1
|
Li L, Chen R, Zhang H, Li J, Huang H, Weng J, Tan H, Guo T, Wang M, Xie J. The epigenetic modification of DNA methylation in neurological diseases. Front Immunol 2024; 15:1401962. [PMID: 39376563 PMCID: PMC11456496 DOI: 10.3389/fimmu.2024.1401962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 09/03/2024] [Indexed: 10/09/2024] Open
Abstract
Methylation, a key epigenetic modification, is essential for regulating gene expression and protein function without altering the DNA sequence, contributing to various biological processes, including gene transcription, embryonic development, and cellular functions. Methylation encompasses DNA methylation, RNA methylation and histone modification. Recent research indicates that DNA methylation is vital for establishing and maintaining normal brain functions by modulating the high-order structure of DNA. Alterations in the patterns of DNA methylation can exert significant impacts on both gene expression and cellular function, playing a role in the development of numerous diseases, such as neurological disorders, cardiovascular diseases as well as cancer. Our current understanding of the etiology of neurological diseases emphasizes a multifaceted process that includes neurodegenerative, neuroinflammatory, and neurovascular events. Epigenetic modifications, especially DNA methylation, are fundamental in the control of gene expression and are critical in the onset and progression of neurological disorders. Furthermore, we comprehensively overview the role and mechanism of DNA methylation in in various biological processes and gene regulation in neurological diseases. Understanding the mechanisms and dynamics of DNA methylation in neural development can provide valuable insights into human biology and potentially lead to novel therapies for various neurological diseases.
Collapse
Affiliation(s)
- Linke Li
- The Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People’s Hospital of Chengdu and The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Rui Chen
- The Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People’s Hospital of Chengdu and The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- College of Medicine, Southwest Jiaotong University, Chengdu, China
- Department of Stomatology, The Third People’s Hospital of Chengdu and The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Hui Zhang
- Department of Stomatology, The Third People’s Hospital of Chengdu and The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- College of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Jinsheng Li
- College of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Hao Huang
- College of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Jie Weng
- College of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Huan Tan
- College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Tailin Guo
- College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Mengyuan Wang
- The Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People’s Hospital of Chengdu and The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- College of Medicine, Southwest Jiaotong University, Chengdu, China
- Department of Stomatology, The Third People’s Hospital of Chengdu and The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Jiang Xie
- Key Laboratory of Drug Targeting and Drug Delivery of Ministry of Education (MOE), Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, West China School of Pharmacy, Sichuan University, Chengdu, China
- Department of Pediatrics, Chengdu Third People’s Hospital, Chengdu, China
| |
Collapse
|
2
|
Chung J, Das A, Sun X, Sobreira DR, Leung YY, Igartua C, Mozaffari S, Chou YF, Thiagalingam S, Mez J, Zhang X, Jun GR, Stein TD, Kunkle BW, Martin ER, Pericak-Vance MA, Mayeux R, Haines JL, Schellenberg GD, Nobrega MA, Lunetta KL, Pinto JM, Wang LS, Ober C, Farrer LA. Genome-wide association and multi-omics studies identify MGMT as a novel risk gene for Alzheimer's disease among women. Alzheimers Dement 2023; 19:896-908. [PMID: 35770850 PMCID: PMC9800643 DOI: 10.1002/alz.12719] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Variants in the tau gene (MAPT) region are associated with breast cancer in women and Alzheimer's disease (AD) among persons lacking apolipoprotein E ε4 (ε4-). METHODS To identify novel genes associated with tau-related pathology, we conducted two genome-wide association studies (GWAS) for AD, one among 10,340 ε4- women in the Alzheimer's Disease Genetics Consortium (ADGC) and another in 31 members (22 women) of a consanguineous Hutterite kindred. RESULTS We identified novel associations of AD with MGMT variants in the ADGC (rs12775171, odds ratio [OR] = 1.4, P = 4.9 × 10-8) and Hutterite (rs12256016 and rs2803456, OR = 2.0, P = 1.9 × 10-14) datasets. Multi-omics analyses showed that the most significant and largest number of associations among the single nucleotide polymorphisms (SNPs), DNA-methylated CpGs, MGMT expression, and AD-related neuropathological traits were observed among women. Furthermore, promoter capture Hi-C analyses revealed long-range interactions of the MGMT promoter with MGMT SNPs and CpG sites. DISCUSSION These findings suggest that epigenetically regulated MGMT expression is involved in AD pathogenesis, especially in women.
Collapse
Affiliation(s)
- Jaeyoon Chung
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, Massachusetts, USA
| | - Anjali Das
- Department of Human Genetics, The University of Chicago, Chicago, Illinois, USA
| | - Xinyu Sun
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, Massachusetts, USA
| | - Débora R Sobreira
- Department of Surgery/Section of Otolaryngology-Head and Neck Surgery, The University of Chicago, Chicago, Illinois, USA
| | - Yuk Yee Leung
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Catherine Igartua
- Department of Human Genetics, The University of Chicago, Chicago, Illinois, USA
| | - Sahar Mozaffari
- Department of Human Genetics, The University of Chicago, Chicago, Illinois, USA
| | - Yi-Fan Chou
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Sam Thiagalingam
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, Massachusetts, USA
| | - Jesse Mez
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Xiaoling Zhang
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, Massachusetts, USA
| | - Gyungah R Jun
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Thor D Stein
- Department of Pathology & Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Brian W Kunkle
- Dr. John T. Macdonald Foundation of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Eden R Martin
- Dr. John T. Macdonald Foundation of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Margaret A Pericak-Vance
- Dr. John T. Macdonald Foundation of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Richard Mayeux
- Department of Neurology, Columbia University, New York City, New York, USA
| | - Jonathan L Haines
- Department of Population and Quantitative Health Sciences and Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Gerard D Schellenberg
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Marcelo A Nobrega
- Department of Human Genetics, The University of Chicago, Chicago, Illinois, USA
| | - Kathryn L Lunetta
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Jayant M Pinto
- Department of Surgery/Section of Otolaryngology-Head and Neck Surgery, The University of Chicago, Chicago, Illinois, USA
| | - Li-San Wang
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Carole Ober
- Department of Human Genetics, The University of Chicago, Chicago, Illinois, USA
| | - Lindsay A Farrer
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Pan X, Yun J, Coban Akdemir ZH, Jiang X, Wu E, Huang JH, Sahni N, Yi SS. AI-DrugNet: A network-based deep learning model for drug repurposing and combination therapy in neurological disorders. Comput Struct Biotechnol J 2023; 21:1533-1542. [PMID: 36879885 PMCID: PMC9984442 DOI: 10.1016/j.csbj.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 02/03/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Discovering effective therapies is difficult for neurological and developmental disorders in that disease progression is often associated with a complex and interactive mechanism. Over the past few decades, few drugs have been identified for treating Alzheimer's disease (AD), especially for impacting the causes of cell death in AD. Although drug repurposing is gaining more success in developing therapeutic efficacy for complex diseases such as common cancer, the complications behind AD require further study. Here, we developed a novel prediction framework based on deep learning to identify potential repurposed drug therapies for AD, and more importantly, our framework is broadly applicable and may generalize to identifying potential drug combinations in other diseases. Our prediction framework is as follows: we first built a drug-target pair (DTP) network based on multiple drug features and target features, as well as the associations between DTP nodes where drug-target pairs are the DTP nodes and the associations between DTP nodes are represented as the edges in the AD disease network; furthermore, we incorporated the drug-target feature from the DTP network and the relationship information between drug-drug, target-target, drug-target within and outside of drug-target pairs, representing each drug-combination as a quartet to generate corresponding integrated features; finally, we developed an AI-based Drug discovery Network (AI-DrugNet), which exhibits robust predictive performance. The implementation of our network model help identify potential repurposed and combination drug options that may serve to treat AD and other diseases.
Collapse
Affiliation(s)
- Xingxin Pan
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jun Yun
- Oden Institute for Computational Engineering and Sciences (ICES), The University of Texas at Austin, Austin, TX 78712, USA
| | - Zeynep H. Coban Akdemir
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Xiaoqian Jiang
- School of Biomedical Informatics, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Erxi Wu
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
- Neuroscience Institute and Department of Neurosurgery, Baylor Scott & White Health, Temple, TX 76502, USA
- Department of Surgery, Texas A & M University Health Science Center, College of Medicine, Temple, TX 76508, USA
- Department of Pharmaceutical Sciences, Texas A & M University Health Science Center, College of Pharmacy, College Station, TX 77843, USA
| | - Jason H. Huang
- Neuroscience Institute and Department of Neurosurgery, Baylor Scott & White Health, Temple, TX 76502, USA
- Department of Surgery, Texas A & M University Health Science Center, College of Medicine, Temple, TX 76508, USA
| | - Nidhi Sahni
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Quantitative and Computational Biosciences Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - S. Stephen Yi
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
- Oden Institute for Computational Engineering and Sciences (ICES), The University of Texas at Austin, Austin, TX 78712, USA
- Interdisciplinary Life Sciences Graduate Programs (ILSGP), College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Biomedical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
4
|
Priya R, Das B. Global DNA methylation profile at LINE-1 repeats and promoter methylation of genes involved in DNA damage response and repair pathways in human peripheral blood mononuclear cells in response to γ-radiation. Mol Cell Biochem 2021; 477:267-281. [PMID: 34708334 DOI: 10.1007/s11010-021-04265-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 09/17/2021] [Indexed: 02/02/2023]
Abstract
DNA methylation is an epigenetic mechanism, which plays an important role in gene regulation. The present study evaluated DNA methylation profile of LINE1 repeats and promoter methylation of DNA damage response (DDR) and DNA repair (DR) genes (PARP1, ATM, BRCA1, MLH1, XPC, RAD23B, APC, TNFα, DNMT3A, MRE11A, MGMT, CDKN2A, MTHFR) in human peripheral blood mononuclear cells (PBMCs) of healthy donors in response to γ-radiation. Methylation level was correlated with gene expression profile of selected DDR and DR genes (APC, MLH1, PARP1, MRE11A, TNFα, MGMT) to understand their role in gene regulation. Blood samples were collected from 15 random healthy donors, PBMCs were isolated, exposed to 0.1 Gy (low) and 2.0 Gy (high) doses of γ-radiation and proliferated for 48 h and 72 h. Genomic DNA and total RNA were isolated from irradiated PBMCs along with un-irradiated control. Methylation profile was determined from bisulphite converted DNA and amplified by methylation sensitive high resolution melting (MS-HRM) method. Total RNA was converted to cDNA and relative expression was analysed using real time quantitative-PCR. Our results revealed that at 0.1 Gy, MRE11A and TNFα showed significant (P < 0.05) increase in methylation at 72 h. At 2.0 Gy, significant increase (P < 0.05) in methylation profile was observed at LINE1, MRE11A, PARP1, BRCA1, DNMT3A and RAD23B at 48 h and 72 h. PARP1 showed significant positive correlation of methylation status with gene expression. In conclusion, low and high doses of γ-radiation have significant influence on DNA methylation status of LINE1, DDR and DR genes suggesting their potential role as epigenetic signatures in human PBMCs, which can be further explored in human populations.
Collapse
Affiliation(s)
- Rashmi Priya
- Low Level Radiation Research Section, Radiation Biology and Health Sciences Division, Bio-Sciences Group, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India
| | - Birajalaxmi Das
- Low Level Radiation Research Section, Radiation Biology and Health Sciences Division, Bio-Sciences Group, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India. .,Homi Bhabha National Institute, Anushaktinagar, Trombay, Mumbai, 400 094, India.
| |
Collapse
|
5
|
Teuber-Hanselmann S, Worm K, Macha N, Junker A. MGMT-Methylation in Non-Neoplastic Diseases of the Central Nervous System. Int J Mol Sci 2021; 22:ijms22083845. [PMID: 33917711 PMCID: PMC8068191 DOI: 10.3390/ijms22083845] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/05/2021] [Accepted: 04/05/2021] [Indexed: 12/11/2022] Open
Abstract
Quantifying O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation plays an essential role in assessing the potential efficacy of alkylating agents in the chemotherapy of malignant gliomas. MGMT promoter methylation is considered to be a characteristic of subgroups of certain malignancies but has also been described in various peripheral inflammatory diseases. However, MGMT promoter methylation levels have not yet been investigated in non-neoplastic brain diseases. This study demonstrates for the first time that one can indeed detect slightly enhanced MGMT promoter methylation in individual cases of inflammatory demyelinating CNS diseases such as multiple sclerosis and progressive multifocal leucencephalopathy (PML), as well as in other demyelinating diseases such as central pontine and exptrapontine myelinolysis, and diseases with myelin damage such as Wallerian degeneration. In this context, we identified a reduction in the expression of the demethylase TET1 as a possible cause for the enhanced MGMT promoter methylation. Hence, we show for the first time that MGMT hypermethylation occurs in chronic diseases that are not strictly associated to distinct pathogens, oncogenic viruses or neoplasms but that lead to damage of the myelin sheath in various ways. While this gives new insights into epigenetic and pathophysiological processes involved in de- and remyelination, which might offer new therapeutic opportunities for demyelinating diseases in the future, it also reduces the specificity of MGMT hypermethylation as a tumor biomarker.
Collapse
Affiliation(s)
- Sarah Teuber-Hanselmann
- Institute of Neuropathology, University Hospital Essen, D-45147 Essen, Germany; (S.T.-H.); (N.M.)
| | - Karl Worm
- Institute of Pathology, University Hospital Essen, D-45147 Essen, Germany;
| | - Nicole Macha
- Institute of Neuropathology, University Hospital Essen, D-45147 Essen, Germany; (S.T.-H.); (N.M.)
| | - Andreas Junker
- Institute of Neuropathology, University Hospital Essen, D-45147 Essen, Germany; (S.T.-H.); (N.M.)
- Correspondence: ; Tel.: +49-201-723-3315
| |
Collapse
|
6
|
Coppedè F, Ricciardi R, Lopomo A, Stoccoro A, De Rosa A, Guida M, Petrucci L, Maestri M, Lucchi M, Migliore L. Investigation of MLH1, MGMT, CDKN2A, and RASSF1A Gene Methylation in Thymomas From Patients With Myasthenia Gravis. Front Mol Neurosci 2020; 13:567676. [PMID: 33192293 PMCID: PMC7645111 DOI: 10.3389/fnmol.2020.567676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/18/2020] [Indexed: 01/07/2023] Open
Abstract
A feature of thymomas is their frequent association with myasthenia gravis (MG), an autoimmune disease characterized by the production of autoantibodies directed to different targets at the neuromuscular junction. Indeed, almost 30-40% of thymomas are found in patients with a type of MG termed thymoma-associated MG (TAMG). Recent studies suggest that TAMG-associated thymomas could represent a molecularly distinct subtype of thymic epithelial tumors (TETs), but few data are still available concerning the epigenetic modifications occurring in TAMG tissues. The promoter methylation levels of DNA repair (MLH1 and MGMT) and tumor suppressor genes (CDKN2A and RASSF1A) have been frequently investigated in TETs, but methylation data in TAMG tissues are scarce and controversial. To further address this issue, we investigated MLH1, MGMT, CDKN2A, and RASSF1A methylation levels in blood samples and surgically resected thymomas from 69 patients with TAMG and in the adjacent normal thymus available from 44 of them. Promoter methylation levels of MLH1, MGMT, CDKN2A, and RASSF1A genes were not increased in cancer with respect to healthy tissues and did not correlate with the histological or pathological features of the tumor or with the MG symptoms. The present study suggests that hypermethylation of these genes is not frequent in TAMG tissues.
Collapse
Affiliation(s)
- Fabio Coppedè
- Department of Translational Research and of New Surgical and Medical Technologies, Medical Genetics Laboratory, University of Pisa, Pisa, Italy
| | - Roberta Ricciardi
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy.,Division of Thoracic Surgery, Cardiothoracic and Vascular Surgery Department, Pisa University Hospital, Pisa, Italy
| | - Angela Lopomo
- Department of Translational Research and of New Surgical and Medical Technologies, Medical Genetics Laboratory, University of Pisa, Pisa, Italy
| | - Andrea Stoccoro
- Department of Translational Research and of New Surgical and Medical Technologies, Medical Genetics Laboratory, University of Pisa, Pisa, Italy
| | - Anna De Rosa
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy
| | - Melania Guida
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy
| | - Loredana Petrucci
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy
| | - Michelangelo Maestri
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy
| | - Marco Lucchi
- Division of Thoracic Surgery, Cardiothoracic and Vascular Surgery Department, Pisa University Hospital, Pisa, Italy.,Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Lucia Migliore
- Department of Translational Research and of New Surgical and Medical Technologies, Medical Genetics Laboratory, University of Pisa, Pisa, Italy
| |
Collapse
|
7
|
Xiao X, Liu X, Jiao B. Epigenetics: Recent Advances and Its Role in the Treatment of Alzheimer's Disease. Front Neurol 2020; 11:538301. [PMID: 33178099 PMCID: PMC7594522 DOI: 10.3389/fneur.2020.538301] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 09/03/2020] [Indexed: 12/14/2022] Open
Abstract
Objective: This review summarizes recent findings on the epigenetics of Alzheimer's disease (AD) and provides therapeutic strategies for AD. Methods: We searched the following keywords: “genetics,” “epigenetics,” “Alzheimer's disease,” “DNA methylation,” “DNA hydroxymethylation,” “histone modifications,” “non-coding RNAs,” and “therapeutic strategies” in PubMed. Results: In this review, we summarizes recent studies of epigenetics in AD, including DNA methylation/hydroxymethylation, histone modifications, and non-coding RNAs. There are no consistent results of global DNA methylation/hydroxymethylation in AD. Epigenetic genome-wide association studies show that many differentially methylated sites exist in AD. Several studies investigate the role of histone modifications in AD; for example, histone acetylation decreases, whereas H3 phosphorylation increases significantly in AD. In addition, non-coding RNAs, such as microRNA-16 and BACE1-antisense transcript (BACE1-AS), are associated with the pathology of AD. These epigenetic changes provide us with novel insights into the pathogenesis of AD and may be potential therapeutic strategies for AD. Conclusion: Epigenetics is associated with the pathogenesis of AD, including DNA methylation/hydroxymethylation, histone modifications, and non-coding RNAs, which provide potential therapeutic strategies for AD.
Collapse
Affiliation(s)
- Xuewen Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xixi Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| |
Collapse
|
8
|
Vessoni AT, Guerra CCC, Kajitani GS, Nascimento LLS, Garcia CCM. Cockayne Syndrome: The many challenges and approaches to understand a multifaceted disease. Genet Mol Biol 2020; 43:e20190085. [PMID: 32453336 PMCID: PMC7250278 DOI: 10.1590/1678-4685-gmb-2019-0085] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 01/15/2020] [Indexed: 01/04/2023] Open
Abstract
The striking and complex phenotype of Cockayne syndrome (CS) patients combines progeria-like features with developmental deficits. Since the establishment of the in vitro culture of skin fibroblasts derived from patients with CS in the 1970s, significant progress has been made in the understanding of the genetic alterations associated with the disease and their impact on molecular, cellular, and organismal functions. In this review, we provide a historic perspective on the research into CS by revisiting seminal papers in this field. We highlighted the great contributions of several researchers in the last decades, ranging from the cloning and characterization of CS genes to the molecular dissection of their roles in DNA repair, transcription, redox processes and metabolism control. We also provide a detailed description of all pathological mutations in genes ERCC6 and ERCC8 reported to date and their impact on CS-related proteins. Finally, we review the contributions (and limitations) of many genetic animal models to the study of CS and how cutting-edge technologies, such as cell reprogramming and state-of-the-art genome editing, are helping us to address unanswered questions.
Collapse
Affiliation(s)
| | - Camila Chaves Coelho Guerra
- Universidade Federal de Ouro Preto, Instituto de Ciências Exatas e
Biológicas, Núcleo de Pesquisa em Ciências Biológicas & Departamento de Ciências
Biológicas, Ouro Preto, MG, Brazil
| | - Gustavo Satoru Kajitani
- Universidade Federal de Ouro Preto, Instituto de Ciências Exatas e
Biológicas, Núcleo de Pesquisa em Ciências Biológicas & Departamento de Ciências
Biológicas, Ouro Preto, MG, Brazil
- Universidade de São Paulo, Instituto de Ciências Biomédicas,
Departamento de Microbiologia, São Paulo,SP, Brazil
| | - Livia Luz Souza Nascimento
- Universidade de São Paulo, Instituto de Ciências Biomédicas,
Departamento de Microbiologia, São Paulo,SP, Brazil
| | - Camila Carrião Machado Garcia
- Universidade Federal de Ouro Preto, Instituto de Ciências Exatas e
Biológicas, Núcleo de Pesquisa em Ciências Biológicas & Departamento de Ciências
Biológicas, Ouro Preto, MG, Brazil
| |
Collapse
|
9
|
Hu M, Lou Y, Liu S, Mao Y, Le F, Wang L, Li L, Wang Q, Li H, Lou H, Wang N, Jin F. Altered expression of DNA damage repair genes in the brain tissue of mice conceived by in vitro fertilization. Mol Hum Reprod 2020; 26:141-153. [PMID: 32003796 DOI: 10.1093/molehr/gaaa010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 12/16/2019] [Accepted: 01/08/2020] [Indexed: 12/22/2022] Open
Abstract
Our previous study revealed a higher incidence of gene dynamic mutation in newborns conceived by IVF, highlighting that IVF may be disruptive to the DNA stability of IVF offspring. However, the underlying mechanisms remain unclear. The DNA damage repair system plays an essential role in gene dynamic mutation and neurodegenerative disease. To evaluate the long-term impact of IVF on DNA damage repair genes, we established an IVF mouse model and analyzed gene and protein expression levels of MSH2, MSH3, MSH6, MLH1, PMS2, OGG1, APEX1, XPA and RPA1 and also the amount of H2AX phosphorylation of serine 139 which is highly suggestive of DNA double-strand break (γH2AX expression level) in the brain tissue of IVF conceived mice and their DNA methylation status using quantitative real-time PCR, western blotting and pyrosequencing. Furthermore, we assessed the capacity of two specific non-physiological factors in IVF procedures during preimplantation development. The results demonstrated that the expression and methylation levels of some DNA damage repair genes in the brain tissue of IVF mice were significantly changed at 3 weeks, 10 weeks and 1.5 years of age, when compared with the in vivo control group. In support of mouse model findings, oxygen concentration of in vitro culture environment was shown to have the capacity to modulate gene expression and DNA methylation levels of some DNA damage repair genes. In summary, our study indicated that IVF could bring about long-term alterations of gene and protein expression and DNA methylation levels of some DNA damage repair genes in the brain tissue and these alterations might be resulted from the different oxygen concentration of culture environment, providing valuable perspectives to improve the safety and efficiency of IVF at early embryonic stage and also throughout different life stages.
Collapse
Affiliation(s)
- Minhao Hu
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, 1 Xueshi Road, Hangzhou 310006, China
| | - Yiyun Lou
- Department of Gynaecology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou 310007, China
| | - Shuyuan Liu
- Department of Gynaecology, Weifang Maternal and Child Health Hospital, Weifang 261000, China
| | - Yuchan Mao
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, 1 Xueshi Road, Hangzhou 310006, China
| | - Fang Le
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, 1 Xueshi Road, Hangzhou 310006, China
| | - Liya Wang
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, 1 Xueshi Road, Hangzhou 310006, China
| | - Lejun Li
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, 1 Xueshi Road, Hangzhou 310006, China
| | - Qijing Wang
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, 1 Xueshi Road, Hangzhou 310006, China
| | - Hongping Li
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, 1 Xueshi Road, Hangzhou 310006, China
| | - Hangying Lou
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, 1 Xueshi Road, Hangzhou 310006, China
| | - Ning Wang
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, 1 Xueshi Road, Hangzhou 310006, China
| | - Fan Jin
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, 1 Xueshi Road, Hangzhou 310006, China.,Women's Reproductive Health Laboratory of Zhejiang Province, Key Laboratory of Reproductive Genetics, Ministry of Education, Hangzhou 310006, China
| |
Collapse
|
10
|
Contributions of DNA Damage to Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21051666. [PMID: 32121304 PMCID: PMC7084447 DOI: 10.3390/ijms21051666] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 12/16/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common type of neurodegenerative disease. Its typical pathology consists of extracellular amyloid-β (Aβ) plaques and intracellular tau neurofibrillary tangles. Mutations in the APP, PSEN1, and PSEN2 genes increase Aβ production and aggregation, and thus cause early onset or familial AD. Even with this strong genetic evidence, recent studies support AD to result from complex etiological alterations. Among them, aging is the strongest risk factor for the vast majority of AD cases: Sporadic late onset AD (LOAD). Accumulation of DNA damage is a well-established aging factor. In this regard, a large amount of evidence reveals DNA damage as a critical pathological cause of AD. Clinically, DNA damage is accumulated in brains of AD patients. Genetically, defects in DNA damage repair resulted from mutations in the BRAC1 and other DNA damage repair genes occur in AD brain and facilitate the pathogenesis. Abnormalities in DNA damage repair can be used as diagnostic biomarkers for AD. In this review, we discuss the association, the causative potential, and the biomarker values of DNA damage in AD pathogenesis.
Collapse
|
11
|
Chen W, Zhou X, Duan Y, Zou T, Liu G, Ying X, Wang Q, Duan S. Association of OGG1 and DLST promoter methylation with Alzheimer's disease in Xinjiang population. Exp Ther Med 2018; 16:3135-3142. [DOI: 10.3892/etm.2018.6524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 06/06/2018] [Indexed: 11/06/2022] Open
Affiliation(s)
- Wei Chen
- Department of Internal Medicine for Cadres, The First Affiliated Hospital of Xinjiang Medical University, �r�mqi, Xinjiang 830000, P.R. China
| | - Xiaohui Zhou
- Department of Internal Medicine for Cadres, The First Affiliated Hospital of Xinjiang Medical University, �r�mqi, Xinjiang 830000, P.R. China
| | - Yali Duan
- Department of Internal Medicine for Cadres, The First Affiliated Hospital of Xinjiang Medical University, �r�mqi, Xinjiang 830000, P.R. China
| | - Ting Zou
- Department of Internal Medicine for Cadres, The First Affiliated Hospital of Xinjiang Medical University, �r�mqi, Xinjiang 830000, P.R. China
| | - Guili Liu
- Ningbo Key Lab of Behavior Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Xiuru Ying
- Ningbo Key Lab of Behavior Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Qinwen Wang
- Ningbo Key Lab of Behavior Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Shiwei Duan
- Ningbo Key Lab of Behavior Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| |
Collapse
|
12
|
Fransquet PD, Lacaze P, Saffery R, McNeil J, Woods R, Ryan J. Blood DNA methylation as a potential biomarker of dementia: A systematic review. Alzheimers Dement 2017; 14:81-103. [PMID: 29127806 DOI: 10.1016/j.jalz.2017.10.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/27/2017] [Accepted: 10/07/2017] [Indexed: 01/22/2023]
Abstract
Dementia is a major public health issue with rising prevalence rates, but many individuals remain undiagnosed. Accurate and timely diagnosis is key for the optimal targeting of interventions. A noninvasive, easily measurable peripheral biomarker would have greatest utility in population-wide diagnostic screening. Epigenetics, including DNA methylation, is implicated in dementia; however, it is unclear whether epigenetic changes can be detected in peripheral tissue. This study aimed to systematically review the evidence for an association between dementia and peripheral DNA methylation. Forty-eight studies that measured DNA methylation in peripheral blood were identified, and 67% reported significant associations with dementia. However, most studies were underpowered and limited by their case-control design. We emphasize the need for future longitudinal studies on large well-characterized populations, measuring epigenetic patterns in asymptomatic individuals. A biomarker detectable in the preclinical stages of the disease would have the greatest utility in future intervention and treatment trials.
Collapse
Affiliation(s)
- Peter D Fransquet
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia; Disease Epigenetics, Murdoch Children's Research Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Paul Lacaze
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Richard Saffery
- Disease Epigenetics, Murdoch Children's Research Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - John McNeil
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Robyn Woods
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Joanne Ryan
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia; Disease Epigenetics, Murdoch Children's Research Institute, The University of Melbourne, Parkville, Victoria, Australia; INSERM, Neuropsychiatry: Epidemiological and Clinical Research, University of Montpellier, Montpellier, France.
| |
Collapse
|
13
|
Hurtado F, Cardenas MAN, Cardenas F, León LA. La Enfermedad de Parkinson: Etiología, Tratamientos y Factores Preventivos. UNIVERSITAS PSYCHOLOGICA 2017. [DOI: 10.11144/javeriana.upsy15-5.epet] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
La enfermedad de Parkinson (EP) es la patología neurodegenerativa motora con mayor incidencia a nivel mundial. Esta afecta a aproximadamente 2-3% de la población mayor a 60 años de edad y sus causas aún no han sido bien determinadas. Actualmente no existe cura para esta patología; sin embargo, es posible contar con diferentes tratamientos que permiten aliviar algunos de sus síntomas y enlentecer su curso. Estos tratamientos tienen como premisa contrarrestar los efectos ocasionados por la pérdida de la función dopaminérgica de la sustancia nigra (SN) sobre estructuras como el núcleo subtálamico (NST) o globo pálido interno (GPi) ya sea por medio de tratamientos farmacológicos, estimulación cerebral profunda (ECP) o con el implante celular. Existen también investigaciones que están dirigiendo su interés al desarrollo de fármacos con potencial terapéutico, que presenten alta especificidad a receptores colinérgicos de nicotina (nAChRs) y antagonistas de receptores de adenosina, específicamente del subtipo A2A. Estos últimos, juegan un papel importante en el control de liberación dopaminérgica y en los procesos de neuroprotección. En esta revisión se pretende ofrecer una panorámica actual sobre algunos de los factores de riesgo asociados a EP, algunos de los tratamientos actuales más utilizados y acerca del rol de sustancias potencialmente útiles en la prevención de esta enfermedad.
Collapse
|