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004 China
| | - You Hua Chen
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, 639 Longmian Road, Nanjing, 210009 China
| | - Chun Hua Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, 639 Longmian Road, Nanjing, 210009 China
| | - Lu Wang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, 639 Longmian Road, Nanjing, 210009 China
| | - Xi Chen
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, 639 Longmian Road, Nanjing, 210009 China
| | - Bo Yang Yu
- Department of Complex Prescription of Traditional Chinese Medicine, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198 China
| | - Jin Qi
- Department of Complex Prescription of Traditional Chinese Medicine, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198 China
| |
Collapse
|
18
|
Zhou L, Wang F, Sun R, Chen X, Zhang M, Xu Q, Wang Y, Wang S, Xiong Y, Guan KL, Yang P, Yu H, Ye D. SIRT5 promotes IDH2 desuccinylation and G6PD deglutarylation to enhance cellular antioxidant defense. EMBO Rep 2016; 17:811-22. [PMID: 27113762 DOI: 10.15252/embr.201541643] [Citation(s) in RCA: 186] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 03/08/2016] [Indexed: 11/09/2022] Open
Abstract
Excess in mitochondrial reactive oxygen species (ROS) is considered as a major cause of cellular oxidative stress. NADPH, the main intracellular reductant, has a key role in keeping glutathione in its reduced form GSH, which scavenges ROS and thus protects the cell from oxidative damage. Here, we report that SIRT5 desuccinylates and deglutarylates isocitrate dehydrogenase 2 (IDH2) and glucose-6-phosphate dehydrogenase (G6PD), respectively, and thus activates both NADPH-producing enzymes. Moreover, we show that knockdown or knockout of SIRT5 leads to high levels of cellular ROS SIRT5 inactivation leads to the inhibition of IDH2 and G6PD, thereby decreasing NADPH production, lowering GSH, impairing the ability to scavenge ROS, and increasing cellular susceptibility to oxidative stress. Our study uncovers a SIRT5-dependent mechanism that regulates cellular NADPH homeostasis and redox potential by promoting IDH2 desuccinylation and G6PD deglutarylation.
Collapse
Affiliation(s)
- Lisha Zhou
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Fudan University, Shanghai, China Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fang Wang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Fudan University, Shanghai, China Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Renqiang Sun
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Fudan University, Shanghai, China Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiufei Chen
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Fudan University, Shanghai, China Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Mengli Zhang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Fudan University, Shanghai, China Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qi Xu
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Fudan University, Shanghai, China Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi Wang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Fudan University, Shanghai, China Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shiwen Wang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Fudan University, Shanghai, China Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yue Xiong
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Fudan University, Shanghai, China Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Kun-Liang Guan
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Fudan University, Shanghai, China Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Pengyuan Yang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Fudan University, Shanghai, China Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hongxiu Yu
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Fudan University, Shanghai, China Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dan Ye
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Fudan University, Shanghai, China Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Haratake K, Sato A, Tsuruta F, Chiba T. KIAA0368-deficiency affects disassembly of 26S proteasome under oxidative stress condition. J Biochem 2016; 159:609-18. [PMID: 26802743 DOI: 10.1093/jb/mvw006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 12/14/2015] [Indexed: 11/14/2022] Open
Abstract
Many cellular stresses cause damages of intracellular proteins, which are eventually degraded by the ubiquitin and proteasome system. The proteasome is a multicatalytic protease complex composed of 20S core particle and the proteasome activators that regulate the proteasome activity. Extracellular mutants 29 (Ecm29) is a 200 kDa protein encoded by KIAA0368 gene, associates with the proteasome, but its role is largely unknown. Here, we generated KIAA0368-deficient mice and investigated the function of Ecm29 in stress response. KIAA0368-deficient mice showed normal peptidase activity and proteasome formation at normal condition. Under stressed condition, 26S proteasome dissociates in wild-type cells, but not in KIAA0368(-/-) cells. This response was correlated with efficient degradation of damaged proteins and resistance to oxidative stress of KIAA0368(-/-) cells. Thus, Ecm29 is involved in the dissociation process of 26S proteasome, providing clue to analyse the mechanism of proteasomal degradation under various stress condition.
Collapse
Affiliation(s)
- Kousuke Haratake
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Akitsugu Sato
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Fuminori Tsuruta
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Tomoki Chiba
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
20
|
Zhang X, Gao F. Imaging mitochondrial reactive oxygen species with fluorescent probes: current applications and challenges. Free Radic Res 2015; 49:374-82. [PMID: 25789762 DOI: 10.3109/10715762.2015.1014813] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mitochondrial reactive oxygen species (ROS) is a key element in the regulation of several physiological functions and in the development or progression of multiple pathological events. A key task in the study of mitochondrial ROS is to establish reliable methods for measuring the ROS level in mitochondria with high selectivity, sensitivity, and spatiotemporal resolution. Over the last decade, imaging tools with fluorescent indicators from either small-molecule dyes or genetically encoded probes that can be targeted to mitochondria have been developed, which provide a powerful method to visualize and even quantify mitochondrial ROS level not only in live cells, but also in live animals. These innovative tools that have bestowed exciting new insights in mitochondrial ROS biology have been further promoted with the invention of new techniques in indicator design and fluorescent detection. However, these probes present some limitations in terms of specificity, sensitivity, and kinetics; failure to recognize these limitations often results in inappropriate interpretations of data. This review evaluates the recent advances in mitochondrial ROS imaging approaches with emphasis on their proper application and limitations, and highlights the future perspectives in the development of novel fluorescent probes for visualizing all species of ROS.
Collapse
Affiliation(s)
- X Zhang
- Department of Aerospace Medicine, Fourth Military Medical University , Xi'an , P. R. China
| | | |
Collapse
|
21
|
Chamoli M, Singh A, Malik Y, Mukhopadhyay A. A novel kinase regulates dietary restriction-mediated longevity in Caenorhabditis elegans. Aging Cell 2014; 13:641-55. [PMID: 24655420 PMCID: PMC4326946 DOI: 10.1111/acel.12218] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2014] [Indexed: 12/22/2022] Open
Abstract
Although dietary restriction (DR) is known to extend lifespan across species, from yeast to mammals, the signalling events downstream of food/nutrient perception are not well understood. In Caenorhabditis elegans, DR is typically attained either by using the eat-2 mutants that have reduced pharyngeal pumping leading to lower food intake or by feeding diluted bacterial food to the worms. In this study, we show that knocking down a mammalian MEKK3-like kinase gene, mekk-3 in C. elegans, initiates a process similar to DR without compromising food intake. This DR-like state results in upregulation of beta-oxidation genes through the nuclear hormone receptor NHR-49, a HNF-4 homolog, resulting in depletion of stored fat. This metabolic shift leads to low levels of reactive oxygen species (ROS), potent oxidizing agents that damage macromolecules. Increased beta-oxidation, in turn, induces the phase I and II xenobiotic detoxification genes, through PHA-4/FOXA, NHR-8 and aryl hydrocarbon receptor AHR-1, possibly to purge lipophilic endotoxins generated during fatty acid catabolism. The coupling of a metabolic shift with endotoxin detoxification results in extreme longevity following mekk-3 knock-down. Thus, MEKK-3 may function as an important nutrient sensor and signalling component within the organism that controls metabolism. Knocking down mekk-3 may signal an imminent nutrient crisis that results in initiation of a DR-like state, even when food is plentiful.
Collapse
Affiliation(s)
- Manish Chamoli
- Molecular Aging Laboratory, National Institute of ImmunologyAruna Asaf Ali Marg, New Delhi, 10067, India
| | - Anupama Singh
- Molecular Aging Laboratory, National Institute of ImmunologyAruna Asaf Ali Marg, New Delhi, 10067, India
| | - Yasir Malik
- Molecular Aging Laboratory, National Institute of ImmunologyAruna Asaf Ali Marg, New Delhi, 10067, India
| | - Arnab Mukhopadhyay
- Molecular Aging Laboratory, National Institute of ImmunologyAruna Asaf Ali Marg, New Delhi, 10067, India
| |
Collapse
|
22
|
De Pascali F, Hemann C, Samons K, Chen CA, Zweier JL. Hypoxia and reoxygenation induce endothelial nitric oxide synthase uncoupling in endothelial cells through tetrahydrobiopterin depletion and S-glutathionylation. Biochemistry 2014; 53:3679-88. [PMID: 24758136 PMCID: PMC4053070 DOI: 10.1021/bi500076r] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 04/18/2014] [Indexed: 01/09/2023]
Abstract
Ischemia-reperfusion injury is accompanied by endothelial hypoxia and reoxygenation that trigger oxidative stress with enhanced superoxide generation and diminished nitric oxide (NO) production leading to endothelial dysfunction. Oxidative depletion of the endothelial NO synthase (eNOS) cofactor tetrahydrobiopterin can trigger eNOS uncoupling, in which the enzyme generates superoxide rather than NO. Recently, it has also been shown that oxidative stress can induce eNOS S-glutathionylation at critical cysteine residues of the reductase site that serves as a redox switch to control eNOS coupling. While superoxide can deplete tetrahydrobiopterin and induce eNOS S-glutathionylation, the extent of and interaction between these processes in the pathogenesis of eNOS dysfunction in endothelial cells following hypoxia and reoxygenation remain unknown. Therefore, studies were performed on endothelial cells subjected to hypoxia and reoxygenation to determine the severity of eNOS uncoupling and the role of cofactor depletion and S-glutathionylation in this process. Hypoxia and reoxygenation of aortic endothelial cells triggered xanthine oxidase-mediated superoxide generation, causing both tetrahydrobiopterin depletion and S-glutathionylation with resultant eNOS uncoupling. Replenishing cells with tetrahydrobiopterin along with increasing intracellular levels of glutathione greatly preserved eNOS activity after hypoxia and reoxygenation, while targeting either mechanism alone only partially ameliorated the decrease in NO. Endothelial oxidative stress, secondary to hypoxia and reoxygenation, uncoupled eNOS with an altered ratio of oxidized to reduced glutathione inducing eNOS S-glutathionylation. These mechanisms triggered by oxidative stress combine to cause eNOS dysfunction with shift of the enzyme from NO to superoxide production. Thus, in endothelial reoxygenation injury, normalization of both tetrahydrobiopterin levels and the glutathione pool are needed for maximal restoration of eNOS function and NO generation.
Collapse
Affiliation(s)
- Francesco De Pascali
- Davis
Heart and Lung Research Institute and Division of Cardiovascular Medicine,
Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Craig Hemann
- Davis
Heart and Lung Research Institute and Division of Cardiovascular Medicine,
Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Kindra Samons
- Davis
Heart and Lung Research Institute and Division of Cardiovascular Medicine,
Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Chun-An Chen
- Davis
Heart and Lung Research Institute and Division of Cardiovascular Medicine,
Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- The
Department of Emergency Medicine, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jay L. Zweier
- Davis
Heart and Lung Research Institute and Division of Cardiovascular Medicine,
Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
23
|
Reversible 26S Proteasome Disassembly upon Mitochondrial Stress. Cell Rep 2014; 7:1371-1380. [DOI: 10.1016/j.celrep.2014.04.030] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 03/23/2014] [Accepted: 04/16/2014] [Indexed: 01/24/2023] Open
|
24
|
Mendelsohn AR, Larrick JW. Rejuvenation of adult stem cells: is age-associated dysfunction epigenetic? Rejuvenation Res 2014; 16:152-7. [PMID: 23488583 DOI: 10.1089/rej.2013.1424] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The dysfunctional changes of aging are generally believed to be irreversible due to the accumulation of molecular and cellular damage within an organism's somatic cells and tissues. However, the importance of potentially reversible cell signaling and epigenetic changes in causing dysfunction has not been thoroughly investigated. Striking evidence that increased oxidative stress associated with hematopoietic stem cells (HSCs) from aging mice causes dysfunction has been reported. Forced expression of SIRT3, which activates the reactive oxygen species (ROS) scavenger superoxide dismutase 2 (SOD2) by de-acetylation to reduce oxidative stress, functionally rejuvenates mouse HSCs. These data, combined with numerous other reports, suggest that ROS act as a signal transducer to play a critical regulatory role in HSCs and at least in some other stem cells. It is likely that ectopic expression of SIRT3 restores homeostasis in gene expression networks sensitive to oxidative stress. This result was surprising because age-associated damage from impaired DNA repair had been thought to be irreversible in old HSCs. The effect of up-regulated SIRT3 in HSCs is one of first examples in which intrinsic cellular aging, not apparently associated with changes in the micro-environment, was reversed. However, the stability of rejuvenation in the absence of continued supplemental SIRT3 expression was not investigated. These data are consistent with a hypothesis that potentially reversible processes, such as aberrant signaling and epigenetic drift, are relevant to cellular aging. If true, rejuvenation of at least some aged cells may be simpler than generally appreciated.
Collapse
Affiliation(s)
- Andrew R Mendelsohn
- Panorama Research Institute and Regenerative Sciences Institute, Sunnyvale, California 94089, USA.
| | | |
Collapse
|
25
|
Brossa R, Pintó-Marijuan M, Jiang K, Alegre L, Feldman LJ. Assessing the regulation of leaf redox status under water stress conditions in Arabidopsis thaliana: Col-0 ecotype (wild-type and vtc-2), expressing mitochondrial and cytosolic roGFP1. PLANT SIGNALING & BEHAVIOR 2013; 8:e24781. [PMID: 23656871 PMCID: PMC3912002 DOI: 10.4161/psb.24781] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 04/23/2013] [Indexed: 05/16/2023]
Abstract
Using Arabidopsis plants Col-0 and vtc2 transformed with a redox sensitive green fluorescent protein, (c-roGFP) and (m-roGFP), we investigated the effects of a progressive water stress and re-watering on the redox status of the cytosol and the mitochondria. Our results establish that water stress affects redox status differently in these two compartments, depending on phenotype and leaf age, furthermore we conclude that ascorbate plays a pivotal role in mediating redox status homeostasis and that Col-0 Arabidopsis subjected to water stress increase the synthesis of ascorbate suggesting that ascorbate may play a role in buffering changes in redox status in the mitochondria and the cytosol, with the presumed buffering capacity of ascorbate being more noticeable in young compared with mature leaves. Re-watering of water-stressed plants was paralleled by a return of both the redox status and ascorbate to the levels of well-watered plants. In contrast to the effects of water stress on ascorbate levels, there were no significant changes in the levels of glutathione, thereby suggesting that the regeneration and increase in ascorbate in water-stressed plants may occur by other processes in addition to the regeneration of ascorbate via the glutathione. Under water stress in vtc2 lines it was observed stronger differences in redox status in relation to leaf age, than due to water stress conditions compared with Col-0 plants. In the vtc2 an increase in DHA was observed in water-stressed plants. Furthermore, this work confirms the accuracy and sensitivity of the roGFP1 biosensor as a reporter for variations in water stress-associated changes in redox potentials.
Collapse
Affiliation(s)
- Ricard Brossa
- Departament de Biologia Vegetal; Facultat de Biologia; Universitat de Barcelona; Barcelona, Spain
| | - Marta Pintó-Marijuan
- Departament de Biologia Vegetal; Facultat de Biologia; Universitat de Barcelona; Barcelona, Spain
| | - Keni Jiang
- Department of Plant and Microbial Biology; University of California; Berkeley, CA USA
| | - Leonor Alegre
- Departament de Biologia Vegetal; Facultat de Biologia; Universitat de Barcelona; Barcelona, Spain
| | - Lewis J. Feldman
- Department of Plant and Microbial Biology; University of California; Berkeley, CA USA
| |
Collapse
|
26
|
Lopresti AL, Hood SD, Drummond PD. A review of lifestyle factors that contribute to important pathways associated with major depression: diet, sleep and exercise. J Affect Disord 2013; 148:12-27. [PMID: 23415826 DOI: 10.1016/j.jad.2013.01.014] [Citation(s) in RCA: 383] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 01/16/2013] [Accepted: 01/17/2013] [Indexed: 12/15/2022]
Abstract
Research on major depression has confirmed that it is caused by an array of biopsychosocial and lifestyle factors. Diet, exercise and sleep are three such influences that play a significant mediating role in the development, progression and treatment of this condition. This review summarises animal- and human-based studies on the relationship between these three lifestyle factors and major depressive disorder, and their influence on dysregulated pathways associated with depression: namely neurotransmitter processes, immuno-inflammatory pathways, hypothalamic-pituitary-adrenal (HPA) axis disturbances, oxidative stress and antioxidant defence systems, neuroprogression, and mitochondrial disturbances. Increased attention in future clinical studies on the influence of diet, sleep and exercise on major depressive disorder and investigations of their effect on physiological processes will help to expand our understanding and treatment of major depressive disorder. Mental health interventions, taking into account the bidirectional relationship between these lifestyle factors and major depression are also likely to enhance the efficacy of interventions associated with this disorder.
Collapse
Affiliation(s)
- Adrian L Lopresti
- School of Psychology, Murdoch University, Perth, Western Australia 6150, Australia.
| | | | | |
Collapse
|
27
|
Lanzafame M, Vaz B, Nardo T, Botta E, Orioli D, Stefanini M. From laboratory tests to functional characterisation of Cockayne syndrome. Mech Ageing Dev 2013; 134:171-9. [PMID: 23567079 DOI: 10.1016/j.mad.2013.03.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Revised: 03/15/2013] [Accepted: 03/28/2013] [Indexed: 11/26/2022]
Abstract
The significant progress made over the last few years on the pathogenesis of Cockayne syndrome (CS) greatly improved our knowledge on several aspects crucial for development and ageing, demonstrating that this disorder, even if rare, represents a valuable tool to clarify key aspects of human health. Primary cells from patients have been instrumental to elucidate the multiple roles of CS proteins and to approach the dissection of the complex interplay between repair and transcription that is central to the CS clinical phenotype. Here we discuss the results of the cellular assays applied for confirmation of the clinical diagnosis as well as the results of genetic and molecular studies in DNA repair defective patients. Furthermore, we provide a general overview of recent in vivo and in vitro studies indicating that both CSA and CSB proteins are involved in distinct aspects of the cellular responses to UV and oxidative stress, transcription and regulation of gene expression, chromatin remodelling, redox balance and cellular bioenergetics. In light of the literature data, we will finally discuss how inactivation of specific functional roles of CS proteins may differentially affect the phenotype, thus explaining the wide range in type and severity of symptoms reported in CS patients.
Collapse
Affiliation(s)
- Manuela Lanzafame
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Via Abbiategrasso 207, 27100 Pavia, Italy
| | | | | | | | | | | |
Collapse
|
28
|
Weinberger M, Sampaio-Marques B, Ludovico P, Burhans WC. DNA replication stress-induced loss of reproductive capacity in S. cerevisiae and its inhibition by caloric restriction. Cell Cycle 2013; 12:1189-200. [PMID: 23518504 DOI: 10.4161/cc.24232] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In many organisms, attenuation of growth signaling by caloric restriction or mutational inactivation of growth signaling pathways extends lifespan and protects against cancer and other age-related diseases. The focus of many efforts to understand these effects has been on the induction of oxidative stress defenses that inhibit cellular senescence and cell death. Here we show that in the model organism S. cerevisiae, growth signaling induces entry of cells in stationary phase into S phase in parallel with loss of reproductive capacity, which is enhanced by elevated concentrations of glucose. Overexpression of RNR1 encoding a ribonucleotide reductase subunit required for the synthesis of deoxynucleotide triphosphates and DNA replication suppresses the accelerated loss of reproductive capacity of cells cultured in high glucose. The reduced reproductive capacity of these cells is also suppressed by excess threonine, which buffers dNTP pools when ribonucleotide reductase activity is limiting. Caloric restriction or inactivation of the AKT homolog Sch9p inhibits senescence and death in stationary phase cells caused by the DNA replication inhibitor hydroxyurea or by inactivation of the DNA replication and repair proteins Sgs1p or Rad27p. Inhibition of DNA replication stress represents a novel mechanism by which caloric restriction promotes longevity in S. cerevisiae. A similar mechanism may promote longevity and inhibit cancer and other age-related diseases in humans.
Collapse
Affiliation(s)
- Martin Weinberger
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | | | | | |
Collapse
|
29
|
Brewer AC, Mustafi SB, Murray TVA, Rajasekaran NS, Benjamin IJ. Reductive stress linked to small HSPs, G6PD, and Nrf2 pathways in heart disease. Antioxid Redox Signal 2013; 18:1114-27. [PMID: 22938199 PMCID: PMC3567781 DOI: 10.1089/ars.2012.4914] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
SIGNIFICANCE Aerobic organisms must exist between the dueling biological metabolic processes for energy and respiration and the obligatory generation of reactive oxygen species (ROS) whose deleterious consequences can reduce survival. Wide fluctuations in harmful ROS generation are circumvented by endogenous countermeasures (i.e., enzymatic and nonenzymatic antioxidants systems) whose capacity decline with aging and are enhanced by disease states. RECENT ADVANCES Substantial efforts on the cellular and molecular underpinnings of oxidative stress has been complemented recently by the discovery that reductive stress similarly predisposes to inheritable cardiomyopathy, firmly establishing that the biological extremes of the redox spectrum play essential roles in disease pathogenesis. CRITICAL ISSUES Because antioxidants by nutritional or pharmacological supplement to prevent or mitigate disease states have been largely disappointing, we hypothesize that lack of efficacy of antioxidants might be related to adverse outcomes in responders at the reductive end of the redox spectrum. As emerging concepts, such as reductive, as opposed, oxidative stress are further explored, there is an urgent and critical gap for biochemical phenotyping to guide the targeted clinical applications of therapeutic interventions. FUTURE DIRECTIONS New approaches are vitally needed for characterizing redox states with the long-term goal to noninvasively assess distinct clinical states (e.g., presymptomatic, end-stage) with the diagnostic accuracy to guide personalized medicine.
Collapse
Affiliation(s)
- Alison C Brewer
- Cardiovascular Division, British Heart Foundation Centre of Research Excellence, King's College, London, UK
| | | | | | | | | |
Collapse
|
30
|
Sanchez-Roman I, Barja G. Regulation of longevity and oxidative stress by nutritional interventions: role of methionine restriction. Exp Gerontol 2013; 48:1030-42. [PMID: 23454735 DOI: 10.1016/j.exger.2013.02.021] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 01/17/2013] [Accepted: 02/21/2013] [Indexed: 11/25/2022]
Abstract
Comparative studies indicate that long-lived mammals have low rates of mitochondrial reactive oxygen species production (mtROSp) and oxidative damage in their mitochondrial DNA (mtDNA). Dietary restriction (DR), around 40%, extends the mean and maximum life span of a wide range of species and lowers mtROSp and oxidative damage to mtDNA, which supports the mitochondrial free radical theory of aging (MFRTA). Regarding the dietary factor responsible for the life extension effect of DR, neither carbohydrate nor lipid restriction seems to modify maximum longevity. However protein restriction (PR) and methionine restriction (at least 80% MetR) increase maximum lifespan in rats and mice. Interestingly, only 7weeks of 40% PR (at least in liver) or 40% MetR (in all the studied organs, heart, brain, liver or kidney) is enough to decrease mtROSp and oxidative damage to mtDNA in rats, whereas neither carbohydrate nor lipid restriction changes these parameters. In addition, old rats also conserve the capacity to respond to 7weeks of 40% MetR with these beneficial changes. Most importantly, 40% MetR, differing from what happens during both 40% DR and 80% MetR, does not decrease growth rate and body size of rats. All the available studies suggest that the decrease in methionine ingestion that occurs during DR is responsible for part of the aging-delaying effect of this intervention likely through the decrease of mtROSp and ensuing DNA damage that it exerts. We conclude that lowering mtROS generation is a conserved mechanism, shared by long-lived species and dietary, protein, and methionine restricted animals, that decreases damage to macromolecules situated near the complex I mtROS generator, especially mtDNA. This would decrease the accumulation rate of somatic mutations in mtDNA and maybe finally also in nuclear DNA.
Collapse
Affiliation(s)
- Ines Sanchez-Roman
- Department of Animal Physiology-II, Faculty of Biological Sciences, Complutense University of Madrid (UCM), Spain
| | | |
Collapse
|
31
|
Muratore CR, Hodgson NW, Trivedi MS, Abdolmaleky HM, Persico AM, Lintas C, De La Monte S, Deth RC. Age-dependent decrease and alternative splicing of methionine synthase mRNA in human cerebral cortex and an accelerated decrease in autism. PLoS One 2013; 8:e56927. [PMID: 23437274 PMCID: PMC3577685 DOI: 10.1371/journal.pone.0056927] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 01/16/2013] [Indexed: 12/22/2022] Open
Abstract
The folate and vitamin B12-dependent enzyme methionine synthase (MS) is highly sensitive to cellular oxidative status, and lower MS activity increases production of the antioxidant glutathione, while simultaneously decreasing more than 200 methylation reactions, broadly affecting metabolic activity. MS mRNA levels in postmortem human cortex from subjects across the lifespan were measured and a dramatic progressive biphasic decrease of more than 400-fold from 28 weeks of gestation to 84 years was observed. Further analysis revealed alternative splicing of MS mRNA, including deletion of folate-binding domain exons and age-dependent deletion of exons from the cap domain, which protects vitamin B12 (cobalamin) from oxidation. Although three species of MS were evident at the protein level, corresponding to full-length and alternatively spliced mRNA transcripts, decreasing mRNA levels across the lifespan were not associated with significant changes in MS protein or methionine levels. MS mRNA levels were significantly lower in autistic subjects, especially at younger ages, and this decrease was replicated in cultured human neuronal cells by treatment with TNF-α, whose CSF levels are elevated in autism. These novel findings suggest that rather than serving as a housekeeping enzyme, MS has a broad and dynamic role in coordinating metabolism in the brain during development and aging. Factors adversely affecting MS activity, such as oxidative stress, can be a source of risk for neurological disorders across the lifespan via their impact on methylation reactions, including epigenetic regulation of gene expression.
Collapse
Affiliation(s)
- Christina R. Muratore
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, Massachusetts, United States of America
| | - Nathaniel W. Hodgson
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, Massachusetts, United States of America
| | - Malav S. Trivedi
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, Massachusetts, United States of America
| | - Hamid M. Abdolmaleky
- Genetics Program, School of Medicine, Boston University, Boston, Massachusetts, United States of America
| | - Antonio M. Persico
- Laboratory of Molecular Psychiatry and Neurogenetics, University Campus Bio-Medico, Rome, Italy
| | - Carla Lintas
- Laboratory of Molecular Psychiatry and Neurogenetics, University Campus Bio-Medico, Rome, Italy
| | - Suzanne De La Monte
- Department of Medicine and Pathology, Rhode Island Hospital and Warren Alpert School of Medicine at Brown University, Providence, Rhode Island, United States of America
| | - Richard C. Deth
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
32
|
Beheshti A, Sachs RK, Peluso M, Rietman E, Hahnfeldt P, Hlatky L. Age and space irradiation modulate tumor progression: implications for carcinogenesis risk. Radiat Res 2013; 179:208-20. [PMID: 23289386 DOI: 10.1667/rr3100.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Age plays a major role in tumor incidence and is an important consideration when modeling the carcinogenesis process or estimating cancer risks. Epidemiological data show that from adolescence through middle age, cancer incidence increases with age. This effect is commonly attributed to a lifetime accumulation of cellular, particularly DNA, damage. However, during middle age the incidence begins to decelerate and, for many tumor sites, it actually decreases at sufficiently advanced ages. We investigated if the observed deceleration and potential decrease in incidence could be attributed to a decreased capacity of older hosts to support tumor progression, and whether HZE [high atomic number (Z), high energy (E)] radiation differentially modulates tumor progression in young vs. middle-age hosts, issues that are relevant to estimating carcinogenesis risk for astronauts. Lewis lung carcinoma (LLC) cells were injected into syngeneic mice (143 and 551 days old), which were then subject to whole-body (56)Fe irradiation (1 GeV/amu). Three findings emerged: (1) among unirradiated animals, substantial inhibition of tumor progression and significantly decreased tumor growth rates were seen for middle-aged mice compared to young mice, (2) whole-body (56)Fe irradiation inhibited tumor progression in both young and middle-aged mice (with greater suppression seen in case of young animals), with little effect on tumor growth rates, and (3) (56)Fe irradiation suppressed tumor progression in young mice to a degree that was not significantly different than transiting from young to middle-aged. Thus, (56)Fe irradiation acted similar to aging with respect to tumor progression. We further investigated the molecular underpinnings driving the radiation modulation of tumor dynamics in young and middle-aged mice. Through global gene expression analysis, the key players, FASN, AKT1 and the CXCL12/CXCR4 complex, were determined to be contributory. In sum, these findings demonstrated a reduced capacity of middle-aged hosts to support the progression phase of carcinogenesis and identify molecular factors that contribute to HZE radiation modulation of tumor progression as a function of age.
Collapse
Affiliation(s)
- Afshin Beheshti
- Center of Cancer Systems Biology, St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, MA 02135, USA
| | | | | | | | | | | |
Collapse
|
33
|
Leong PK, Chen N, Ko KM. Mitochondrial decay in ageing: 'Qi-invigorating' schisandrin B as a hormetic agent for mitigating age-related diseases. Clin Exp Pharmacol Physiol 2012; 39:256-64. [PMID: 21895737 DOI: 10.1111/j.1440-1681.2011.05600.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
1. The mitochondrial free radical theory of ageing (MFRTA) proposes a primary role for mitochondrial reactive oxygen species (ROS) in the ageing process. The reductive hot spot hypothesis of mammalian ageing serves as a supplement to the MFRTA by explaining how the relatively few cells that have lost oxidative phosphorylation capacity due to mitochondrial DNA mutations can be toxic to the rest of the body and result in the development of age-related diseases. 2. Schisandrin B (SchB), which can induce both a glutathione anti-oxidant and a heat shock response via redox-sensitive signalling pathways, is a hormetic agent potentially useful for increasing the resistance of tissues to oxidative damage. The enhanced cellular/mitochondrial anti-oxidant status and heat shock response afforded by SchB can preserve the structural and functional integrity of mitochondria, suggesting a potential role for SchB in ameliorating age-related diseases. 3. Future studies will focus on investigating whether SchB can produce the hormetic response in humans.
Collapse
Affiliation(s)
- Pou K Leong
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | | | | |
Collapse
|
34
|
Salminen A, Kaarniranta K, Kauppinen A. Inflammaging: disturbed interplay between autophagy and inflammasomes. Aging (Albany NY) 2012; 4:166-75. [PMID: 22411934 PMCID: PMC3348477 DOI: 10.18632/aging.100444] [Citation(s) in RCA: 323] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Inflammaging refers to a low-grade pro-inflammatory phenotype which accompanies aging in mammals. The aging process is associated with a decline in autophagic capacity which impairs cellular housekeeping, leading to protein aggregation and accumulation of dysfunctional mitochondria which provoke reactive oxygen species (ROS) production and oxidative stress. Recent studies have clearly indicated that the ROS production induced by damaged mitochondria can stimulate intracellular danger-sensing multiprotein platforms called inflammasomes. Nod-like receptor 3 (NLRP3) can be activated by many danger signals, e.g. ROS, cathepsin B released from destabilized lysosomes and aggregated proteins, all of which evoke cellular stress and are involved in the aging process. NLRP3 activation is also enhanced in many age-related diseases, e.g. atherosclerosis, obesity and type 2 diabetes. NLRP3 activates inflammatory caspases, mostly caspase-1, which cleave the inactive precursors of IL-1β and IL-18 and stimulate their secretion. Consequently, these cytokines provoke inflammatory responses and accelerate the aging process by inhibiting autophagy. In conclusion, inhibition of autophagic capacity with aging generates the inflammaging condition via the activation of inflammasomes, in particular NLRP3. We will provide here a perspective on the current research of the ROS-dependent activation of inflammasomes triggered by the decline in autophagic cleansing of dysfunctional mitochondria.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland.
| | | | | |
Collapse
|
35
|
Pascucci B, Lemma T, Iorio E, Giovannini S, Vaz B, Iavarone I, Calcagnile A, Narciso L, Degan P, Podo F, Roginskya V, Janjic BM, Van Houten B, Stefanini M, Dogliotti E, D'Errico M. An altered redox balance mediates the hypersensitivity of Cockayne syndrome primary fibroblasts to oxidative stress. Aging Cell 2012; 11:520-9. [PMID: 22404840 DOI: 10.1111/j.1474-9726.2012.00815.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Cockayne syndrome (CS) is a rare hereditary multisystem disease characterized by neurological and development impairment, and premature aging. Cockayne syndrome cells are hypersensitive to oxidative stress, but the molecular mechanisms involved remain unresolved. Here we provide the first evidence that primary fibroblasts derived from patients with CS-A and CS-B present an altered redox balance with increased steady-state levels of intracellular reactive oxygen species (ROS) and basal and induced DNA oxidative damage, loss of the mitochondrial membrane potential, and a significant decrease in the rate of basal oxidative phosphorylation. The Na/K-ATPase, a relevant target of oxidative stress, is also affected with reduced transcription in CS fibroblasts and normal protein levels restored upon complementation with wild-type genes. High-resolution magnetic resonance spectroscopy revealed a significantly perturbed metabolic profile in CS-A and CS-B primary fibroblasts compared with normal cells in agreement with increased oxidative stress and alterations in cell bioenergetics. The affected processes include oxidative metabolism, glycolysis, choline phospholipid metabolism, and osmoregulation. The alterations in intracellular ROS content, oxidative DNA damage, and metabolic profile were partially rescued by the addition of an antioxidant in the culture medium suggesting that the continuous oxidative stress that characterizes CS cells plays a causative role in the underlying pathophysiology. The changes of oxidative and energy metabolism offer a clue for the clinical features of patients with CS and provide novel tools valuable for both diagnosis and therapy.
Collapse
Affiliation(s)
- Barbara Pascucci
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Via Salaria, Km 29,300, 00016 Monterotondo Stazione, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Tanrikulu-Kucuk S, Ademoglu E. Dietary restriction of amino acids other than methionine prevents oxidative damage during aging: involvement of telomerase activity and telomere length. Life Sci 2012; 90:924-8. [PMID: 22564407 DOI: 10.1016/j.lfs.2012.04.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Revised: 04/06/2012] [Accepted: 04/16/2012] [Indexed: 10/28/2022]
Abstract
AIMS It has been suggested that variations in the proportions of some dietary amino acids can slow down aging. In this study, the influence of amino acids other than methionine on aging was investigated. MAIN METHODS Rats were fed either with normal (ND) or except methionine, protein restricted diet (PREMD) for 4 months and oxygen radical production, oxidative protein and DNA damage along with telomere length and telomerase activity were evaluated in the liver. KEY FINDINGS Except mitochondrial superoxide production rate, feeding with PREMD significantly decreased the oxygen radical production rate and protein carbonyl levels in the homogenate and mitochondria of 16-month-old rats. Feeding with PREMD prevented 8-OHdG formation in mitochondrial DNA but not in the genomic DNA. Although liver telomerase activities of rats receiving either ND or PREMD seemed to have some variations, these did not reach a statistical significance. Feeding with PREMD conserved the telomere length in the liver. The telomere length of 8- and 16-month-old rats fed PREMD was similar, 16-month-old rats fed ND had telomeres shortened by 36% (p<0.05). SIGNIFICANCE Long-term restriction of the amino acids other than methionine may decrease oxygen radical generation and oxidative damage of cellular constituents, and may also prevent telomere shortening in rat liver.
Collapse
|
37
|
Vazquez-Martin A, Fernández-Arroyo S, Cufí S, Oliveras-Ferraros C, Lozano-Sánchez J, Vellón L, Micol V, Joven J, Segura-Carretero A, Menendez JA. Phenolic secoiridoids in extra virgin olive oil impede fibrogenic and oncogenic epithelial-to-mesenchymal transition: extra virgin olive oil as a source of novel antiaging phytochemicals. Rejuvenation Res 2012; 15:3-21. [PMID: 22229524 DOI: 10.1089/rej.2011.1203] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) genetic program is a molecular convergence point in the life-threatening progression of organ fibrosis and cancer toward organ failure and metastasis, respectively. Here, we employed the EMT process as a functional screen for testing crude natural extracts for accelerated drug development in fibrosis and cancer. Because extra virgin olive oil (EVOO) (i.e., the juice derived from the first cold pressing of the olives without any further refining process) naturally contains high levels of phenolic compounds associated with the health benefits derived from consuming an EVOO-rich Mediterranean diet, we have tested the ability of an EVOO-derived crude phenolic extract to regulate fibrogenic and oncogenic EMT in vitro. High-performance liquid chromatography (HPLC) coupled to time-of-flight (TOF) mass spectrometry assays revealed that the EVOO phenolic extract was mainly composed (∼70%) of two members of the secoiridoid family of complex polyphenols, namely oleuropein aglycone-the bitter principle of olives-and its derivative decarboxymethyl oleuropein aglycone. EVOO secoiridoids efficiently prevented loss of proteins associated with polarized epithelial phenotype (i.e., E-cadherin) as well as de novo synthesis of proteins associated with mesenchymal migratory morphology of transitioning cells (i.e., vimentin). The ability of EVOO to impede transforming growth factor-β (TGF-β)-induced disintegration of E-cadherin-mediated cell-cell contacts apparently occurred as a consequence of the ability of EVOO phenolics to prevent the upregulation of SMAD4-a critical mediator of TGF-β signaling-and of the SMAD transcriptional cofactor SNAIL2 (Slug)-a well-recognized epithelial repressor. Indeed, EVOO phenolics efficiently prevented crucial TGF-β-induced EMT transcriptional events, including upregulation of SNAI2, TCF4, VIM (Vimentin), FN (fibronectin), and SERPINE1 genes. While awaiting a better mechanistic understanding of how EVOO phenolics molecularly shut down the EMT differentiation process, it seems reasonable to suggest that nontoxic Oleaceae secoiridoids certainly merit to be considered for aging studies and, perhaps, for ulterior design of more pharmacologically active second-generation anti-EMT molecules.
Collapse
|
38
|
Brown C, M. Donnelly T. Disease Problems of Small Rodents. FERRETS, RABBITS, AND RODENTS 2012. [PMCID: PMC7152030 DOI: 10.1016/b978-1-4160-6621-7.00027-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
39
|
Altering pyrroloquinoline quinone nutritional status modulates mitochondrial, lipid, and energy metabolism in rats. PLoS One 2011; 6:e21779. [PMID: 21814553 PMCID: PMC3140972 DOI: 10.1371/journal.pone.0021779] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 06/10/2011] [Indexed: 01/01/2023] Open
Abstract
We have reported that pyrroloquinoline quinone (PQQ) improves reproduction, neonatal development, and mitochondrial function in animals by mechanisms that involve mitochondrial related cell signaling pathways. To extend these observations, the influence of PQQ on energy and lipid relationships and apparent protection against ischemia reperfusion injury are described herein. Sprague-Dawley rats were fed a nutritionally complete diet with PQQ added at either 0 (PQQ−) or 2 mg PQQ/Kg diet (PQQ+). Measurements included: 1) serum glucose and insulin, 2) total energy expenditure per metabolic body size (Wt3/4), 3) respiratory quotients (in the fed and fasted states), 4) changes in plasma lipids, 5) the relative mitochondrial amount in liver and heart, and 6) indices related to cardiac ischemia. For the latter, rats (PQQ− or PQQ+) were subjected to left anterior descending occlusions followed by 2 h of reperfusion to determine PQQ's influence on infarct size and myocardial tissue levels of malondialdehyde, an indicator of lipid peroxidation. Although no striking differences in serum glucose, insulin, and free fatty acid levels were observed, energy expenditure was lower in PQQ− vs. PQQ+ rats and energy expenditure (fed state) was correlated with the hepatic mitochondrial content. Elevations in plasma di- and triacylglyceride and β-hydroxybutryic acid concentrations were also observed in PQQ− rats vs. PQQ+ rats. Moreover, PQQ administration (i.p. at 4.5 mg/kg BW for 3 days) resulted in a greater than 2-fold decrease in plasma triglycerides during a 6-hour fast than saline administration in a rat model of type 2 diabetes. Cardiac injury resulting from ischemia/reperfusion was more pronounced in PQQ− rats than in PQQ+ rats. Collectively, these data demonstrate that PQQ deficiency impacts a number of parameters related to normal mitochondrial function.
Collapse
|
40
|
Hagopian K, Chen Y, Simmons Domer K, Soo Hoo R, Bentley T, McDonald RB, Ramsey JJ. Caloric restriction influences hydrogen peroxide generation in mitochondrial sub-populations from mouse liver. J Bioenerg Biomembr 2011; 43:227-36. [PMID: 21505800 DOI: 10.1007/s10863-011-9353-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 03/24/2011] [Indexed: 10/18/2022]
Abstract
Calorie restriction (CR) has been shown to decrease H(2)O(2) production in liver mitochondria, although it is not known if this is due to uniform changes in all mitochondria or changes in particular mitochondrial sub-populations. To address this issue, liver mitochondria from control and CR mice were fractionated using differential centrifugation at 1,000 g, 3,000 g and 10,000 g into distinct populations labeled as M1, M3 and M10, respectively. Mitochondrial protein levels, respiration and H(2)O(2) production were measured in each fraction. CR resulted in a decrease in total protein (mg) in each fraction, although this difference disappeared when adjusted for liver weight (mg protein/g liver weight). No differences in respiration (State 3 or 4) were observed between control and CR mice in any of the mitochondrial fractions. CR decreased H(2)O(2) production in all fractions when mitochondria respired on succinate (Succ), succ+antimycin A (Succ+AA) or pyruvate/malate+rotenone (P/M+ROT). Thus, CR decreased reactive oxygen species (ROS) production under conditions which stimulate mitochondrial complex I ROS production under both forward (P/M+ROT) and backward (Succ & Succ+AA) electron flow. The results indicate that CR decreases H(2)O(2) production in all liver mitochondrial fractions due to a decrease in capacity for ROS production by complex I of the electron transport chain.
Collapse
Affiliation(s)
- Kevork Hagopian
- VM Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
Metabolism, genomics, and DNA repair in the mouse aging liver. Curr Gerontol Geriatr Res 2011; 2011:859415. [PMID: 21559242 PMCID: PMC3087416 DOI: 10.1155/2011/859415] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Accepted: 02/11/2011] [Indexed: 12/22/2022] Open
Abstract
The liver plays a pivotal role in the metabolism of nutrients, drugs, hormones, and metabolic waste products, thereby maintaining body homeostasis. The liver undergoes substantial changes in structure and function within old age. Such changes are associated with significant impairment of many hepatic metabolic and detoxification activities, with implications for systemic aging and age-related disease. It has become clear, using rodent models as biological tools, that genetic instability in the form of gross DNA rearrangements or point mutations accumulate in the liver with age. DNA lesions, such as oxidized bases or persistent breaks, increase with age and correlate well with the presence of senescent hepatocytes. The level of DNA damage and/or mutation can be affected by changes in carcinogen activation, decreased ability to repair DNA, or a combination of these factors. This paper covers some of the DNA repair pathways affecting liver homeostasis with age using rodents as model systems.
Collapse
|
42
|
Lebel M, Picard F, Ferland G, Gaudreau P. Drugs, nutrients, and phytoactive principles improving the health span of rodent models of human age-related diseases. J Gerontol A Biol Sci Med Sci 2011; 67:140-51. [PMID: 21393422 DOI: 10.1093/gerona/glr038] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Rodents are often the species of choice to examine the effect of drugs on survival and on the progression of specific diseased tissues. This statement is also true for research laboratories working in the field of nutrition and aging. In addition to diets that can reduce the life expectancy of rodents, such as diabetogenic or high-fat diets, genetically modified rodents exhibiting different accelerated age-associated diseases also provide important biologic tools to decipher the impact of drugs, nutrients, or phytoactive compounds on their health and life span. This review covers some of the chemicals believed to decelerate the appearance of age-related diseases in different rodent models. Such chemicals include antioxidants, anti-inflammatory molecules, modulators of metabolic sensors, calorie restriction mimetics, and vegetal polyphenolic compounds that affect mitochondrial functions, cellular proliferation or differentiation as well as cell functionality.
Collapse
Affiliation(s)
- Michel Lebel
- Department of Molecular Biology, Medical Biochemistry, and Pathology, Centre de Recherche en Cancérologie de l'Université Laval, Hôpital Hôtel-Dieu de Québec, 9 McMahon Street, Québec City, Québec, Canada G1R 2J6.
| | | | | | | |
Collapse
|
43
|
Salway KD, Page MM, Faure PA, Burness G, Stuart JA. Enhanced protein repair and recycling are not correlated with longevity in 15 vertebrate endotherm species. AGE (DORDRECHT, NETHERLANDS) 2011; 33:33-47. [PMID: 20567926 PMCID: PMC3063641 DOI: 10.1007/s11357-010-9157-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Accepted: 05/31/2010] [Indexed: 05/25/2023]
Abstract
Previous studies have shown that longevity is associated with enhanced cellular stress resistance. This observation supports the disposable soma theory of aging, which suggests that the investment made in cellular maintenance will be proportional to selective pressures to extend lifespan. Maintenance of protein homeostasis is a critical component of cellular maintenance and stress resistance. To test the hypothesis that enhanced protein repair and recycling activities underlie longevity, we measured the activities of the 20S/26S proteasome and two protein repair enzymes in liver, heart and brain tissues of 15 different mammalian and avian species with maximum lifespans (MLSP) ranging from 3 to 30 years. The data set included Snell dwarf mice, in which lifespan is increased by ∼50% compared to their normal littermates. None of these activities in any of the three tissues correlated positively with MLSP. In liver, 20S/26S proteasome and thioredoxin reductase (TrxR) activities correlated negatively with body mass. In brain tissue, TrxR was also negatively correlated with body mass. Glutaredoxin (Grx) activity in brain was negatively correlated with MLSP and this correlation remained after residual analysis to remove the effects of body mass, but was lost when the data were analysed using Felsenstein's independent contrasts. Snell dwarf mice had marginally lower 20S proteasome, TrxR and Grx activities than normal controls in brain, but not heart tissue. Thus, increased longevity is not associated with increased protein repair or proteasomal degradation capacities in vertebrate endotherms.
Collapse
Affiliation(s)
- Kurtis D. Salway
- Department of Biological Sciences, Brock University, 500 Glenridge Ave, St. Catharines, ON L2S 3A1 Canada
| | - Melissa M. Page
- Department of Biological Sciences, Brock University, 500 Glenridge Ave, St. Catharines, ON L2S 3A1 Canada
| | - Paul A. Faure
- Department of Psychology, Neuroscience and Behaviour, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1 Canada
| | - Gary Burness
- Department of Biology, Trent University, Peterborough, ON K9J 7B8 Canada
| | - Jeffrey A. Stuart
- Department of Biological Sciences, Brock University, 500 Glenridge Ave, St. Catharines, ON L2S 3A1 Canada
| |
Collapse
|
44
|
Altun D, Uysal H, Aşkın H, Ayar A. Determination of the effects of genistein on the longevity of Drosophila melanogaster meigen (Diptera; Drosophilidae). BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2011; 86:120-123. [PMID: 21127834 DOI: 10.1007/s00128-010-0159-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Accepted: 11/11/2010] [Indexed: 05/30/2023]
Abstract
In this study, the effects of genistein on the longevity of Drosophila melanogaster were investigated. The effects of different concentrations of genistein (1, 3, 5 and 10 μM/100 mL medium) were separately administered one by one to female and male populations of D. melanogaster for application groups. In the control group, the maximum life span was determined to be 57 days for ♀♀, 46 for ♂♂. The maximum life span for the lowest (1.0 μL) and highest (10.0 μL) application groups among the adult populations of D. melanogaster subjected to genistein were observed to be 54, 50, 40 and 36 days for ♀♀ and 51, 48, 40 and 33 days for ♂♂. These values indicate a negative correlation (R = 0.513 for ♂♂ and R = 0.509 for ♀♀) between the maximum life span of the application groups and changing genistein concentrations.
Collapse
Affiliation(s)
- Deniz Altun
- Department of Biology, Faculty of Art and Science, Erzincan University, 24100 Erzincan, Turkey
| | | | | | | |
Collapse
|
45
|
Wang Y, Zhang SXL, Gozal D. Reactive oxygen species and the brain in sleep apnea. Respir Physiol Neurobiol 2010; 174:307-16. [PMID: 20833273 DOI: 10.1016/j.resp.2010.09.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 08/31/2010] [Accepted: 09/01/2010] [Indexed: 02/07/2023]
Abstract
Rodents exposed to intermittent hypoxia (IH), a model of obstructive sleep apnea (OSA), manifest impaired learning and memory and somnolence. Increased levels of reactive oxygen species (ROS), oxidative tissue damage, and apoptotic neuronal cell death are associated with the presence of IH-induced CNS dysfunction. Furthermore, treatment with antioxidants or overexpression of antioxidant enzymes is neuroprotective during IH. These findings mimic clinical cases of OSA and suggest that ROS may play a key causal role in OSA-induced neuropathology. Controlled production of ROS occurs in multiple subcellular compartments of normal cells and de-regulation of such processes may result in excessive ROS production. The mitochondrial electron transport chain, especially complexes I and III, and the NADPH oxidase in the cellular membrane are the two main sources of ROS in brain cells, although other systems, including xanthine oxidase, phospholipase A2, lipoxygenase, cyclooxygenase, and cytochrome P450, may all play a role. The initial evidence for NADPH oxidase and mitochondrial involvement in IH-induced ROS production and neuronal injury unquestionably warrants future research efforts.
Collapse
Affiliation(s)
- Yang Wang
- Section of Pediatric Sleep Medicine, Department of Pediatrics, Comer Children's Hospital, The University of Chicago, Chicago, IL 60637, USA
| | | | | |
Collapse
|