1
|
Zhao F, Li Y, Chen L, Yao B. Identification of brain region-specific landscape and functions of clustered circRNAs in Alzheimer's disease using circMeta2. Commun Biol 2024; 7:1353. [PMID: 39427093 PMCID: PMC11490488 DOI: 10.1038/s42003-024-07060-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024] Open
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disorder with regulatory RNAs playing significant roles in its etiology. Circular RNAs (CircRNA) are enriched in human brains and contribute to AD progression. Many circRNA isoforms derived from same gene loci share common back splicing sites, thus often form clusters and work as a group to additively regulate their downstream targets. Unfortunately, the coordinated role of clustered circRNAs is often overlooked in individual circRNA differential expression (DE) analysis. To address these challenges, we develop circMeta2, a computational tool designed to perform DE analysis focused on circRNA clusters, equipped with modules tailored for both a small sample of biological replicates and a large-scale population study. Using circMeta2, we identify brain region-specific circRNA clusters from six distinct brain regions in the ENCODE datasets, as well as brain region-specific alteration of circRNA clusters signatures associated with AD from Mount Sinai brain bank (MSBB) AD study. We also illustrate how AD-associated circRNA clusters within and across different brain regions work coordinately to contribute to AD etiology by impacting miRNA-mediated gene expression and identified key circRNA clusters that associated with AD progression and severity. Our study demonstrates circMeta2 as a highly accuracy and robust tool for analyzing circRNA clusters, offering valuable molecular insights into AD pathology.
Collapse
Affiliation(s)
- Fengdi Zhao
- Department of Biostatistics, University of Florida, Gainesville, FL, USA
| | - Yangping Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Li Chen
- Department of Biostatistics, University of Florida, Gainesville, FL, USA.
| | - Bing Yao
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
2
|
Shakeri M, Aminian A, Mokhtari K, Bahaeddini M, Tabrizian P, Farahani N, Nabavi N, Hashemi M. Unraveling the molecular landscape of osteoarthritis: A comprehensive review focused on the role of non-coding RNAs. Pathol Res Pract 2024; 260:155446. [PMID: 39004001 DOI: 10.1016/j.prp.2024.155446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024]
Abstract
Osteoarthritis (OA) poses a significant global health challenge, with its prevalence anticipated to increase in the coming years. This review delves into the emerging molecular biomarkers in OA pathology, focusing on the roles of various molecules such as metabolites, noncoding RNAs (ncRNAs), including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). Advances in omics technologies have transformed biomarker identification, enabling comprehensive analyses of the complex pathways involved in OA pathogenesis. Notably, ncRNAs, especially miRNAs and lncRNAs, exhibit dysregulated expression patterns in OA, presenting promising opportunities for diagnosis and therapy. Additionally, the intricate interplay between epigenetic modifications and OA progression highlights the regulatory role of epigenetics in gene expression dynamics. Genome-wide association studies have pinpointed key genes undergoing epigenetic changes, providing insights into the inflammatory processes and chondrocyte hypertrophy typical of OA. Understanding the molecular landscape of OA, including biomarkers and epigenetic mechanisms, holds significant potential for developing innovative diagnostic tools and therapeutic strategies for OA management.
Collapse
Affiliation(s)
- Mohammadreza Shakeri
- MD, Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Aminian
- MD, Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Khatere Mokhtari
- Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mohammadreza Bahaeddini
- MD, Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Pouria Tabrizian
- MD, Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Najma Farahani
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia V8V 1P7, Canada
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
3
|
Ruan D, Xu J, Liu Y, Luo J, Zhao X, Li Y, Wang G, Feng J, Liang H, Yin Y, Luo J, Yin Y. CircPTEN-MT from PTEN regulates mitochondrial energy metabolism. J Genet Genomics 2024; 51:531-542. [PMID: 38184105 DOI: 10.1016/j.jgg.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/08/2024]
Abstract
Phosphatase and tensin homolog (PTEN) is a multifunctional gene involved in a variety of physiological and pathological processes. Circular RNAs (circRNAs) are generated from back-splicing events during mRNA processing and participate in cell biological processes through binding to RNAs or proteins. However, PTEN-related circRNAs are largely unknown. Here, we report that circPTEN- mitochondria (MT) (hsa_circ_0002934) is a circular RNA encoded by exons 3, 4, and 5 of PTEN and is a critical regulator of mitochondrial energy metabolism. CircPTEN-MT is localized to mitochondria and physically associated with leucine-rich pentatricopeptide repeat-containing protein (LRPPRC), which regulates posttranscriptional gene expression in mitochondria. Knocking down circPTEN-MT reduces the interaction of LRPPRC and steroid receptor RNA activator (SRA) stem-loop interacting RNA binding protein (SLIRP) and inhibits the polyadenylation of mitochondrial mRNA, which decreases the mRNA level of the mitochondrial complex I subunit and reduces mitochondrial membrane potential and adenosine triphosphate production. Our data demonstrate that circPTEN-MT is an important regulator of cellular energy metabolism. This study expands our understanding of the role of PTEN, which produces both linear and circular RNAs with different and independent functions.
Collapse
Affiliation(s)
- Danhui Ruan
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University International Cancer Institute, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jiancheng Xu
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University International Cancer Institute, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yang Liu
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University International Cancer Institute, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Juan Luo
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| | - Xuyang Zhao
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University International Cancer Institute, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yuhua Li
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University International Cancer Institute, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Guangxi Wang
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University International Cancer Institute, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jiawen Feng
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University International Cancer Institute, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Hui Liang
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University International Cancer Institute, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yue Yin
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jianyuan Luo
- Department of Medical Genetics, Center for Medical Genetics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yuxin Yin
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University International Cancer Institute, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing 100191, China; Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China.
| |
Collapse
|
4
|
Jagaraj CJ, Shadfar S, Kashani SA, Saravanabavan S, Farzana F, Atkin JD. Molecular hallmarks of ageing in amyotrophic lateral sclerosis. Cell Mol Life Sci 2024; 81:111. [PMID: 38430277 PMCID: PMC10908642 DOI: 10.1007/s00018-024-05164-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/21/2024] [Accepted: 02/06/2024] [Indexed: 03/03/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal, severely debilitating and rapidly progressing disorder affecting motor neurons in the brain, brainstem, and spinal cord. Unfortunately, there are few effective treatments, thus there remains a critical need to find novel interventions that can mitigate against its effects. Whilst the aetiology of ALS remains unclear, ageing is the major risk factor. Ageing is a slowly progressive process marked by functional decline of an organism over its lifespan. However, it remains unclear how ageing promotes the risk of ALS. At the molecular and cellular level there are specific hallmarks characteristic of normal ageing. These hallmarks are highly inter-related and overlap significantly with each other. Moreover, whilst ageing is a normal process, there are striking similarities at the molecular level between these factors and neurodegeneration in ALS. Nine ageing hallmarks were originally proposed: genomic instability, loss of telomeres, senescence, epigenetic modifications, dysregulated nutrient sensing, loss of proteostasis, mitochondrial dysfunction, stem cell exhaustion, and altered inter-cellular communication. However, these were recently (2023) expanded to include dysregulation of autophagy, inflammation and dysbiosis. Hence, given the latest updates to these hallmarks, and their close association to disease processes in ALS, a new examination of their relationship to pathophysiology is warranted. In this review, we describe possible mechanisms by which normal ageing impacts on neurodegenerative mechanisms implicated in ALS, and new therapeutic interventions that may arise from this.
Collapse
Affiliation(s)
- Cyril Jones Jagaraj
- MND Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, 75 Talavera Road, Sydney, NSW, 2109, Australia
| | - Sina Shadfar
- MND Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, 75 Talavera Road, Sydney, NSW, 2109, Australia
| | - Sara Assar Kashani
- MND Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, 75 Talavera Road, Sydney, NSW, 2109, Australia
| | - Sayanthooran Saravanabavan
- MND Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, 75 Talavera Road, Sydney, NSW, 2109, Australia
| | - Fabiha Farzana
- MND Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, 75 Talavera Road, Sydney, NSW, 2109, Australia
| | - Julie D Atkin
- MND Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, 75 Talavera Road, Sydney, NSW, 2109, Australia.
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
5
|
Dai GC, Wang H, Ming Z, Lu PP, Li YJ, Gao YC, Shi L, Cheng Z, Liu XY, Rui YF. Heterotopic mineralization (ossification or calcification) in aged musculoskeletal soft tissues: A new candidate marker for aging. Ageing Res Rev 2024; 95:102215. [PMID: 38325754 DOI: 10.1016/j.arr.2024.102215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/21/2024] [Accepted: 02/01/2024] [Indexed: 02/09/2024]
Abstract
Aging can lead to various disorders in organisms and with the escalating impact of population aging, the incidence of age-related diseases is steadily increasing. As a major risk factor for chronic illnesses in humans, the prevention and postponement of aging have become focal points of research among numerous scientists. Aging biomarkers, which mirror molecular alterations at diverse levels in organs, tissues, and cells, can be used to monitor and evaluate biological changes associated with aging. Currently, aging biomarkers are primarily categorized into physiological traits, imaging characteristics, histological features, cellular-level alterations, and molecular-level changes that encompass the secretion of aging-related factors. However, in the context of the musculoskeletal soft tissue system, aging-related biological indicators primarily involve microscopic parameters at the cellular and molecular levels, resulting in inconvenience and uncertainty in the assessment of musculoskeletal soft tissue aging. To identify convenient and effective indicators, we conducted a comprehensive literature review to investigate the correlation between ectopic mineralization and age-related changes in the musculoskeletal soft tissue system. Here, we introduce the concept of ectopic mineralization as a macroscopic, reliable, and convenient biomarker for musculoskeletal soft tissue aging and present novel targets and strategies for the future management of age-related musculoskeletal soft tissue disorders.
Collapse
Affiliation(s)
- Guang-Chun Dai
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Orthopaedic Trauma Institute, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China
| | - Hao Wang
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Orthopaedic Trauma Institute, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China
| | - Zhang Ming
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Orthopaedic Trauma Institute, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China
| | - Pan-Pan Lu
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Orthopaedic Trauma Institute, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China
| | - Ying-Juan Li
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Orthopaedic Trauma Institute, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China
| | - Yu-Cheng Gao
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Orthopaedic Trauma Institute, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China
| | - Liu Shi
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Orthopaedic Trauma Institute, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China
| | - Zhang Cheng
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Orthopaedic Trauma Institute, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China
| | - Xiao-Yu Liu
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Orthopaedic Trauma Institute, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China
| | - Yun-Feng Rui
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Orthopaedic Trauma Institute, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China.
| |
Collapse
|
6
|
Shen M, Wang X, Chang X, Li Z, Jiang N, Han Z, Liu X. Circ_0007535 upregulates TGFBR1 to promote pulmonary fibrosis in TGF-β1-treated lung fibroblasts via sequestering miR-18a-5p. Autoimmunity 2023; 56:2259128. [PMID: 37724521 DOI: 10.1080/08916934.2023.2259128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/10/2023] [Indexed: 09/21/2023]
Abstract
Circular RNAs (circRNAs) are functional molecules in all kinds of fibrosis diseases. The current study was performed for the exploration of circ_0007535 in pulmonary fibrosis. RNA levels for circ_0007535, miR-18a-5p, and transforming growth factor-β receptor 1 (TGFBR1) were assayed via a reverse transcription-quantitative polymerase chain reaction. Cell growth was determined by cell counting kit-8 assay for viability and ethynyl-2'-deoxyuridine assay for proliferation. Cell invasion and migration were examined by transwell assay and scratch assay. Western blot was performed for the detection of different proteins. Enzyme-linked immunosorbent assay was used to assess inflammatory response. The interaction analysis was conducted using dual-luciferase reporter assay, RNA immunoprecipitation assay, and biotin-coupled pull-down assay. Circ_0007535 was significantly upregulated by TGF-β1 in HFL1 cells. TGF-β1-induced proliferation, motility, ECM accumulation, and inflammatory reaction in HFL1 cells were alleviated by circ_0007535 knockdown. Circ_0007535 exhibited interaction with miR-18a-5p, and miR-18a-5p inhibition reversed all influences of circ_0007535 downregulation in TGF-β1-treated HFL1 cells. Circ_0007535 acted as a miR-18a-5p sponge to regulate the expression of downstream target TGFBR1. MiR-18a-5p induced TGFBR1 level inhibition to attenuate TGF-β1-mediated cell injury in HFL1 cells. This study evidenced that circ_0007535 facilitated TGF-β1-induced pulmonary fibrosis by depending on the absorption of miR-18a-5p to upregulate TGFBR1.
Collapse
Affiliation(s)
- Ming Shen
- Department of Respiratory, General Hospital of Angang Group Corporation, Anshan, Liaoning, China
| | - Xinyi Wang
- Department of Respiratory, General Hospital of Angang Group Corporation, Anshan, Liaoning, China
| | - Xiaofeng Chang
- Department of Respiratory, General Hospital of Angang Group Corporation, Anshan, Liaoning, China
| | - Zhun Li
- Department of Respiratory, General Hospital of Angang Group Corporation, Anshan, Liaoning, China
| | - Na Jiang
- Department of Respiratory, General Hospital of Angang Group Corporation, Anshan, Liaoning, China
| | - Zhuoyue Han
- Department of Respiratory, General Hospital of Angang Group Corporation, Anshan, Liaoning, China
| | - Xin Liu
- Department of Urology Surgery, General Hospital of Angang Group Corporation, Anshan, Liaoning, China
| |
Collapse
|
7
|
Maiese K. Cornerstone Cellular Pathways for Metabolic Disorders and Diabetes Mellitus: Non-Coding RNAs, Wnt Signaling, and AMPK. Cells 2023; 12:2595. [PMID: 37998330 PMCID: PMC10670256 DOI: 10.3390/cells12222595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
Metabolic disorders and diabetes (DM) impact more than five hundred million individuals throughout the world and are insidious in onset, chronic in nature, and yield significant disability and death. Current therapies that address nutritional status, weight management, and pharmacological options may delay disability but cannot alter disease course or functional organ loss, such as dementia and degeneration of systemic bodily functions. Underlying these challenges are the onset of aging disorders associated with increased lifespan, telomere dysfunction, and oxidative stress generation that lead to multi-system dysfunction. These significant hurdles point to the urgent need to address underlying disease mechanisms with innovative applications. New treatment strategies involve non-coding RNA pathways with microRNAs (miRNAs) and circular ribonucleic acids (circRNAs), Wnt signaling, and Wnt1 inducible signaling pathway protein 1 (WISP1) that are dependent upon programmed cell death pathways, cellular metabolic pathways with AMP-activated protein kinase (AMPK) and nicotinamide, and growth factor applications. Non-coding RNAs, Wnt signaling, and AMPK are cornerstone mechanisms for overseeing complex metabolic pathways that offer innovative treatment avenues for metabolic disease and DM but will necessitate continued appreciation of the ability of each of these cellular mechanisms to independently and in unison influence clinical outcome.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, NY 10022, USA
| |
Collapse
|
8
|
Lu Q, Sun H, Yu Q, Tang D. Circ_PRDM5/miR-25-3p/ANKRD46 axis is associated with cell malignant behaviors in subjects with breast cancer evaluated by ultrasound. J Biochem Mol Toxicol 2023; 37:e23469. [PMID: 37485755 DOI: 10.1002/jbt.23469] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 06/20/2023] [Accepted: 07/08/2023] [Indexed: 07/25/2023]
Abstract
Circular RNAs (circRNAs) are key RNA molecules in cancer biology. CircRNA PR/SET domain 5 (circ_PRDM5, hsa_circ_0005654) was downregulated in breast cancer (BC) tissues. This study is designed to investigate the functional mechanism of circ_PRDM5 in BC. Ultrasound examinations were performed to evaluate BC patients and normal individuals. Circ_PRDM5, miR-25-3p, and Ankyrin repeat domain 46 (ANKRD46) level detection was carried out by reverse transcription-quantitative polymerase chain reaction. 3-(4, 5-dimethylthiazol-2-y1)-2, 5-diphenyl tetrazolium bromide (MTT) assay was used for cell viability examination. Cell proliferation was evaluated by ethynyl-2'-deoxyuridine assay and colony formation assay. The protein levels were examined using western blot. Cell migration and invasion abilities were assessed via transwell assay. Target interaction was analyzed via dual-luciferase reporter assay. The role of circ_PRDM5 in vivo was explored via xenograft tumor assay. Circ_PRDM5 expression was downregulated in BC tissues and cells. Overexpression of circ_PRDM5 suppressed proliferation and motility but enhanced apoptosis of BC cells. Circ_PRDM5 served as a sponge of miR-25-3p. Circ_PRDM5 impeded BC cell malignant development via sponging miR-25-3p. Circ_PRDM5 induced ANKRD46 upregulation by targeting miR-25-3p. Inhibition of miR-25-3p retarded BC progression by increasing the ANKRD46 level. Circ_PRDM5 repressed BC tumorigenesis in vivo through mediating the miR-25-3p/ANKRD46 axis. This study evidenced that circ_PRDM5 inhibited cell progression and tumor growth in BC via interacting with mir-25-3p/ANKRD46 network.
Collapse
Affiliation(s)
- Qin Lu
- The Second People's Hospital of Huai'an, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu, China
| | - Huihui Sun
- The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Qian Yu
- Huai'an Maternal and Child Health Hospital, Huai'an, Jiangsu, China
| | - Dongdong Tang
- Huaiyin Hospital of Huai'an City, Huai'an, Jiangsu, China
| |
Collapse
|
9
|
Zeng C, Tao W, Fu X, Li C, Guo M. CircRNA254 functions as the miR-375 sponge to inhibit coelomocyte apoptosis via targeting BAG2 in V. splendidus-challenged Apostichopus japonicus. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109073. [PMID: 37709179 DOI: 10.1016/j.fsi.2023.109073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/15/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Circular RNAs (circRNAs) function as immune regulators in many biological processes in mammals, while their function and underlying mechanisms in invertebrates are largely unexplored. In this study, the competing endogenous RNA (ceRNA) mechanism of circRNA that sponges miR-375 and thus regulates AjBAG2-mediated coelomocyte apoptosis was evaluated in Apostichopus japonicus. The results showed that circRNA254 (circ254) was significantly down-regulated in the intestines and coelomocytes after Vibrio splendidus challenge or Lipopolysaccharide exposure, which matched the RNA-seq results in A. japonicus within skin ulceration syndrome. Dual-luciferase and RNA FISH assays indicated that circ254 could directly combine with miR-375, in which circ254 possesses three binding sites of miR-375. Moreover, circ254 knockdown significantly promoted the coelomocyte apoptosis levels upon pathogen infection in vivo and in vitro. Furthermore, circ254 silencing could also down-regulate AjBAG2 expression and thereby promoting the levels of coelomocyte apoptosis levels and the expression of caspase 3, which the phenomenon could be reversed by treatment with miR-375 inhibitors. Taken together, our results confirmed that circ254 functions as a ceRNA of AjBAG2 by sponging miR-375, resulting in the inhibition of coelomocyte apoptosis in A. japonicus.
Collapse
Affiliation(s)
- Chuili Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China
| | - Wenjun Tao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China
| | - Xianmu Fu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| | - Ming Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
10
|
Qu Y, Wang M, Lan J, Huang X, Huang J, Li H, Zheng Y, Xu Q. CircRNA-406918 enhances the degradation of advanced glycation end products in photoaged human dermal fibroblasts via targeting cathepsin D. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2023; 39:487-497. [PMID: 37253092 DOI: 10.1111/phpp.12887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 05/01/2023] [Accepted: 05/08/2023] [Indexed: 06/01/2023]
Abstract
BACKGROUND Lysosomal cathepsin D (CTSD) can degrade internalized advanced glycation end products (AGEs) in dermal fibroblasts. CTSD expression is decreased in photoaged fibroblasts, which contributes to intracellular AGEs deposition and further plays a role in AGEs accumulation of photoaged skin. The mechanism under downregulated CTSD expression is unclear. OBJECTIVE To explore possible mechanism of regulating CTSD expression in photoaged fibroblasts. METHODS Dermal fibroblasts were induced into photoaging with repetitive ultraviolet A (UVA) irradiation. The competing endogenous RNA (ceRNA) networks were constructed to predict candidate circRNAs or miRNAs related with CTSD expression. AGEs-BSA degradation by fibroblasts was studied with flow cytometry, ELISA, and confocal microscopy. Effects of overexpressing circRNA-406918 via lentiviral transduction on CTSD expression, autophagy, AGE-BSA degradation were analyzed in photoaged fibroblasts. The correlation between circRNA-406918 and CTSD expression or AGEs accumulation in sun-exposed and sun-protected skin was studied. RESULTS CTSD expression, autophagy, and AGEs-BSA degradation were significantly decreased in photoaged fibroblasts. CircRNA-406918 was identified to regulate CTSD expression, autophagy, and senescence in photoaged fibroblasts. Overexpressing circRNA-406918 potently decreased senescence and increased CTSD expression, autophagic flux, and AGEs-BSA degradation in photoaged fibroblasts. Moreover, circRNA-406918 level was positively correlated with CTSD mRNA expression and negatively associated with AGEs accumulation in photodamaged skin. Further, circRNA-406918 was predicted to mediate CTSD expression through sponging eight miRNAs. CONCLUSION These findings suggest that circRNA-406918 regulates CTSD expression and AGEs degradation in UVA-induced photoaged fibroblasts and might exert a role in AGEs accumulation in photoaged skin.
Collapse
Affiliation(s)
- Yingying Qu
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Mengyao Wang
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jingjing Lan
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xianyin Huang
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jingxi Huang
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hongpeng Li
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yue Zheng
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qingfang Xu
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
11
|
Wodrich APK, Scott AW, Giniger E. What do we mean by "aging"? Questions and perspectives revealed by studies in Drosophila. Mech Ageing Dev 2023; 213:111839. [PMID: 37354919 PMCID: PMC10330756 DOI: 10.1016/j.mad.2023.111839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023]
Abstract
What is the nature of aging, and how best can we study it? Here, using a series of questions that highlight differing perspectives about the nature of aging, we ask how data from Drosophila melanogaster at the organismal, tissue, cellular, and molecular levels shed light on the complex interactions among the phenotypes associated with aging. Should aging be viewed as an individual's increasing probability of mortality over time or as a progression of physiological states? Are all age-correlated changes in physiology detrimental to vigor or are some compensatory changes that maintain vigor? Why do different age-correlated functions seem to change at different rates in a single individual as it ages? Should aging be considered as a single, integrated process across the scales of biological resolution, from organismal to molecular, or must we consider each level of biological scale as a separate, distinct entity? Viewing aging from these differing perspectives yields distinct but complementary interpretations about the properties and mechanisms of aging and may offer a path through the complexities related to understanding the nature of aging.
Collapse
Affiliation(s)
- Andrew P K Wodrich
- National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, United States; Interdisciplinary Program in Neuroscience, Georgetown University, Washington DC, United States; College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Andrew W Scott
- National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Edward Giniger
- National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, United States.
| |
Collapse
|
12
|
Papa V, Li Pomi F, Borgia F, Vaccaro M, Pioggia G, Gangemi S. Immunosenescence and Skin: A State of Art of Its Etiopathogenetic Role and Crucial Watershed for Systemic Implications. Int J Mol Sci 2023; 24:ijms24097956. [PMID: 37175661 PMCID: PMC10178319 DOI: 10.3390/ijms24097956] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Immunosenescence is a complex multifactorial phenomenon consisting of wide-ranging remodeling of the immune system during the life span, resulting in an age-related qualitative-quantitative decline of immune cells and cytokines. A growing body of evidence in the international literature is highlighting the etiopathogenetic role of skin immunosenescence in the onset of various dermatologic conditions. Skin immunosenescence also serves as an interesting watershed for the onset of system-wide conditions in the context of allergic inflammation. Moreover, in recent years, an increasingly emerging and fascinating etiopathogenetic parallelism has been observed between some mechanisms of immunosenescence, both at cutaneous and systemic sites. This would help to explain the occurrence of apparently unconnected comorbidities. Throughout our review, we aim to shed light on emerging immunosenescent mechanisms shared between dermatologic disorders and other organ-specific diseases in the context of a more extensive discussion on the etiopathogenetic role of skin immunosenescence. A promising future perspective would be to focus on better understanding the mutual influence between skin and host immunity, as well as the influence of high inter-individual variability on immunosenescence/inflammaging. This can lead to a more comprehensive "immunobiographic" definition of each individual.
Collapse
Affiliation(s)
- Vincenzo Papa
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy
| | - Federica Li Pomi
- Section of Dermatology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Francesco Borgia
- Section of Dermatology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Mario Vaccaro
- Section of Dermatology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98164 Messina, Italy
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy
| |
Collapse
|
13
|
Unraveling the function of epithelial-mesenchymal transition (EMT) in colorectal cancer: Metastasis, therapy response, and revisiting molecular pathways. Biomed Pharmacother 2023; 160:114395. [PMID: 36804124 DOI: 10.1016/j.biopha.2023.114395] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
Colorectal cancer (CRC) is a dangerous form of cancer that affects the gastrointestinal tract. It is a major global health concern, and the aggressive behavior of tumor cells makes it difficult to treat, leading to poor survival rates for patients. One major challenge in treating CRC is the metastasis, or spread, of the cancer, which is a major cause of death. In order to improve the prognosis for patients with CRC, it is necessary to focus on ways to inhibit the cancer's ability to invade and spread. Epithelial-mesenchymal transition (EMT) is a process that is linked to the spread of cancer cells, also known as metastasis. The process transforms epithelial cells into mesenchymal ones, increasing their mobility and ability to invade other tissues. This has been shown to be a key mechanism in the progression of colorectal cancer (CRC), a particularly aggressive form of gastrointestinal cancer. The activation of EMT leads to increases in the spread of CRC cells, and during this process, levels of the protein E-cadherin decrease while levels of N-cadherin and vimentin increase. EMT also contributes to the development of resistance to chemotherapy and radiation therapy in CRC. Non-coding RNAs, such as long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), play a role in regulating EMT in CRC, often through their ability to "sponge" microRNAs. Anti-cancer agents have been shown to suppress EMT and reduce the progression and spread of CRC cells. These findings suggest that targeting EMT or related mechanisms may be a promising approach for treating CRC patients in the clinic.
Collapse
|
14
|
Lv R, Lu F, Xu S. Hsa_circ_0001361 facilitates cell progression and glycolytic metabolism in neuroblastoma via interacting with mir-490-5p to induce TRIM2 upregulation. Metab Brain Dis 2023; 38:1621-1632. [PMID: 36920626 DOI: 10.1007/s11011-023-01197-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 02/26/2023] [Indexed: 03/16/2023]
Abstract
Circular RNAs (circRNAs) can regulate the progression of neuroblastoma (NB) via miRNA/mRNA axis. This study aimed to investigate the functional mechanism of hsa_circ_0001361 in NB. Hsa_circ_0001361, miR-490-5p and tripartite motif 2 (TRIM2) were detected through reverse transcription-quantitative polymerase chain reaction. The proliferation ability was examined using cell counting kit-8 assay, colony formation assay and ethynyl-2'-deoxyuridine assay. Cell migration and invasion were assessed via transwell assay and wound healing assay. The protein levels were measured by western blot. Glycolysis was analyzed via commercial kits. Dual-luciferase reporter assay and RNA immunoprecipitation assay were performed for target analysis. Hsa_circ_0001361 research in vivo was performed using xenograft tumor assay. Hsa_circ_0001361 was overexpressed in NB tissues and cells. Hsa_circ_0001361 downregulation suppressed cell proliferation, metastasis and glycolysis. Hsa_circ_0001361 served as a miR-490-5p sponge. The functions of hsa_circ_0001361 in NB cells were associated with miR-490-5p sponging effect. Hsa_circ_0001361 resulted in TRIM2 expression change via targeting miR-490-5p. MiR-490-5p acted as a tumor inhibitor in NB by downregulating TRIM2. Hsa_circ_0001361 knockdown reduced tumor growth in vivo through mediating miR-490-5p/TRIM2 axis. Our results suggested that hsa_circ_0001361 upregulated TRIM2 by absorbing miR-490-5p, thereby promoting cell malignant behaviors and glycolytic metabolism in NB.
Collapse
Affiliation(s)
- Rongrong Lv
- Department of neonatology, The Second People's Hospital of Jingmen, 448000, Jingmen, Hubei, China
| | - Fang Lu
- Department of neonatology, The Second People's Hospital of Jingmen, 448000, Jingmen, Hubei, China
| | - Shanshan Xu
- Department of Pediatrics, The First People's Hospital of Jingmen, No. 168 Xiangshan Road, 448000, Jingmen, Hubei, China.
| |
Collapse
|
15
|
Yu X, Liu H, Chang N, Fu W, Guo Z, Wang Y. Circular RNAs: New players involved in the regulation of cognition and cognitive diseases. Front Neurosci 2023; 17:1097878. [PMID: 36816112 PMCID: PMC9932922 DOI: 10.3389/fnins.2023.1097878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Circular RNAs (circRNAs), a type of covalently closed endogenous single-stranded RNA, have been regarded as the byproducts of the aberrant splicing of genes without any biological functions. Recently, with the development of high-throughput sequencing and bioinformatics, thousands of circRNAs and their differential biological functions have been identified. Except for the great advances in identifying circRNA roles in tumor progression, diagnosis, and treatment, accumulated evidence shows that circRNAs are enriched in the brain, especially in the synapse, and dynamically change with the development or aging of organisms. Because of the specific roles of synapses in higher-order cognitive functions, circRNAs may not only participate in cognitive functions in normal physiological conditions but also lead to cognition-related diseases after abnormal regulation of their expression or location. Thus, in this review, we summarized the progress of studies looking at the role of circRNA in cognitive function, as well as their involvement in the occurrence, development, prognosis, and treatment of cognitive-related diseases, including autism, depression, and Alzheimer's diseases.
Collapse
Affiliation(s)
- Xiaohan Yu
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Haoyu Liu
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ning Chang
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Weijia Fu
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhiwen Guo
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yue Wang
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China,Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China,*Correspondence: Yue Wang,
| |
Collapse
|
16
|
Noncoding RNA Regulation of Hormonal and Metabolic Systems in the Fruit Fly Drosophila. Metabolites 2023; 13:metabo13020152. [PMID: 36837772 PMCID: PMC9967906 DOI: 10.3390/metabo13020152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
The importance of RNAs is commonly recognised thanks to protein-coding RNAs, whereas non-coding RNAs (ncRNAs) were conventionally regarded as 'junk'. In the last decade, ncRNAs' significance and roles are becoming noticeable in various biological activities, including those in hormonal and metabolic regulation. Among the ncRNAs: microRNA (miRNA) is a small RNA transcript with ~20 nucleotides in length; long non-coding RNA (lncRNA) is an RNA transcript with >200 nucleotides; and circular RNA (circRNA) is derived from back-splicing of pre-mRNA. These ncRNAs can regulate gene expression levels at epigenetic, transcriptional, and post-transcriptional levels through various mechanisms in insects. A better understanding of these crucial regulators is essential to both basic and applied entomology. In this review, we intend to summarise and discuss the current understanding and knowledge of miRNA, lncRNA, and circRNA in the best-studied insect model, the fruit fly Drosophila.
Collapse
|
17
|
Basri R, Awan FM, Yang BB, Awan UA, Obaid A, Naz A, Ikram A, Khan S, Haq IU, Khan SN, Aqeel MB. Brain-protective mechanisms of autophagy associated circRNAs: Kick starting self-cleaning mode in brain cells via circRNAs as a potential therapeutic approach for neurodegenerative diseases. Front Mol Neurosci 2023; 15:1078441. [PMID: 36727091 PMCID: PMC9885805 DOI: 10.3389/fnmol.2022.1078441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/13/2022] [Indexed: 01/19/2023] Open
Abstract
Altered autophagy is a hallmark of neurodegeneration but how autophagy is regulated in the brain and dysfunctional autophagy leads to neuronal death has remained cryptic. Being a key cellular waste-recycling and housekeeping system, autophagy is implicated in a range of brain disorders and altering autophagy flux could be an effective therapeutic strategy and has the potential for clinical applications down the road. Tight regulation of proteins and organelles in order to meet the needs of complex neuronal physiology suggests that there is distinct regulatory pattern of neuronal autophagy as compared to non-neuronal cells and nervous system might have its own separate regulator of autophagy. Evidence has shown that circRNAs participates in the biological processes of autophagosome assembly. The regulatory networks between circRNAs, autophagy, and neurodegeneration remains unknown and warrants further investigation. Understanding the interplay between autophagy, circRNAs and neurodegeneration requires a knowledge of the multiple steps and regulatory interactions involved in the autophagy pathway which might provide a valuable resource for the diagnosis and therapy of neurodegenerative diseases. In this review, we aimed to summarize the latest studies on the role of brain-protective mechanisms of autophagy associated circRNAs in neurodegenerative diseases (including Alzheimer's disease, Parkinson's disease, Huntington's disease, Spinal Muscular Atrophy, Amyotrophic Lateral Sclerosis, and Friedreich's ataxia) and how this knowledge can be leveraged for the development of novel therapeutics against them. Autophagy stimulation might be potential one-size-fits-all therapy for neurodegenerative disease as per considerable body of evidence, therefore future research on brain-protective mechanisms of autophagy associated circRNAs will illuminate an important feature of nervous system biology and will open the door to new approaches for treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Rabea Basri
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Pakistan
| | - Faryal Mehwish Awan
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Pakistan,*Correspondence: Faryal Mehwish Awan, ✉ ;
| | - Burton B. Yang
- Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON, Canada,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Usman Ayub Awan
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Pakistan
| | - Ayesha Obaid
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Pakistan
| | - Anam Naz
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore (UOL), Lahore, Pakistan
| | - Aqsa Ikram
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore (UOL), Lahore, Pakistan
| | - Suliman Khan
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Pakistan
| | - Ijaz ul Haq
- Department of Public Health and Nutrition, The University of Haripur (UOH), Haripur, Pakistan
| | - Sadiq Noor Khan
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Pakistan
| | - Muslim Bin Aqeel
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Pakistan
| |
Collapse
|
18
|
Liu F, Gao B, Wang Y. CircIRAK1 aggravates ox-LDL-induced endothelial cell injury in atherosclerosis via TRIM14 upregulation by binding to miR-330-5p. Clin Hemorheol Microcirc 2023; 85:195-209. [PMID: 36336926 DOI: 10.3233/ch-221551] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Atherosclerosis (AS) is a common inflammatory cardiovascular disease, and circular RNAs (circRNAs) are associated with the pathogenesis of AS. CircRNA Interleukin (IL)-1 receptor-associated kinase 1 (circIRAK1, hsa_circ_0091822) was upregulated in AS. The aims of this study were to ascertain the function and mechanism of circIRAK1 in AS. METHODS Human Umbilical Vein Endothelial Cells (HUVECs) were treated with oxidized low-density lipoprotein (ox-LDL). RNA expression was detected by reverse transcription-quantitative polymerase chain reaction assay. Cell viability was examined using Cell Counting Kit-8 assay. Tube formation ability was measured by tube formation assay. Cell apoptosis was assessed using flow cytometry. Western blot was used for protein detection. Inflammatory reaction was evaluated via Enzyme-linked immunosorbent assay. Oxidative injury was analyzed by commercial kits. Target binding was determined through dual-luciferase reporter assay, RNA immunoprecipitation assay and pull-down assay. RESULTS The expression of circIRAK1 was upregulated in AS serums and ox-LDL-treated HUVECs. Silencing circIRAK1 enhanced cell viability and angiogenesis while suppressed cell apoptosis, inflammatory response and oxidative stress in ox-LDL-stimulated HUVECs. CircIRAK1 served as a molecular sponge for miR-330-5p. CircIRAK1 regulated ox-LDL-mediated cell injury by absorbing miR-330-5p. In addition, miR-330-5p prevented endothelial cell dysfunction caused by ox-LDL via targeting tripartite motif containing 14 (TRIM14). TRIM14 expression was upregulated by circIRAK1 through sponging miR-330-5p. CONCLUSION These results suggested that circIRAK1 upregulated TRIM14 by interacting with miR-330-5p, consequently contributing to ox-LDL-induced endothelial cell injury in AS.
Collapse
Affiliation(s)
- Fang Liu
- Department of Cardiology, Hanchuan People's Hospital, Hanchuan City, Hubei, China
| | - Bo Gao
- Department of Cardiology, Hanchuan People's Hospital, Hanchuan City, Hubei, China
| | - Yu Wang
- Department of Cardiology, Hanchuan People's Hospital, Hanchuan City, Hubei, China
| |
Collapse
|
19
|
Lei J, Zhu J, Hui B, Jia C, Yan X, Jiang T, Wang X. Circ-HSP90A expedites cell growth, stemness, and immune evasion in non-small cell lung cancer by regulating STAT3 signaling and PD-1/PD-L1 checkpoint. Cancer Immunol Immunother 2023; 72:101-124. [PMID: 35750765 DOI: 10.1007/s00262-022-03235-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 05/31/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND Circular RNAs (circRNAs) are important participators in tumor progression for their stable structure and high tissue-specific expression. The purpose of this research was to clarify the potential and mechanism of a novel circRNA-circ-HSP90A in non-small cell lung cancer (NSCLC). METHODS Biological potentials of circ-HSP90A in NSCLC were measured by functional assays. Molecular interaction was assessed by bioinformatics analysis and mechanical assays. RESULTS Results depicted that circ-HSP90A was cyclization from its host gene heat shock protein 90 alpha (HSP90A) and was up-regulated in NSCLC cells. Circ-HSP90A depletion retarded proliferation, migration, invasion, and immune evasion. Mechanistically, circ-HSP90A recruited ubiquitin specific peptidase 30 (USP30) to stabilize HSP90A and then stimulated the signal transducer and activator of transcription 3 (STAT3) signaling. Meanwhile, circ-HSP90A sponged miR-424-5p to programmed cell death ligand 1 (PD-L1). CONCLUSIONS Our study firstly showed that circ-HSP90A promoted cell growth, stemness, and immune evasion in NSCLC through regulating STAT3 signaling and programmed cell death 1 (PD-1)/PD-L1 checkpoint, mirroring that targeting circ-HSP90A might become a novel target of immunotherapy in NSCLC.
Collapse
Affiliation(s)
- Jie Lei
- Department of Thoracic Surgery, The Second Affiliated Hospital of Air Force Medical University, No.569 Xinsi Road, Xi'an, 710038, Shaanxi, China
| | - Jianfei Zhu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Air Force Medical University, No.569 Xinsi Road, Xi'an, 710038, Shaanxi, China
| | - Bengang Hui
- Department of Thoracic Surgery, The Second Affiliated Hospital of Air Force Medical University, No.569 Xinsi Road, Xi'an, 710038, Shaanxi, China
| | - Chenghui Jia
- Department of Thoracic Surgery, The Second Affiliated Hospital of Air Force Medical University, No.569 Xinsi Road, Xi'an, 710038, Shaanxi, China
| | - Xiaolong Yan
- Department of Thoracic Surgery, The Second Affiliated Hospital of Air Force Medical University, No.569 Xinsi Road, Xi'an, 710038, Shaanxi, China
| | - Tao Jiang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Air Force Medical University, No.569 Xinsi Road, Xi'an, 710038, Shaanxi, China.
| | - Xiaoping Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Air Force Medical University, No.569 Xinsi Road, Xi'an, 710038, Shaanxi, China.
| |
Collapse
|
20
|
Li M, Li J, Song Y. Hsa_Circ_0134426 Attenuates the Malignant Biological Behaviors of Multiple Myeloma by Suppressing miR-146b-3p to Upregulate NDNF. Mol Biotechnol 2022:10.1007/s12033-022-00618-6. [DOI: 10.1007/s12033-022-00618-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/21/2022] [Indexed: 12/04/2022]
|
21
|
Liu M, Cao S, Guo Z, Wu Z, Meng J, Wu Y, Shao Y, Li Y. Roles and mechanisms of CircRNAs in ovarian cancer. Front Cell Dev Biol 2022; 10:1044897. [PMID: 36506086 PMCID: PMC9727202 DOI: 10.3389/fcell.2022.1044897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/09/2022] [Indexed: 11/24/2022] Open
Abstract
Ovarian cancer (OC) is one of the female malignancies with nearly 45% 5-year survival rate. Circular RNAs (circRNAs), a kind of single-stranded non-coding RNAs, are generated from the back-splicing of cellular housekeeping noncoding RNAs and precursor messenger RNAs. Recent studies revealed that circRNAs have different biological function, including sponging miRNAs, encoding micropeptides, regulating stability of cytoplasmic mRNAs, affecting transcription and splicing, via interacting with DNA, RNA and proteins. Due to their stability, circRNAs have the potential of acting as biomarkers and treatment targets. In this review, we briefly illustrate the biogenesis mechanism and biological function of circRNAs in OC, and make a perspective of circRNAs drug targeting immune responses and signaling pathways in OC. This article can provide a systematic view into the current situation and future of circRNAs in OC.
Collapse
Affiliation(s)
- Min Liu
- Lab for Noncoding RNA and Cancer, School of Life Sciences, Shanghai University, Shanghai, China
| | - Siyu Cao
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Ziyi Guo
- Lab for Noncoding RNA and Cancer, School of Life Sciences, Shanghai University, Shanghai, China
| | - Zong Wu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiao Meng
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yong Wu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yang Shao
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yanli Li
- Lab for Noncoding RNA and Cancer, School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
22
|
Wang J, Zhang H, Wang C, Fu L, Wang Q, Li S, Cong B. Forensic age estimation from human blood using age-related microRNAs and circular RNAs markers. Front Genet 2022; 13:1031806. [PMID: 36506317 PMCID: PMC9732945 DOI: 10.3389/fgene.2022.1031806] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/08/2022] [Indexed: 11/23/2022] Open
Abstract
Aging is a complicated process characterized by progressive and extensive changes in physiological homeostasis at the organismal, tissue, and cellular levels. In modern society, age estimation is essential in a large variety of legal rights and duties. Accumulating evidence suggests roles for microRNAs (miRNAs) and circular RNAs (circRNAs) in regulating numerous processes during aging. Here, we performed circRNA sequencing in two age groups and analyzed microarray data of 171 healthy subjects (17-104 years old) downloaded from Gene Expression Omnibus (GEO) and ArrayExpress databases with integrated bioinformatics methods. A total of 1,403 circular RNAs were differentially expressed between young and old groups, and 141 circular RNAs were expressed exclusively in elderly samples while 10 circular RNAs were expressed only in young subjects. Based on their expression pattern in these two groups, the circular RNAs were categorized into three classes: age-related expression between young and old, age-limited expression-young only, and age-limited expression-old only. Top five expressed circular RNAs among three classes and a total of 18 differentially expressed microRNAs screened from online databases were selected to validate using RT-qPCR tests. An independent set of 200 blood samples (20-80 years old) was used to develop age prediction models based on 15 age-related noncoding RNAs (11 microRNAs and 4 circular RNAs). Different machine learning algorithms for age prediction were applied, including regression tree, bagging, support vector regression (SVR), random forest regression (RFR), and XGBoost. Among them, random forest regression model performed best in both training set (mean absolute error = 3.68 years, r = 0.96) and testing set (MAE = 6.840 years, r = 0.77). Models using one single type of predictors, circular RNAs-only or microRNAs-only, result in bigger errors. Smaller prediction errors were shown in males than females when constructing models according to different-sex separately. Putative microRNA targets (430 genes) were enriched in the cellular senescence pathway and cell homeostasis and cell differentiation regulation, indirectly indicating that the microRNAs screened in our study were correlated with development and aging. This study demonstrates that the noncoding RNA aging clock has potential in predicting chronological age and will be an available biological marker in routine forensic investigation to predict the age of biological samples.
Collapse
Affiliation(s)
- Junyan Wang
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei, China
| | - Haixia Zhang
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei, China
| | - Chunyan Wang
- Physical Examination Center of Shijiazhuang First Hospital, Shijiazhuang, Hebei, China
| | - Lihong Fu
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei, China
| | - Qian Wang
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei, China
| | - Shujin Li
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei, China,*Correspondence: Bin Cong, ; Shujin Li,
| | - Bin Cong
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, Hebei, China,*Correspondence: Bin Cong, ; Shujin Li,
| |
Collapse
|
23
|
Niu R, Liu J. Circular RNA Involvement in Aging and Longevity. Curr Genomics 2022; 23:318-325. [PMID: 36778190 PMCID: PMC9878857 DOI: 10.2174/1389202923666220927110258] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 11/22/2022] Open
Abstract
Background Circular RNAs (circRNAs) are transcribed by RNA polymerase II and are mostly generated by the back-splicing of exons in the protein-coding gene. Massive circRNAs are reported to be differentially expressed in different species, implicating their prospects as aging biomarkers or regulators in the aging progression. Methods The possible role of circRNAs in aging and longevity was reviewed by the query of circRNAs from literature reports related to tissue, organ or cellular senescence, and individual longevity. Results A number of circRNAs have been found to positively and negatively modulate aging and longevity through canonical aging pathways in the invertebrates Caenorhabditis elegans and Drosophila. Recent studies have also shown that circRNAs regulate age-related processes and pathologies such various mammalian tissues, as the brain, serum, heart, and muscle. Besides, three identified representative circRNAs (circSfl, circGRIA1, and circNF1-419) were elucidated to correlate with aging and longevity. Conclusion This review outlined the current studies of circRNAs in aging and longevity, highlighting the role of circRNAs as a biomarker of aging and as a regulator of longevity.
Collapse
Affiliation(s)
- Ruize Niu
- Laboratory Zoology Department, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Jia Liu
- Laboratory Zoology Department, Kunming Medical University, Kunming 650500, Yunnan, China,Address correspondence to this author at the Laboratory Zoology Department, Kunming Medical University, Kunming, Yunnan, 650500, China; Tel: 15288361011; E-mail:
| |
Collapse
|
24
|
Circ_0044556 Promotes the Progression of Colorectal Cancer via the miR-665-Dependent Expression Regulation of Diaphanous Homolog 1. Dig Dis Sci 2022; 67:4458-4470. [PMID: 34822025 DOI: 10.1007/s10620-021-07310-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 11/01/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND Cancer progression can be regulated by noncoding circular RNAs. A recent study has indicated that circ_0044556 facilitated the progression of colorectal cancer. AIM This research was performed to explore the regulatory mechanism of circ_0044556 in CRC. METHODS Circ_0044556, miR-665 and Diaphanous Homolog 1 levels were detected by the quantitative real-time polymerase chain reaction. Cell proliferation analysis was performed by cell counting kit-8 assay and Edu assay. Cell cycle progression was assessed using flow cytometry. The protein examination was conducted using western blot. Transwell assay was used to analyze cell migration and invasion. Dual-luciferase reporter assay was performed to validate the interaction between targets. In vivo research was implemented by xenograft tumor assay. RESULTS Circ_0044556 was upregulated in colorectal cancer samples and cells. Silencing circ_0044556 inhibited cell proliferation, cell cycle progression, migration, invasion, and epithelial-mesenchymal transition in CRC cells. Circ_0044556 could directly target miR-665 and the function of circ_0044556 was associated with the regulation of miR-665. In addition, Diaphanous Homolog 1 was a target gene for miR-665 and the anti-tumor role of miR-665 in colorectal cancer was dependent on the downregulation of Diaphanous Homolog 1. Diaphanous Homolog 1 level was regulated by circ_0044556 via sponging miR-665 in CRC cells. In vivo assay suggested that circ_0044556 promoted CRC tumor growth by regulating the miR-665 and Diaphanous Homolog 1 levels. CONCLUSION Our findings manifested that circ_0044556 functioned as an oncogenic circRNA in colorectal cancer by mediating the miR-665/Diaphanous Homolog 1 axis, elucidating the molecular mechanism of circ_0044556 in CRC progression.
Collapse
|
25
|
Vakili O, Asili P, Babaei Z, Mirahmad M, Keshavarzmotamed A, Asemi Z, Mafi A. Circular RNAs in Alzheimer's Disease: A New Perspective of Diagnostic and Therapeutic Targets. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 22:CNSNDDT-EPUB-125997. [PMID: 36043720 DOI: 10.2174/1871527321666220829164211] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/06/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Circular RNAs (circRNAs), as covalently closed single-stranded noncoding RNA molecules, have been recently identified to involve in several biological processes, principally through targeting microRNAs. Among various neurodegenerative diseases (NDs), accumulating evidence has proposed key roles for circRNAs in the pathogenesis of Alzheimer's disease (AD); although the exact relationship between these RNA molecules and AD progression is not clear, they have been believed to mostly act as miRNA sponges or gene transcription modulators through correlating with multiple proteins, involved in the accumulation of Amyloid β (Aβ) peptides, as well as tau protein, as AD's pathological hallmark. More interestingly, circRNAs have also been reported to play diagnostic and therapeutic roles during AD progression. OBJECTIVE Literature review indicated that circRNAs could essentially contribute to the onset and development of AD. Thus, in the current review, the circRNAs' biogenesis and functions are addressed at first, and then the interplay between particular circRNAs and AD is comprehensively discussed. Eventually, the diagnostic and therapeutic significance of these noncoding RNAs is highlighted in brief. RESULTS A large number of circRNAs are expressed in the brain. Thereby, these RNA molecules are noticed as potential regulators of neural functions in healthy circumstances, as well as neurological disorders. Moreover, circRNAs have also been reported to have potential diagnostic and therapeutic capacities in relation to AD, the most prevalent ND. CONCLUSION CircRNAs have been shown to act as sponges for miRNAs, thereby regulating the function of related miRNAs, including oxidative stress, reduction of neuroinflammation, and the formation and metabolism of Aβ, all of which developed in AD. CircRNAs have also been proposed as biomarkers that have potential diagnostic capacities in AD. Despite these characteristics, the use of circRNAs as therapeutic targets and promising diagnostic biomarkers will require further investigation and characterization of the function of these RNA molecules in AD.
Collapse
Affiliation(s)
- Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Pooria Asili
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zeinab Babaei
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Mirahmad
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
26
|
A Novel circRNA hsa_circRNA_002178 as a Diagnostic Marker in Hepatocellular Carcinoma Enhances Cell Proliferation, Invasion, and Tumor Growth by Stabilizing SRSF1 Expression. JOURNAL OF ONCOLOGY 2022; 2022:4184034. [PMID: 36065311 PMCID: PMC9440807 DOI: 10.1155/2022/4184034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/15/2022] [Accepted: 07/26/2022] [Indexed: 12/14/2022]
Abstract
Background. Previous research studies have shown that the elevation of circular RNA (circRNA), hsa_circRNA_002178, was associated with the poor prognosis of breast cancer and colorectal cancer, while its molecular mechanisms underlying the effects on hepatocellular carcinoma (HCC) are still elusive. Methods. The microarray dataset GSE97332 was obtained from the Gene Expression Omnibus (GEO) database and calculated by using the GEO2R tool to identify differentially expressed circRNAs. Differentially expressed hsa_circRNA_002178, in 7 HCC tissue samples and paracancerous tissues, as well as in HCC cell lines and normal hepatocytes, was checked by RT-qPCR. Cell proliferation, invasion, migration, and epithelial-to-mesenchymal transition (EMT)-related proteins were tested in hsa_circRNA_002178-overexpressed or hsa_circRNA_002178-knocked down HCC cells. Subsequently, we identified whether hsa_circRNA_002178 binds to serine- and arginine-rich splicing factor 1 (SRSF1) and then analyzed their function in regulating HCC cell behavior. The effect on HCC cell xenograft tumor growth was observed by the knockdown of hsa_circRNA_002178 in vivo. Results. GEO2R-based analysis displayed that hsa_circRNA_002178 was upregulated in HCC tissues. Overexpression or knockdown of hsa_circRNA_002178 encouraged or impeded HCC cell proliferation, migration, invasion, and EMT program. Mechanically, hsa_circRNA_002178 bound to SRSF1 3′-untranslated region (UTR) and stabilized its expression. SRSF1 weakening eliminated the effects of pcDNA-hsa_circRNA_002178 on cell malignant behavior. Finally, the knockdown of hsa_circRNA_002178 was confirmed to prevent xenograft tumor growth. Conclusions. hsa_circRNA_002178 overexpression encouraged the stability of SRSF1 mRNA expression, and it may serve as an upstream factor of SRSF1 for the diagnosis of HCC.
Collapse
|
27
|
Dela Justina V, Miguez JSG, Priviero F, Sullivan JC, Giachini FR, Webb RC. Sex Differences in Molecular Mechanisms of Cardiovascular Aging. FRONTIERS IN AGING 2022; 2:725884. [PMID: 35822017 PMCID: PMC9261391 DOI: 10.3389/fragi.2021.725884] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/25/2021] [Indexed: 12/12/2022]
Abstract
Cardiovascular disease (CVD) is still the leading cause of illness and death in the Western world. Cardiovascular aging is a progressive modification occurring in cardiac and vascular morphology and physiology where increased endothelial dysfunction and arterial stiffness are observed, generally accompanied by increased systolic blood pressure and augmented pulse pressure. The effects of biological sex on cardiovascular pathophysiology have long been known. The incidence of hypertension is higher in men, and it increases in postmenopausal women. Premenopausal women are protected from CVD compared with age-matched men and this protective effect is lost with menopause, suggesting that sex-hormones influence blood pressure regulation. In parallel, the heart progressively remodels over the course of life and the pattern of cardiac remodeling also differs between the sexes. Lower autonomic tone, reduced baroreceptor response, and greater vascular function are observed in premenopausal women than men of similar age. However, postmenopausal women have stiffer arteries than their male counterparts. The biological mechanisms responsible for sex-related differences observed in cardiovascular aging are being unraveled over the last several decades. This review focuses on molecular mechanisms underlying the sex-differences of CVD in aging.
Collapse
Affiliation(s)
- Vanessa Dela Justina
- Graduate Program in Biological Sciences, Federal University of Goiás, Goiânia, Brazil
| | | | - Fernanda Priviero
- Cardiovascular Translational Research Center, University of South Carolina, Columbia, SC, United States
| | - Jennifer C Sullivan
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Fernanda R Giachini
- Graduate Program in Biological Sciences, Federal University of Goiás, Goiânia, Brazil.,Institute of Biological Sciences and Health, Federal University of Mato Grosso, Barra do Garças, Brazil
| | - R Clinton Webb
- Cardiovascular Translational Research Center, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
28
|
Bmp5 Mutation Alters circRNA Expression During Embryonic External Ear Development. J Craniofac Surg 2022; 33:1934-1938. [PMID: 35765132 DOI: 10.1097/scs.0000000000008424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/25/2021] [Indexed: 11/26/2022] Open
Abstract
ABSTRACT Bmp5 mutation can lead to microtia in mice models; however, its underlying mechanism is unclear. We analyzed circular RNA (circRNA) expression changes and associated gene regulation during embryonic development of the mouse's external ear after a point mutation occurred naturally in the BMP5 gene. The outer ear tissues of BMP5 short-eared mouse model embryos at embryonic day (E) 15.5 and E17.5 were subjected to RNA sequencing. Changes in the circRNA expression profile were detected using find_circ and the CiRi2 software. Differentially expressed circRNAs were annotated by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses. The circRNA expression profile differed between wild-type and mutant mouse embryos. At E15.5, differentially expressed RNAs were involved in the Hippo signaling pathway, whereas those at E17.5 were associated with stem cell pluripotency. Therefore, circRNA is involved in regulating embryonic external ear development, thus providing a basis for studying the biological aspect of its regulation.
Collapse
|
29
|
Wu B, Chen Y, Chen Y, Xie X, Liang H, Peng F, Che W. Circ_0001273 downregulation inhibits the growth, migration and glutamine metabolism of esophageal cancer cells via targeting the miR-622/SLC1A5 signaling axis. Thorac Cancer 2022; 13:1795-1805. [PMID: 35567340 PMCID: PMC9200876 DOI: 10.1111/1759-7714.14458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Esophageal cancer is a relatively rare cancer. However, its death rate is not to be taken lightly. Accumulating evidence indicates circular RNA (circRNA) is implicated in cancer development. The objective of this study was to unveil the role of circ_0001273 in esophageal cancer (EC). METHODS For expression analysis of circ_0001273, miR-622 and solute carrier family 1 member 5 (SLC1A5), quantitative real-time PCR (qPCR) and Western blot were conducted. Cell proliferation was evaluated by cell counting kit-8 (CCK-8), EdU and colony formation assays. Cell apoptosis and cell migration were investigated using flow cytometry assay and wound healing assay. Glutamine metabolism was assessed by glutamine consumption and glutamate production using matched kits. The predicted binding relationship between miR-622 and circ_0001273 or SLC1A5 was validated by dual-luciferase reporter assay. An in vivo xenograft model was established to determine the role of circ_0001273 on tumor growth. RESULTS Circ_0001273 was upregulated in EC tumor tissues and cells. Knockdown of circ_0001273 repressed EC cell proliferation, migration, epithelial-mesenchymal transition (EMT) and glutamine metabolism. Circ_0001273 knockdown also blocked tumor development in animal models. MiR-622 was targeted by circ_0001273, and its inhibition reversed the functional effects of circ_0001273 knockdown. SLC1A5 was a target gene of miR-622, and circ_0001273 targeted miR-622 to positively regulate SLC1A5 expression. The inhibitory effects of miR-622 enrichment on EC cell proliferation, migration, EMT and glutamine metabolism were recovered by SLC1A5 overexpression. CONCLUSION Circ_0001273 high expression contributed to EC progression via modulating the miR-622/SLC1A5 signaling axis.
Collapse
Affiliation(s)
- Bomeng Wu
- Department of Thoracic Surgery, Gaozhou People's Hospital, Gaozhou City, Guangdong Province, China
| | - Ying Chen
- Department of Thoracic Surgery, Gaozhou People's Hospital, Gaozhou City, Guangdong Province, China
| | - Ying Chen
- Department of Thoracic Surgery, Gaozhou People's Hospital, Gaozhou City, Guangdong Province, China
| | - Xihao Xie
- Department of Thoracic Surgery, Gaozhou People's Hospital, Gaozhou City, Guangdong Province, China
| | - Hanping Liang
- Department of Thoracic Surgery, Gaozhou People's Hospital, Gaozhou City, Guangdong Province, China
| | - Fengyuan Peng
- Department of Thoracic Surgery, Gaozhou People's Hospital, Gaozhou City, Guangdong Province, China
| | - Weibi Che
- Department of Thoracic Surgery, Gaozhou People's Hospital, Gaozhou City, Guangdong Province, China
| |
Collapse
|
30
|
Jusic A, Thomas PB, Wettinger SB, Dogan S, Farrugia R, Gaetano C, Tuna BG, Pinet F, Robinson EL, Tual-Chalot S, Stellos K, Devaux Y. Noncoding RNAs in age-related cardiovascular diseases. Ageing Res Rev 2022; 77:101610. [PMID: 35338919 DOI: 10.1016/j.arr.2022.101610] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 01/28/2022] [Accepted: 03/15/2022] [Indexed: 11/01/2022]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality in the adult population worldwide and represent a severe economic burden and public health concern. The majority of human genes do not code for proteins. However, noncoding transcripts play important roles in ageing that significantly increases the risk for CVDs. Noncoding RNAs (ncRNAs) are critical regulators of multiple biological processes related to ageing such as oxidative stress, mitochondrial dysfunction and chronic inflammation. NcRNAs are also involved in pathophysiological developments within the cardiovascular system including arrhythmias, cardiac hypertrophy, fibrosis, myocardial infarction and heart failure. In this review article, we cover the roles of ncRNAs in cardiovascular ageing and disease as well as their potential therapeutic applications in CVDs.
Collapse
|
31
|
Li F, Cao K, Wang M, Liu Y, Zhang Y. Astragaloside IV exhibits anti-tumor function in gastric cancer via targeting circRNA dihydrolipoamide S-succinyltransferase (circDLST)/miR-489-3p/ eukaryotic translation initiation factor 4A1(EIF4A1) pathway. Bioengineered 2022; 13:10111-10122. [PMID: 35435117 PMCID: PMC9161858 DOI: 10.1080/21655979.2022.2063664] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Astragaloside IV (AS-IV) is an inartificial saponin separated from astragalus membranaceus, which has exhibited key anti-tumor regulation in some cancers. Circular RNAs (circRNAs) are important regulators in malignant development of gastric cancer (GC). Herein, we focused on the molecular mechanism of AS-IV with circRNA dihydrolipoamide S-succinyltransferase (circDLST) in GC. CircDLST, microRNA-489-3p (miR-489-3p), and eukaryotic translation initiation factor 4A1 (EIF4A1) levels were detected by quantitative real-time polymerase-chain reaction and western blot. Cell functions were assessed by cell counting kit-8 assay, ethynyl-2’-deoxyuridine assay, colony formation assay, and transwell assay. The interaction between miR-489-3p and circDLST or EIF4A1 was analyzed by dual-luciferase reporter assay. Xenograft tumor assay was adopted to check the role of circDLST and AS-IV in vivo. CircDLST and EIF4A1 were upregulated but miR-489-3p was downregulated in GC cells. AS-IV restrained cell proliferation and metastasis in GC cells by downregulating circDLST. CircDLST served as a miR-489-3p sponge, and miR-489-3p inhibition reversed anti-tumor function of AS-IV. EIF4A1 was a target for miR-489-3p and circDLST sponged miR-489-3p to regulate EIF4A1. AS-IV suppressed GC cell progression via circDLST-mediated downregulation of EIF4A1. Also, AS-IV recued tumor growth in vivo via targeting circDLST to regulate miR-489-3p/EIF4A1 axis. AS-IV inhibited the development of GC through circDLST/miR-489-3p/EIF4A1 axis.
Collapse
Affiliation(s)
- Fagen Li
- Senior Department of Traditional Chinese Medicine, the Sixth Medical Center of PLA General Hospital, Beijing, Hebei, China
| | - Ke Cao
- Senior Department of Traditional Chinese Medicine, the Sixth Medical Center of PLA General Hospital, Beijing, Hebei, China
| | - Maoyun Wang
- Senior Department of Traditional Chinese Medicine, the Sixth Medical Center of PLA General Hospital, Beijing, Hebei, China
| | - Yi Liu
- Senior Department of Traditional Chinese Medicine, the Sixth Medical Center of PLA General Hospital, Beijing, Hebei, China
| | - Yin Zhang
- Senior Department of Traditional Chinese Medicine, the Sixth Medical Center of PLA General Hospital, Beijing, Hebei, China
| |
Collapse
|
32
|
Tao D, Liu Z, Wang L, Li C, Zhang R, Ni N. CircPAG1 interacts with miR-211-5p to promote the E2F3 expression and inhibit the high glucose-induced cell apoptosis and oxidative stress in diabetic cataract. Cell Cycle 2022; 21:708-719. [PMID: 35174780 PMCID: PMC8973334 DOI: 10.1080/15384101.2021.2018213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Circular RNAs (circRNAs) are regulatory endogenous RNAs in human diseases by sponging microRNAs (miRNAs) to affect the gene expression. However, little research focused on the circRNA/miRNA/mRNA axis in diabetic cataract. This study was performed for the exploration of circRNA phosphoprotein associated with glycosphingolipid-enriched microdomains 1 (circPAG1) in diabetic cataract. Human lens epithelial cells were treated with high glucose. The quantitative real-time polymerase chain reaction was used for the expression detection of circPAG1, microRNA-211-5p (miR-211-5p), and E2F transcription factor 3 (E2F3). Cell viability and proliferation were detected using Cell Counting Kit-8 assay and EdU assay. Cell apoptosis was analyzed by flow cytometry. The protein levels were measured by Western blot. Oxidative stress was assessed by malondialdehyde, reactive oxygen species, and superoxide dismutase via the corresponding detection kits. The target interaction was validated using the dual-luciferase reporter assay and RNA immunoprecipitation assay. The expression of circPAG1 was downregulated in diabetic cataract patients. The upregulation of circPAG1 could attenuate the high glucose-induced inhibition of cell viability and proliferation but promotion of cell apoptosis and oxidative stress. CircPAG1 served as a miR-211-5p sponge, and the protective role of circPAG1 was partly achieved by sponging miR-211-5p. MiR-211-5p targeted E2F3 and circPAG1 upregulated the E2F3 level by absorbing miR-211-5p. Inhibition of miR-211-5p repressed the high glucose-mediated cell dysfunction by increasing the expression of E2F3. This study clarified that circPAG1 protected human lens epithelial cells from the high glucose-induced cell damages by the mediation of miR-211-5p/E2F3 axis.
Collapse
Affiliation(s)
- Dan Tao
- Department of Ophthalmology, Kunming Children’s Hospital, Kunming, Yunnan, China
| | - Zeyuan Liu
- Department of Ophthalmology, Kunming Children’s Hospital, Kunming, Yunnan, China
| | - Ling Wang
- Department of Ophthalmology, Kunming Children’s Hospital, Kunming, Yunnan, China
| | - Chunli Li
- Department of Ophthalmology, Kunming Children’s Hospital, Kunming, Yunnan, China
| | - Rongci Zhang
- Department of Ophthalmology, Kunming Children’s Hospital, Kunming, Yunnan, China
| | - Ninghua Ni
- Department of Ophthalmology, The First People’s Hospital of Yunnan Province, Kunming City, Yunnan Province, China,CONTACT Ninghua Ni Department of Ophthalmology, The First People’s Hospital of Yunnan Province, No. 157 Jinbi Road, Xishan District, Kunming City, Yunnan Province650031, China
| |
Collapse
|
33
|
Han Q, Ma L, Shao L, Wang H, Feng M. Circ_0075804 regulates the expression of LASP1 by Targeting miR-1287-5p and thus affects the biological process of retinoblastoma. Curr Eye Res 2022; 47:1077-1086. [PMID: 35285372 DOI: 10.1080/02713683.2022.2053164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND Increasing evidence reveals that circular RNA (circRNA) dysregulation is involved in retinoblastoma (RB) pathogenesis. To further realize the development of RB, we investigated the role and regulatory mechanism of circ_0075804 in RB. METHODS Real-time quantitative PCR (RT-qPCR) and western blot were employed for expression analysis. CCK-8 assay, EdU assay, colony formation assay, flow cytometry assay and transwell assay were performed to monitor cell phenotypes. Xenograft models were established to monitor the role of circ_0075804 on tumor growth. Tumor growth was assessed by the expression of Ki67, N-cadherin, MMP2 and MMP9 via IHC assay. The predicted binding sites between miR-1287-5p and circ_0075804 or LIM and SH3 protein 1 (LASP1) were validated by dual-luciferase reporter assay. RESULTS Upregulation of circ_0075804 and LASP1, and downregulation of miR-1287-5p were shown in RB tissues and cells. Circ_0075804 knockdown repressed RB cell growth, invasion and survival, and hindered tumor development in vivo. MiR-1287-5p was targeted by circ_0075804, and its repression largely reversed the functional effects of circ_0075804 knockdown. LASP1 was a functional target of miR-1287-5p. The inhibition of miR-1287-5p upregulation on RB cell proliferation, survival and invasion was reversed by LASP1 overexpression. Moreover, circ_0075804 knockdown weakened LASP1 expression via increasing miR-1287-5p. CONCLUSION Circ_0075804 promotes LASP1 expression by targeting miR-1287-5p, thus acting as a contributor to RB carcinogenesis.Highlights:Circ_0075804 is overexpressed in RB.Circ_0075804 knockdown inhibits RB cell malignant phenotypes and tumor growth in vivo.Circ_0075804 regulates RB cell behaviors by targeting miR-1287-5p.MiR-1287-5p affects RB cell behaviors by binding to LASP1.Circ_0075804 regulates LASP1 expression via targeting miR-1287-5p.
Collapse
Affiliation(s)
- Qichao Han
- Department of Ophtalmology, Zaozhuang Municipal Hospital Shandong Province, Zaozhuang Shandong, China
| | - Lan Ma
- Department of Ophtalmology, Zaozhuang Municipal Hospital Shandong Province, Zaozhuang Shandong, China
| | - Li Shao
- Department of Ophtalmology, Zaozhuang Municipal Hospital Shandong Province, Zaozhuang Shandong, China
| | - Hong Wang
- Department of Ophtalmology, Zaozhuang Municipal Hospital Shandong Province, Zaozhuang Shandong, China
| | - Meiyan Feng
- Department of Ophtalmology, Zaozhuang Municipal Hospital Shandong Province, Zaozhuang Shandong, China
| |
Collapse
|
34
|
Carlos-Reyes Á, Romero-Garcia S, Contreras-Sanzón E, Ruiz V, Prado-Garcia H. Role of Circular RNAs in the Regulation of Immune Cells in Response to Cancer Therapies. Front Genet 2022; 13:823238. [PMID: 35186039 PMCID: PMC8847670 DOI: 10.3389/fgene.2022.823238] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/11/2022] [Indexed: 12/25/2022] Open
Abstract
Circular RNAs (CircRNAs) are a class of small endogenous noncoding RNA that are formed by means of either the spliceosome or lariat-type splicing. CircRNAs have multiple regulatory functions and have been detected in different cell types, like normal, tumor and immune cells. CircRNAs have been suggested to regulate T cell functions in response to cancer. CircRNAs can enter into T cells and promote the expression of molecules that either trigger antitumoral responses or promote suppression and the consequent evasion to the immune response. Additionally, circRNAs may promote tumor progression and resistance to anticancer treatment in different types of neoplasias. In this minireview we discuss the impact of circRNAs and its function in the regulation of the T-cells in immune response caused by cancer therapies.
Collapse
Affiliation(s)
- Ángeles Carlos-Reyes
- Laboratorio de Onco-Inmunobiologia, Departamento de Enfermedades Crónico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias, Mexico, Mexico
| | | | | | - Víctor Ruiz
- Laboratorio de Biología Molecular, Instituto Nacional de Enfermedades Respiratorias, Mexico, Mexico
| | - Heriberto Prado-Garcia
- Laboratorio de Onco-Inmunobiologia, Departamento de Enfermedades Crónico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias, Mexico, Mexico
| |
Collapse
|
35
|
He H, Zhang J, Gong W, Liu M, Liu H, Li X, Wu Y, Lu Q. Involvement of CircRNA Expression Profile in Diabetic Retinopathy and Its Potential Diagnostic Value. Front Genet 2022; 13:833573. [PMID: 35251136 PMCID: PMC8891611 DOI: 10.3389/fgene.2022.833573] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/27/2022] [Indexed: 12/14/2022] Open
Abstract
Background: Circular RNAs (circRNAs), a class of non-coding and undegradable RNAs, play many pathological functions by acting as miRNA sponges, interacting with RNA-binding proteins, and others. The recent literature indicates that circRNAs possess the advanced superiority for the early screening of diabetic retinopathy (DR). Methods: CircRNA sources of peripheral blood mononuclear cells (PBMCs) from healthy controls (n = 4), diabetes mellitus patients (DM) (n = 4), and DR patients (n = 4) were extracted for circular RNA microarray analysis. Enriched biological modules and signaling pathways were analyzed by Gene Ontology Enrichment and Kyoto Encyclopedia of Genes and Genomes analysis, respectively. Real-time quantitative reverse transcription PCR (RT-qPCR) was performed to validate differentiated levels of several circRNAs (fold change ≥2, p < .05) in different groups of healthy control subjects (n = 20), DM patients (n = 60), and DR patients (n = 42). Based on our clinical data from DR, the diagnostic performance of candidate circRNAs was measured by operating characteristic curves (ROCs). Subsequently, their circRNA–miRNA networks were constructed by bioinformatics analysis. Results: Circular RNA microarray analysis was performed, and 2,452 and 289 circRNAs were screened with differential expression in DR patients compared to healthy controls and DM patients, respectively. Enrichment analyses showed that circRNAs in DR patients were enriched in extracellular matrix (ECM)–receptor interaction and focal adhesion pathways. The top 5 differential circRNAs in circRNA microarray analysis were subsequently quantified and verified by RT-qPCR. Consistently, a significant 2.2-fold reduction of hsa_circ_0095008 and 1.7-fold increase in hsa_circ_0001883 were identified in DR patients compared to DM patients. Meanwhile, the area under curves of hsa_circ_0095008 and hsa_circ_0001883 were 0.6710 (95% CI, 0.5646–0.7775) (p = 0.003399) and 0.6071 (95% CI, 0.4953–0.7189) (p = 0.06644), respectively, indicating a good diagnostic value. Conclusion: Our study provided a new sight for the pathological mechanism of DR and revealed the potential value of hsa_circ_0095008 and hsa_circ_0001883 as diagnostic biomarkers for the early diagnosis of DR patients.
Collapse
Affiliation(s)
- Hengqian He
- Department of Ophthalmology, The Affiliated People’s Hospital of Ningbo University, Ningbo, China
| | - Juntao Zhang
- Department of Ophthalmology, The Affiliated People’s Hospital of Ningbo University, Ningbo, China
| | - Weikun Gong
- Department of Ophthalmology, The Affiliated People’s Hospital of Ningbo University, Ningbo, China
| | - Mengyun Liu
- Department of Ophthalmology, The Affiliated People’s Hospital of Ningbo University, Ningbo, China
| | - Hao Liu
- Department of Ophthalmology, The Affiliated People’s Hospital of Ningbo University, Ningbo, China
| | - Xiaoyong Li
- Center for Disease Control and Prevention of Yinzhou District, Ningbo, China
| | - Yufei Wu
- Department of Ophthalmology, The Affiliated People’s Hospital of Ningbo University, Ningbo, China
| | - Qinkang Lu
- Department of Ophthalmology, The Affiliated People’s Hospital of Ningbo University, Ningbo, China
- *Correspondence: Qinkang Lu,
| |
Collapse
|
36
|
Li H, Li K, Zhu Q, Tang Z, Wang Z. Transcriptomic analysis of bladder tissue in a rat model of ketamine-induced bladder fibrosis. Neurourol Urodyn 2022; 41:765-776. [PMID: 35170809 DOI: 10.1002/nau.24892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 11/10/2022]
Abstract
INTRODUCTION Ketamine-induced cystitis (KIC) is a disease caused by ketamine that can cause lower urinary tract symptoms (LUTS). Its end-stage is bladder contracture, which is related to bladder fibrosis and poses a serious burden to patient lives. METHODS We established a KIC model in female Sprague Dawley rats and verified bladder fibrosis in the model by Masson trichrome staining and western blot analysis. The bladders of the rats from the ketamine and control groups were used to perform transcriptome analysis. In particular, association analysis with metabolomics was also used to determine the potential mechanisms of ketamine-induced bladder fibrosis. RESULTS A total of 685 differentially expressed messenger RNAs, 71 differentially expressed long noncoding RNAs, 23 differentially expressed microRNAs, and 68 differentially expressed circular RNAs were identified. We found that ribosome, Wnt signaling, vascular endothelial growth factor signaling, cytoskeleton organization, and cytoskeletal protein binding may be potential pathways in ketamine-induced bladder fibrosis as identified by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. In addition, the mitogen-activated protein kinase pathway appeared to be closely related to the development of ketamine-induced bladder fibrosis according to association analysis. CONCLUSIONS In this study, using transcriptomic and correlation analyses of metabolomics, we identified pathways that may be potential targets for the prevention and treatment of ketamine-induced bladder fibrosis.
Collapse
Affiliation(s)
- Haozhen Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Urology, The second hospital of Dalian medical university, Dalian, Liaoning, China
| | - Kaixuan Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Provincial Laboratory for Diagnosis and Treatment of Genitourinary System Disease, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Quan Zhu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Provincial Laboratory for Diagnosis and Treatment of Genitourinary System Disease, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhengyan Tang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Provincial Laboratory for Diagnosis and Treatment of Genitourinary System Disease, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhao Wang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Provincial Laboratory for Diagnosis and Treatment of Genitourinary System Disease, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
37
|
Wang J, Wang C, Wei Y, Zhao Y, Wang C, Lu C, Feng J, Li S, Cong B. Circular RNA as a Potential Biomarker for Forensic Age Prediction. Front Genet 2022; 13:825443. [PMID: 35198010 PMCID: PMC8858837 DOI: 10.3389/fgene.2022.825443] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/04/2022] [Indexed: 12/16/2022] Open
Abstract
In forensic science, accurate estimation of the age of a victim or suspect can facilitate the investigators to narrow a search and aid in solving a crime. Aging is a complex process associated with various molecular regulations on DNA or RNA levels. Recent studies have shown that circular RNAs (circRNAs) upregulate globally during aging in multiple organisms such as mice and C.elegans because of their ability to resist degradation by exoribonucleases. In the current study, we attempted to investigate circRNAs’ potential capability of age prediction. Here, we identified more than 40,000 circRNAs in the blood of thirteen Chinese unrelated healthy individuals with ages of 20–62 years according to their circRNA-seq profiles. Three methods were applied to select age-related circRNA candidates including the false discovery rate, lasso regression, and support vector machine. The analysis uncovered a strong bias for circRNA upregulation during aging in human blood. A total of 28 circRNAs were chosen for further validation in 30 healthy unrelated subjects by RT-qPCR, and finally, 5 age-related circRNAs were chosen for final age prediction models using 100 samples of 19–73 years old. Several different algorithms including multivariate linear regression (MLR), regression tree, bagging regression, random forest regression (RFR), and support vector regression (SVR) were compared based on root mean square error (RMSE) and mean average error (MAE) values. Among five modeling methods, regression tree and RFR performed better than the others with MAE values of 8.767 years (S.rho = 0.6983) and 9.126 years (S.rho = 0.660), respectively. Sex effect analysis showed age prediction models significantly yielded smaller prediction MAE values for males than females (MAE = 6.133 years for males, while 10.923 years for females in the regression tree model). In the current study, we first used circRNAs as additional novel age-related biomarkers for developing forensic age estimation models. We propose that the use of circRNAs to obtain additional clues for forensic investigations and serve as aging indicators for age prediction would become a promising field of interest.
Collapse
Affiliation(s)
- Junyan Wang
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, College of Forensic Medicine, Chinese Academy of Medical Sciences, Hebei Medical University, Shijiazhuang, China
| | - Chunyan Wang
- Physical Examination Center of Shijiazhuang First Hospital, Shijiazhuang, China
| | - Yangyan Wei
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, College of Forensic Medicine, Chinese Academy of Medical Sciences, Hebei Medical University, Shijiazhuang, China
| | - Yanhao Zhao
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, College of Forensic Medicine, Chinese Academy of Medical Sciences, Hebei Medical University, Shijiazhuang, China
| | - Can Wang
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, College of Forensic Medicine, Chinese Academy of Medical Sciences, Hebei Medical University, Shijiazhuang, China
| | - Chaolong Lu
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, College of Forensic Medicine, Chinese Academy of Medical Sciences, Hebei Medical University, Shijiazhuang, China
| | - Jin Feng
- Physical Examination Center of Shijiazhuang First Hospital, Shijiazhuang, China
| | - Shujin Li
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, College of Forensic Medicine, Chinese Academy of Medical Sciences, Hebei Medical University, Shijiazhuang, China
- *Correspondence: Shujin Li, , ; Bin Cong,
| | - Bin Cong
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, College of Forensic Medicine, Chinese Academy of Medical Sciences, Hebei Medical University, Shijiazhuang, China
- *Correspondence: Shujin Li, , ; Bin Cong,
| |
Collapse
|
38
|
Yue M, Liu Y, Zuo T, Jiang Y, Pan J, Zhang S, Shen X. Circ_0006948 Contributes to Cell Growth, Migration, Invasion and Epithelial-Mesenchymal Transition in Esophageal Carcinoma. Dig Dis Sci 2022; 67:492-503. [PMID: 33630215 DOI: 10.1007/s10620-021-06894-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/03/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Circular RNAs (circRNAs) can act as promoters or inhibitors in cancer progression. Has_circ_0006948 (circ_0006948) was reported to aggravate the malignant behaviors of esophageal carcinoma (EC). AIMS This study focused on investigating the molecular mechanism of circ_0006948 in EC progression. METHODS The quantitative real-time polymerase chain reaction was performed to detect the expression of circ_0006948, microRNA-4262 (miR-4262) and fibronectin type III domain containing 3B (FNDC3B). Cell growth analysis was conducted by Cell Counting Kit-8 and colony formation assays. Cell migration and invasion were assessed by transwell assay. Epithelial-mesenchymal transition (EMT)-associated proteins and FNDC3B protein expression were assayed using western blot. Dual-luciferase reporter and RNA pull-down assays were performed to validate the target combination. Xenograft tumor assay was used for investigating the role of circ_0006948 in vivo. RESULTS Circ_0006948 was upregulated in EC tissues and cells. Downregulating the expression of circ_0006948 or FNDC3B repressed cell growth, migration, invasion and EMT in EC cells. Target analysis indicated that miR-4262 was a target for circ_0006948 and FNDC3B was a downstream gene for miR-4262. Moreover, circ_0006948 could affect the expression of FNDC3B via sponging miR-4262. The effects of si-circ_0006948#1 on EC cells were partly restored by miR-4262 inhibition or FNDC3B overexpression. In addition, circ_0006948 also facilitated EC tumorigenesis in vivo by targeting the miR-4262/FNDC3B axis. CONCLUSION Taken together, circ_0006948 functioned as an oncogenic factor in EC by the miR-4262-mediated FNDC3B expression regulation.
Collapse
Affiliation(s)
- Meng Yue
- Department of Gastroenterology, Jinan Central Hospital Affiliated to Shandong First Medical University, No.105 Jiefang Road, Lixia District, Jinan, 250013, Shandong Province, China.
| | - Yanxia Liu
- Department of Oncology, Shengli Oil Central Hospital, Dongying City, Shandong Province, China
| | - Taiyang Zuo
- Department of Oncology, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan City, Shandong Province, China
| | - Yakun Jiang
- Department of Gastroenterology, Jinan Central Hospital Affiliated to Shandong First Medical University, No.105 Jiefang Road, Lixia District, Jinan, 250013, Shandong Province, China
| | - Jianmei Pan
- Department of Gastroenterology, Jinan Central Hospital Affiliated to Shandong First Medical University, No.105 Jiefang Road, Lixia District, Jinan, 250013, Shandong Province, China
| | - Shuhong Zhang
- Department of Gastroenterology, Jinan Central Hospital Affiliated to Shandong First Medical University, No.105 Jiefang Road, Lixia District, Jinan, 250013, Shandong Province, China
| | - Xingjie Shen
- Department of Gastroenterology, Jinan Central Hospital Affiliated to Shandong First Medical University, No.105 Jiefang Road, Lixia District, Jinan, 250013, Shandong Province, China
| |
Collapse
|
39
|
Noncoding RNAs-associated ceRNA networks involved in the amelioration of skeletal muscle aging after whey protein supplementation. J Nutr Biochem 2022; 104:108968. [DOI: 10.1016/j.jnutbio.2022.108968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 01/06/2022] [Accepted: 01/19/2022] [Indexed: 11/23/2022]
|
40
|
Liu J, Dong Y, Ji Q, Wen Y, Ke G, Shi L, Guan W, Xu W. Circ-MKLN1/miR-377-3p/CTGF Axis Regulates the TGF-β2-induced Posterior Capsular Opacification in SRA01/04 Cells. Curr Eye Res 2021; 47:372-381. [PMID: 34961410 DOI: 10.1080/02713683.2021.1988983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Posterior capsular opacification (PCO) is a common postoperative ocular complication after cataract surgery. Little research focused on the regulation of circular RNAs (circRNAs) in PCO. This study was designed to investigate the function of circRNA-muskelin (circ-MKLN1) in PCO. METHODS SRA01/04 cells were treated with transforming growth factor (TGF)-β2. Cell viability was analyzed by Cell Counting Kit-8 (CCK-8) assay. Transwell assay was used for cell migration and invasion detection. Cell migration was also measured by wound healing assay. Epithelial-mesenchymal transition (EMT)-related proteins and connective tissue growth factor (CTGF) were quantified using western blot. RESULTS Cell viability, migration, invasion and EMT process in SRA01/04 cells were facilitated by TGF-β2. Circ-MKLN1 expression was enhanced in 17 PCO lens samples relative to 19 normal lens samples and TGF-β2-treated SRA01/04 cells contrasted to control cells. Downregulation of circ-MKLN1 inhibited the effects of TGF-β2 on SRA01/04 cells. Circ-MKLN1 targeted miR-377-3p and the regulation of si-circ-MKLN1 for the TGF-β2-induced influences was related to the upregulation of miR-377-3p. CTGF was the target gene for miR-377-3p. CTGF knockdown also abolished the TGF-β2-mediated cell growth, migration and invasion of SRA01/04 cells. The function of miR-377-3p was achieved by reducing the CTGF level. TGF-β2-induced CTGF expression promotion was alleviated by si-circ-MKLN1 through upregulating the expression of miR-377-3p. CONCLUSION These results showed that circ-MKLN1 contributed to the progression of PCO in vitro by increasing the CTGF expression via sponging miR-377-3p. Circ-MKLN1 might be important for improving the molecular target therapy in PCO.
Collapse
Affiliation(s)
- Jiajia Liu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei City, Anhui, 230001, China.,Department of Ophthalmology, The First Affiliated Hospital of USTC, Hefei, Anhui, China.,Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, China.,Gerontology Institute of Anhui Province, Hefei, Anhui, China
| | - Yiran Dong
- Department of Ophthalmology, The First Affiliated Hospital of USTC, Hefei, Anhui, China
| | - Qingshan Ji
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei City, Anhui, 230001, China.,Department of Ophthalmology, The First Affiliated Hospital of USTC, Hefei, Anhui, China.,Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, China
| | - Yuechun Wen
- Department of Ophthalmology, The First Affiliated Hospital of USTC, Hefei, Anhui, China
| | - Genjie Ke
- Department of Ophthalmology, The First Affiliated Hospital of USTC, Hefei, Anhui, China
| | - Lei Shi
- Department of Ophthalmology, The First Affiliated Hospital of USTC, Hefei, Anhui, China
| | - Wei Guan
- Department of Ophthalmology, The First Affiliated Hospital of USTC, Hefei, Anhui, China
| | - Weiping Xu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei City, Anhui, 230001, China.,Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, China.,Gerontology Institute of Anhui Province, Hefei, Anhui, China
| |
Collapse
|
41
|
Circular RNA PVT1 inhibits tendon stem/progenitor cell senescence by sponging microRNA-199a-5p. Toxicol In Vitro 2021; 79:105297. [PMID: 34896603 DOI: 10.1016/j.tiv.2021.105297] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/23/2021] [Accepted: 12/06/2021] [Indexed: 12/16/2022]
Abstract
Tendon stem/progenitor cell (TSPC) senescence can lead to age-dependent tendon maladies and undermines both tendon repair and replacement capacity in humans. The mechanisms underlying TSPC senescence and sensitivity to adverse factors are complicated. In this study, we analyzed involvement of the circular RNA (circRNA) PVT1 (circPVT1) in TSPC senescence. circPVT1 expression was found to be significantly diminished in human TSPCs under prolonged in vitro culture. Accordingly, circPVT1 knockdown promoted senescence progression and suppressed self renewal, migration, and tenogenic differentiation of TSPCs. Furthermore, we found that circPVT1 directly targets microRNA (miR)-199a-5p thereby attenuating its negative regulation of SIRT1 expression. Either miR-199a-5p inhibition or SIRT1 overexpression attenuated the senescence-boosting effect of circPVT1 knockdown, implying that circPVT1 suppresses TSPC senescence in part by upregulating the miR-199a-5p-SIRT1 signaling axis. Our findings conclusively explain the major roles of circPVT1 in TSPC senescence regulation; circPVT1 is a novel potential therapeutic target for reducing tendon senescence.
Collapse
|
42
|
Das A, Shyamal S, Sinha T, Mishra SS, Panda AC. Identification of Potential circRNA-microRNA-mRNA Regulatory Network in Skeletal Muscle. Front Mol Biosci 2021; 8:762185. [PMID: 34912845 PMCID: PMC8666571 DOI: 10.3389/fmolb.2021.762185] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
Circular RNAs (circRNAs) are a newly discovered family of regulatory RNAs generated through backsplicing. Genome-wide profiling of circRNAs found that circRNAs are ubiquitously expressed and regulate gene expression by acting as a sponge for RNA-binding proteins (RBPs) and microRNAs (miRNAs). To identify circRNAs expressed in mouse skeletal muscle, we performed high-throughput RNA-sequencing of circRNA-enriched gastrocnemius muscle RNA samples, which identified more than 1,200 circRNAs. In addition, we have identified more than 14,000 and 15,000 circRNAs in aging human skeletal muscle tissue and satellite cells, respectively. A subset of abundant circRNAs was analyzed by RT-PCR, Sanger sequencing, and RNase R digestion assays to validate their expression in mouse skeletal muscle tissues. Analysis of the circRNA-miRNA-mRNA regulatory network revealed that conserved circNfix might associate with miR-204-5p, a suppressor of myocyte enhancer factor 2c (Mef2c) expression. To support the hypothesis that circNfix might regulate myogenesis by controlling Mef2c expression, silencing circNfix moderately reduced Mef2c mRNA expression and inhibited C2C12 differentiation. We propose that circNfix promotes MEF2C expression during muscle cell differentiation in part by acting as a sponge for miR-204-5p.
Collapse
Affiliation(s)
- Arundhati Das
- Institute of Life Sciences, Nalco Square, Bhubaneswar, India
- School of Biotechnology, KIIT University, Bhubaneswar, India
| | | | - Tanvi Sinha
- Institute of Life Sciences, Nalco Square, Bhubaneswar, India
| | | | | |
Collapse
|
43
|
Lai S, Chen L, Zhan P, Lin G, Lin H, Huang H, Chen Q. Circular RNA Expression Profiles and Bioinformatic Analysis in Mouse Models of Obstructive Sleep Apnea-Induced Cardiac Injury: Novel Insights Into Pathogenesis. Front Cell Dev Biol 2021; 9:767283. [PMID: 34820383 PMCID: PMC8606653 DOI: 10.3389/fcell.2021.767283] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/25/2021] [Indexed: 01/22/2023] Open
Abstract
Circular RNAs (circRNAs) participate in the development of various kinds of diseases. However, the function and roles of circRNAs in obstructive sleep apnea (OSA)-induced cardiovascular disease remain poorly understood. Therefore, we sought to explore the circRNA expression profiles and predict their functions in OSA-induced cardiac injury with the use of bioinformatics analysis. The model of OSA was established in mouse treated by chronic intermittent hypoxia (CIH) exposure. Then, we screened the circRNA profile using circRNA microarray. By comparing circRNA expression in three matched pairs of CIH-treated cardiac tissues and controls, differentially expressed circRNAs were identified in the CIH groups. Comparison of the selected circRNAs expression levels was performed between qRT-PCR and microarray. Meanwhile, we employed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses to predict the functions of these selected circRNAs. Finally, we constructed a circRNA-miRNA-mRNA network based on the target prediction. It was found that a total of 124 circRNAs were differentially expressed in CIH-treated cardiac tissues (p ≤ 0.05, fold-change ≥ 1.5). Among them, 23 circRNAs were significantly down-regulated, and the other 101 were up-regulated. Then, ten circRNAs were randomly selected to validate the reliability of the microarray results by using qRT-PCR. Next, we conducted the GO and KEGG pathway analysis to explore the parental genes functions of differentially expressed circRNA. Finally, two significantly differentially expressed circRNAs (mmu_circRNA_014309 and mmu_circRNA_21856) were further selected to create a circRNA-miRNA-mRNA regulation network. Our study did first reveal that the differentially expressed circRNAs played a vital role in the pathogenesis of OSA-induced cardiac damage. Thus, our findings bring us closer to unraveling the pathophysiologic mechanisms and eliciting novel therapeutic targets for the treatment of OSA-associated cardiovascular diseases.
Collapse
Affiliation(s)
- Suxian Lai
- Department of Neonatology, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, China
| | - Lijun Chen
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Pingyun Zhan
- Department of Cardiology, Haidu Hospital, Quanzhou, China
| | - Guofu Lin
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Hai Lin
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Huibin Huang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Qingshi Chen
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
44
|
Shi Y, Wang Q, Song R, Kong Y, Zhang Z. Non-coding RNAs in depression: Promising diagnostic and therapeutic biomarkers. EBioMedicine 2021; 71:103569. [PMID: 34521053 PMCID: PMC8441067 DOI: 10.1016/j.ebiom.2021.103569] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/04/2021] [Accepted: 08/18/2021] [Indexed: 01/18/2023] Open
Abstract
Non-coding RNAs (ncRNAs), including microRNAs, circular RNAs, and long non-coding RNAs, are important regulators of normal biological processes and their abnormal expression may be involved in the pathogenesis of human diseases including depression. Multiple studies have demonstrated a significantly increased or reduced ncRNAs expression in depressed patients compared with healthy subjects and that antidepressant therapy can alter the aberrant expression of ncRNAs in depressed patients. Although the existing evidence is important, it is also mixed and a comprehensive review to guide an effective clinical translation is lacking. Focused on human research, this review summarizes clinical findings of ncRNAs in depression, including those in brain tissues and peripheral samples. We outlined the characteristics and functions of ncRNAs and highlighted their performance in the diagnosis and treatment of depression. Although their precise roles in depression remain uncertain, ncRNAs have shown potential value as biomarkers for diagnosis and therapy in depressed patients.
Collapse
Affiliation(s)
- Yachen Shi
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Institution of Neuropsychiatry, Southeast University, No. 87 Dingjiaqiao Road, Nanjing, Jiangsu 210009, China
| | - Qingyun Wang
- College of Agricultural and Environmental Sciences, University of California, Davis, California 95616, United States
| | - Ruize Song
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Institution of Neuropsychiatry, Southeast University, No. 87 Dingjiaqiao Road, Nanjing, Jiangsu 210009, China
| | - Yan Kong
- Department of Biochemistry and Molecular Biology, School of Medicine, Southeast University, No. 87 Dingjiaqiao Road, Nanjing, Jiangsu 210009, China.
| | - Zhijun Zhang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Institution of Neuropsychiatry, Southeast University, No. 87 Dingjiaqiao Road, Nanjing, Jiangsu 210009, China; School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu 210096, China; Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China; Research Center for Brain Health, Pazhou Lab, Guangzhou, Guangdong 510330, China.
| |
Collapse
|
45
|
New RNA-Based Breakthroughs in Alzheimer's Disease Diagnosis and Therapeutics. Pharmaceutics 2021; 13:pharmaceutics13091397. [PMID: 34575473 PMCID: PMC8471423 DOI: 10.3390/pharmaceutics13091397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 01/25/2023] Open
Abstract
Dementia is described as the fifth leading cause of death worldwide and Alzheimer’s disease (AD) is recognized as the most common, causing a huge impact on health costs and quality of patients’ lives. The main hallmarks that are commonly associated with the pathologic process are amyloid deposition, pathologic Tau phosphorylation and neurodegeneration. It is still unclear how these events are linked to the disease progression, due to the complex pathologic mechanisms. Nevertheless, several hypotheses have been proposed for a better understanding of AD. The AD diagnosis is performed by using a combination of several tools to detect β-amyloid peptide (Aβ) deposits and modifications in cognitive performance, sometimes being expensive and invasive. In the treatment field, there is still an absence of effective treatments to delay or stop the progression of the disease, with most of the approved drugs used to relieve symptoms, and all of them with significant adverse side effects. Considering all limitations, the need to establish new and more effective diagnostic and therapeutic strategies becomes clear. This review aims not only to describe the disease and its impact but also to collect the currently available diagnostic and therapeutic strategies, highlighting new promising RNA-based strategies for AD.
Collapse
|
46
|
Yang Y, Lei W, Jiang S, Ding B, Wang C, Chen Y, Shi W, Wu Z, Tian Y. CircRNAs: Decrypting the novel targets of fibrosis and aging. Ageing Res Rev 2021; 70:101390. [PMID: 34118443 DOI: 10.1016/j.arr.2021.101390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023]
Abstract
Fibrosis is a typical aging-related pathological process involving almost all organs. It is usually initiated by organic injury and leads to the gradual decline of organ function or even loss. Circular RNAs (circRNAs) are being hailed as a newly rediscovered class of covalently closed transcripts without a 5' cap or 3' tail which draw increasing attention. In particular, circRNAs have been identified to be involved in the multifaceted processes of fibrosis in various organs, including the heart, liver, lung, and kidney. As more and more circRNAs are functionally characterized, they have become novel therapies for fibrosis. In this review, we systematically summarized current studies regarding the roles of circRNAs in fibrosis and shed light on the basis of circRNAs as a potential treatment for fibrosis.
Collapse
|
47
|
Ma M, Wang H, Zhang Y, Zhang J, Liu J, Pan Z. circRNA-Mediated Inhibin-Activin Balance Regulation in Ovarian Granulosa Cell Apoptosis and Follicular Atresia. Int J Mol Sci 2021; 22:ijms22179113. [PMID: 34502034 PMCID: PMC8431694 DOI: 10.3390/ijms22179113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 12/23/2022] Open
Abstract
Ovarian granulosa cells (GC) play an essential role in the development and atresia of follicles. Emerging studies suggest that non-coding RNAs are involved in the regulation of GC apoptosis. Here, we aimed to analyze the function of ssc-circINHA-001, coded by the first exon of the inhibin subunit α gene (INHA), in resisting GC apoptosis and follicular atresia by enhancing the expression of the inhibin subunit β A (INHBA) through a cluster of miRNAs. A higher expression of ssc-circINHA-001 in healthy follicles compared to early atretic follicles was detected by qRT-PCR. Its circular structure was confirmed by RNase R treatment and reversed PCR. The function of ssc-circINHA-001 in GC resistance to apoptosis was detected by in vitro transfection of its si-RNA. Furthermore, the dual-luciferase reporter assay suggested that ssc-circINHA-001 adsorbed three miRNAs, termed miR-214-5p, miR-7144-3p, and miR-9830-5p, which share the common target INHBA. A low expression of ssc-circINHA-001 increased the levels of the free miRNAs, inhibited INHBA expression, and thus raised GCs apoptosis through a shift from the secretion of activin to that of inhibin. Our study demonstrated the existence of a circRNA–microRNAs–INHBA regulatory axis in follicular GC apoptosis and provides insight into the relationship between circRNA function and its coding gene in inhibin/activin balance and ovarian physiological functions.
Collapse
Affiliation(s)
- Mengnan Ma
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing 210095, China; (M.M.); (H.W.); (Y.Z.)
| | - Huiming Wang
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing 210095, China; (M.M.); (H.W.); (Y.Z.)
| | - Yi Zhang
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing 210095, China; (M.M.); (H.W.); (Y.Z.)
| | - Jinbi Zhang
- College of Animal Science and Food Engineering, Jinling Institute of Technology, Nanjing 211169, China; (J.Z.); (J.L.)
| | - Jingge Liu
- College of Animal Science and Food Engineering, Jinling Institute of Technology, Nanjing 211169, China; (J.Z.); (J.L.)
| | - Zengxiang Pan
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing 210095, China; (M.M.); (H.W.); (Y.Z.)
- Correspondence:
| |
Collapse
|
48
|
Cheng L, Cao H, Xu J, Xu M, He W, Zhang W, Dong L, Chen D. Circ_RPL23A acts as a miR-1233 sponge to suppress the progression of clear cell renal cell carcinoma by promoting ACAT2. J Bioenerg Biomembr 2021; 53:415-428. [PMID: 34036483 DOI: 10.1007/s10863-021-09901-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/27/2021] [Indexed: 12/13/2022]
Abstract
Clear cell renal cell carcinoma (ccRCC) is a prevalent urological carcinoma with high metastatic risk. Circular RNAs (circRNAs) have been identified as effective diagnostic and therapeutic biomarkers for ccRCC. This research aims to disclose the effect and regulatory mechanism of circRNA ribosomal protein L23a (circ_RPL23A) in ccRCC. We performed quantitative real-time polymerase chain reaction (qRT-PCR) to examine circ_RPL23A, microRNA-1233 (miR-1233) and acetyl-coenzyme A acetyltransferase 2 (ACAT2). Cell cycle progression, apoptosis, cell viability, invasion and migration, which were respectively conducted by using flow cytometry, 3-(4, 5-dimethylthiazol-2-y1)-2, 5-diphenyl tetrazolium bromide (MTT), transwell assays. The levels of ACAT2 protein and cell cycle proteins, proliferation-associated protein, and epithelial-mesenchymal transition (EMT) associated proteins were measured by western blot. Target relationship was analyzed via dual-luciferase reporter assay and RNA pull down assay. The animal model was used to study how circ_RPL23A affects in vivo. Circ_RPL23A was lower expressed in ccRCC tissues and cells. The elevated circ_RPL23A suppressed cell cycle progression, proliferation, migration and invasion but promoted apoptosis in ccRCC cells. MiR-1233 was a target of circ_RPL23A and direct targeted to ACAT2. Besides, circ_RPL23A exerted its anti-tumor effect by sponging miR-1233, and then relieved the inhibition effect of miR-1233 on ACAT2. Overexpression of circ_RPL23A also curbed ccRCC tumor growth in vivo. Circ_RPL23A inhibited ccRCC progression by upregulating ACAT2 expression by competitively binding miR-1233, which might provide an in-depth cognition for ccRCC pathogenesis and circ_RPL23A might be a promising biomarker in ccRCC diagnosis and treatment.
Collapse
Affiliation(s)
- Liang Cheng
- Department of Urology, The First Affiliated Hospital of Jiamusi University, No.348, Dexiang Street, Jiamusi, 154002, Heilongjiang, Province, China
| | - Huifeng Cao
- Department of Urology, The First Affiliated Hospital of Jiamusi University, No.348, Dexiang Street, Jiamusi, 154002, Heilongjiang, Province, China
| | - Jianbo Xu
- Department of Critical Medicine, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, China
| | - Mo Xu
- Department of Urology, The First Affiliated Hospital of Jiamusi University, No.348, Dexiang Street, Jiamusi, 154002, Heilongjiang, Province, China
| | - Wenjie He
- Department of Outpatient, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, China
| | - Wenjing Zhang
- Department of Operating Room, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, China
| | - Longxin Dong
- Jiamusi University, Jiamusi, Heilongjiang, China
| | - Dayin Chen
- Department of Urology, The First Affiliated Hospital of Jiamusi University, No.348, Dexiang Street, Jiamusi, 154002, Heilongjiang, Province, China.
- Jiamusi University, Jiamusi, Heilongjiang, China.
| |
Collapse
|
49
|
Tan Q, Liang N, Zhang X, Li J. Dynamic Aging: Channeled Through Microenvironment. Front Physiol 2021; 12:702276. [PMID: 34366891 PMCID: PMC8334186 DOI: 10.3389/fphys.2021.702276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/23/2021] [Indexed: 12/16/2022] Open
Abstract
Aging process is a complicated process that involves deteriorated performance at multiple levels from cellular dysfunction to organ degeneration. For many years research has been focused on how aging changes things within cell. However, new findings suggest that microenvironments, circulating factors or inter-tissue communications could also play important roles in the dynamic progression of aging. These out-of-cell mechanisms pass on the signals from the damaged aging cells to other healthy cells or tissues to promote systematic aging phenotypes. This review discusses the mechanisms of how senescence and their secretome, NAD+ metabolism or circulating factors change microenvironments to regulate systematic aging, as well as the potential therapeutic strategies based on these findings for anti-aging interventions.
Collapse
Affiliation(s)
- Qing Tan
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Na Liang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoqian Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun Li
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
50
|
Liu F, Wang YL, Wei JM, Huang ZD. Upregulation of circ_0000142 promotes multiple myeloma progression by adsorbing miR-610 and upregulating AKT3 expression. J Biochem 2021; 169:327-336. [PMID: 32970816 DOI: 10.1093/jb/mvaa106] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/02/2020] [Indexed: 12/14/2022] Open
Abstract
Circular RNAs (circRNAs) play an important regulatory role in a variety of malignancies. Nevertheless, the role of circ_0000142 in multiple myeloma (MM) and its regulatory mechanism remains largely unknown. Real-time polymerase chain reaction was employed to detect the expressions of circ_0000142 and miR-610 in MM tissues and cell lines. The expression of AKT3 and apoptosis-related proteins (Bcl-2, Bax) in MM cells was detected by western blot. The correlation between the expression level of circ_0000142 and the clinicopathological parameters of MM patients was analysed. Cell proliferation, apoptosis, migration and invasion were monitored by Cell Counting Kit 8 assay, flow cytometry analysis and Transwell assay, respectively. The dual-luciferase reporter gene assay and RNA immunoprecipitation assay were employed to verify the targeting relationship between circ_0000142 and miR-610. In this study, it was demonstrated that, circ_0000142 was highly expressed in MM patients, and its high expression level was significantly associated with increased International Staging System and Durie-Salmon stage. Overexpression of circ_0000142 enhanced MM cell proliferation, migration, invasion and suppressed cell apoptosis, while knocking down circ_0000142 had the opposite effects. Mechanistically, circ_0000142 functioned as a competitive endogenous RNA, directly targeting miR-610 and positively regulating AKT3 expression. In brief, circ_0000142 enhances the proliferation and metastasis of MM cells by modulating the miR-610/AKT3 axis.
Collapse
Affiliation(s)
| | | | | | - Zhao-Dong Huang
- Department of Intervention, Linyi Central Hospital, No. 17, Health Road, Yishui County, Linyi City, 276400 Shandong Province, China
| |
Collapse
|