1
|
Cui Y, Liu Y, Pan X, Bao Y, Shi W, Cao L. Dilong (Earthworm) alleviates cyclophosphamide-induced brain injury by reducing mitochondrial damage in neuronal cells. Neuroscience 2025; 567:37-44. [PMID: 39742944 DOI: 10.1016/j.neuroscience.2024.12.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/21/2024] [Accepted: 12/27/2024] [Indexed: 01/04/2025]
Abstract
The experiment was designed to explore the effects and mechanism of Dilong on alleviating cyclophosphamide (CTX)-induced brain injury in mice. Fifty male SPF Kunming mice aged 6-8 weeks were randomly divided into five groups: Group A served as the control group; Group B received intraperitoneal injection of CTX; Groups C, D, and E were administered Dilong at doses of 100, 200, and 400 mg/kg respectively for 14 days after intraperitoneal injection of CTX. Results showed that after modeling, the movement speed of mice significantly decreased (P < 0.05), and the number of neurons in the hippocampus and cortex decreased. Dilong can mitigate the behavioral abnormalities and reduction of brain neuronal cells caused by CTX. CTX had no significant effect on the number of astrocytes, microglia, and microglia M1 and M2 polarization, but it had a significant damaging effect on neuronal cells (P < 0.05). The mechanism of action is that CTX causes a decrease in cellular mitochondrial respiratory enzyme activity (P < 0.05) and abnormal mitochondrial structure, which leads to the activation of the cellular scorching pathway. Dilong significantly increased mitochondrial respiratory enzyme activity (P < 0.05), and the mitochondrial structure was restored to some extent. By significantly reducing NLRP3/TLR4/caspase1/pro caspase1/GSDMD (P < 0.05), it increased neuronal cell survival. This resulted in an increase in neuronal cell survival, thus exerting a protective effect on the brain.
Collapse
Affiliation(s)
- Yuqing Cui
- College of Veterinary Medicine, Southwest University, Rongchang, Chongqing 402460, China; Traditional Chinese Veterinary Research Institute, Southwest University, Rongchang, Chongqing 402460, China
| | - Yishan Liu
- Institute of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China; Beijing Municipal Bureau of Agriculture and Rural Affairs, Beijing 10000, China
| | - Xingliang Pan
- Beijing Municipal Bureau of Agriculture and Rural Affairs, Beijing 10000, China
| | - Yongzhan Bao
- Institute of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China; Hebei Provincial Engineering Center for Chinese Veterinary Herbal Medicine, Baoding 071000, China
| | - Wanyu Shi
- Institute of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China; Hebei Provincial Engineering Center for Chinese Veterinary Herbal Medicine, Baoding 071000, China
| | - Liting Cao
- College of Veterinary Medicine, Southwest University, Rongchang, Chongqing 402460, China; Traditional Chinese Veterinary Research Institute, Southwest University, Rongchang, Chongqing 402460, China.
| |
Collapse
|
2
|
Wen P, Sun Z, Gou F, Wang J, Fan Q, Zhao D, Yang L. Oxidative stress and mitochondrial impairment: Key drivers in neurodegenerative disorders. Ageing Res Rev 2025; 104:102667. [PMID: 39848408 DOI: 10.1016/j.arr.2025.102667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/25/2025]
Abstract
Mitochondrial dysfunction and oxidative stress are critical factors in the pathogenesis of neurodegenerative diseases. The complex interplay between these factors exacerbates neuronal damage and accelerates disease progression. In neurodegenerative diseases, mitochondrial dysfunction impairs ATP production and promotes the generation of reactive oxygen species (ROS). The accumulation of ROS further damages mitochondrial DNA, proteins, and lipids, creating a vicious cycle of oxidative stress and mitochondrial impairment. This review aims to elucidate the mechanisms by which mitochondrial dysfunction and oxidative stress lead to neurodegeneration, and to highlight potential therapeutic targets to mitigate their harmful effects.
Collapse
Affiliation(s)
- Pei Wen
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhixin Sun
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Fengting Gou
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jingjing Wang
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qing Fan
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Deming Zhao
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lifeng Yang
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China.
| |
Collapse
|
3
|
Ebadpour N, Mahmoudi M, Kamal Kheder R, Abavisani M, Baridjavadi Z, Abdollahi N, Esmaeili SA. From mitochondrial dysfunction to neuroinflammation in Parkinson's disease: Pathogenesis and mitochondrial therapeutic approaches. Int Immunopharmacol 2024; 142:113015. [PMID: 39222583 DOI: 10.1016/j.intimp.2024.113015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/28/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Parkinson's disease (PD) is a prevalent and intricate neurological condition resulting from a combination of several factors, such as genetics, environment, and the natural process of aging. Degeneration of neurons in the substantia nigra pars compacta (SN) can cause motor and non-motor impairments in patients with PD. In PD's etiology, inflammation and mitochondrial dysfunction play significant roles in the disease's development. Studies of individuals with PD have revealed increased inflammation in various brain areas. Furthermore, mitochondrial dysfunction is an essential part of PD pathophysiology. Defects in the components of the mitochondrial nucleus, its membrane or internal signaling pathways, mitochondrial homeostasis, and morphological alterations in peripheral cells have been extensively documented in PD patients. According to these studies, neuroinflammation and mitochondrial dysfunction are closely connected as pathogenic conditions in neurodegenerative diseases like PD. Given the mitochondria's role in cellular homeostasis maintenance in response to membrane structural flaws or mutations in mitochondrial DNA, their dynamic nature may present therapeutic prospects in this area. Recent research investigates mitochondrial transplantation as a potential treatment for Parkinson's disease in damaged neurons. This review delves into the impact of inflammation and mitochondrial dysfunction on PD occurrence, treatment approaches, and the latest developments in mitochondrial transplantation, highlighting the potential consequences of these discoveries.
Collapse
Affiliation(s)
- Negar Ebadpour
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Mahmoudi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ramiar Kamal Kheder
- Medical Laboratory Science Department, College of Science, University of Raparin, Rania, Sulaymaniyah, Iraq; Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Iraq
| | - Mohammad Abavisani
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Baridjavadi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Narges Abdollahi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Li X, Wang W, Pan S, Cao X, Thomas ER, Xie M, Zhang C, Wu J. Exploring heat shock proteins as therapeutic targets for Parkinson's disease. Biochem Pharmacol 2024; 230:116633. [PMID: 39551273 DOI: 10.1016/j.bcp.2024.116633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024]
Abstract
Parkinson's disease (PD) is characterized by the accumulation of misfolded α-synuclein (α-syn). Promoting the degradation of misfolded proteins has been shown to be an effective approach to alleviate PD. This review highlights the roles of specific heat shock proteins (HSPs) in modulating α-syn aggregation and neuronal survival. HSP27 prevents glycosylation-induced α-syn aggregation, disrupts copper ion interactions, inhibits mitochondrial apoptosis, and prevents dopaminergic neuronal cell death. HSP70 alleviates dopaminergic neuronal damage by promoting mitophagy and preventing neuronal apoptosis. HSC70 plays a critical role in chaperone-mediated autophagy and facilitates lysosomal degradation. GRP78 mitigates abnormal protein aggregation. The HSP70-HSP40-HSP110 system is capable of degrading α-syn amyloid fibers. Inhibition of HSP90 expression protects neurons. Further research should prioritize developing regulators of HSPs as treatments for PD. While HSPs offer promise in PD management, their complex roles necessitate cautious therapeutic development to harness their potential. Understanding the specific roles of different HSPs will be essential to developing effective therapies for α-syn clearance.
Collapse
Affiliation(s)
- Xiang Li
- The Zigong Affiliated Hospital, Southwest Medical University, Zigong Mental Health Center, Zigong Institute of Brain Science, Zigong, Sichuan Province 643020, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Wenjun Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Shi Pan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Xueqin Cao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | | | - Mingyu Xie
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Chunxiang Zhang
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China.
| | - Jianming Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
5
|
Al-Suhaimi E, AlQuwaie R, AlSaqabi R, Winarni D, Dewi FRP, AlRubaish AA, Shehzad A, Elaissari A. Hormonal orchestra: mastering mitochondria's role in health and disease. Endocrine 2024; 86:903-929. [PMID: 39172335 DOI: 10.1007/s12020-024-03967-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/10/2024] [Indexed: 08/23/2024]
Abstract
Mitochondria is a subcellular organelle involved in the pathogenesis of cellular stress, immune responses, differentiation, metabolic disorders, aging, and death by regulating process of fission, fusion, mitophagy, and transport. However, an increased interest in mitochondria as powerhouse for ATP production, the mechanisms of mitochondria-mediated cellular dysfunction in response to hormonal interaction remains unknown. Mitochondrial matrix contains chaperones and proteases that regulate intrinsic apoptosis pathway through pro-apoptotic Bcl-2 family's proteins Bax/Bak, and Cyt C release, and induces caspase-dependent and independent cells death. Energy and growth regulators such as thyroid hormones have profound effect on mitochondrial inner membrane protein and lipid compositions, ATP production by regulating oxidative phosphorylation system. Mitochondria contain cholesterol side-chain cleavage enzyme, P450scc, ferredoxin, and ferredoxin reductase providing an essential site for steroid hormones biosynthesis. In line with this, neurohormones such as oxytocin, vasopressin, and melatonin are correlated with mitochondrial integrity, displaying therapeutic implications for inflammatory and immune responses. Melatonin's also displayed protective role against oxidative stress and mitochondrial synthesis of ROS, suggesting a defense mechanism against aging-related diseases. An imbalance in mitochondrial bioenergetics can cause neurodegenerative disorders, cardiovascular diseases, and cancers. Hormone-induced PGC-1α stimulates mitochondrial biogenesis via activation of NRF1 and NRF2, which in turn triggers mtTFA in brown adipose and cardiac myocytes. Mitochondria can be transferred through cells merging, exosome-mediated transfer, and tunneling through nanotubes. By delineating the underlying molecular mechanism of hormonal mitochondrial interaction, this study reviews the dynamics mechanisms of mitochondria and its effects on cellular level, health, diseases, and therapeutic strategies targeting mitochondrial diseases.
Collapse
Affiliation(s)
- Ebtesam Al-Suhaimi
- Vice presidency for Scientific Research and Innovation, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.
- King Abdulaziz and his Companions Foundation for Giftedness and Creativity "Mawhiba", Riyadh, Saudi Arabia.
| | - Rahaf AlQuwaie
- Master Program of Biotechnology, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Reem AlSaqabi
- Master Program of Biotechnology, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Dwi Winarni
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Firli Rahmah Primula Dewi
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Abdullah A AlRubaish
- College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Adeeb Shehzad
- Biodiversity Unit, Research Center, Dhofar University, Salalah, Oman
| | | |
Collapse
|
6
|
Gu YY, Zhao XR, Zhang N, Yang Y, Yi Y, Shao QH, Liu MX, Zhang XL. Mitochondrial dysfunction as a therapeutic strategy for neurodegenerative diseases: Current insights and future directions. Ageing Res Rev 2024; 102:102577. [PMID: 39528070 DOI: 10.1016/j.arr.2024.102577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/06/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Neurodegenerative diseases, as common diseases in the elderly, tend to become younger due to environmental changes, social development and other factors. They are mainly characterized by progressive loss or dysfunction of neurons in the central or peripheral nervous system, and common diseases include Parkinson's disease, Alzheimer's disease, Huntington's disease and so on. Mitochondria are important organelles for adenosine triphosphate (ATP) production in the brain. In recent years, a large amount of evidence has shown that mitochondrial dysfunction plays a direct role in neurodegenerative diseases, which is expected to provide new ideas for the treatment of related diseases. This review will summarize the main mechanisms of mitochondrial dysfunction in neurodegenerative diseases, as well as collating recent advances in the study of mitochondrial disorders and new therapies.
Collapse
Affiliation(s)
- Ying-Ying Gu
- College of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Xin-Ru Zhao
- College of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Nan Zhang
- College of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Yuan Yang
- Department of Gastroenterology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, PR China
| | - Ying Yi
- College of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Qian-Hang Shao
- Department of Pharmacy, Peking University People's Hospital, Beijing 100871, P R China
| | - Ming-Xuan Liu
- College of Pharmacy, Nantong University, Nantong 226001, PR China.
| | - Xiao-Ling Zhang
- College of Pharmacy, Nantong University, Nantong 226001, PR China.
| |
Collapse
|
7
|
Wang SY, Li MM, Wang L, Pan J, Sun Y, Wu JT, Naseem A, Jiang YK, Kuang HX, Yang BY, Liu Y. Schisandra chinensis (Turcz.) Baill neutral polysaccharides alleviate Parkinson's disease via effectively activating MCL-1 expression regulation of autophagy signaling. Int J Biol Macromol 2024; 279:134952. [PMID: 39197630 DOI: 10.1016/j.ijbiomac.2024.134952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/03/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024]
Abstract
The purified neutral polysaccharide fraction, namely SBP-1, was isolated and characterized from Schisandra chinensis (Turcz.) Baill crude polysaccharides, which have anti-Parkinson's disease activity were investigated in vivo and in vitro. Experiments have shown that the main chain of SBP-1 was Glcp-(1→, →4)-Glcp-(1→ and →4,6)-Glcp-(1→. We also revealed the effect of SBP-1 on the PD mice model and the potential underlying molecular mechanism. The results showed that SBP-1 administration improved behavioral deficits, increased tyrosine hydroxylase-positive cells, attenuated loss of dopaminergic neurons in MPTP-exposed mice, and reduced cell death induced by MPP+. The MCL-1 was identified as the target of SBP-1 by the combination of docking-SPR-ITC, WB, and IF experiments. Subsequently, the study showed that SBP-1 could target MCL-1 to enhance autophagy with a change in the apoptotic response, which was further demonstrated by a change in LC3/P62, PI3K/AKT/mTOR, and possesses a change in the expression of BCL2/BAX/Caspase3. These results demonstrate that SBP-1 may protect neurons against MPP+ or MPTP-induced damage in vitro and in vivo through enhancing autophagy. In summary, these findings indicate that SBP-1 and S. chinensis show potential as effective candidates for further investigation in the prevention and treatment of PD or associated illnesses, specifically through autophagy apoptotic-based mechanisms.
Collapse
Affiliation(s)
- Si-Yi Wang
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin 150040, China
| | - Meng-Meng Li
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin 150040, China
| | - Li Wang
- Department of Traditional Chinese Medicine, Henan Agricultural University, Zhengzhou 450001, China
| | - Juan Pan
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin 150040, China
| | - Ye Sun
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin 150040, China
| | - Jia-Tong Wu
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin 150040, China
| | - Anam Naseem
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin 150040, China
| | - Yi-Kai Jiang
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin 150040, China
| | - Hai-Xue Kuang
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin 150040, China
| | - Bing-You Yang
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin 150040, China.
| | - Yan Liu
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin 150040, China.
| |
Collapse
|
8
|
Bova V, Mannino D, Capra AP, Lanza M, Palermo N, Filippone A, Esposito E. CK and LRRK2 Involvement in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:11661. [PMID: 39519213 PMCID: PMC11546471 DOI: 10.3390/ijms252111661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/21/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024] Open
Abstract
Neurodegenerative diseases (NDDs) are currently the most widespread neuronal pathologies in the world. Among these, the most widespread are Alzheimer's disease (AD), dementia, Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD)-all characterized by a progressive loss of neurons in specific regions of the brain leading to varied clinical symptoms. At the basis of neurodegenerative diseases, an emerging role is played by genetic mutations in the leucine-rich repeat kinase 2 (LRRK2) gene that cause increased LRRK2 activity with consequent alteration of neuronal autophagy pathways. LRRK2 kinase activity requires GTPase activity which functions independently of kinase activity and is required for neurotoxicity and to potentiate neuronal death. Important in the neurodegeneration process is the upregulation of casein kinase (CK), which causes the alteration of the AMPK pathway by enhancing the phosphorylation of α-synuclein and huntingtin proteins, known to be involved in PD and HD, and increasing the accumulation of the amyloid-β protein (Aβ) for AD. Recent research has identified CK of the kinases upstream of LRRK2 as a regulator of the stability of the LRRK2 protein. Based on this evidence, this review aims to understand the direct involvement of individual kinases in NDDs and how their crosstalk may impact the pathogenesis and early onset of neurodegenerative diseases.
Collapse
Affiliation(s)
- Valentina Bova
- Department of Chemical, Biological, Pharmaceuticals and Environmental Sciences, University of Messina, Viale Stagno d’Alcontres, 98166 Messina, Italy; (V.B.); (D.M.); (A.P.C.); (M.L.); (E.E.)
| | - Deborah Mannino
- Department of Chemical, Biological, Pharmaceuticals and Environmental Sciences, University of Messina, Viale Stagno d’Alcontres, 98166 Messina, Italy; (V.B.); (D.M.); (A.P.C.); (M.L.); (E.E.)
| | - Anna Paola Capra
- Department of Chemical, Biological, Pharmaceuticals and Environmental Sciences, University of Messina, Viale Stagno d’Alcontres, 98166 Messina, Italy; (V.B.); (D.M.); (A.P.C.); (M.L.); (E.E.)
| | - Marika Lanza
- Department of Chemical, Biological, Pharmaceuticals and Environmental Sciences, University of Messina, Viale Stagno d’Alcontres, 98166 Messina, Italy; (V.B.); (D.M.); (A.P.C.); (M.L.); (E.E.)
| | - Nicoletta Palermo
- Department of Biochemical, Dental, Morphological and Functional Imaging, University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| | - Alessia Filippone
- Department of Chemical, Biological, Pharmaceuticals and Environmental Sciences, University of Messina, Viale Stagno d’Alcontres, 98166 Messina, Italy; (V.B.); (D.M.); (A.P.C.); (M.L.); (E.E.)
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceuticals and Environmental Sciences, University of Messina, Viale Stagno d’Alcontres, 98166 Messina, Italy; (V.B.); (D.M.); (A.P.C.); (M.L.); (E.E.)
| |
Collapse
|
9
|
Zhu CZ, Li GZ, Lyu HF, Lu YY, Li Y, Zhang XN. Modulation of autophagy by melatonin and its receptors: implications in brain disorders. Acta Pharmacol Sin 2024:10.1038/s41401-024-01398-2. [PMID: 39448859 DOI: 10.1038/s41401-024-01398-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/17/2024] [Indexed: 10/26/2024] Open
Abstract
Autophagy plays a crucial role in maintaining neuronal homeostasis and function, and its disruption is linked to various brain diseases. Melatonin, an endogenous hormone that primarily acts through MT1 and MT2 receptors, regulates autophagy via multiple pathways. Growing evidence indicates that melatonin's ability to modulate autophagy provides therapeutic and preventive benefits in brain disorders, including neurodegenerative and affective diseases. In this review, we summarize the key mechanisms by which melatonin affects autophagy and explore its therapeutic potential in the treatment of brain disorders.
Collapse
Affiliation(s)
- Chen-Ze Zhu
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, 310058, China
| | - Gui-Zhi Li
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 311399, China
| | - Hai-Feng Lyu
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 311399, China
| | - Yang-Yang Lu
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, 310058, China
| | - Yue Li
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, 310058, China
| | - Xiang-Nan Zhang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, 310058, China.
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China.
| |
Collapse
|
10
|
Liu S, Yang N, Yan Y, Wang S, Chen J, Wang Y, Gan X, Zhou J, Xie G, Wang H, Huang T, Ji W, Wang Z, Si W. An accelerated Parkinson's disease monkey model using AAV-α-synuclein plus poly(ADP-ribose). CELL REPORTS METHODS 2024; 4:100876. [PMID: 39413778 PMCID: PMC11573744 DOI: 10.1016/j.crmeth.2024.100876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/17/2024] [Accepted: 09/20/2024] [Indexed: 10/18/2024]
Abstract
The etiology of Parkinson's disease (PD) remains elusive, and the limited availability of suitable animal models hampers research on pathogenesis and drug development. We report the development of a cynomolgus monkey model of PD that combines adeno-associated virus (AAV)-mediated overexpression of α-synuclein into the substantia nigra with an injection of poly(ADP-ribose) (PAR) into the striatum. Our results show that pathological processes were accelerated, including dopaminergic neuron degeneration, Lewy body aggregation, and hallmarks of inflammation in microglia and astrocytes. Behavioral phenotypes, dopamine transporter imaging, and transcriptomic profiling further demonstrate consistencies between the model and patients with PD. This model can help to determine the mechanisms underlying PD impacted by α-synuclein and PAR and aid in the accelerated development of therapeutic strategies for PD.
Collapse
Affiliation(s)
- Shuyi Liu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Naixue Yang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Yaping Yan
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Shaobo Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Department of Nuclear Medicine, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650032, China
| | - Jialing Chen
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Yichao Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Xue Gan
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Jiawen Zhou
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Guoqing Xie
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Hong Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Tianzhuang Huang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Weizhi Ji
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China.
| | - Zhengbo Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| | - Wei Si
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| |
Collapse
|
11
|
Stevanovic D, Vucicevic L, Misirkic-Marjanovic M, Martinovic T, Mandic M, Harhaji-Trajkovic L, Trajkovic V. Trehalose Attenuates In Vitro Neurotoxicity of 6-Hydroxydopamine by Reducing Oxidative Stress and Activation of MAPK/AMPK Signaling Pathways. Int J Mol Sci 2024; 25:10659. [PMID: 39408988 PMCID: PMC11476739 DOI: 10.3390/ijms251910659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/24/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
The effects of trehalose, an autophagy-inducing disaccharide with neuroprotective properties, on the neurotoxicity of parkinsonian mimetics 6-hydroxydopamine (6-OHDA) and 1-methyl-4-phenylpiridinium (MPP+) are poorly understood. In our study, trehalose suppressed 6-OHDA-induced caspase-3/PARP1 cleavage (detected by immunoblotting), apoptotic DNA fragmentation/phosphatidylserine externalization, oxidative stress, mitochondrial depolarization (flow cytometry), and mitochondrial damage (electron microscopy) in SH-SY5Y neuroblastoma cells. The protection was not mediated by autophagy, autophagic receptor p62, or antioxidant enzymes superoxide dismutase and catalase. Trehalose suppressed 6-OHDA-induced activation of c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK), and AMP-activated protein kinase (AMPK), as revealed by immunoblotting. Pharmacological/genetic inhibition of JNK, p38 MAPK, or AMPK mimicked the trehalose-mediated cytoprotection. Trehalose did not affect the extracellular signal-regulated kinase (ERK) and mechanistic target of rapamycin complex 1 (mTORC1)/4EBP1 pathways, while it reduced the prosurvival mTORC2/AKT signaling. Finally, trehalose enhanced oxidative stress, mitochondrial damage, and apoptosis without decreasing JNK, p38 MAPK, AMPK, or AKT activation in SH-SY5Y cells exposed to MPP+. In conclusion, trehalose protects SH-SY5Y cells from 6-OHDA-induced oxidative stress, mitochondrial damage, and apoptosis through autophagy/p62-independent inhibition of JNK, p38 MAPK, and AMPK. The opposite effects of trehalose on the neurotoxicity of 6-OHDA and MPP+ suggest caution in its potential development as a neuroprotective agent.
Collapse
Affiliation(s)
- Danijela Stevanovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade, Serbia; (D.S.)
| | - Ljubica Vucicevic
- Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia; (M.M.-M.)
| | - Maja Misirkic-Marjanovic
- Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia; (M.M.-M.)
| | - Tamara Martinovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade, Serbia; (D.S.)
| | - Milos Mandic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade, Serbia; (D.S.)
| | - Ljubica Harhaji-Trajkovic
- Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia; (M.M.-M.)
| | - Vladimir Trajkovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade, Serbia; (D.S.)
| |
Collapse
|
12
|
Yang J, Zhao H, Qu S. Therapeutic potential of fucoidan in central nervous system disorders: A systematic review. Int J Biol Macromol 2024; 277:134397. [PMID: 39097066 DOI: 10.1016/j.ijbiomac.2024.134397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024]
Abstract
Central nervous system (CNS) disorders have a complicated pathogenesis, and to date, no single mechanism can fully explain them. Most drugs used for CNS disorders primarily aim to manage symptoms and delay disease progression, and none have demonstrated any pathological reversal. Fucoidan is a safe, sulfated polysaccharide from seaweed that exhibits multiple pharmacological effects, and it is anticipated to be a novel treatment for CNS disorders. To assess the possible clinical uses of fucoidan, this review aims to provide an overview of its neuroprotective mechanism in both in vivo and in vitro CNS disease models, as well as its pharmacokinetics and safety. We included 39 articles on the pharmacology of fucoidan in CNS disorders. In vitro and in vivo experiments demonstrate that fucoidan has important roles in regulating lipid metabolism, enhancing the cholinergic system, maintaining the functional integrity of the blood-brain barrier and mitochondria, inhibiting inflammation, and attenuating oxidative stress and apoptosis, highlighting its potential for CNS disease treatment. Fucoidan has a protective effect against CNS disorders. With ongoing research on fucoidan, it is expected that a natural, highly effective, less toxic, and highly potent fucoidan-based drug or nutritional supplement targeting CNS diseases will be developed.
Collapse
Affiliation(s)
- Jing Yang
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, 110004 Shenyang, Liaoning, PR China.
| | - He Zhao
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, 110004 Shenyang, Liaoning, PR China.
| | - Shengtao Qu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, 110004 Shenyang, Liaoning, PR China.
| |
Collapse
|
13
|
Oñate-Ponce A, Muñoz-Muñoz C, Catenaccio A, Court FA, Henny P. Applying the area fraction fractionator (AFF) probe for total volume estimations of somatic, dendritic and axonal domains of the nigrostriatal dopaminergic system in a murine model. J Neurosci Methods 2024; 410:110226. [PMID: 39038717 DOI: 10.1016/j.jneumeth.2024.110226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/02/2024] [Accepted: 07/19/2024] [Indexed: 07/24/2024]
Abstract
BACKGROUND The Cavalieri estimator is used for volume measurement of brain and brain regions. Derived from this estimator is the Area Fraction Fractionator (AFF), used for efficient area and number estimations of small 2D elements, such as axons in cross-sectioned nerves. However, to our knowledge, the AFF has not been combined with serial sectioning analysis to measure the volume of small-size nervous structures. NEW METHOD Using the nigrostriatal dopaminergic system as an illustrative case, we describe a protocol based on Cavalieri's principle and AFF to estimate the volume of its somatic, nuclear, dendritic, axonal and axon terminal cellular compartments in the adult mouse. The protocol consists of (1) systematic random sampling of sites within and across sections in regions of interest (substantia nigra, the nigrostriatal tract, caudate-putamen), (2) confocal image acquisition of sites, (3) marking of cellular domains using Cavalieri's 2D point-counting grids, and 4) determination of compartments' total volume using the estimated area of each compartment, and between-sections distance. RESULTS The volume of the nigrostriatal system per hemisphere is ∼0.38 mm3, with ∼5 % corresponding to perikarya and cell nuclei, ∼10 % to neuropil/dendrites, and ∼85 % to axons and varicosities. COMPARISON WITH EXISTING METHODS In contrast to other methods to measure volume of discrete objects, such as the optical nucleator or 3D reconstructions, it stands out for its versatility and ease of use. CONCLUSIONS The use of a simple quantitative, unbiased approach to assess the global state of a system may allow quantification of compartment-specific changes that may accompany neurodegenerative processes.
Collapse
Affiliation(s)
- Alejandro Oñate-Ponce
- Laboratorio de Neuroanatomía, Departamento de Anatomía, and Centro Interdisciplinario de Neurociencia, NeuroUC, Escuela de Medicina, Pontificia Universidad Católica de Chile, Chile
| | - Catalina Muñoz-Muñoz
- Laboratorio de Neuroanatomía, Departamento de Anatomía, and Centro Interdisciplinario de Neurociencia, NeuroUC, Escuela de Medicina, Pontificia Universidad Católica de Chile, Chile
| | - Alejandra Catenaccio
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
| | - Felipe A Court
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile; Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile; Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Pablo Henny
- Laboratorio de Neuroanatomía, Departamento de Anatomía, and Centro Interdisciplinario de Neurociencia, NeuroUC, Escuela de Medicina, Pontificia Universidad Católica de Chile, Chile; Departamento de Neurociencia, Facultad de Medicina, Universidad de Chile, Chile.
| |
Collapse
|
14
|
Zhang X, Wu H, Tang B, Guo J. Clinical, mechanistic, biomarker, and therapeutic advances in GBA1-associated Parkinson's disease. Transl Neurodegener 2024; 13:48. [PMID: 39267121 PMCID: PMC11391654 DOI: 10.1186/s40035-024-00437-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/17/2024] [Indexed: 09/14/2024] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease. The development of PD is closely linked to genetic and environmental factors, with GBA1 variants being the most common genetic risk. Mutations in the GBA1 gene lead to reduced activity of the coded enzyme, glucocerebrosidase, which mediates the development of PD by affecting lipid metabolism (especially sphingolipids), lysosomal autophagy, endoplasmic reticulum, as well as mitochondrial and other cellular functions. Clinically, PD with GBA1 mutations (GBA1-PD) is characterized by particular features regarding the progression of symptom severity. On the therapeutic side, the discovery of the relationship between GBA1 variants and PD offers an opportunity for targeted therapeutic interventions. In this review, we explore the genotypic and phenotypic correlations, etiologic mechanisms, biomarkers, and therapeutic approaches of GBA1-PD and summarize the current state of research and its challenges.
Collapse
Affiliation(s)
- Xuxiang Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Heng Wu
- Department of Neurology, Multi-Omics Research Center for Brain Disorders, The First Affiliated Hospital, University of South China, Hengyang, 421001, China
- Clinical Research Center for Immune-Related Encephalopathy of Hunan Province, Hengyang, 421001, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Neurology, Multi-Omics Research Center for Brain Disorders, The First Affiliated Hospital, University of South China, Hengyang, 421001, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410008, China
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China.
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410008, China.
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China.
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
15
|
Gu X, Wei S, Lv X. Circulating tumor cells: from new biological insights to clinical practice. Signal Transduct Target Ther 2024; 9:226. [PMID: 39218931 PMCID: PMC11366768 DOI: 10.1038/s41392-024-01938-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/31/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
The primary reason for high mortality rates among cancer patients is metastasis, where tumor cells migrate through the bloodstream from the original site to other parts of the body. Recent advancements in technology have significantly enhanced our comprehension of the mechanisms behind the bloodborne spread of circulating tumor cells (CTCs). One critical process, DNA methylation, regulates gene expression and chromosome stability, thus maintaining dynamic equilibrium in the body. Global hypomethylation and locus-specific hypermethylation are examples of changes in DNA methylation patterns that are pivotal to carcinogenesis. This comprehensive review first provides an overview of the various processes that contribute to the formation of CTCs, including epithelial-mesenchymal transition (EMT), immune surveillance, and colonization. We then conduct an in-depth analysis of how modifications in DNA methylation within CTCs impact each of these critical stages during CTC dissemination. Furthermore, we explored potential clinical implications of changes in DNA methylation in CTCs for patients with cancer. By understanding these epigenetic modifications, we can gain insights into the metastatic process and identify new biomarkers for early detection, prognosis, and targeted therapies. This review aims to bridge the gap between basic research and clinical application, highlighting the significance of DNA methylation in the context of cancer metastasis and offering new avenues for improving patient outcomes.
Collapse
Affiliation(s)
- Xuyu Gu
- Department of Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shiyou Wei
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xin Lv
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
16
|
Sen S, Mukhopadhyay D. A Holistic Analysis of Alzheimer's Disease-Associated lncRNA Communities Reveals Enhanced lncRNA-miRNA-RBP Regulatory Triad Formation Within Functionally Segregated Clusters. J Mol Neurosci 2024; 74:77. [PMID: 39143264 PMCID: PMC11324768 DOI: 10.1007/s12031-024-02244-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/04/2024] [Indexed: 08/16/2024]
Abstract
Recent studies on the regulatory networks implicated in Alzheimer's disease (AD) evince long non-coding RNAs (lncRNAs) as crucial regulatory players, albeit a poor understanding of the mechanism. Analyzing differential gene expression in the RNA-seq data from the post-mortem AD brain hippocampus, we categorized a list of AD-dysregulated lncRNA transcripts into functionally similar communities based on their k-mer profiles. Using machine-learning-based algorithms, their subcellular localizations were mapped. We further explored the functional relevance of each community through AD-dysregulated miRNA, RNA-binding protein (RBP) interactors, and pathway enrichment analyses. Further investigation of the miRNA-lncRNA and RBP-lncRNA networks from each community revealed the top RBPs, miRNAs, and lncRNAs for each cluster. The experimental validation community yielded ELAVL4 and miR-16-5p as the predominant RBP and miRNA, respectively. Five lncRNAs emerged as the top-ranking candidates from the RBP/miRNA-lncRNA networks. Further analyses of these networks revealed the presence of multiple regulatory triads where the RBP-lncRNA interactions could be augmented by the enhanced miRNA-lncRNA interactions. Our results advance the understanding of the mechanism of lncRNA-mediated AD regulation through their interacting partners and demonstrate how these functionally segregated but overlapping regulatory networks can modulate the disease holistically.
Collapse
Affiliation(s)
- Somenath Sen
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, Kolkata, 700 064, India
| | - Debashis Mukhopadhyay
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, Kolkata, 700 064, India.
| |
Collapse
|
17
|
Zhang Y, Yin S, Song R, Lai X, Shen M, Wu J, Yan J. A novel mechanism of PHB2-mediated mitophagy participating in the development of Parkinson's disease. Neural Regen Res 2024; 19:1828-1834. [PMID: 38103250 PMCID: PMC10960274 DOI: 10.4103/1673-5374.389356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 07/01/2023] [Accepted: 09/07/2023] [Indexed: 12/18/2023] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202408000-00037/figure1/v/2023-12-16T180322Z/r/image-tiff Endoplasmic reticulum stress and mitochondrial dysfunction play important roles in Parkinson's disease, but the regulatory mechanism remains elusive. Prohibitin-2 (PHB2) is a newly discovered autophagy receptor in the mitochondrial inner membrane, and its role in Parkinson's disease remains unclear. Protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK) is a factor that regulates cell fate during endoplasmic reticulum stress. Parkin is regulated by PERK and is a target of the unfolded protein response. It is unclear whether PERK regulates PHB2-mediated mitophagy through Parkin. In this study, we established a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of Parkinson's disease. We used adeno-associated virus to knockdown PHB2 expression. Our results showed that loss of dopaminergic neurons and motor deficits were aggravated in the MPTP-induced mouse model of Parkinson's disease. Overexpression of PHB2 inhibited these abnormalities. We also established a 1-methyl-4-phenylpyridine (MPP+)-induced SH-SY5Y cell model of Parkinson's disease. We found that overexpression of Parkin increased co-localization of PHB2 and microtubule-associated protein 1 light chain 3, and promoted mitophagy. In addition, MPP+ regulated Parkin involvement in PHB2-mediated mitophagy through phosphorylation of PERK. These findings suggest that PHB2 participates in the development of Parkinson's disease by interacting with endoplasmic reticulum stress and Parkin.
Collapse
Affiliation(s)
- Yongjiang Zhang
- Key Laboratory of Neuromolecular Biology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
| | - Shiyi Yin
- Key Laboratory of Neuromolecular Biology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
| | - Run Song
- Key Laboratory of Neuromolecular Biology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
| | - Xiaoyi Lai
- Key Laboratory of Neuromolecular Biology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
| | - Mengmeng Shen
- Key Laboratory of Neuromolecular Biology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
| | - Jiannan Wu
- Key Laboratory of Neuromolecular Biology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
| | - Junqiang Yan
- Key Laboratory of Neuromolecular Biology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
| |
Collapse
|
18
|
Thapa R, Moglad E, Afzal M, Gupta G, Bhat AA, Almalki WH, Kazmi I, Alzarea SI, Pant K, Ali H, Paudel KR, Dureja H, Singh TG, Singh SK, Dua K. ncRNAs and their impact on dopaminergic neurons: Autophagy pathways in Parkinson's disease. Ageing Res Rev 2024; 98:102327. [PMID: 38734148 DOI: 10.1016/j.arr.2024.102327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Parkinson's Disease (PD) is a complex neurological illness that causes severe motor and non-motor symptoms due to a gradual loss of dopaminergic neurons in the substantia nigra. The aetiology of PD is influenced by a variety of genetic, environmental, and cellular variables. One important aspect of this pathophysiology is autophagy, a crucial cellular homeostasis process that breaks down and recycles cytoplasmic components. Recent advances in genomic technologies have unravelled a significant impact of ncRNAs on the regulation of autophagy pathways, thereby implicating their roles in PD onset and progression. They are members of a family of RNAs that include miRNAs, circRNA and lncRNAs that have been shown to play novel pleiotropic functions in the pathogenesis of PD by modulating the expression of genes linked to autophagic activities and dopaminergic neuron survival. This review aims to integrate the current genetic paradigms with the therapeutic prospect of autophagy-associated ncRNAs in PD. By synthesizing the findings of recent genetic studies, we underscore the importance of ncRNAs in the regulation of autophagy, how they are dysregulated in PD, and how they represent novel dimensions for therapeutic intervention. The therapeutic promise of targeting ncRNAs in PD is discussed, including the barriers that need to be overcome and future directions that must be embraced to funnel these ncRNA molecules for the treatment and management of PD.
Collapse
Affiliation(s)
- Riya Thapa
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Gaurav Gupta
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates; Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India.
| | - Asif Ahmad Bhat
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341, Sakaka, Aljouf, Saudi Arabia
| | - Kumud Pant
- Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India; Graphic Era Hill University, Clement Town, Dehradun 248002, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Keshav Raj Paudel
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia; School of Medical and Life Sciences, Sunway University, 47500 Sunway City, Malaysia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| |
Collapse
|
19
|
Zhao Y, Xu K, Shu F, Zhang F. Neurotropic virus infection and neurodegenerative diseases: Potential roles of autophagy pathway. CNS Neurosci Ther 2024; 30:e14548. [PMID: 38082503 PMCID: PMC11163195 DOI: 10.1111/cns.14548] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 06/11/2024] Open
Abstract
Neurodegenerative diseases (NDs) constitute a group of disorders characterized by the progressive deterioration of nervous system functionality. Currently, the precise etiological factors responsible for NDs remain incompletely elucidated, although it is probable that a combination of aging, genetic predisposition, and environmental stressors participate in this process. Accumulating evidence indicates that viral infections, especially neurotropic viruses, can contribute to the onset and progression of NDs. In this review, emerging evidence supporting the association between viral infection and NDs is summarized, and how the autophagy pathway mediated by viral infection can cause pathological aggregation of cellular proteins associated with various NDs is discussed. Furthermore, autophagy-related genes (ARGs) involved in Herpes simplex virus (HSV-1) infection and NDs are analyzed, and whether these genes could link HSV-1 infection to NDs is discussed. Elucidating the mechanisms underlying NDs is critical for developing targeted therapeutic approaches that prevent the onset and slow the progression of NDs.
Collapse
Affiliation(s)
- Yu‐jia Zhao
- Laboratory Animal CentreZunyi Medical UniversityZunyiGuizhouChina
| | - Kai‐fei Xu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou ProvinceZunyi Medical UniversityZunyiGuizhouChina
| | - Fu‐xing Shu
- Bioresource Institute for Healthy UtilizationZunyi Medical UniversityZunyiGuizhouChina
| | - Feng Zhang
- Laboratory Animal CentreZunyi Medical UniversityZunyiGuizhouChina
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou ProvinceZunyi Medical UniversityZunyiGuizhouChina
| |
Collapse
|
20
|
You W, Li Y, Liu K, Mi X, Li Y, Guo X, Li Z. Latest assessment methods for mitochondrial homeostasis in cognitive diseases. Neural Regen Res 2024; 19:754-768. [PMID: 37843209 PMCID: PMC10664105 DOI: 10.4103/1673-5374.382222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/03/2023] [Accepted: 07/06/2023] [Indexed: 10/17/2023] Open
Abstract
Mitochondria play an essential role in neural function, such as supporting normal energy metabolism, regulating reactive oxygen species, buffering physiological calcium loads, and maintaining the balance of morphology, subcellular distribution, and overall health through mitochondrial dynamics. Given the recent technological advances in the assessment of mitochondrial structure and functions, mitochondrial dysfunction has been regarded as the early and key pathophysiological mechanism of cognitive disorders such as Alzheimer's disease, Parkinson's disease, Huntington's disease, mild cognitive impairment, and postoperative cognitive dysfunction. This review will focus on the recent advances in mitochondrial medicine and research methodology in the field of cognitive sciences, from the perspectives of energy metabolism, oxidative stress, calcium homeostasis, and mitochondrial dynamics (including fission-fusion, transport, and mitophagy).
Collapse
Affiliation(s)
- Wei You
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
- Peking University Third Clinical Medical College, Beijing, China
| | - Yue Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Kaixi Liu
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Xinning Mi
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Yitong Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Xiangyang Guo
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
- Beijing Center of Quality Control and Improvement on Clinical Anesthesia, Beijing, China
- Anesthesia and Perioperative Medicine Branch of China International Exchange and Promotive Association for Medical and Health Care (CPAM), Beijing, China
| | - Zhengqian Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
- Beijing Center of Quality Control and Improvement on Clinical Anesthesia, Beijing, China
- Anesthesia and Perioperative Medicine Branch of China International Exchange and Promotive Association for Medical and Health Care (CPAM), Beijing, China
| |
Collapse
|
21
|
Soares ÉN, Costa ACDS, Ferrolho GDJ, Ureshino RP, Getachew B, Costa SL, da Silva VDA, Tizabi Y. Nicotinic Acetylcholine Receptors in Glial Cells as Molecular Target for Parkinson's Disease. Cells 2024; 13:474. [PMID: 38534318 PMCID: PMC10969434 DOI: 10.3390/cells13060474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease characterized by resting tremor, bradykinesia, rigidity, and postural instability that also includes non-motor symptoms such as mood dysregulation. Dopamine (DA) is the primary neurotransmitter involved in this disease, but cholinergic imbalance has also been implicated. Current intervention in PD is focused on replenishing central DA, which provides remarkable temporary symptomatic relief but does not address neuronal loss and the progression of the disease. It has been well established that neuronal nicotinic cholinergic receptors (nAChRs) can regulate DA release and that nicotine itself may have neuroprotective effects. Recent studies identified nAChRs in nonneuronal cell types, including glial cells, where they may regulate inflammatory responses. Given the crucial role of neuroinflammation in dopaminergic degeneration and the involvement of microglia and astrocytes in this response, glial nAChRs may provide a novel therapeutic target in the prevention and/or treatment of PD. In this review, following a brief discussion of PD, we focus on the role of glial cells and, specifically, their nAChRs in PD pathology and/or treatment.
Collapse
Affiliation(s)
- Érica Novaes Soares
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, BA, Brazil
| | - Ana Carla dos Santos Costa
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, BA, Brazil
| | - Gabriel de Jesus Ferrolho
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, BA, Brazil
- Laboratory of Neurosciences, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, BA, Brazil
| | - Rodrigo Portes Ureshino
- Department of Biological Sciences, Universidade Federal de São Paulo, Diadema 09961-400, SP, Brazil
- Laboratory of Molecular and Translational Endocrinology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04039-032, SP, Brazil
| | - Bruk Getachew
- Department of Pharmacology, College of Medicine, Howard University, 520 W Street NW, Washington, DC 20059, USA
| | - Silvia Lima Costa
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, BA, Brazil
| | - Victor Diogenes Amaral da Silva
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, BA, Brazil
- Laboratory of Neurosciences, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, BA, Brazil
| | - Yousef Tizabi
- Department of Pharmacology, College of Medicine, Howard University, 520 W Street NW, Washington, DC 20059, USA
| |
Collapse
|
22
|
Zhang W, Zhu F, Zhu J, Liu K. Phospholipase D, a Novel Therapeutic Target Contributes to the Pathogenesis of Neurodegenerative and Neuroimmune Diseases. Anal Cell Pathol (Amst) 2024; 2024:6681911. [PMID: 38487684 PMCID: PMC10940030 DOI: 10.1155/2024/6681911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 01/10/2024] [Accepted: 02/14/2024] [Indexed: 03/17/2024] Open
Abstract
Phospholipase D (PLD) is an enzyme that consists of six isoforms (PLD1-PLD6) and has been discovered in different organisms including bacteria, viruses, plants, and mammals. PLD is involved in regulating a wide range of nerve cells' physiological processes, such as cytoskeleton modulation, proliferation/growth, vesicle trafficking, morphogenesis, and development. Simultaneously, PLD, which also plays an essential role in the pathogenesis of neurodegenerative and neuroimmune diseases. In this review, family members, characterizations, structure, functions and related signaling pathways, and therapeutic values of PLD was summarized, then five representative diseases including Alzheimer disease (AD), Parkinson's disease (PD), etc. were selected as examples to tell the involvement of PLD in these neurological diseases. Notably, recent advances in the development of tools for studying PLD therapy envisaged novel therapeutic interventions. Furthermore, the limitations of PLD based therapy were also analyzed and discussed. The content of this review provided a thorough and reasonable basis for further studies to exploit the potential of PLD in the treatment of neurodegenerative and neuroimmune diseases.
Collapse
Affiliation(s)
- Weiwei Zhang
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Feiqi Zhu
- Cognitive Impairment Ward of Neurology Department, The Third Affiliated Hospital of Shenzhen University Medical College, Shenzhen, China
| | - Jie Zhu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
- Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Kangding Liu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
23
|
Zhao H, Fu X, Zhang Y, Chen C, Wang H. The Role of Pyroptosis and Autophagy in the Nervous System. Mol Neurobiol 2024; 61:1271-1281. [PMID: 37697221 PMCID: PMC10896877 DOI: 10.1007/s12035-023-03614-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/23/2023] [Indexed: 09/13/2023]
Abstract
Autophagy is a conservative self-degradation system, which includes the two major processes of enveloping abnormal proteins, organelles and other macromolecules, and transferring them into lysosomes for the subsequent degradation. It holds the stability of the intracellular environment under stress. So far, three types of autophagy have been found: microautophagy, chaperone-mediated autophagy and macroautophagy. Many diseases have the pathological process of autophagy dysfunction, such as nervous system diseases. Pyroptosis is one kind of programmed cell death mediated by gasdermin (GSDM). In this process of pyroptosis, the activated caspase-3, caspase-4/5/11, or caspase-1 cleaves GSDM into the N-terminal pore-forming domain (PFD). The oligomer of PFD combines with the cell membrane to form membrane holes, thus leading to pyroptosis. Pyroptosis plays a key role in multiple tissues and organs. Many studies have revealed that autophagy and pyroptosis participate in the nervous system, but the mechanisms need to be fully clarified. Here, we focused on the recent articles on the role and mechanism of pyroptosis and autophagy in the pathological processes of the nervous system.
Collapse
Affiliation(s)
- Huijie Zhao
- Institute of Chronic Disease Risks Assessment, Henan University, Jinming Avenue, Kaifeng, 475004, China
| | - Xiaodi Fu
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Yanting Zhang
- School of Clinical Medicine, Henan University, Kaifeng, 475004, Henan, China
| | - Chaoran Chen
- Institute of Nursing and Health, School of Nursing and Health, Henan University, Jinming Avenue, Kaifeng, 475004, China
| | - Honggang Wang
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China.
| |
Collapse
|
24
|
Liu J, Wu Y, Meng S, Xu P, Li S, Li Y, Hu X, Ouyang L, Wang G. Selective autophagy in cancer: mechanisms, therapeutic implications, and future perspectives. Mol Cancer 2024; 23:22. [PMID: 38262996 PMCID: PMC10807193 DOI: 10.1186/s12943-024-01934-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/05/2024] [Indexed: 01/25/2024] Open
Abstract
Eukaryotic cells engage in autophagy, an internal process of self-degradation through lysosomes. Autophagy can be classified as selective or non-selective depending on the way it chooses to degrade substrates. During the process of selective autophagy, damaged and/or redundant organelles like mitochondria, peroxisomes, ribosomes, endoplasmic reticulum (ER), lysosomes, nuclei, proteasomes, and lipid droplets are selectively recycled. Specific cargo is delivered to autophagosomes by specific receptors, isolated and engulfed. Selective autophagy dysfunction is closely linked with cancers, neurodegenerative diseases, metabolic disorders, heart failure, etc. Through reviewing latest research, this review summarized molecular markers and important signaling pathways for selective autophagy, and its significant role in cancers. Moreover, we conducted a comprehensive analysis of small-molecule compounds targeting selective autophagy for their potential application in anti-tumor therapy, elucidating the underlying mechanisms involved. This review aims to supply important scientific references and development directions for the biological mechanisms and drug discovery of anti-tumor targeting selective autophagy in the future.
Collapse
Affiliation(s)
- Jiaxi Liu
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Yongya Wu
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Sha Meng
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Ping Xu
- Emergency Department, Zigong Fourth People's Hospital, Zigong, 643000, China
| | - Shutong Li
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Yong Li
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Xiuying Hu
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China.
| | - Liang Ouyang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China.
| | - Guan Wang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
25
|
Geng X, Zou Y, Huang T, Li S, Pang A, Yu H. Electroacupuncture Improves Neuronal Damage and Mitochondrial Dysfunction Through the TRPC1 and SIRT1/AMPK Signaling Pathways to Alleviate Parkinson's Disease in Mice. J Mol Neurosci 2024; 74:5. [PMID: 38189854 DOI: 10.1007/s12031-023-02186-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/27/2023] [Indexed: 01/09/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease that mainly manifests as cognitive decline and motor dysfunction, the treatment of which is still a major challenge in the clinical field. Acupuncture therapy has been shown in many studies to enhance the body's own immunity and disease resistance. This study mainly discusses the specific mechanism underlying electroacupuncture intervention in improving PD. Male C57BL/6 mice were intraperitoneally injected with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to induce a mouse PD model, and the chorea trembling control area of the head of PD mice was treated by electroacupuncture. Western blotting was used to detect the expression of related proteins in mouse pathological samples; TUNEL measured neuronal apoptosis levels; Nissl staining observed neuronal damage; immunofluorescence and immunohistochemistry were used to detect the expression of Iba-1, TH, and α-syn in substantia nigra denser (SN). The expression levels of oxidative stress factors and inflammatory factors were measured by kits. Flow cytometry measured mitochondrial membrane potential and Ca2+ levels. MPTP intraperitoneal injection induced an increase in inflammatory factors in PD mice and promoted the oxidative stress response, and the inflammatory response was alleviated after electroacupuncture treatment. Electroacupuncture intervention effectively alters the decrease in oxidative stress levels and alleviates neuronal damage in PD mice. Electroacupuncture improves mitochondrial dysfunction induced by MPTP in PD mice by activating the SIRT1/AMPK signaling pathway. We also confirmed that knocking down TRPC1 can inhibit the SIRT1/AMPK signaling pathway, weaken the Ca2+ content in mouse neuronal tissue, and promote cell apoptosis. Electroacupuncture improves neuronal damage and alleviates PD in mice through the TRPC1 and SIRT1/AMPK signaling pathways. In addition, electroacupuncture therapy can improve MPTP-induced mitochondrial dysfunction in PD mice and alleviate the PD process.
Collapse
Affiliation(s)
- Xin Geng
- The Second Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
- Yunnan Provincial Clinical Research Center for Neurological Disease, Kunming, 650032, Yunnan, China
| | - Yanghong Zou
- The Second Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
- Yunnan Provincial Clinical Research Center for Neurological Disease, Kunming, 650032, Yunnan, China
| | - Tao Huang
- The Second Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
- Yunnan Provincial Clinical Research Center for Neurological Disease, Kunming, 650032, Yunnan, China
| | - Shipeng Li
- The Second Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
- Yunnan Provincial Clinical Research Center for Neurological Disease, Kunming, 650032, Yunnan, China
| | - Ailan Pang
- Yunnan Provincial Clinical Research Center for Neurological Disease, Kunming, 650032, Yunnan, China
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Hualin Yu
- The Second Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China.
- Yunnan Provincial Clinical Research Center for Neurological Disease, Kunming, 650032, Yunnan, China.
| |
Collapse
|
26
|
Li HY, Liu DS, Zhang YB, Rong H, Zhang XJ. The interaction between alpha-synuclein and mitochondrial dysfunction in Parkinson's disease. Biophys Chem 2023; 303:107122. [PMID: 37839353 DOI: 10.1016/j.bpc.2023.107122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/18/2023] [Accepted: 10/07/2023] [Indexed: 10/17/2023]
Abstract
Parkinson's disease (PD) is an aging-associated neurodegenerative disorder with the hallmark of abnormal aggregates of alpha-synuclein (α-syn) in Lewy bodies (LBs) and Lewy neurites (LNs). Currently, pathogenic α-syn and mitochondrial dysfunction have been considered as prominent roles that give impetus to the PD onset. This review describes the α-syn pathology and mitochondrial alterations in PD, and focuses on how α-syn interacts with multiple aspects of mitochondrial homeostasis in the pathogenesis of PD.
Collapse
Affiliation(s)
- Hong-Yan Li
- Department of Basic Medical College, Heilongjiang University of Chinese Medicine, Haerbin 150000, PR China
| | - De-Shui Liu
- Department of Pathology, Qiqihar Medical University, Qiqihar 161006, PR China
| | - Ying-Bo Zhang
- Department of Pathology, Qiqihar Medical University, Qiqihar 161006, PR China
| | - Hua Rong
- Department of Pathology, Qiqihar Medical University, Qiqihar 161006, PR China
| | - Xiao-Jie Zhang
- Department of Basic Medical College, Heilongjiang University of Chinese Medicine, Haerbin 150000, PR China; Heilongjiang Nursing College, Haerbin 150000, PR China.
| |
Collapse
|
27
|
Alshial EE, Abdulghaney MI, Wadan AHS, Abdellatif MA, Ramadan NE, Suleiman AM, Waheed N, Abdellatif M, Mohammed HS. Mitochondrial dysfunction and neurological disorders: A narrative review and treatment overview. Life Sci 2023; 334:122257. [PMID: 37949207 DOI: 10.1016/j.lfs.2023.122257] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/27/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
Mitochondria play a vital role in the nervous system, as they are responsible for generating energy in the form of ATP and regulating cellular processes such as calcium (Ca2+) signaling and apoptosis. However, mitochondrial dysfunction can lead to oxidative stress (OS), inflammation, and cell death, which have been implicated in the pathogenesis of various neurological disorders. In this article, we review the main functions of mitochondria in the nervous system and explore the mechanisms related to mitochondrial dysfunction. We discuss the role of mitochondrial dysfunction in the development and progression of some neurological disorders including Parkinson's disease (PD), multiple sclerosis (MS), Alzheimer's disease (AD), depression, and epilepsy. Finally, we provide an overview of various current treatment strategies that target mitochondrial dysfunction, including pharmacological treatments, phototherapy, gene therapy, and mitotherapy. This review emphasizes the importance of understanding the role of mitochondria in the nervous system and highlights the potential for mitochondrial-targeted therapies in the treatment of neurological disorders. Furthermore, it highlights some limitations and challenges encountered by the current therapeutic strategies and puts them in future perspective.
Collapse
Affiliation(s)
- Eman E Alshial
- Biochemistry Department, Faculty of Science, Damanhour University, Al Buhayrah, Egypt
| | | | - Al-Hassan Soliman Wadan
- Department of Oral Biology, Faculty of Dentistry, Sinai University, Arish, North Sinai, Egypt
| | | | - Nada E Ramadan
- Department of Biotechnology, Faculty of Science, Tanta University, Gharbia, Egypt
| | | | - Nahla Waheed
- Biochemistry Department, Faculty of Science, Mansoura University, Egypt
| | | | - Haitham S Mohammed
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt.
| |
Collapse
|
28
|
Gopar-Cuevas Y, Saucedo-Cardenas O, Loera-Arias MJ, Montes-de-Oca-Luna R, Rodriguez-Rocha H, Garcia-Garcia A. Metformin and Trehalose-Modulated Autophagy Exerts a Neurotherapeutic Effect on Parkinson's Disease. Mol Neurobiol 2023; 60:7253-7273. [PMID: 37542649 DOI: 10.1007/s12035-023-03530-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/20/2023] [Indexed: 08/07/2023]
Abstract
Since the number of aged people will increase in the next years, neurodegenerative diseases, including Parkinson's Disease (PD), will also rise. Recently, we demonstrated that autophagy stimulation with rapamycin decreases dopaminergic neuronal death mediated by oxidative stress in the paraquat (PQ)-induced PD model. Assessing the neurotherapeutic efficacy of autophagy-inducing molecules is critical for preventing or delaying neurodegeneration. Therefore, we evaluated the autophagy inducers metformin and trehalose effect in a PD model. Autophagy induced by both molecules was confirmed in the SH-SY5Y dopaminergic cells by detecting increased LC3-II marker and autophagosome number compared to the control by western blot and transmission electron microscopy. Both autophagy inducers showed an antioxidant effect, improved mitochondrial activity, and decreased dopaminergic cell death induced by PQ. Next, we evaluated the effect of both inducers in vivo. C57BL6 mice were pretreated with metformin or trehalose before PQ administration. Cognitive and motor deteriorated functions in the PD model were evaluated through the nest building and the gait tests and were prevented by metformin and trehalose. Both autophagy inducers significantly reduced the dopaminergic neuronal loss, astrocytosis, and microgliosis induced by PQ. Also, cell death mediated by PQ was prevented by metformin and trehalose, assessed by TUNEL assay. Metformin and trehalose induced autophagy through AMPK phosphorylation and decreased α-synuclein accumulation. Therefore, metformin and trehalose are promising neurotherapeutic autophagy inducers with great potential for treating neurodegenerative diseases such as PD.
Collapse
Affiliation(s)
- Yareth Gopar-Cuevas
- Departamento de Histologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Francisco I. Madero S/N, 64460, Monterrey, Nuevo Leon, Mexico
| | - Odila Saucedo-Cardenas
- Departamento de Histologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Francisco I. Madero S/N, 64460, Monterrey, Nuevo Leon, Mexico
| | - Maria J Loera-Arias
- Departamento de Histologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Francisco I. Madero S/N, 64460, Monterrey, Nuevo Leon, Mexico
| | - Roberto Montes-de-Oca-Luna
- Departamento de Histologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Francisco I. Madero S/N, 64460, Monterrey, Nuevo Leon, Mexico
| | - Humberto Rodriguez-Rocha
- Departamento de Histologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Francisco I. Madero S/N, 64460, Monterrey, Nuevo Leon, Mexico.
| | - Aracely Garcia-Garcia
- Departamento de Histologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Francisco I. Madero S/N, 64460, Monterrey, Nuevo Leon, Mexico.
| |
Collapse
|
29
|
Yang K, Zeng L, Zeng J, Deng Y, Wang S, Xu H, He Q, Yuan M, Luo Y, Ge A, Ge J. Research progress in the molecular mechanism of ferroptosis in Parkinson's disease and regulation by natural plant products. Ageing Res Rev 2023; 91:102063. [PMID: 37673132 DOI: 10.1016/j.arr.2023.102063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/25/2023] [Accepted: 09/01/2023] [Indexed: 09/08/2023]
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder of the central nervous system after Alzheimer's disease. The current understanding of PD focuses mainly on the loss of dopamine neurons in the substantia nigra region of the midbrain, which is attributed to factors such as oxidative stress, alpha-synuclein aggregation, neuroinflammation, and mitochondrial dysfunction. These factors together contribute to the PD phenotype. Recent studies on PD pathology have introduced a new form of cell death known as ferroptosis. Pathological changes closely linked with ferroptosis have been seen in the brain tissues of PD patients, including alterations in iron metabolism, lipid peroxidation, and increased levels of reactive oxygen species. Preclinical research has demonstrated the neuroprotective qualities of certain iron chelators, antioxidants, Fer-1, and conditioners in Parkinson's disease. Natural plant products have shown significant potential in balancing ferroptosis-related factors and adjusting their expression levels. Therefore, it is vital to understand the mechanisms by which natural plant products inhibit ferroptosis and relieve PD symptoms. This review provides a comprehensive look at ferroptosis, its role in PD pathology, and the mechanisms underlying the therapeutic effects of natural plant products focused on ferroptosis. The insights from this review can serve as useful references for future research on novel ferroptosis inhibitors and lead compounds for PD treatment.
Collapse
Affiliation(s)
- Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China; Hunan Academy of Chinese Medicine, Changsha, Hunan, China.
| | - Liuting Zeng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China.
| | - Jinsong Zeng
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ying Deng
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Shanshan Wang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Hao Xu
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Qi He
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Mengxia Yuan
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou University Medical College, Shantou, China
| | - Yanfang Luo
- The Central Hospital of Shaoyang, Shaoyang, China
| | - Anqi Ge
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jinwen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China; Hunan Academy of Chinese Medicine, Changsha, Hunan, China.
| |
Collapse
|
30
|
Yang K, Wu J, Li S, Wang S, Zhang J, Wang YP, Yan YS, Hu HY, Xiong MF, Bai CB, Sun YQ, Chen WQ, Zeng Y, Yuan JL, Yin CH. NTRK1 knockdown induces mouse cognitive impairment and hippocampal neuronal damage through mitophagy suppression via inactivating the AMPK/ULK1/FUNDC1 pathway. Cell Death Discov 2023; 9:404. [PMID: 37907480 PMCID: PMC10618268 DOI: 10.1038/s41420-023-01685-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/03/2023] [Accepted: 10/13/2023] [Indexed: 11/02/2023] Open
Abstract
Hippocampal neuronal damage may induce cognitive impairment. Neurotrophic tyrosine kinase receptor 1 (NTRK1) reportedly regulates neuronal damage, although the underlying mechanism remains unclear. The present study aimed to investigate the role of NTRK1 in mouse hippocampal neuronal damage and the specific mechanism. A mouse NTRK1-knockdown model was established and subjected to pre-treatment with BAY-3827, followed by a behavioral test, Nissl staining, and NeuN immunofluorescence (IF) staining to evaluate the cognitive impairment and hippocampal neuronal damage. Next, an in vitro analysis was conducted using the CCK-8 assay, TUNEL assay, NeuN IF staining, DCFH-DA staining, JC-1 staining, ATP content test, mRFP-eGFP-LC3 assay, and LC3-II IF staining to elucidate the effect of NTRK1 on mouse hippocampal neuronal activity, apoptosis, damage, mitochondrial function, and autophagy. Subsequently, rescue experiments were performed by subjecting the NTRK1-knockdown neurons to pre-treatment with O304 and Rapamycin. The AMPK/ULK1/FUNDC1 pathway activity and mitophagy were detected using western blotting (WB) analysis. Resultantly, in vivo analysis revealed that NTRK1 knockdown induced mouse cognitive impairment and hippocampal tissue damage, in addition to inactivating the AMPK/ULK1/FUNDC1 pathway activity and mitophagy in the hippocampal tissues of mice. The treatment with BAY-3827 exacerbated the mouse depressive-like behavior induced by NTRK1 knockdown. The results of in vitro analysis indicated that NTRK1 knockdown attenuated viability, NeuN expression, ATP production, mitochondrial membrane potential, and mitophagy, while enhancing apoptosis and ROS production in mouse hippocampal neurons. Conversely, pre-treatment with O304 and rapamycin abrogated the suppression of mitophagy and the promotion of neuronal damage induced upon NTRK1 silencing. Conclusively, NTRK1 knockdown induces mouse hippocampal neuronal damage through the suppression of mitophagy via inactivating the AMPK/ULK1/FUNDC1 pathway. This finding would provide insight leading to the development of novel strategies for the treatment of cognitive impairment induced due to hippocampal neuronal damage.
Collapse
Affiliation(s)
- Kai Yang
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital; Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, 100026, China
| | - Jue Wu
- Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, 100853, China
| | - Shang Li
- Department of Anesthesiology, Peking University People's Hospital, Beijing, 100044, China
| | - Shan Wang
- Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jing Zhang
- Prenatal Diagnosis Center, Shijiazhuang Obstetrics and Gynecology Hospital, Key Laboratory of Maternal and Fetal Medicine of Hebei Province, Shijiazhuang, Hebei, 050011, China
| | - Yi-Peng Wang
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital; Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, 100026, China
| | - You-Sheng Yan
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital; Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, 100026, China
| | - Hua-Ying Hu
- Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, 100853, China
| | - Ming-Fang Xiong
- Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
| | - Chao-Bo Bai
- Department of Neurology, Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, 100191, China
| | - Yong-Qing Sun
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital; Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, 100026, China
| | - Wen-Qi Chen
- Prenatal Diagnosis Center, Shijiazhuang Obstetrics and Gynecology Hospital, Key Laboratory of Maternal and Fetal Medicine of Hebei Province, Shijiazhuang, Hebei, 050011, China
| | - Yang Zeng
- Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China.
| | - Jun-Liang Yuan
- Department of Neurology, Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, 100191, China.
| | - Cheng-Hong Yin
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital; Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, 100026, China.
| |
Collapse
|
31
|
Cai L, Tang S, Liu Y, Zhang Y, Yang Q. The application of weighted gene co-expression network analysis and support vector machine learning in the screening of Parkinson's disease biomarkers and construction of diagnostic models. Front Mol Neurosci 2023; 16:1274268. [PMID: 37908486 PMCID: PMC10614158 DOI: 10.3389/fnmol.2023.1274268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/29/2023] [Indexed: 11/02/2023] Open
Abstract
Background This study aims to utilize Weighted Gene Co-expression Network Analysis (WGCNA) and Support Vector Machine (SVM) algorithm for screening biomarkers and constructing a diagnostic model for Parkinson's disease. Methods Firstly, we conducted WGCNA analysis on gene expression data from Parkinson's disease patients and control group using three GEO datasets (GSE8397, GSE20163, and GSE20164) to identify gene modules associated with Parkinson's disease. Then, key genes with significantly differential expression from these gene modules were selected as candidate biomarkers and validated using the GSE7621 dataset. Further functional analysis revealed the important roles of these genes in processes such as immune regulation, inflammatory response, and cell apoptosis. Based on these findings, we constructed a diagnostic model by using the expression data of FLT1, ATP6V0E1, ATP6V0E2, and H2BC12 as inputs and training and validating the model using SVM algorithm. Results The prediction model demonstrated an AUC greater than 0.8 in the training, test, and validation sets, thereby validating its performance through SMOTE analysis. These findings provide strong support for early diagnosis of Parkinson's disease and offer new opportunities for personalized treatment and disease management. Conclusion In conclusion, the combination of WGCNA and SVM holds potential in biomarker screening and diagnostic model construction for Parkinson's disease.
Collapse
Affiliation(s)
- Lijun Cai
- Department of Pathophysiology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Shuang Tang
- Department of Pathophysiology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yin Liu
- Department of Pathophysiology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yingwan Zhang
- Department of Pathophysiology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Qin Yang
- Department of Pathophysiology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
32
|
Xu W, Gao W, Guo Y, Xue F, Di L, Fang S, Fan L, He Y, Zhou Y, Xie X, Pang X. Targeting mitophagy for depression amelioration: a novel therapeutic strategy. Front Neurosci 2023; 17:1235241. [PMID: 37869512 PMCID: PMC10587558 DOI: 10.3389/fnins.2023.1235241] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/20/2023] [Indexed: 10/24/2023] Open
Abstract
Major depressive disorder is a global psychiatric condition characterized by persistent low mood and anhedonia, which seriously jeopardizes the physical and mental well-being of affected individuals. While various hypotheses have been proposed to explicate the etiology of depression, the precise pathogenesis and effective treatment of this disorder remain elusive. Mitochondria, as the primary organelles responsible for cellular energy production, possess the ability to meet the essential energy demands of the brain. Research indicated that the accumulation of damaged mitochondria is associated with the onset of depression. Mitophagy, a type of cellular autophagy, specifically targets and removes excess or damaged mitochondria. Emerging evidence demonstrated that mitophagy dysfunction was involved in the progression of depression, and several pharmacological interventions that stimulating mitophagy exerted excellent antidepressant actions. We provided an overview of updated advancements on the regulatory mechanism of mitophagy and the mitophagy abnormality in depressed patients and animals, as well as in cell models of depression. Meanwhile, various therapeutic strategies to restore mitophagy for depression alleviation were also discussed in this review.
Collapse
Affiliation(s)
- Wangjun Xu
- School of Pharmacy, Henan University, Kaifeng, China
| | - Weiping Gao
- School of Pharmacy, Henan University, Kaifeng, China
| | - Yukun Guo
- School of Pharmacy, Henan University, Kaifeng, China
| | - Feng Xue
- School of Pharmacy, Henan University, Kaifeng, China
| | - Lulu Di
- School of Pharmacy, Henan University, Kaifeng, China
| | - Shaojie Fang
- School of Pharmacy, Henan University, Kaifeng, China
| | - Linlin Fan
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Pharmacy, Henan University, Kaifeng, China
| | - Yangyang He
- School of Pharmacy, Henan University, Kaifeng, China
- Institutes of Traditional Chinese Medicine, Henan University, Kaifeng, China
| | - Yunfeng Zhou
- School of Pharmacy, Henan University, Kaifeng, China
- Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, School of Pharmacy, Henan University, Kaifeng, China
| | - Xinmei Xie
- School of Pharmacy, Henan University, Kaifeng, China
- Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, School of Pharmacy, Henan University, Kaifeng, China
| | - Xiaobin Pang
- School of Pharmacy, Henan University, Kaifeng, China
- Institutes of Traditional Chinese Medicine, Henan University, Kaifeng, China
- Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, School of Pharmacy, Henan University, Kaifeng, China
| |
Collapse
|
33
|
Wang X, Hu W, Qu L, Wang J, Wu A, Lo HH, Ng JPL, Tang Y, Yun X, Wu J, Wong VKW, Chung SK, Wang L, Luo W, Ji X, Law BYK. Tricin promoted ATG-7 dependent autophagic degradation of α-synuclein and dopamine release for improving cognitive and motor deficits in Parkinson's disease. Pharmacol Res 2023; 196:106874. [PMID: 37586619 DOI: 10.1016/j.phrs.2023.106874] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/18/2023]
Abstract
Tricin, a natural nontoxic flavonoid distributed in grasses and euphorbia plants, has been reported to scavenge free radicals, possess anti-inflammatory and antioxidative effects. However, its autophagic effect on Parkinson's disease (PD) has not been elucidated. By adopting cellular and C. elegans models of PD, the autophagic effect of tricin was identified based on the level of autophagy markers (LC3-II and p62). Besides, the pharmacological effects on neurotransmitters (dopamine), inflammatory cytokines (IFN γ, TNFα, MCP-1, IL-10, IL-6 and IL-17A), histology (hematoxylin & eosin and Nissl staining) and behavioural pathology (open-field test, hindlimb clasping, Y-maze, Morris water-maze and nest building test) were also confirmed in the A53T-α-synuclein transgenic PD mouse model. Further experiments demonstrated that tricin induced autophagic flux and lowered the level of α-synuclein through AMPK-p70s6K- and ATG7-dependent mechanism. Compared to the existing clinical PD drugs, tricin mitigated pathogenesis and symptoms of PD with no observable side effects. In summary, tricin is proposed as a potential adjuvant remedy or nutraceutical for the prevention and treatment of PD.
Collapse
Affiliation(s)
- Xingxia Wang
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau Special Administrative Region of China; Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Wei Hu
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau Special Administrative Region of China
| | - Liqun Qu
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau Special Administrative Region of China; Marine Traditional Chinese Medicine Research Center, Key Laboratory of Marine Traditional Chinese Medicine in Shandong Universities, Shandong Engineering and Technology Research Center on Omics of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jian Wang
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau Special Administrative Region of China
| | - Anguo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drug ability Evaluation, Luzhou Key Laboratory of Activity Screening and Draggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Hang Hong Lo
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau Special Administrative Region of China
| | - Jerome P L Ng
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau Special Administrative Region of China
| | - Yong Tang
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau Special Administrative Region of China; Sichuan Key Medical Laboratory of New Drug Discovery and Drug ability Evaluation, Luzhou Key Laboratory of Activity Screening and Draggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiaoyun Yun
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau Special Administrative Region of China
| | - Jianhui Wu
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau Special Administrative Region of China
| | - Vincent Kam Wai Wong
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau Special Administrative Region of China
| | - Sookja Kim Chung
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau Special Administrative Region of China; Faculty of Medicine, Macau University of Science and Technology, Macau Special Administrative Region of China
| | - Linna Wang
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau Special Administrative Region of China
| | - Weidan Luo
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau Special Administrative Region of China
| | - Xiang Ji
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau Special Administrative Region of China
| | - Betty Yuen Kwan Law
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau Special Administrative Region of China.
| |
Collapse
|
34
|
Hou K, Liu T, Li J, Xian M, Sun L, Wei J. Liquid-liquid phase separation regulates alpha-synuclein aggregate and mitophagy in Parkinson's disease. Front Neurosci 2023; 17:1250532. [PMID: 37781241 PMCID: PMC10536155 DOI: 10.3389/fnins.2023.1250532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/29/2023] [Indexed: 10/03/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease in the world, and alpha-synuclein (α-syn) abnormal aggregate and mitochondrial dysfunction play a crucial role in its pathological development. Recent studies have revealed that proteins can form condensates through liquid-liquid phase separation (LLPS), and LLPS has been found to be widely present in α-syn aberrant aggregate and mitophagy-related protein physiological processes. This review summarizes the occurrence of α-syn LLPS and its influencing factors, introduces the production and transformation of the related protein LLPS during PINK1-Parkin-mediated mitophagy, hoping to provide new ideas and methods for the study of PD pathology.
Collapse
Affiliation(s)
- Kaiying Hou
- School of Life Sciences, Henan University, Kaifeng, China
| | - Tingting Liu
- School of Life Sciences, Henan University, Kaifeng, China
| | - Jingwen Li
- School of Life Sciences, Henan University, Kaifeng, China
| | - Meiyan Xian
- School of Life Sciences, Henan University, Kaifeng, China
| | - Lin Sun
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, China
| | - Jianshe Wei
- School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
35
|
Zhou Y, Liu Y, Kang Z, Yao H, Song N, Wang M, Song C, Zhang K, Ding J, Tang J, Hu G, Lu M. CircEPS15, as a sponge of MIR24-3p ameliorates neuronal damage in Parkinson disease through boosting PINK1-PRKN-mediated mitophagy. Autophagy 2023; 19:2520-2537. [PMID: 37014258 PMCID: PMC10392753 DOI: 10.1080/15548627.2023.2196889] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/04/2023] [Accepted: 03/24/2023] [Indexed: 04/05/2023] Open
Abstract
Despite growing evidence that has declared the importance of circRNAs in neurodegenerative diseases, the clinical significance of circRNAs in dopaminergic (DA) neuronal degeneration in the pathogenesis of Parkinson disease (PD) remains unclear. Here, we performed rRNA-depleted RNA sequencing and detected more than 10,000 circRNAs in the plasma samples of PD patients. In consideration of ROC and the correlation between Hohen-Yahr stage (H-Y stage) and Unified Parkinson Disease Rating Scale-motor score (UPDRS) of 40 PD patients, circEPS15 was selected for further research. Low expression of circEPS15 was found in PD patients and there was a negative positive correlation between the circEPS15 level and severity of PD motor symptoms, while overexpression of circEPS15 protected DA neurons against neurotoxin-induced PD-like neurodegeneration in vitro and in vivo. Mechanistically, circEPS15 acted as a MIR24-3p sponge to promote the stable expression of target gene PINK1, thus enhancing PINK1-PRKN-dependent mitophagy to eliminate damaged mitochondria and maintain mitochondrial homeostasis. Thus, circEPS15 rescued DA neuronal degeneration through the MIR24-3p-PINK1 axis-mediated improvement of mitochondrial function. This study reveals that circEPS15 exerts a critical role in participating in PD pathogenesis, and may give us an insight into the novel avenue to develop potential biomarkers and therapeutic targets for PD.Abbreviations: AAV: adeno-associated virus; DA: dopaminergic; FISH: fluorescence in situ hybridizations; HPLC: high-performance liquid chromatography; H-Y stage: Hohen-Yahr stage; LDH: lactate dehydrogenase; MMP: mitochondrial membrane potential; MPTP/p: 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid; NC: negative control; PD: Parkinson disease; PINK1: PTEN induced kinase 1; PBS: phosphate-buffered saline; ROS: reactive oxygen species; SNpc: substantia nigra pars compacta; TEM: transmission electron microscopy; UPDRS: Unified Parkinson's Disease Rating Scale-motor score.
Collapse
Affiliation(s)
- Yuanzhang Zhou
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Yang Liu
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhengwei Kang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Hang Yao
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Nanshan Song
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Min Wang
- Department of Geriatrics, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chenghuan Song
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Kezhong Zhang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jianhua Ding
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Juanjuan Tang
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Gang Hu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ming Lu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
36
|
Geng X, Zou Y, Li J, Li S, Qi R, Yu H, Zhong L. BDNF alleviates Parkinson's disease by promoting STAT3 phosphorylation and regulating neuronal autophagy. Cell Tissue Res 2023; 393:455-470. [PMID: 37450039 PMCID: PMC10485099 DOI: 10.1007/s00441-023-03806-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the gradual death of dopaminergic neurons. Brain-derived neurotrophic factor (BDNF) and its receptors are widely distributed throughout the central nervous system, which can promote the survival and growth of neurons and protect neurons. This study revealed that BDNF promotes STAT3 phosphorylation and regulates autophagy in neurons. The PD mouse model was established by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Moreover, SH-SY5Y cells were treated with 1-methyl-4-phenyl-pyridinium (MPP+) to establish a PD cell model. The level of BDNF was low in PD model mice and SH-SY5Y cells treated with MPP+. BDNF enhanced the levels of p-TrkB, P-STAT3, PINK1, and DJ-1. BDNF promoted autophagy, inhibited the level of p-α-syn (Ser129) and enhanced cell proliferation. The autophagy inhibitor 3-Methyladenine (3-methyladenine, 3-MA) reversed the protective effects of BDNF on neurons. BiFC assay results showed that there was a direct physical interaction between BDNF and STAT3, and coimmunoprecipitation experiments indicated an interaction between STAT3 and PI3K. The PI3K agonist Recilisib activated the PI3K/AKT/mTOR pathway, promoted autophagy, and alleviated neuronal cell damage. BDNF alleviates PD pathology by promoting STAT3 phosphorylation and regulating neuronal autophagy in SH-SY5Y cells and cultured primary neurons. Finally, BDNF has neuroprotective effects on PD model mice.
Collapse
Affiliation(s)
- Xin Geng
- The Second Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Yunnan Provincial Clinical Research Center for Neurological Disease, No. 295 Xichang Road, Kunming, Yunnan, 650032, China
| | - Yanghong Zou
- The Second Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Yunnan Provincial Clinical Research Center for Neurological Disease, No. 295 Xichang Road, Kunming, Yunnan, 650032, China
| | - Jinghui Li
- The Second Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Yunnan Provincial Clinical Research Center for Neurological Disease, No. 295 Xichang Road, Kunming, Yunnan, 650032, China
| | - Shipeng Li
- The Second Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Yunnan Provincial Clinical Research Center for Neurological Disease, No. 295 Xichang Road, Kunming, Yunnan, 650032, China
| | - Renli Qi
- The Second Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Yunnan Provincial Clinical Research Center for Neurological Disease, No. 295 Xichang Road, Kunming, Yunnan, 650032, China
| | - Hualin Yu
- The Second Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Yunnan Provincial Clinical Research Center for Neurological Disease, No. 295 Xichang Road, Kunming, Yunnan, 650032, China.
| | - Lianmei Zhong
- The Second Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Yunnan Provincial Clinical Research Center for Neurological Disease, No. 295 Xichang Road, Kunming, Yunnan, 650032, China.
| |
Collapse
|
37
|
Shen DF, Qi HP, Zhang WN, Sang WX. Resveratrol Promotes Autophagy to Improve neuronal Injury in Parkinson's Disease by Regulating SNHG1/miR-128-3p/SNCA Axis. Brain Sci 2023; 13:1124. [PMID: 37626481 PMCID: PMC10452706 DOI: 10.3390/brainsci13081124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD) is seriously threatening the health and life quality of the elderly, who have a high incidence and high disability rate. Resveratrol (RES) was reported to play a protective role in PD. However, the functions and potential mechanism of RES in PD remain unclear, which need to be further explored. METHODS Human neuroblastoma cells (SH-SY5Y and SK-N-SH) were subjected to 1-Methyl-4-phenylpyridium (MPP+) induction to construct a cell model of PD. Cell viability was evaluated using CCK-8. The gene expression was evaluated using qRT-PCR and western blot. Luciferase activity assay and RIP were performed to validate interactions among SNHG1, miR-128-3p and SNCA. RESULTS Our results exhibited that RES reduced SNHG1 and SNCA expression but elevated miR-128-3p expression in human neuroblastoma cells upon MPP+ induction. Functionally, RES resulted in the promotion of cell autophagy in MPP+-induced human neuroblastoma cells, while these influences were abolished by SNHG1 overexpression. Mechanistically, SNHG1 could indirectly elevate SNCA expression via sponging miR-128-3p. Moreover, SNCA overexpression reversed SNHG1 silencing-induced cell autophagy in MPP+-induced human neuroblastoma cells upon RES pre-incubation. CONCLUSIONS RES prevented MPP+-induced repression of cell autophagy through inhibiting the SNHG1/miR-128-3p/SNCA axis, suggesting that RES might play a preventive effect on PD progression.
Collapse
Affiliation(s)
- Dong-Fang Shen
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, No.37, Nangang District, Harbin 150001, China; (H.-P.Q.); (W.-N.Z.); (W.-X.S.)
| | | | | | | |
Collapse
|
38
|
Chen W, Ma L, Shao J, Bi C, Li J, Yang W. miR-185-5p / ATG101 axis alleviated intestinal barrier damage in intestinal ischemia reperfusion through autophagy. Heliyon 2023; 9:e18325. [PMID: 37539299 PMCID: PMC10395547 DOI: 10.1016/j.heliyon.2023.e18325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 08/05/2023] Open
Abstract
Objective Intestinal ischemia-reperfusion (II/R) is a common pathological injury in clinic, and the systemic inflammatory response it causes will lead to multiple organ damage and functional failure. miR-185-5p has been reported to be a regulator of inflammatory response and autophagy, but whether it participates in the regulation of autophagy in II/R is still unclear. Therefore, we aimed to explore the mechanism of miR-185-5p regulating intestinal barrier injury in (II/R). Methods Caco-2 cells was induced by oxygen-glucose deprivation/reoxygenation (OGD/R) to establish II/R model. The superior mesenteric artery of C57BL/6 mice was clamped for 45 min and then subjected to reperfusion for 4 h for the establishment of II/R mice model. miR-185-5p mimic, miR-185-5p inhibitor, pcDNA-autophagy-related 101 (ATG101) were respectively transfected into Caco-2 cells. Real-time quantitative polymerase chain reaction (RT-qPCR) was performed to assess miR-185-5p expression. Western blot detected the level of ATG101 and tight junction-associated proteins ZO1, Occludin, E-cadherin, β-catenin, as well as autophagy markers ATG5, ATG12, LC3Ⅰ/Ⅱ, Beclin1 and SQSTM1. Transepithelial electrical resistance (TEER) values was detected by a resistance meter. FITC-Dextran was performed to measure cell permeability. 5-ethynyl-2'-deoxyuridine (EDU) staining measured cell proliferation. Transmission electron microscope was conducted to observe autophagosomes. Hematoxylin & eosin (H&E) staining observed the damage of mice intestinal. Immunohistochemistry (IHC) measured the percentage of ki67 positive cells. TdT-mediated dUTP nick-end labeling (TUNEL) assay assessed cell apoptosis in intestinal tissues of II/R. Dual-luciferase assay verified the targeting relationship between miR-185-5p and ATG101.Results miR-185-5p was overexpressed in OGD/R-induced Caco-2 cells and intestinal tissues of II/R mice. Knocking down miR-185-5p markedly promoted autophagy and TEER values, reduced cell permeability, and alleviated intestinal barrier damage. ATG101 was a target of miR-185-5p, and overexpression of ATG101 promoted autophagy and dampened OGD/R-induced intestinal barrier damage. Overexpression of miR-185-5p reversed the effect of overexpressed ATG101 on OGD/R-induced Caco-2 cells. Conclusion Knockdown of miR-185-5p enhanced autophagy and alleviated II/R intestinal barrier damage by targeting ATG101.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Yang
- Corresponding author. Department of Anesthesiology, The first affiliated hospital of Kunming medical University, No.295 Xichang Rd, Kunming 650032, Yunnan Province, China
| |
Collapse
|
39
|
Wang M, Yu H, He Y, Liao S, Xu D. Cross-talk between traditional Chinese medicine and Parkinson's disease based on cell autophagy. PHARMACOLOGICAL RESEARCH - MODERN CHINESE MEDICINE 2023; 7:100235. [DOI: 10.1016/j.prmcm.2023.100235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
|
40
|
Wang X, Liu R, Li S, Xia W, Guo H, Yao W, Liang X, Lu Y, Zhang H. The roles, molecular interactions, and therapeutic value of CDK16 in human cancers. Biomed Pharmacother 2023; 164:114929. [PMID: 37236028 DOI: 10.1016/j.biopha.2023.114929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/15/2023] [Accepted: 05/22/2023] [Indexed: 05/28/2023] Open
Abstract
Cyclin-dependent kinase 16 (CDK16) is an orphan "cyclin-dependent kinase" (CDK) involved in the cell cycle, vesicle trafficking, spindle orientation, skeletal myogenesis, neurite outgrowth, secretory cargo transport, spermatogenesis, glucose transportation, cell apoptosis, cell growth and proliferation, metastasis, and autophagy. Human CDK16 is located on chromosome Xp11.3 and is related to X-linked congenital diseases. CDK16 is commonly expressed in mammalian tissues and may act as an oncoprotein. It is a PCTAIRE kinase in which Cyclin Y or its homologue, Cyclin Y-like 1, regulates activity by binding to the N- and C- terminal regions of CDK16. CDK16 plays a vital role in various cancers, including lung cancer, prostate cancer, breast cancer, malignant melanoma, and hepatocellular carcinoma. CDK16 is a promising biomarker for cancer diagnosis and prognosis. In this review, we summarized and discussed the roles and mechanisms of CDK16 in human cancers.
Collapse
Affiliation(s)
- Xiao Wang
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ruiqi Liu
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China; Graduate Department, Bengbu Medical College, Bengbu, Anhui, China
| | - Shuang Li
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Wenjie Xia
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Haiwei Guo
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People' s Hospital, Affiliated People's Hospital, Hangzhou Medical College, 310014, Hangzhou, Zhejiang, China
| | - Weiping Yao
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China; Graduate Department, Bengbu Medical College, Bengbu, Anhui, China
| | - Xiaodong Liang
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yanwei Lu
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Haibo Zhang
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
41
|
Abstract
Neurodegenerative diseases are characterized by the progressive loss of structure or function of neurons. In this Spotlight, we explore the idea that genetic forms of neurodegenerative disorders might be rooted in neural development. Focusing on Alzheimer's, Parkinson's and Huntington's disease, we first provide a brief overview of the pathology for these diseases. Although neurodegenerative diseases are generally thought of as late-onset diseases, we discuss recent evidence promoting the notion that they might be considered neurodevelopmental disorders. With this view in mind, we consider the suitability of animal models for studying these diseases, highlighting human-specific features of human brain development. We conclude by proposing that one such feature, human-specific regulation of neurogenic time, might be key to understanding the etiology and pathophysiology of human neurodegenerative disease.
Collapse
Affiliation(s)
- Khadijeh Shabani
- Institut du Cerveau – Paris Brain Institute – ICM, Sorbonne Université, Inserm, CNRS, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Bassem A. Hassan
- Institut du Cerveau – Paris Brain Institute – ICM, Sorbonne Université, Inserm, CNRS, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| |
Collapse
|
42
|
Wang Z, Cui J, Li D, Ran S, Huang J, Chen G. Morin exhibits a neuroprotective effect in MPTP-induced Parkinson's disease model via TFEB/AMPK-mediated mitophagy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154866. [PMID: 37209604 DOI: 10.1016/j.phymed.2023.154866] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/26/2023] [Accepted: 05/08/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is one of the most common neurodegenerative diseases in the world. Mitophagy has been implicated in PD etiology for decades and its pharmacological activation is recognized as a promising treatment strategy for PD. For mitophagy initiation, low mitochondrial membrane potential (ΔΨm) is essential. We identified a natural compound morin that could induce mitophagy without affecting ΔΨm. Morin is a flavonoid that can be isolated from fruits like mulberry. PURPOSE To reveal the effect of morin on the PD mice model and their potential underlying molecular mechanism. METHODS Mitophagy process induced by morin in N2a cells meditation were measured using flow cytometry and immunofluorescence. JC-1 fluorescence dye used to detect the mitochondrial membrane potential (ΔΨm). The TFEB nuclear translocation were examined by immunofluorescence staining and western blot assay. The PD mice model was induced by MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) intraperitoneal administration. RESULTS We found that morin also promoted nuclear translocation of the mitophagy regulator TFEB and activated the AMPK-ULK1 pathway. In MPTP-induced PD in vivo models, morin protected DA neurons from MPTP neurotoxicity and ameliorated behavioral deficit. CONCLUSION Although morin was previously reported to be neuroprotective in PD, the detailed molecular mechanisms remain to be elucidated. For the first time, we report morin served as a novel and safe mitophagy enhancer underlying AMPK-ULK1 pathway and exhibited anti-Parkinsonian effects indicating its potential as a clinical drug for PD treatment.
Collapse
Affiliation(s)
- Ziying Wang
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China.
| | - Jinshuai Cui
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Dongni Li
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Shuzhen Ran
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Junqing Huang
- Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Gang Chen
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China.
| |
Collapse
|
43
|
Li J, Xu Y, Liu T, Xu Y, Zhao X, Wei J. The Role of Exercise in Maintaining Mitochondrial Proteostasis in Parkinson's Disease. Int J Mol Sci 2023; 24:ijms24097994. [PMID: 37175699 PMCID: PMC10179072 DOI: 10.3390/ijms24097994] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Parkinson's disease (PD) is the second most common rapidly progressive neurodegenerative disease and has serious health and socio-economic consequences. Mitochondrial dysfunction is closely related to the onset and progression of PD, and the use of mitochondria as a target for PD therapy has been gaining traction in terms of both recognition and application. The disruption of mitochondrial proteostasis in the brain tissue of PD patients leads to mitochondrial dysfunction, which manifests as mitochondrial unfolded protein response, mitophagy, and mitochondrial oxidative phosphorylation. Physical exercise is important for the maintenance of human health, and has the great advantage of being a non-pharmacological therapy that is non-toxic, low-cost, and universally applicable. In this review, we investigate the relationships between exercise, mitochondrial proteostasis, and PD and explore the role and mechanisms of mitochondrial proteostasis in delaying PD through exercise.
Collapse
Affiliation(s)
- Jingwen Li
- Department of Kinesiology, School of Physical Education, Henan University, Kaifeng 475000, China
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yanli Xu
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Tingting Liu
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yuxiang Xu
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Xiantao Zhao
- Department of Kinesiology, School of Physical Education, Henan University, Kaifeng 475000, China
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jianshe Wei
- Department of Kinesiology, School of Physical Education, Henan University, Kaifeng 475000, China
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
44
|
Casanova A, Wevers A, Navarro-Ledesma S, Pruimboom L. Mitochondria: It is all about energy. Front Physiol 2023; 14:1114231. [PMID: 37179826 PMCID: PMC10167337 DOI: 10.3389/fphys.2023.1114231] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/29/2023] [Indexed: 05/15/2023] Open
Abstract
Mitochondria play a key role in both health and disease. Their function is not limited to energy production but serves multiple mechanisms varying from iron and calcium homeostasis to the production of hormones and neurotransmitters, such as melatonin. They enable and influence communication at all physical levels through interaction with other organelles, the nucleus, and the outside environment. The literature suggests crosstalk mechanisms between mitochondria and circadian clocks, the gut microbiota, and the immune system. They might even be the hub supporting and integrating activity across all these domains. Hence, they might be the (missing) link in both health and disease. Mitochondrial dysfunction is related to metabolic syndrome, neuronal diseases, cancer, cardiovascular and infectious diseases, and inflammatory disorders. In this regard, diseases such as cancer, Alzheimer's, Parkinson's, amyotrophic lateral sclerosis (ALS), chronic fatigue syndrome (CFS), and chronic pain are discussed. This review focuses on understanding the mitochondrial mechanisms of action that allow for the maintenance of mitochondrial health and the pathways toward dysregulated mechanisms. Although mitochondria have allowed us to adapt to changes over the course of evolution, in turn, evolution has shaped mitochondria. Each evolution-based intervention influences mitochondria in its own way. The use of physiological stress triggers tolerance to the stressor, achieving adaptability and resistance. This review describes strategies that could recover mitochondrial functioning in multiple diseases, providing a comprehensive, root-cause-focused, integrative approach to recovering health and treating people suffering from chronic diseases.
Collapse
Affiliation(s)
- Amaloha Casanova
- Department of Physiotherapy, University of Granada, Granada, Spain
- Faculty of Health Sciences, Melilla, Spain
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| | - Anne Wevers
- Department of Physiotherapy, University of Granada, Granada, Spain
- Faculty of Health Sciences, Melilla, Spain
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| | - Santiago Navarro-Ledesma
- Department of Physiotherapy, University of Granada, Granada, Spain
- Faculty of Health Sciences, Melilla, Spain
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| | - Leo Pruimboom
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| |
Collapse
|
45
|
Ma C, Wei X, Wang F, Zhang T, Jiang Y, Meng Z, Zhang Z. Tumor necrosis factor α–induced protein 3 mediates inflammation and neuronal autophagy in Parkinson's disease via the NFκB and mTOR pathways. Neurosci Lett 2023; 805:137223. [PMID: 37019273 DOI: 10.1016/j.neulet.2023.137223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/27/2023] [Accepted: 04/01/2023] [Indexed: 04/05/2023]
Abstract
This study aimed to probe the function of tumor necrosis factor α-induced protein 3 (TNFAIP3) in the pathogenesis of Parkinson disease (PD) with its association with autophagy and inflammatory response. TNFAIP3 was reduced in the SN of PD patients (the GSE54282 dataset) and mice and in the MPP+-treated SK-N-SH cells. TNFAIP3 inhibited inflammatory response and enhanced autophagy, thereby alleviating PD in mice. NFκB and mTOR pathways were activated in the SN of PD mice and MPP+-treated cells. TNFAIP3 blocked the two pathways by preventing the p65 nuclear translocation and stabilizing DEPTOR, an endogenous inhibitor of mTOR. NFκB activator LPS and mTOR activator MHY1485 reversed the effects of TNFAIP3 on mitigation of injury in PD mice and in SK-N-SH cells induced with MPP+. Altogether, TNFAIP3 played a neuroprotective role in MPTP-induced mice by restricting NFκB and mTOR pathways.
Collapse
|
46
|
Li T, Zheng Y, Wu Z, Guo M, Liu R, Zeng W, Lv Y. YTHDF2 controls hexavalent chromium-induced mitophagy through modulating Hif1α and Bnip3 decay via the m 6A/mRNA pathway in spermatogonial stem cells/progenitors. Toxicol Lett 2023; 377:38-50. [PMID: 36739042 DOI: 10.1016/j.toxlet.2023.01.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/08/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Spermatogonial stem cells (SSCs) are the basis of spermatogenesis, and SSC homeostasis is essential for lifelong male fertility. Currently, environmental pollution remains one of the factors affecting human reproductive health. Chromium is a prevalent metal element, and excessive exposure to hexavalent chromium (Cr (VI)) can cause male reproductive disorders. Nevertheless, the toxic effects of Cr (VI) on SSCs and the underlying mechanisms remain incompletely understood. Here, we showed that Cr (VI) exposure triggered mitophagy in mouse SSCs/progenitors in a time-dependent manner. Concurrently, Cr (VI) treatment caused reactive oxygen species (ROS) accumulation and activated the HIF1α-mediated BNIP3 expression to trigger mitophagy. In addition, Cr (VI) exposure significantly decreased the level of m6A modification. Further, we identified that YTHDF2 regulated the stability of Bnip3 and Hif1α mRNAs in an m6A-dependent manner, which was involved in Cr (VI)-induced mitophagy. Collectively, our study not only expands the mechanisms for Cr (VI)-caused male reproductive toxicity, but also provides pharmacological targets for prevention and treatment of Cr (VI)-induced male fertility impairment.
Collapse
Affiliation(s)
- Tianjiao Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yi Zheng
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhili Wu
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ming Guo
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ruifang Liu
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenxian Zeng
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Yinghua Lv
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
47
|
Kulkarni A, Preeti K, Tryphena KP, Srivastava S, Singh SB, Khatri DK. Proteostasis in Parkinson's disease: Recent development and possible implication in diagnosis and therapeutics. Ageing Res Rev 2023; 84:101816. [PMID: 36481490 DOI: 10.1016/j.arr.2022.101816] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/27/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
The protein dyshomeostasis is identified as the hallmark of many age-related neurodegenerative disorders including Parkinson's disease (PD). The diseased brain shows the deposition of Lewy bodies composed of α-synuclein protein aggregates. Functional proteostasis is characterized by the well-coordinated signaling network constituting unfolded protein response (UPR), the ubiquitin-proteasome system (UPS), and the autophagy-lysosome pathway (ALP). These networks ensure proper synthesis, folding, confirmation, and degradation of protein i.e., α-synuclein protein in PD. The proper functioning the of intricately woven proteostasis network is quite resilient to sustain under the influence of stressors. The synuclein protein turnover is hugely influenced by the autosomal dominant, recessive, and X-linked mutational changes of a gene involved in UPR, UPS, and ALP. The methylation, acetylation-related epigenetic modifications of DNA and histone proteins along with microRNA-mediated transcriptional changes also lead to extensive proteostasis dysregulation. The result of defective proteostasis is the deposition of many proteins which start appearing in the biofluids and can be identified as potential biomarkers for early diagnosis of PD. The therapeutic intervention targeted at different strata of proteostasis machinery holds great possibilities for delaying the age-related accumulation of pathological hallmarks.
Collapse
Affiliation(s)
- Amrita Kulkarni
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education, and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Kumari Preeti
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education, and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Kamatham Pushpa Tryphena
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education, and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Shashi Bala Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education, and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Dharmendra Kumar Khatri
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education, and Research (NIPER), Hyderabad, Telangana 500037, India.
| |
Collapse
|
48
|
Chen YQ, Gao LD, Liu YL, Shen Y, Diao JL, Yang WH, Wei RL. Autophagy in graves' ophthalmopathy. Front Cell Dev Biol 2023; 11:1158279. [PMID: 37123414 PMCID: PMC10140433 DOI: 10.3389/fcell.2023.1158279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/03/2023] [Indexed: 05/02/2023] Open
Abstract
Graves' ophthalmopathy (GO) is an inflammatory autoimmune disease that affects the eyes. It can significantly alter the quality of life in patients because of its distinctive pathological appearance and the effect on vision. To date, the exact pathological mechanism of GO has not been explicitly discovered. However, several studies have associated autophagy with this disease. Autophagy is a catabolic process that helps maintain homeostasis in all organisms by protecting the cells and tissues from various endogenous and exogenous stress factors. Based on our results, patients affected with GO have comparatively elevated levels of autophagy, which critically affects the pathological mechanism of the GO. In this review, we have summarized the autophagy mechanism in the pathogenesis of GO.
Collapse
Affiliation(s)
- Yu-Qing Chen
- Department of Ophthalmology, Changzheng Hospital of Naval Medicine University, Shanghai, China
| | - Lian-Di Gao
- Department of Nursing, Changzheng Hospital of Naval Medicine University, Shanghai, China
| | - Yi-Lin Liu
- Department of Nursing, Changzheng Hospital of Naval Medicine University, Shanghai, China
| | - Ya Shen
- Department of Ophthalmology, Changzheng Hospital of Naval Medicine University, Shanghai, China
| | - Jia-Le Diao
- Department of Ophthalmology, Changzheng Hospital of Naval Medicine University, Shanghai, China
| | - Wei-Hua Yang
- Shenzhen Eye Hospital, Jinan University, Shenzhen, China
- *Correspondence: Rui-Li Wei, ; Wei-Hua Yang,
| | - Rui-Li Wei
- Department of Ophthalmology, Changzheng Hospital of Naval Medicine University, Shanghai, China
- *Correspondence: Rui-Li Wei, ; Wei-Hua Yang,
| |
Collapse
|
49
|
Iriondo MN, Etxaniz A, Varela YR, Ballesteros U, Hervás JH, Montes LR, Goñi FM, Alonso A. LC3 subfamily in cardiolipin-mediated mitophagy: a comparison of the LC3A, LC3B and LC3C homologs. Autophagy 2022; 18:2985-3003. [PMID: 35414338 PMCID: PMC9673933 DOI: 10.1080/15548627.2022.2062111] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Externalization of the phospholipid cardiolipin (CL) to the outer mitochondrial membrane has been proposed to act as a mitophagy trigger. CL would act as a signal for binding the LC3 macroautophagy/autophagy proteins. As yet, the behavior of the LC3-subfamily members has not been directly compared in a detailed way. In the present contribution, an analysis of LC3A, LC3B and LC3C interaction with CL-containing model membranes, and of their ability to translocate to mitochondria, is described. Binding of LC3A to CL was stronger than that of LC3B; both proteins showed a similar ability to colocalize with mitochondria upon induction of CL externalization in SH-SY5Y cells. Besides, the double silencing of LC3A and LC3B proteins was seen to decrease CCCP-induced mitophagy. Residues 14 and 18 located in the N-terminal region of LC3A were shown to be important for its recognition of damaged mitochondria during rotenone- or CCCP-induced mitophagy. Moreover, the in vitro results suggested a possible role of LC3A, but not of LC3B, in oxidized-CL recognition as a counterweight to excessive apoptosis activation. In the case of LC3C, even if this protein showed a stronger CL binding than LC3B or LC3A, the interaction was less specific, and colocalization of LC3C with mitochondria was not rotenone dependent. These results suggest that, at variance with LC3A, LC3C does not participate in cargo recognition during CL-mediated-mitophagy. The data support the notion that the various LC3-subfamily members might play different roles during autophagy initiation, identifying LC3A as a novel stakeholder in CL-mediated mitophagy. Abbreviations: ACTB/β-actin: actin beta; Atg8: autophagy-related 8; CL: cardiolipin; CCCP: carbonyl cyanide m-chlorophenyl hydrazone; DMSO: dimethyl sulfoxide; DOPE: 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine; DTT: DL-dithiothreitol; FKBP8: FKBP prolyl isomerase 8; GABARAP: GABA type A receptor associated protein; GABARAPL1: GABA type A receptor associated protein like 1; GABARAPL2: GABA type A receptor associated protein like 2; GFP: green fluorescent protein; IMM: inner mitochondrial membrane; LUV/LUVs: large unilamellar vesicle/s; MAP1LC3A/LC3A: microtubule associated protein 1 light chain 3 alpha; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MAP1LC3C/LC3C: microtubule associated protein 1 light chain 3 gamma; NME4/NDPK-D/Nm23-H4: NME/NM23 nucleoside diphosphate kinase 4; O/A: oligomycin A + antimycin A; OMM: outer mitochondrial membrane; PA: phosphatidic acid; PC: phosphatidylcholine; PG: phosphatidylglycerol; PINK1: PTEN induced putative kinase 1; PtdIns4P: phosphatidylinositol-4-phosphate; Rho-PE: lissamine rhodamine phosphatidylethanolamine; SUV/SUVs: small unilamellar vesicle/s.
Collapse
Affiliation(s)
- Marina N. Iriondo
- Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, Spain,Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, Spain
| | - Asier Etxaniz
- Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, Spain,Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, Spain
| | - Yaiza R. Varela
- Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, Spain,Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, Spain
| | - Uxue Ballesteros
- Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, Spain,Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, Spain
| | - Javier H. Hervás
- Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, Spain,Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, Spain,The Molecular Cell Biology of Autophagy, The Francis Crick Institute, London, UK
| | - L. Ruth Montes
- Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, Spain
| | - Félix M. Goñi
- Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, Spain,Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, Spain
| | - Alicia Alonso
- Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, Spain,Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, Spain,CONTACT Alicia Alonso Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, E-48940, Spain
| |
Collapse
|
50
|
Xi X, Han L. Exploring the relationship between novel Coronavirus pneumonia and Parkinson's disease. Medicine (Baltimore) 2022; 101:e31813. [PMID: 36401405 PMCID: PMC9678520 DOI: 10.1097/md.0000000000031813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The hypothesis is that there is 0a relationship between Parkinson's disease and coronavirus disease 2019 (COVID-19). By summarizing the pathogenesis of Parkinson's disease and COVID-19 and the impact of COVID-19 on the central nervous system, the relationship between Parkinson's disease and COVID-19 was analyzed, including whether Parkinson's disease is a predisposition factor for COVID-19 and whether COVID-19 causes the occurrence of Parkinson's disease. Discuss the impact of COVID-19 on patients with Parkinson's disease, including symptoms and life impact. To summarize the principles, goals and methods of home rehabilitation for Parkinson's disease patients during COVID-19. Through the analysis of this paper, it is believed that COVID-19 may cause Parkinson's disease. Parkinson's disease has the condition of susceptibility to COVID-19, but this conclusion is still controversial.
Collapse
Affiliation(s)
- Xiaoming Xi
- Rehabilitation Center,Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Beijing
- * Correspondence: Xiaoming Xi, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, No.15, Badachu Xixizhuang, Shijingshan District, Beijing (e-mail: )
| | - Liang Han
- Shandong University of Traditional Chinese Medicine
| |
Collapse
|