1
|
Dong L, Li Y, Chen Q, Liu Y, Wu Z, Pan D, Yan N, Liu L. Cereal polyphenols inhibition mechanisms on advanced glycation end products and regulation on type 2 diabetes. Crit Rev Food Sci Nutr 2024; 64:9495-9513. [PMID: 37222572 DOI: 10.1080/10408398.2023.2213768] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Advanced glycation end products (AGEs), the products of non-enzymatic browning reactions between the active carbonyl groups of reducing sugars and the free amines of amino acids, are largely considered oxidative derivatives resulting from diabetic hyperglycemia, which are further recognized as a potential risk for insulin resistance (IR) and type 2 diabetes (T2D). The accumulation of AGEs can trigger numerous negative effects such as oxidative stress, carbonyl stress, inflammation, autophagy dysfunction and imbalance of gut microbiota. Recently, studies have shown that cereal polyphenols have the ability to inhibit the formation of AGEs, thereby preventing and alleviating T2D. In the meanwhile, phenolics compounds could produce different biological effects due to the quantitative structure activity-relationship. This review highlights the effects of cereal polyphenols as a nonpharmacologic intervention in anti-AGEs and alleviating T2D based on the effects of oxidative stress, carbonyl stress, inflammation, autophagy, and gut microbiota, which also provides a new perspective on the etiology and treatment of diabetes.
Collapse
Affiliation(s)
- Lezhen Dong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Ying Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Qin Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Yahui Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Zufang Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Ning Yan
- Plant Functional Component Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Lianliang Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
2
|
Francisco SG, Rowan S. Repurposing Drugs for Treatment of Age-Related Macular Degeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1415:73-77. [PMID: 37440017 DOI: 10.1007/978-3-031-27681-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
The need for new drugs to treat dry forms of age-related macular degeneration remains high. A promising approach is repurposing of FDA-approved medications to treat AMD. Databases containing medical and drug records allow for retroactive identification of drugs whose use correlates with reduced AMD diagnosis. This short review summarizes progress in several classes of drugs considered for repurposing: GPR-143 agonists (L-DOPA), anti-diabetic drugs (metformin, acarbose, empagliflozin, fenofibrate), mitochondrial activators (PU-91), and serotonin pathway drugs (fluoxetine, flibanserin, xaliproden, buspirone). The promises and caveats of repurposing are discussed herein.
Collapse
Affiliation(s)
- Sarah G Francisco
- JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Sheldon Rowan
- JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA.
- Department of Ophthalmology, Tufts University School of Medicine, Boston, MA, USA.
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA.
| |
Collapse
|
3
|
Roberts SB, Silver RE, Das SK, Fielding RA, Gilhooly CH, Jacques PF, Kelly JM, Mason JB, McKeown NM, Reardon MA, Rowan S, Saltzman E, Shukitt-Hale B, Smith CE, Taylor AA, Wu D, Zhang FF, Panetta K, Booth S. Healthy Aging-Nutrition Matters: Start Early and Screen Often. Adv Nutr 2021; 12:1438-1448. [PMID: 33838032 PMCID: PMC8994693 DOI: 10.1093/advances/nmab032] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/11/2021] [Accepted: 03/02/2021] [Indexed: 12/15/2022] Open
Abstract
The amount of time spent in poor health at the end of life is increasing. This narrative review summarizes consistent evidence indicating that healthy dietary patterns and maintenance of a healthy weight in the years leading to old age are associated with broad prevention of all the archetypal diseases and impairments associated with aging including: noncommunicable diseases, sarcopenia, cognitive decline and dementia, osteoporosis, age-related macular degeneration, diabetic retinopathy, hearing loss, obstructive sleep apnea, urinary incontinence, and constipation. In addition, randomized clinical trials show that disease-specific nutrition interventions can attenuate progression-and in some cases effectively treat-many established aging-associated conditions. However, middle-aged and older adults are vulnerable to unhealthy dietary patterns, and typically consume diets with inadequate servings of healthy food groups and essential nutrients, along with an abundance of energy-dense but nutrient-weak foods that contribute to obesity. However, based on menu examples, diets that are nutrient-dense, plant-based, and with a moderately low glycemic load are better equipped to meet the nutritional needs of many older adults than current recommendations in US Dietary Guidelines. These summary findings indicate that healthy nutrition is more important for healthy aging than generally recognized. Improved public health messaging about nutrition and aging, combined with routine screening and medical referrals for age-related conditions that can be treated with a nutrition prescription, should form core components of a national nutrition roadmap to reduce the epidemic of unhealthy aging.
Collapse
Affiliation(s)
| | - Rachel E Silver
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Sai Krupa Das
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Roger A Fielding
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Cheryl H Gilhooly
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Paul F Jacques
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Jennifer M Kelly
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Joel B Mason
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Nicola M McKeown
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Meaghan A Reardon
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Sheldon Rowan
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Edward Saltzman
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Barbara Shukitt-Hale
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Caren E Smith
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Allen A Taylor
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Dayong Wu
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Fang Fang Zhang
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Karen Panetta
- School of Engineering, Tufts University, Medford, MA, USA
| | - Sarah Booth
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| |
Collapse
|
4
|
Zhou J, Leepromrath S, Tian X, Zhou D. Dynamics of Chinese Diet Divergence from Chinese Food Pagoda and Its Association with Adiposity and Influential Factors: 2004-2011. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E507. [PMID: 31941144 PMCID: PMC7013429 DOI: 10.3390/ijerph17020507] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 12/31/2019] [Accepted: 01/10/2020] [Indexed: 01/17/2023]
Abstract
Nutrition transition in China has a strong impact on dietary quality and health of Chinese consumers. This study developed the diet quality divergence Index (DQD), the divergence between real food consumption and the Chinese food pagoda 2016 (CFP), to measure the quality of diet in China. Using four waves of data (2004, 2006, 2009, and 2011) from China Health and Nutrition Survey (CHNS), this study shed light on the transition of diet quality for Chinese residents. Results indicate that the DQD generally decreased and Chinese diet quality improved during 2004-2011. The divergence was mainly caused by over-consumption of legumes and nuts, and under-consumption of milk and milk products. Rising income and urbanization were positively correlated with diet quality for the people with low DQD. However, both of them had negative impacts on diet quality for those with high DQD. Females and rural residents held a lower DQD than their counterparts. The results also revealed that healthy food preference, education, dining at home, household size, proportions of teens (6-17) and elders (over 64) in the families are positively correlated with Chinese diet quality. However, labor intensity, frequency of drinking alcohol, and smoking have negative impacts on diet quality. Moreover, higher DQD was found to be associated with increasing risks of overweight/obesity. Therefore, we suggest national healthy policies should pay more attention to nutrition education. It is also necessary to focus on populations with poor diet quality and to adopt measures to control drinking alcohol and smoking.
Collapse
Affiliation(s)
| | | | | | - De Zhou
- College of Economics and Management, China Center for Food Security Studies, Nanjing Agricultural University, No. 1, Weigang, Xuanwu District, Nanjing 210095, China; (J.Z.); (S.L.); (X.T.)
| |
Collapse
|
5
|
Fernando DH, Forbes JM, Angus PW, Herath CB. Development and Progression of Non-Alcoholic Fatty Liver Disease: The Role of Advanced Glycation End Products. Int J Mol Sci 2019; 20:E5037. [PMID: 31614491 PMCID: PMC6834322 DOI: 10.3390/ijms20205037] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/19/2019] [Accepted: 10/08/2019] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) affects up to 30% of the adult population and is now a major cause of liver disease-related premature illness and deaths in the world. Treatment is largely based on lifestyle modification, which is difficult to achieve in most patients. Progression of simple fatty liver or steatosis to its severe form non-alcoholic steatohepatitis (NASH) and liver fibrosis has been explained by a 'two-hit hypothesis'. Whilst simple steatosis is considered the first hit, its transformation to NASH may be driven by a second hit. Of several factors that constitute the second hit, advanced glycation end products (AGEs), which are formed when reducing-sugars react with proteins or lipids, have been implicated as major candidates that drive steatosis to NASH via the receptor for AGEs (RAGE). Both endogenous and processed food-derived (exogenous) AGEs can activate RAGE, mainly present on Kupffer cells and hepatic stellate cells, thus propagating NAFLD progression. This review focuses on the pathophysiology of NAFLD with special emphasis on the role of food-derived AGEs in NAFLD progression to NASH and liver fibrosis. Moreover, the effect of dietary manipulation to reduce AGE content in food or the therapies targeting AGE/RAGE pathway on disease progression is also discussed.
Collapse
Affiliation(s)
- Dinali H Fernando
- Department of Medicine, The University of Melbourne, Melbourne 3084, Australia.
| | | | - Peter W Angus
- Liver transplant unit, Austin Health, Heidelberg 3084, Australia.
| | - Chandana B Herath
- Department of Medicine, The University of Melbourne, Melbourne 3084, Australia.
| |
Collapse
|
6
|
Bejarano E, Taylor A. Too sweet: Problems of protein glycation in the eye. Exp Eye Res 2019; 178:255-262. [PMID: 30145354 PMCID: PMC8351608 DOI: 10.1016/j.exer.2018.08.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/03/2018] [Accepted: 08/22/2018] [Indexed: 01/06/2023]
Abstract
Laboratory and epidemiological data indicate that high blood sugar levels and/or consuming high glycemia diets are linked to multiple age-related diseases, including age-related macular degeneration, cataract, Parkinson's disease, Alzheimer's disease, diabetic retinopathy, and, apparently glaucoma. High concentrations of blood sugar and perturbations of the systems that regulate blood sugar lead to the accumulation of advanced-glycation end products (AGEs). AGEs are toxic compounds that are formed from the combination of sugars and their metabolites with biomolecules in a non-enzymatic biochemical reaction called glycation. In vitro and in vivo data indicate that high sugar consumption is associated with accumulation of AGEs in a variety of human tissues. Hyperglycemia, along with an oxidative environment and limited cell proliferation in many ocular tissues, encourages formation and precludes dilution of AGEs and associated damage by cell division. These circumstances make many eye tissues vulnerable to glycation-derived damage. Here, we summarize research regarding glycation-induced ocular tissue dysfunction and its contribution to the onset and development of eye disorders. We also discuss how management of carbohydrate nutrition may provide a low-cost way to ameliorate the progression of AGEs-related diseases, including age related macular degeneration and some cataracts, as they do for cardiovascular disease and diabetes.
Collapse
Affiliation(s)
- Eloy Bejarano
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, 711 Washington St, Boston, MA, 02111, USA.
| | - Allen Taylor
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, 711 Washington St, Boston, MA, 02111, USA.
| |
Collapse
|
7
|
Rowan S, Bejarano E, Taylor A. Mechanistic targeting of advanced glycation end-products in age-related diseases. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3631-3643. [PMID: 30279139 DOI: 10.1016/j.bbadis.2018.08.036] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/02/2018] [Accepted: 08/27/2018] [Indexed: 02/06/2023]
Abstract
Glycative stress, caused by the accumulation of cytotoxic and irreversibly-formed sugar-derived advanced glycation end-products (AGEs), contributes to morbidity associated with aging, age-related diseases, and metabolic diseases. In this review, we summarize pathways leading to formation of AGEs, largely from sugars and glycolytic intermediates, and discuss detoxification of AGE precursors, including the glyoxalase system and DJ-1/Park7 deglycase. Disease pathogenesis downstream of AGE accumulation can be cell autonomous due to aggregation of glycated proteins and impaired protein function, which occurs in ocular cataracts. Extracellular AGEs also activate RAGE signaling, leading to oxidative stress, inflammation, and leukostasis in diabetic complications such as diabetic retinopathy. Pharmaceutical agents have been tested in animal models and clinically to diminish glycative burden. We summarize existing strategies and point out several new directions to diminish glycative stress including: plant-derived polyphenols as AGE inhibitors and glyoxalase inducers; improved dietary patterns, particularly Mediterranean and low glycemic diets; and enhancing proteolytic capacities of the ubiquitin-proteasome and autophagy pathways that are involved in cellular clearing of AGEs.
Collapse
Affiliation(s)
- Sheldon Rowan
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, 711 Washington St, Boston, MA 02111, USA
| | - Eloy Bejarano
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, 711 Washington St, Boston, MA 02111, USA
| | - Allen Taylor
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, 711 Washington St, Boston, MA 02111, USA.
| |
Collapse
|
8
|
High-Fructose Consumption Impairs the Redox System and Protein Quality Control in the Brain of Syrian Hamsters: Therapeutic Effects of Melatonin. Mol Neurobiol 2018; 55:7973-7986. [DOI: 10.1007/s12035-018-0967-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 02/16/2018] [Indexed: 02/06/2023]
|
9
|
Emel’yanov VV. Glycation, antiglycation, and deglycation: Their role in aging mechanisms and geroprotective effects (literature review). ADVANCES IN GERONTOLOGY 2017. [DOI: 10.1134/s2079057017010064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
10
|
Guilbaud A, Niquet-Leridon C, Boulanger E, Tessier FJ. How Can Diet Affect the Accumulation of Advanced Glycation End-Products in the Human Body? Foods 2016; 5:foods5040084. [PMID: 28231179 PMCID: PMC5302422 DOI: 10.3390/foods5040084] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 11/29/2016] [Accepted: 11/30/2016] [Indexed: 02/07/2023] Open
Abstract
The accumulation of advanced glycation end products (AGEs) is associated with the complications of diabetes, kidney disease, metabolic disorders and degenerative diseases. It is recognized that the pool of glycation products found in the human body comes not only from an endogenous formation, but also from a dietary exposure to exogenous AGEs. In recent years, the development of pharmacologically-active ingredients aimed at inhibiting endogenous glycation has not been successful. Since the accumulation of AGEs in the human body appears to be progressive throughout life, an early preventive action against glycation could be effective through dietary adjustments or supplementation with purified micronutrients. The present article provides an overview of current dietary strategies tested either in vitro, in vivo or both to reduce the endogenous formation of AGEs and to limit exposure to food AGEs.
Collapse
Affiliation(s)
- Axel Guilbaud
- University Lille, Inserm, CHU Lille, U995-LIRIC-Lille Inflammation Research International Center, F-59000 Lille, France.
| | | | - Eric Boulanger
- University Lille, Inserm, CHU Lille, U995-LIRIC-Lille Inflammation Research International Center, F-59000 Lille, France.
| | - Frederic J Tessier
- University Lille, Inserm, CHU Lille, U995-LIRIC-Lille Inflammation Research International Center, F-59000 Lille, France.
| |
Collapse
|
11
|
Hipkiss AR. Commentary: Sorbitol treatment extends lifespan and induces the osmotic stress response in Caenorhabditis elegans. Front Genet 2016; 6:364. [PMID: 26793237 PMCID: PMC4709409 DOI: 10.3389/fgene.2015.00364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 12/19/2015] [Indexed: 01/07/2023] Open
Affiliation(s)
- Alan R Hipkiss
- Aston Research Centre for Health Ageing, School of Life and Health Sciences, Aston University Birmingham, UK
| |
Collapse
|