1
|
Wang L, Liang Z, Chai Z, Cong W, Zhu L, Guo Z, Song M, Ma J, Guo T, Zhang W, Zheng W, Jiang Z. Construction and evolution of artificial reef ecosystems: Response and regulation of marine microorganisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 367:125610. [PMID: 39743195 DOI: 10.1016/j.envpol.2024.125610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/19/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
Artificial reefs (ARs) are an important means of improving marine ecological environments and promoting the sustainable use of marine biological resources. After AR deployment, biological communities undergo dynamic changes as species succession and shifts in community structure. As the most sensitive frontier affected by the environment, the complex and dynamic changes of microbial communities play a crucial role in the health and stability of the ecosystem. This article reviews how AR construction affects the composition and function of marine microorganisms, their contributions to ecosystem stability, and the interaction mechanisms between microbial and macroecological systems. We focus on the responses and regulatory roles of microorganisms in AR ecosystems, including changes in microbial abundance, diversity, and distribution in the environment and on reef surfaces. Additionally, we examine their roles in nutrient cycling, the carbon sequestration, and their interactions with higher trophic organisms. We identify critical knowledge gaps and research deficiencies regarding microbial community risks that need to be addressed, which provide a framework for studying the complex relationships among marine environments, microbial communities and macrobiotic communities in the process of marine ranching construction.
Collapse
Affiliation(s)
- Lu Wang
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhenlin Liang
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zitong Chai
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Wei Cong
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Lixin Zhu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhansheng Guo
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Minpeng Song
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Junyang Ma
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Tingting Guo
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Wenyu Zhang
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Wenmeng Zheng
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhaoyang Jiang
- Marine College, Shandong University, Weihai, Shandong, 264209, China.
| |
Collapse
|
2
|
Welch RJ, Childs AR, Murray TS, Darnaude AM, James NC. The role of acoustic telemetry in assessing fish connectivity within marine seascapes: A global review. JOURNAL OF FISH BIOLOGY 2024. [PMID: 39635955 DOI: 10.1111/jfb.16011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 11/05/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024]
Abstract
The study of aquatic animal movements is a rapidly growing field of research, with tracking methodology ever developing and refining. Acoustic telemetry is arguably the most popular method used to study the movements of fish. Despite this method being able to elucidate many aspects of movement behavior, including residency, home range, and migration, among others, one aspect that remains challenging is the study and definition of connectivity, particularly within marine seascapes. As such, this review assesses published literature on acoustic telemetry studies, which have specifically assessed some aspect of fish connectivity, and discusses these in terms of study distribution and overall trends, the diversity of taxa and life stage assessed, the role that large-scale acoustic telemetry networks plays in assessing connectivity of marine fishes, how connectivity studies have been used in an applied context, and proposes definitions linked to specific types of connectivity, which will assist future researchers when conceptualizing studies. Further, methods that can be used in conjunction with acoustic telemetry to complement the data are discussed. Given that marine resources and habitats are intricately connected, this review highlights the critical role that acoustic telemetry can play in assessing this link. It is envisaged that our developed framework of connectivity definitions will assist future studies and stakeholders in assessing ecosystem functioning and ultimately contribute to improved conservation and management of marine fish populations and ecosystems.
Collapse
Affiliation(s)
- Rebecca J Welch
- South African Institute for Aquatic Biodiversity, Makhanda, South Africa
| | - Amber-Robyn Childs
- South African Institute for Aquatic Biodiversity, Makhanda, South Africa
- Department of Ichthyology and Fisheries Science, Rhodes University, Makhanda, South Africa
| | - Taryn S Murray
- South African Institute for Aquatic Biodiversity, Makhanda, South Africa
- Department of Ichthyology and Fisheries Science, Rhodes University, Makhanda, South Africa
| | - Audrey M Darnaude
- MARBEC, Université de Montpellier, CNRS, IRD, Ifremer, Montpellier, France
| | - Nicola C James
- South African Institute for Aquatic Biodiversity, Makhanda, South Africa
- Institute for Coastal and Marine Research, Institute for Coastal and Marine Research, Nelson Mandela University, Gqeberha, South Africa
| |
Collapse
|
3
|
Knoester EG, Vos A, Saru C, Murk AJ, Osinga R. Concrete evidence: outplanted corals for reef restoration do not need extended curing of ordinary Portland cement. ROYAL SOCIETY OPEN SCIENCE 2024; 11:241064. [PMID: 39635152 PMCID: PMC11614532 DOI: 10.1098/rsos.241064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/23/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024]
Abstract
Artificial reefs for coral reef restoration are often concrete-based. After concrete is poured, it initially has a high surface pH (approx. 13), which neutralizes within several weeks. During this curing, colonization by marine microalgae is delayed and also macrobenthos such as corals may be impacted. In this study, we evaluated how concrete curing time applied prior to the deployment of artificial reefs affected coral performance. Fragments of five coral species were outplanted onto ordinary Portland concrete discs (n = 10) that had been cured on land. Seven different curing periods were applied, ranging from one day up to four months. The discs with corals were deployed at a Kenyan reef and photographed at the start and end of the experiment. After 1 year, coral cover had increased for four coral species and declined for one, but this was unrelated to concrete curing time. Also, no effect of curing time was seen on the development of other common benthic organisms such as macroalgae or soft corals. We conclude that curing of concrete is unlikely to have any long-term negative impacts on coral performance and therefore, extended curing of artificial reefs prior to coral attachment is unlikely to benefit reef restoration efforts.
Collapse
Affiliation(s)
- E. G. Knoester
- Marine Animal Ecology, Wageningen University and Research, PO Box 338, Wageningen6700 AH, The Netherlands
- REEFolution Trust, Diani Beach Road 5112-80401, Diani Beach, Kenya
| | - A. Vos
- Marine Animal Ecology, Wageningen University and Research, PO Box 338, Wageningen6700 AH, The Netherlands
- REEFolution Trust, Diani Beach Road 5112-80401, Diani Beach, Kenya
| | - C. Saru
- REEFolution Trust, Diani Beach Road 5112-80401, Diani Beach, Kenya
| | - A. J. Murk
- Marine Animal Ecology, Wageningen University and Research, PO Box 338, Wageningen6700 AH, The Netherlands
| | - R. Osinga
- Marine Animal Ecology, Wageningen University and Research, PO Box 338, Wageningen6700 AH, The Netherlands
| |
Collapse
|
4
|
Boscarino-Gaetano R, Vernes K, Nordberg EJ. Creating wildlife habitat using artificial structures: a review of their efficacy and potential use in solar farms. Biol Rev Camb Philos Soc 2024; 99:1848-1867. [PMID: 38735646 DOI: 10.1111/brv.13095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/14/2024]
Abstract
The biodiversity crisis is exacerbated by a growing human population modifying nearly three-quarters of the Earth's land surface area for anthropogenic uses. Habitat loss and modification represent the largest threat to biodiversity and finding ways to offset species decline has been a significant undertaking for conservation. Landscape planning and conservation strategies can enhance habitat suitability for biodiversity in human-modified landscapes. Artificial habitat structures such as artificial reefs, nest boxes, chainsaw hollows, artificial burrows, and artificial hibernacula have all been successfully implemented to improve species survival in human-modified and fragmented landscapes. As the global shift towards renewable energy sources continues to rise, the development of photovoltaic systems is growing exponentially. Large-scale renewable projects, such as photovoltaic solar farms have large space requirements and thus have the potential to displace local wildlife. We discuss the feasibility of 'conservoltaic systems' - photovoltaic systems that incorporate elements tailored specifically to enhance wildlife habitat suitability and species conservation. Artificial habitat structures can potentially lessen the impacts of industrial development (e.g., photovoltaic solar farms) through strategic landscape planning and an understanding of local biodiversity requirements to facilitate recolonization.
Collapse
Affiliation(s)
- Remo Boscarino-Gaetano
- Ecosystem Management, School of Environmental and Rural Science, University of New England, Armidale, New South Wales, 2351, Australia
| | - Karl Vernes
- Ecosystem Management, School of Environmental and Rural Science, University of New England, Armidale, New South Wales, 2351, Australia
| | - Eric J Nordberg
- Ecosystem Management, School of Environmental and Rural Science, University of New England, Armidale, New South Wales, 2351, Australia
| |
Collapse
|
5
|
Maslov D, Cruz F, Pinheiro M, Miranda T, Valente IB, Ferreira V, Pereira E. Functional Conception of Biomimetic Artificial Reefs Using Parametric Design and Modular Construction. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2024; 12:1682. [DOI: 10.3390/jmse12091682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Artificial reefs featuring different shapes and functions have been deployed around the world, causing impacts on marine ecosystems. However, the approaches typically used to deliver topological complexity, flexibility and expanding requirements to prospective structures during the initial design stages are not well established. The aim of this study was to highlight the advantages and provide evidence on how modularity and parametric design can holistically leverage the performance of multifunctional artificial reefs (MFARs). In particular, the goal was to develop a parametric design for MFAR and establish a direct relationship between specific design parameters and the MFAR target functions or design requirements. The idea of implementing the parametric design for generating the initial biomimetic geometry of the individual modular unit was explored. Furthermore, possible ways of manipulating the geometric parameters of the individual module and the whole assembly were proposed. The findings suggest that, by adopting the developed procedure and the examples studied, several functions may be reached within a single assembly: the promotion of marine biodiversity restoration, the support of scientific platforms with various sensors, as well as the development of recreational diving and of touristic attraction areas. Acquired knowledge suggests that the concept of a nature-like design approach was developed for artificial reefs with varying scales, complexity and functions, which widens the range of possibilities of how smart design of human-made underwater structures may contribute to benefiting the near shore ecosystems.
Collapse
Affiliation(s)
- Dmytro Maslov
- IB-S/ISISE, Institute of Science and Innovation for Bio-Sustainability (IB-S) and Institute for Sustainability and Innovation in Structural Engineering, Department of Civil Engineering, University of Minho, 4800-058 Guimarães, Portugal
| | - Fabio Cruz
- IB-S/ISISE, Institute of Science and Innovation for Bio-Sustainability (IB-S) and Institute for Sustainability and Innovation in Structural Engineering, Department of Civil Engineering, University of Minho, 4800-058 Guimarães, Portugal
| | - Marisa Pinheiro
- IB-S/ISISE, Institute of Science and Innovation for Bio-Sustainability (IB-S) and Institute for Sustainability and Innovation in Structural Engineering, Department of Civil Engineering, University of Minho, 4800-058 Guimarães, Portugal
- Level-Geotechnical Asset Management, Rua de Pitancinhos, Palmeira, 4700-727 Braga, Portugal
| | - Tiago Miranda
- IB-S/ISISE, Institute of Science and Innovation for Bio-Sustainability (IB-S) and Institute for Sustainability and Innovation in Structural Engineering, Department of Civil Engineering, University of Minho, 4800-058 Guimarães, Portugal
| | - Isabel Brito Valente
- IB-S/ISISE, Institute of Science and Innovation for Bio-Sustainability (IB-S) and Institute for Sustainability and Innovation in Structural Engineering, Department of Civil Engineering, University of Minho, 4800-058 Guimarães, Portugal
| | - Vasco Ferreira
- Câmara Municipal de Esposende, Praça do Munícipio, 4740-223 Esposende, Portugal
| | - Eduardo Pereira
- IB-S/ISISE, Institute of Science and Innovation for Bio-Sustainability (IB-S) and Institute for Sustainability and Innovation in Structural Engineering, Department of Civil Engineering, University of Minho, 4800-058 Guimarães, Portugal
| |
Collapse
|
6
|
Qin M, Nie Y. Impact of marine ranching demonstration areas on regional ecological efficiency - Trial evidence based on the SCM. MARINE POLLUTION BULLETIN 2024; 205:116636. [PMID: 38964189 DOI: 10.1016/j.marpolbul.2024.116636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/06/2024]
Abstract
The establishment of marine ranching demonstration areas is crucial for restoring offshore fishery resources, fostering ecosystem harmony, and creating blue "carbon sinks" in China. While their ecological benefits are evident, their impact on surrounding areas remains uncertain. This study takes the first batch of national marine ranching demonstration areas established in 2015 as a quasi-natural experiment and uses synthetic control methods to empirically evaluate the effects and mechanisms of their construction on regional ecological efficiency. Results show heterogeneous impacts, with positive effects in Jiangsu and Liaoning but negligible elsewhere. Mechanism analysis reveals that marine ranching demonstration areas enhance ecological efficiency through economic growth, and industrial structure optimization. Differences in marine ranching types and regulations influence their impact, with public welfare-oriented marine ranching showing greater positive effects compared to aquaculture-oriented ones. Overall, these findings hold theoretical and practical implications for advancing modern marine ranching construction.
Collapse
Affiliation(s)
- Man Qin
- School of Management, Ocean University of China, Qingdao 266100, China; Institute of Marine Development of OUC, Ocean University of China, Qingdao 266100, China.
| | - Yujuan Nie
- School of Management, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
7
|
Zhu Y, Tu X, Bi Y, Song G, Mi W. Competition in the Periphytic Algal Community during the Colonization Process: Evidence from the World's Largest Water Diversion Project. PLANTS (BASEL, SWITZERLAND) 2024; 13:2067. [PMID: 39124185 PMCID: PMC11314427 DOI: 10.3390/plants13152067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024]
Abstract
Periphytic algal colonization is common in aquatic systems, but its interspecific competition remains poorly understood. In order to fill the gap, the process of periphytic algal colonization in the Middle Route of the South to North Water Diversion Project was studied. The results showed that the process was divided into three stages: the initial colonization stage (T1, 3-6 days), community formation stage (T2, 12-18 days) and primary succession stage (T3, 24-27 days). In T1, the dominant species were Diatoma vulgaris (Bory), Navicula phyllepta (Kützing) and Fragilaria amphicephaloides (Lange-Bertalot) belonging to Heterokontophyta; these species boasted wide niche widths (NWs), low niche overlap (NO) and low ecological response rates (ERRs). In T2, the dominant species were Diatoma vulgaris, Cymbella affinis (Kützing), Navicula phyllepta, Fragilaria amphicephaloides, Gogorevia exilis (Kützing), Melosira varians (C.Agardh), Phormidium willei (N.L.Gardner) and Cladophora rivularis (Kuntze). These species displayed wider NWs, lower NO, and lower ERRs than those in T1. In T3, the dominant species were Diatoma vulgaris, Cymbella affinis, Navicula phyllepta, Fragilaria amphicephaloides, Achnanthes exigu (Grunow), etc. Among them, Heterokontophyta such as Diatoma vulgaris and Cymbella affinis had a competitive advantage based on NWs and ERRs. Cyanobacteria like Phormidium willei lost their dominant status due to the narrower NW and the increased NO. It could be concluded the interspecific competition became fiercer and shaped the colonization process; this study will be helpful in understanding the colonization of periphytic algal communities.
Collapse
Affiliation(s)
- Yuxuan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Y.Z.); (Y.B.); (G.S.)
| | - Xiaojie Tu
- Hubei Key Laboratory of Resources and Eco-Environment Geology (Hubei Geological Bureau), Wuhan 430034, China;
| | - Yonghong Bi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Y.Z.); (Y.B.); (G.S.)
| | - Gaofei Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Y.Z.); (Y.B.); (G.S.)
| | - Wujuan Mi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Y.Z.); (Y.B.); (G.S.)
| |
Collapse
|
8
|
Wan Y, Kong Q, Du H, Yang W, Zha W, Li W. Effectiveness of artificial reefs in enhancing phytoplankton community dynamics: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174593. [PMID: 38997038 DOI: 10.1016/j.scitotenv.2024.174593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/19/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024]
Abstract
Artificial reefs (ARs) are widespread globally and play a positive role in enhancing fish communities and restoring habitat. However, the effect of ARs on phytoplankton, which are fundamental to the marine food chain, remains inconclusive. Conducting a literature review and meta-analysis, this study investigates how ARs influence phytoplankton community dynamics by comparing the biomass, density, and diversity of phytoplankton between ARs and natural water bodies across varying deployment durations, constituent materials, and climatic zones. The study findings suggest that, overall, ARs enhance the biomass, density, and diversity of phytoplankton communities, with no significant differences observed compared to natural water bodies. The enhancement effect of ARs on phytoplankton communities becomes progressively more pronounced with increasing deployment time, with the overall status of phytoplankton communities being optimal when artificial reefs are deployed for 5 years or longer. Concrete and stone ARs can significantly enhance the biomass and diversity of phytoplankton, respectively. The effect of ARs on phytoplankton diversity is unrelated to climatic zones. However, deploying ARs in temperate waters significantly enhances phytoplankton biomass, while in tropical waters, it significantly reduces phytoplankton density. The research findings provide practical implications for the formulation of artificial reef construction strategies tailored to the characteristics of different aquatic ecosystems, emphasizing the need for long-term deployment and appropriate material selection. This study offers a theoretical basis for optimizing AR design and deployment to achieve maximum ecological benefits.
Collapse
Affiliation(s)
- Yu Wan
- Key Laboratory of Ministry of Education for Hydraulic and Water Transport Engineering, Chongqing Jiaotong University, Chongqing 400074, PR China; National Inland Waterway Regulation Engineering Technology Research Center, Chongqing Jiaotong University, Chongqing 400074, PR China
| | - Qiaoling Kong
- Key Laboratory of Ministry of Education for Hydraulic and Water Transport Engineering, Chongqing Jiaotong University, Chongqing 400074, PR China
| | - Hongbo Du
- Key Laboratory of Ministry of Education for Hydraulic and Water Transport Engineering, Chongqing Jiaotong University, Chongqing 400074, PR China; National Inland Waterway Regulation Engineering Technology Research Center, Chongqing Jiaotong University, Chongqing 400074, PR China
| | - Wei Yang
- Key Laboratory of Ministry of Education for Hydraulic and Water Transport Engineering, Chongqing Jiaotong University, Chongqing 400074, PR China; National Inland Waterway Regulation Engineering Technology Research Center, Chongqing Jiaotong University, Chongqing 400074, PR China
| | - Wei Zha
- Key Laboratory of Ministry of Education for Hydraulic and Water Transport Engineering, Chongqing Jiaotong University, Chongqing 400074, PR China
| | - Wenjie Li
- Key Laboratory of Ministry of Education for Hydraulic and Water Transport Engineering, Chongqing Jiaotong University, Chongqing 400074, PR China; National Inland Waterway Regulation Engineering Technology Research Center, Chongqing Jiaotong University, Chongqing 400074, PR China.
| |
Collapse
|
9
|
Ronglan E, Rubio AP, da Silva AO, Fan D, Gair JL, Stathatou PM, Bastidas C, Strand E, Ferrandis JDA, Gershenfeld N, Triantafyllou MS. Architected materials for artificial reefs to increase storm energy dissipation. PNAS NEXUS 2024; 3:pgae101. [PMID: 38533109 PMCID: PMC10964131 DOI: 10.1093/pnasnexus/pgae101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/20/2024] [Indexed: 03/28/2024]
Abstract
Increasing extreme weather events require a corresponding increase in coastal protection. We show that architected materials, which have macroscopic properties that differ from those of their constituent components, can increase wave energy dissipation by more than an order of magnitude over both natural and existing artificial reefs, while providing a biocompatible environment. We present a search that optimized their design through proper hydrodynamic modeling and experimental testing, validated their performance, and characterized sustainable materials for their construction.
Collapse
Affiliation(s)
- Edvard Ronglan
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alfonso Parra Rubio
- Center for Bits and Atoms, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Dixia Fan
- School of Engineering, Westlake University, Hangzhou 310024, China
| | | | - Patritsia Maria Stathatou
- Center for Bits and Atoms, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Renewable Bioproducts Institute, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Carolina Bastidas
- Sea Grant College Program, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Erik Strand
- Center for Bits and Atoms, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jose del Aguila Ferrandis
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Neil Gershenfeld
- Center for Bits and Atoms, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Michael S Triantafyllou
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Sea Grant College Program, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
10
|
da Costa ID, Costa LL, Zalmon IR. Are fishes selecting the trash they eat? Influence of feeding mode and habitat on microplastic uptake in an artificial reef complex (ARC). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166788. [PMID: 37666344 DOI: 10.1016/j.scitotenv.2023.166788] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
Every year, coastal countries generate ∼275 million tons of plastic, and the oceans receive from 4.8 to 12.7 million tons3. Pollution by synthetic polymers is even more problematic for the environment when this material is fragmented into small portions, forming microplastics (MPs). In the present study, we analyze the selection of MPs by the ichthyofauna based on the availability of the morphotypes and polymeric composition of microplastic in the environment and compare the amount of MP in surface water, water column, sediments and fish in different organs, trophic categories, habitats and areas with and without artificial reefs. In order to achieve this goal, the shape, color, abundance and chemical composition of MPs in the digestive tract and gills of 18 fish species in artificial reefs area and control area, were evaluated. A total of 216 fish were analyzed, and 149 (60 %) had MPs in at least one organ and showed a mean concentration of 1.55 ± 3.31 MPs/g. Of the 18 fish species collected in the reef complex area, 17 (94 %) included individuals with at least one MP in digestive tract or gills. Four species showed the higher selectivity of MP types, colors, and polymers. More MPs were found in the fish, surface water, water column and sediment in the artificial reef area compared to the control areas. This is the first evidence of MP selection by commercially important fish species in artificial marine structures worldwide. These results provide useful information on MP pollution in RAs and highlight yet another issue that must be considered in the management of fisheries resources in the region and in other reef complexes around the world.
Collapse
Affiliation(s)
- Igor David da Costa
- Departamento de Ciências Exatas, Biológicas e da Terra, Universidade Federal Fluminense, Santo Antônio de Pádua 28470-000, Rio de Janeiro, Brazil; Mestrado Profissional em Gestão e Regulação de Recursos Hídricos, Universidade Federal de Rondônia, 76900-726 Rondônia, Brazil; Laboratório de Ciências Ambientais, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes 28013-602, Rio de Janeiro, Brazil.
| | - Leonardo Lopes Costa
- Laboratório de Ciências Ambientais, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes 28013-602, Rio de Janeiro, Brazil
| | - Ilana Rosental Zalmon
- Laboratório de Ciências Ambientais, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes 28013-602, Rio de Janeiro, Brazil.
| |
Collapse
|
11
|
Guo Z, Wang L, Song M, Jiang Z, Liang Z. The effects of flow field on the succession of the microbial community on artificial reefs. MARINE POLLUTION BULLETIN 2023; 191:114920. [PMID: 37060891 DOI: 10.1016/j.marpolbul.2023.114920] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/14/2023] [Accepted: 04/04/2023] [Indexed: 05/13/2023]
Abstract
The flow field is one of the most important external conditions affecting the development of biofouling community on artificial reefs (ARs), especially the microbial community. In this article, we investigated the temporal dynamics of microbial communities between the stoss side and the lee side of ARs. The results showed that the composition and structure of microbial and macrobenthic communities between the stoss side and the lee side both presented obvious temporal variations. Microbial diversity and richness were higher on the stoss side than that on the lee side. There was a greater impact on bacterial and archaeal communities on temporal scale compared to that on micro-spatial scale, which was not suitable for the fungal community. The organism biomass, abundance and coverage of macrobenthic community on the lee side were higher than those on the stoss side, and the microbial diversity on the stoss side increased significantly with the organism coverage.
Collapse
Affiliation(s)
- Zhansheng Guo
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Lu Wang
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Minpeng Song
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Zhaoyang Jiang
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Zhenlin Liang
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| |
Collapse
|
12
|
Carral L, Tarrío-Saavedra J, Cartelle Barros JJ, Fabal CC, Ramil A, Álvarez-Feal C. Considerations on the programmed functional life (one generation) of a green artificial reef in terms of the sustainability of the modified ecosystem. Heliyon 2023; 9:e14978. [PMID: 37095963 PMCID: PMC10121649 DOI: 10.1016/j.heliyon.2023.e14978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
The installation of artificial reefs serves to enhance marine ecosystems, although it also modifies them. These changes do not have to be irreversible, since it is possible to treat the functional life of an artificial reef (AR) as a variable factor to be determined, with the objective of contributing to the sustainability of the ecosystem. The quest for sustainability does not end with the manufacture and installation of the AR units. It is also necessary to analyse the sustainability of the modified ecosystem, through the production of services. This leads to consider the medium-term return of the ecosystem to its initial state, once the functional life of the ARs expires. This paper presents and justifies an AR design/composition for limited functional life. It is the result of acting on the base material, the concrete, with the objective of limiting the useful life to one social generation. Four different dosages were proposed for such a purpose. They were subjected to mechanical tests (compressive strength and absorption after immersion), including an innovative abrasion-resistant one. The results allow estimating the functional life of the four types of concrete from the design variables (density, compactness, and quantity of water and cement as well as its relation). To this end linear regression models and clustering techniques were applied. The described procedure leads to an AR design for limited functional life.
Collapse
Affiliation(s)
- Luis Carral
- Universidade da Coruña, CITENI, Campus Industrial de Ferrol, Departamento de Enxeñaría Naval e Industrial, Escola Politécnica de Enxeñaría de Ferrol, Esteiro, 15471, Ferrol, Spain
- Corresponding author.
| | - Javier Tarrío-Saavedra
- Universidade da Coruña, CITIC, Grupo MODES, Departamento de Matemáticas, Escola Politécnica de Enxeñaría de Ferrol, Esteiro, 15471 A Coruña, Spain
| | - Juan José Cartelle Barros
- Universidade da Coruña, CITENI, Campus Industrial de Ferrol, Departamento de Ciencias da Navegación e Enxeñaría Mariña, Escola Politécnica de Enxeñaría de Ferrol, Esteiro, 15471, A Coruña, Spain
| | - Carolina Camba Fabal
- Universidade da Coruña, CITENI, Campus Industrial de Ferrol, Departamento de Enxeñaría Naval e Industrial, Escola Politécnica de Enxeñaría de Ferrol, Esteiro, 15471, Ferrol, Spain
| | - Alberto Ramil
- Universidade da Coruña, CITENI, Campus Industrial de Ferrol, Departamento de Enxeñaría Naval e Industrial, Escola Politécnica de Enxeñaría de Ferrol, Esteiro, 15471, Ferrol, Spain
| | - Carlos Álvarez-Feal
- Universidade da Coruña, Departamento de Enxeñaría Naval e Industrial, Escola Politécnica de Enxeñaría de Ferrol, Esteiro, 15471, A Coruña, Spain
| |
Collapse
|
13
|
Carral L, Lamas-Galdo MI, Buenhombre JLM, Barros JJC, Naya S, Tarrio-Saavedra J. Application of residuals from purification of bivalve molluscs in Galician to facilitate marine ecosystem resiliency through artificial reefs with shells - One generation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159095. [PMID: 36181815 DOI: 10.1016/j.scitotenv.2022.159095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/13/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
The seas and oceans of the planet provide a wide range of essential resources. However, marine ecosystems are undergoing severe degradation due to the unsustainable exploitation and consumption patterns of the linear economy. On the other hand, many economic activities linked to the sea generate a large amount of waste, leading to negative impacts, such as the cost of treating or disposing of this waste. A case in point is bivalve mollusc production: a purification process is needed to avoid the risk of diseases through faecal contamination. The present work proposes an innovative procedure to convert this waste, calcium carbonate as calcite and aragonite allotropic types, into by-products. These by-products can be used to manufacture green artificial reefs, partially replacing concrete aggregates with a sustainable alternative to the geological sources of CaCO3. By installing these reefs, marine ecosystems could be created in a sustainable way and an innovative approach based on the circular economy could be taken towards protecting them. To this end, different concrete mixtures with bivalve shells are proposed. Although this study had been carried out for Galicia (NW Spain), the methodology followed could also be valid for other regions. A physicochemical characterisation of the waste from purifying the bivalves, including oysters, mussels, clams and scallops, was performed. Statistical and multi-criteria analyses were done in order to select the best dosage. Both have provided justification for using a mixture of shells with a predominance of calcite (oyster, scallop) instead of shells with a predominance of aragonite. The multi-criteria analysis served to identify the two best alternatives with dosages in which the medium aggregates were substituted with shells mainly from oysters, with a predominance of calcite. Finally, the statistical analysis played a role in estimating the compressive strength and water absorption of each mixture from the design parameter values.
Collapse
Affiliation(s)
- Luis Carral
- Escuela Politécnica de Ingeniería de Ferrol, Universidade da Coruña, Spain.
| | | | | | | | - Salvador Naya
- Escuela Politécnica de Ingeniería de Ferrol, Universidade da Coruña, Spain
| | | |
Collapse
|
14
|
Corbau C, Nardin W, Vaccaro C, Vona I, Simeoni U. Experimental design and field deployment of an artificial bio-reef produced by mollusk shell recycling. MARINE ENVIRONMENTAL RESEARCH 2023; 183:105833. [PMID: 36463720 DOI: 10.1016/j.marenvres.2022.105833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Shellfish farming is considered a highly sustainable form of aquaculture that has developed rapidly worldwide. Unfortunately, today biological and chemical pollution of the oceans and marine waters is widespread and has multiple negative impacts on marine ecosystems, which are exacerbated by global climate changes. In addition, such impacts on fisheries and aquaculture are significant in inducing socio-economic losses. Therefore, it is necessary to develop innovative solutions to improve productivity and environmental performance in line with the blue sustainable economy (European Green Deal). However, one upcoming problem associated with shellfish consumption is shell waste and its disposal. In addition, the percentage of wasted shells destined for reuse is much lower than the one accumulated in landfills or in more or less well-managed sites. This represents a weakness of the shellfish farming sector that can only be mitigated through a project of shellfish waste recycling moving towards the circular economy, with undoubted environmental and economic advantages. In the present study, we present a possible solution for recycling clam shells coming from the waste of the fishing industry (circular economy). Indeed, three eco-friendly bio-reefs for the stabilization and implementation of marine biodiversity (blue economy) were realized using additive manufacturing technology (3D printing) for large dimensions (technological innovation). Furthermore, before deploying the reefs on the sea bottom, they were colonized with oysters to promote repopulation.
Collapse
Affiliation(s)
- C Corbau
- Department of Physics and Earth Sciences, University of Ferrara, Italy.
| | - W Nardin
- Horn Point Laboratory, University of Maryland Center for Environmental Science, USA.
| | - C Vaccaro
- Department of Physics and Earth Sciences, University of Ferrara, Italy; National Institute of Oceanography and Applied Geophysics - OGS, Borgo Grotta Gigante 42/C, 34010, Sgonico, TS, Italy.
| | - I Vona
- Horn Point Laboratory, University of Maryland Center for Environmental Science, USA.
| | - U Simeoni
- Consorzio Universitario per la Ricerca Socioeconomica e per l'Ambiente, Italy.
| |
Collapse
|
15
|
Santos J, Cifrian E, Rodriguez-Romero A, Yoris-Nobile AI, Blanco-Fernandez E, Castro-Fresno D, Andres A. Assessment of the environmental acceptability of potential artificial reef materials using two ecotoxicity tests: Luminescent bacteria and sea urchin embryogenesis. CHEMOSPHERE 2023; 310:136773. [PMID: 36220438 DOI: 10.1016/j.chemosphere.2022.136773] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Ecotoxicological analysis of construction products is a relatively unexplored area at international level. Aquatic toxicity tests on construction products has been recommended recently for freshwater environment. However, the biological effects of alternative materials on marine ecosystem are still not considered. In this study, the main aim was to assess the environmental impact of alternative mortars proposed as artificial reefs (ARs) materials. The ARs specimens were developed by 3D printing, based on cement and geopolymer mortars using recycled sands of glass and seashells. For this purpose, a leaching test and two different toxicity bioassays, luminosity reduction of marine bacteria Vibrio fischeri (Microtox®) and the success of embryo-larval development of sea-urchin Paracentrotus lividus, were conducted. From the leaching results it should be noted that the mobility of all trace elements considered in both, raw materials and mortars, meet the inert landfill limits, except As, Mo, Se or Sb in the leachates geopolymer mortars. However, the results obtained from the both bioassays show low environmental acceptability for those mortars containing shell sand, probably due to the degradation of the organic matter adhered to the shells. On the other hand, cement mortars obtain better results than geopolymer mortars, regardless of the aggregate used, showing certain consistency with the leaching behaviour, since they present the lowest mobility of trace chemical elements. Therefore, the results supporting the environmental acceptability of its potential use as alternative materials in the production of ARs.
Collapse
Affiliation(s)
- Jorge Santos
- Department of Chemistry and Process & Resource Engineering, ETSIIT, University of Cantabria, Cantabria, 39005, Spain
| | - Eva Cifrian
- Department of Chemistry and Process & Resource Engineering, ETSIIT, University of Cantabria, Cantabria, 39005, Spain.
| | - Araceli Rodriguez-Romero
- Department of Analytical Chemistry, Faculty of Marine and Environmental Sciences, University of Cadiz, Puerto Real, Cádiz, 11510, Spain
| | | | | | | | - Ana Andres
- Department of Chemistry and Process & Resource Engineering, ETSIIT, University of Cantabria, Cantabria, 39005, Spain
| |
Collapse
|
16
|
Inoue N, Sato M, Furuichi N, Imaizumi T, Ushio M. The relationship between eDNA density distribution and current fields around an artificial reef in the waters of Tateyama Bay, Japan. METABARCODING AND METAGENOMICS 2022. [DOI: 10.3897/mbmg.6.87415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Monitoring of artificial reefs (ARs) has been conducted through such methods as visual censuses, surveys using fishing gear, and echo sounder. These methods have disadvantages: visual census is not possible at ARs in deeper waters, fishing gear surveys are invasive to fish individuals, and echo sounders have difficulty in species identification. A new AR monitoring method is required to compensate for these disadvantages. While eDNA has become a valid monitoring tool for marine biodiversities, it is influenced by degradation and transport of the molecules that affect information about the spatio-temporal distribution of fish. An understanding of the relationship between current fields and eDNA distribution, particularly in open waters, is critical when using eDNA as an index for fish aggregation at ARs. We investigated the relationship between eDNA distribution and current fields around an AR for four dominant species (Engraulis japonicus, Parapristipoma trilineatum, Scomber spp and Trachurus japonicus) in Tateyama Bay, Japan. The highest density of fish schools is formed directly above or at the upstream side of ARs. If we assume that the center of eDNA originates at these locations at an AR and eDNA is simply transported by currents, a higher density of eDNA would distribute downstream from the AR. However, our results indicate that eDNA distribution is in accord with actual fish distribution, namely eDNA densities are more abundant in the upstream side of ARs. We thus consider that eDNA distribution is more influenced by actual distribution patterns than by the transport processes.
Collapse
|
17
|
Song M, Wang J, Nie Z, Wang L, Wang J, Zhang J, Wang Y, Guo Z, Jiang Z, Liang Z. Evaluation of artificial reef habitats as reconstruction or enhancement tools of benthic fish communities in northern Yellow Sea. MARINE POLLUTION BULLETIN 2022; 182:113968. [PMID: 35907361 DOI: 10.1016/j.marpolbul.2022.113968] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
Artificial reefs have been widely deployed in the northern Yellow Sea. However, the differences in the ecological benefits on different types of artificial reef habitats are still poorly understood. In this study, the temporal and spatial differences on benthic fish communities were evaluated among concrete artificial reef habitat (CAR), rocky artificial reef habitat (RAR), ship artificial reef habitat (SAR) around Xiaoshi Island in northern Yellow Sea. The results indicated that all three types of artificial reef habitats can enhance the diversity variables of benthic fish communities, and fish abundance, species richness and Shannon-Wiener index of CAR were generally better than the other two. CAR and RAR hosted similar community composition of benthic fish, and all types of habitats showed significant differences in community composition between winter-spring and summer-autumn. Environmental factors, especially water temperature, can also affect the community composition by affecting the migration of temperature-preferred species. Overall, the enhancement effects of artificial habitats on fisheries productivity varied with fish species and reef types. This study will help to understand the ecological effects of different types of artificial reefs in northern Yellow Sea, and then could give an insight for scientific construction of artificial reefs in this region.
Collapse
Affiliation(s)
- Minpeng Song
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Jiahao Wang
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Zhaoyi Nie
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Lu Wang
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Jinxiao Wang
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Jiating Zhang
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Yuxin Wang
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Zhansheng Guo
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Zhaoyang Jiang
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Zhenlin Liang
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| |
Collapse
|
18
|
Komyakova V, Jaffrés JBD, Strain EMA, Cullen-Knox C, Fudge M, Langhamer O, Bender A, Yaakub SM, Wilson E, Allan BJM, Sella I, Haward M. Conceptualisation of multiple impacts interacting in the marine environment using marine infrastructure as an example. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154748. [PMID: 35337877 DOI: 10.1016/j.scitotenv.2022.154748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/12/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
The human population is increasingly reliant on the marine environment for food, trade, tourism, transport, communication and other vital ecosystem services. These services require extensive marine infrastructure, all of which have direct or indirect ecological impacts on marine environments. The rise in global marine infrastructure has led to light, noise and chemical pollution, as well as facilitation of biological invasions. As a result, marine systems and associated species are under increased pressure from habitat loss and degradation, formation of ecological traps and increased mortality, all of which can lead to reduced resilience and consequently increased invasive species establishment. Whereas the cumulative bearings of collective human impacts on marine populations have previously been demonstrated, the multiple impacts associated with marine infrastructure have not been well explored. Here, building on ecological literature, we explore the impacts that are associated with marine infrastructure, conceptualising the notion of correlative, interactive and cumulative effects of anthropogenic activities on the marine environment. By reviewing the range of mitigation approaches that are currently available, we consider the role that eco-engineering, marine spatial planning and agent-based modelling plays in complementing the design and placement of marine structures to incorporate the existing connectivity pathways, ecological principles and complexity of the environment. Because the effect of human-induced, rapid environmental change is predicted to increase in response to the growth of the human population, this study demonstrates that the development and implementation of legislative framework, innovative technologies and nature-informed solutions are vital, preventative measures to mitigate the multiple impacts associated with marine infrastructure.
Collapse
Affiliation(s)
- Valeriya Komyakova
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7001, Australia; Centre for Marine Socioecology, University of Tasmania, Hobart, Tasmania 7053, Australia.
| | - Jasmine B D Jaffrés
- C&R Consulting, Townsville, Australia; College of Science and Engineering, James Cook University, Townsville, Australia
| | - Elisabeth M A Strain
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7001, Australia; Centre for Marine Socioecology, University of Tasmania, Hobart, Tasmania 7053, Australia
| | - Coco Cullen-Knox
- Centre for Marine Socioecology, University of Tasmania, Hobart, Tasmania 7053, Australia
| | - Maree Fudge
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7001, Australia; Centre for Marine Socioecology, University of Tasmania, Hobart, Tasmania 7053, Australia; College of Business and Economics, University of Tasmania, Australia
| | - Olivia Langhamer
- Division of Electricity, Department of Electrical Engineering, Uppsala University, Sweden
| | - Anke Bender
- Division of Electricity, Department of Electrical Engineering, Uppsala University, Sweden
| | - Siti M Yaakub
- Sustainability & Climate Solutions Department, DHI Water & Environment (S), Singapore
| | - Eloise Wilson
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7001, Australia; Centre for Marine Socioecology, University of Tasmania, Hobart, Tasmania 7053, Australia
| | - Bridie J M Allan
- Department of Marine Science, University of Otago, Dunedin 9016, New Zealand
| | | | - Marcus Haward
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7001, Australia; Centre for Marine Socioecology, University of Tasmania, Hobart, Tasmania 7053, Australia; Blue Economy Cooperative Research Centre, PO Box 897, Launceston, Tasmania 7250, Australia
| |
Collapse
|
19
|
Levy N, Berman O, Yuval M, Loya Y, Treibitz T, Tarazi E, Levy O. Emerging 3D technologies for future reformation of coral reefs: Enhancing biodiversity using biomimetic structures based on designs by nature. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154749. [PMID: 35339542 DOI: 10.1016/j.scitotenv.2022.154749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/10/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
The rapid decline of vulnerable coral reefs has increased the necessity of exploring interdisciplinary methods for reef restoration. Examining how to upgrade these tools may uncover options to better support or increase biodiversity of coral reefs. As many of the issues facing reef restoration today deal with the scalability and effectiveness of restoration efforts, there is an urgency to invest in technology that can help reach ecosystem-scale. Here, we provide an overview on the evolution to current state of artificial reefs as a reef reformation tool and discuss a blueprint with which to guide the next generation of biomimetic artificial habitats for ecosystem support. Currently, existing artificial structures have difficulty replicating the 3D complexity of coral habitats and scaling them to larger areas can be problematic in terms of production and design. We introduce a novel customizable 3D interface for producing scalable, biomimetic artificial structures, utilizing real data collected from coral ecosystems. This interface employs 3D technologies, 3D imaging and 3D printing, to extract core reef characteristics, which can be translated and digitized into a 3D printed artificial reef. The advantages of 3D printing lie in providing customized tools by which to integrate the vital details of natural reefs, such as rugosity and complexity, into a sustainable manufacturing process. This methodology can offer economic solutions for developing both small and large-scale biomimetic structures for a variety of restoration situations, that closely resemble the coral reefs they intend to support.
Collapse
Affiliation(s)
- Natalie Levy
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel.
| | - Ofer Berman
- Design-Tech Lab, Industrial Design Department at the Faculty of Architecture and Town Planning Technion, Israel Institute of Technology, Haifa 3200003, Israel
| | - Matan Yuval
- Hatter Department of Marine Technologies, Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel; Department of Marine Biology, Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel; Inter-University Institute for Marine Sciences of Eilat, Eilat 88103, Israel
| | - Yossi Loya
- School of Zoology, Tel-Aviv University, Ramat Aviv 6997801, Israel
| | - Tali Treibitz
- Department of Marine Biology, Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel
| | - Ezri Tarazi
- Design-Tech Lab, Industrial Design Department at the Faculty of Architecture and Town Planning Technion, Israel Institute of Technology, Haifa 3200003, Israel
| | - Oren Levy
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| |
Collapse
|
20
|
Taormina B, Claquin P, Vivier B, Navon M, Pezy JP, Raoux A, Dauvin JC. A review of methods and indicators used to evaluate the ecological modifications generated by artificial structures on marine ecosystems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 310:114646. [PMID: 35248990 DOI: 10.1016/j.jenvman.2022.114646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/14/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
The current development of human activities at sea (e.g. land reclamation, maritime activity and marine renewable energy) is leading to a significant increase in the number of infrastructures installed in marine settings. These artificial structures provide new hard-bottom habitats for many marine organisms and can thus modify the structure and functioning of coastal ecosystems. In order to better evaluate the nature of these modifications as well as the potential benefits and/or impacts generated, it becomes essential to develop assessment methods that can be applied to a wide variety of study sites from harbours to coastal offshore environments. In this context, our study aims to review the different methods and indicators available which are used to measure the modifications of biodiversity and ecological functioning generated by such structures. Among the methods reviewed, we highlight some that were developed specifically for artificial structures, and others intended for various primary uses but which have been successfully transposed to artificial structures. Nevertheless, we also point out the lack of reliable methods concerning some biological ecosystem components impacted by artificial structures. In this context, we require the adaptation or creation of brand-new indicators to achieve a better characterisation of the ecological impacts generated by these structures. Overall, this study highlights a very high number of existing methods, which provide stakeholders with useful tools to study the impacts of artificial structures, and identifies the need to develop integrative indicators to enhance the deployment of new artificial structures.
Collapse
Affiliation(s)
- Bastien Taormina
- Normandie Université, Université de Caen Normandie, F-14032, Caen, France; Laboratoire Biologie des ORganismes et Ecosystèmes Aquatiques (BOREA, UMR CNRS 8067), Muséum National d'Histoire Naturelle, Sorbonne Université, Université de Caen Normandie, IRD 207, Université des Antilles, Centre de Recherches en Environnement Côtier (CREC), Station Marine, BP49, 54, rue du Docteur Charcot, 14530, Luc-sur-Mer, France; Normandie Université, Laboratoire Morphodynamique Continentale et Côtière, UMR CNRS 6143 M2C, Université de Caen Normandie, UNIROUEN, 24 rue des Tilleuls, F-14000, Caen, France.
| | - Pascal Claquin
- Normandie Université, Université de Caen Normandie, F-14032, Caen, France; Laboratoire Biologie des ORganismes et Ecosystèmes Aquatiques (BOREA, UMR CNRS 8067), Muséum National d'Histoire Naturelle, Sorbonne Université, Université de Caen Normandie, IRD 207, Université des Antilles, Centre de Recherches en Environnement Côtier (CREC), Station Marine, BP49, 54, rue du Docteur Charcot, 14530, Luc-sur-Mer, France
| | - Baptiste Vivier
- Normandie Université, Université de Caen Normandie, F-14032, Caen, France; Laboratoire Biologie des ORganismes et Ecosystèmes Aquatiques (BOREA, UMR CNRS 8067), Muséum National d'Histoire Naturelle, Sorbonne Université, Université de Caen Normandie, IRD 207, Université des Antilles, Centre de Recherches en Environnement Côtier (CREC), Station Marine, BP49, 54, rue du Docteur Charcot, 14530, Luc-sur-Mer, France
| | - Maxine Navon
- Normandie Université, Université de Caen Normandie, F-14032, Caen, France; Laboratoire Biologie des ORganismes et Ecosystèmes Aquatiques (BOREA, UMR CNRS 8067), Muséum National d'Histoire Naturelle, Sorbonne Université, Université de Caen Normandie, IRD 207, Université des Antilles, Centre de Recherches en Environnement Côtier (CREC), Station Marine, BP49, 54, rue du Docteur Charcot, 14530, Luc-sur-Mer, France
| | - Jean-Philippe Pezy
- Normandie Université, Laboratoire Morphodynamique Continentale et Côtière, UMR CNRS 6143 M2C, Université de Caen Normandie, UNIROUEN, 24 rue des Tilleuls, F-14000, Caen, France
| | - Aurore Raoux
- Normandie Université, Laboratoire Morphodynamique Continentale et Côtière, UMR CNRS 6143 M2C, Université de Caen Normandie, UNIROUEN, 24 rue des Tilleuls, F-14000, Caen, France
| | - Jean-Claude Dauvin
- Normandie Université, Université de Caen Normandie, F-14032, Caen, France; Normandie Université, Laboratoire Morphodynamique Continentale et Côtière, UMR CNRS 6143 M2C, Université de Caen Normandie, UNIROUEN, 24 rue des Tilleuls, F-14000, Caen, France
| |
Collapse
|
21
|
Carral L, Lamas MI, Cartelle Barros JJ, López I, Carballo R. Proposed Conceptual Framework to Design Artificial Reefs Based on Particular Ecosystem Ecology Traits. BIOLOGY 2022; 11:biology11050680. [PMID: 35625408 PMCID: PMC9138596 DOI: 10.3390/biology11050680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/21/2022] [Accepted: 04/24/2022] [Indexed: 11/22/2022]
Abstract
Simple Summary Artificial reefs improve the yield of artisanal fishing grounds by creating habitats with enhanced productivity, similar to those of natural reefs. For an adequate definition of an artificial reef, all its pathways of interaction with the ecosystem must be quantitatively assessed. In this way, the final design will lead to an increase in the production of services. Therefore, this study presents the MEEM tool as well as the AREIT index. Through the former, it is possible to obtain different reef solutions, while the index allows the user to select the best alternative by taking into account the specific situation of the ecosystem to be enhanced. The AREIT index facilitates the decision-making process by means of a three-dimensional graphical representation, based on the three aspects of greatest relevance for the ecosystem: energy, nutrient circulation and the presence of cavities for the shelter of species, in particular those of fishing interest. The definition process ends with the application of a procedure for calculating the stability of the final design under the action of waves and currents. Abstract Overfishing and pollution have led to marine habitat degradation, and as a result, marine fisheries are now in decline. Consequently, there is a real need to enhance marine ecosystems while halting the decline of fish stocks and boosting artisanal fishing. Under these circumstances, artificial reefs (ARs) have emerged as a promising option. Nevertheless, their performance is traditionally assessed years after installation, through experimental and field observations. It is now necessary to adopt an alternative approach, adapting the design of artificial reefs to the specific characteristics of the ecosystem to be enhanced. In this way, it will be possible to determine the potential positive impacts of ARs before their installation. This paper presents a general and integrated conceptual framework to assist in the design of AR units by adopting an ecosystem ecology (EE) perspective. It consists of three main parts. In the first one, starting from an initial geometry, EE principles are used to include modifications with the aim of improving autotrophic resource pathways (additional substrata and increased nutrient circulation) and leading to a habitat enhancement (more shelter for individuals). The second part of the framework is a new dimensionless index that allows the user to select the best AR unit design from different alternatives. The potential impacts on the ecosystem in terms of energy, nutrient cycling and shelter are considered for such a purpose. Finally, a general hydrodynamic methodology to study the stability of the selected AR unit design, considering the effect of high waves under severe storms, is proposed. The framework is applied through a case study for Galician estuaries.
Collapse
Affiliation(s)
- Luis Carral
- Escuela Politécnica Superior, Universidade da Coruña, C/Mendizábal, 15403 Ferrol, Spain; (M.I.L.); (J.J.C.B.)
- Correspondence: ; Tel.: +34-981-16-70-00; Fax: +34-981-33-74-10
| | - María Isabel Lamas
- Escuela Politécnica Superior, Universidade da Coruña, C/Mendizábal, 15403 Ferrol, Spain; (M.I.L.); (J.J.C.B.)
| | - Juan José Cartelle Barros
- Escuela Politécnica Superior, Universidade da Coruña, C/Mendizábal, 15403 Ferrol, Spain; (M.I.L.); (J.J.C.B.)
| | - Iván López
- Área de Ingeniería Hidráulica, Universidade de Santiago de Compostela, C/Benigno Ledo St. 2, 27002 Lugo, Spain; (I.L.); (R.C.)
| | - Rodrigo Carballo
- Área de Ingeniería Hidráulica, Universidade de Santiago de Compostela, C/Benigno Ledo St. 2, 27002 Lugo, Spain; (I.L.); (R.C.)
| |
Collapse
|
22
|
Use of a 360-Degree Underwater Camera to Characterize Artificial Reef and Fish Aggregating Effects around Marine Energy Devices. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10050555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Marine energy devices must be attached to the seafloor by their foundations, pilings, or anchors, and will have other parts in the water column like the devices themselves, mooring lines, and power export cables running along the seafloor. The installation and presence of these artificial structures will create physical changes that can disrupt or create new habitats, and potentially alter the behavior of mobile organisms such as fish around a device by attracting them to these new artificial reefs and fish aggregating devices. In this study, we tested a new approach for monitoring fish activity around a marine energy device anchor: a 360-degree underwater camera to keep the target (a wave energy converter’s anchor) in the field of view of the camera. The camera was deployed in three configurations (hand-held, tripod, video lander) at sites with different hydrodynamics and underwater visibilities. The video lander was the best configuration: very stable, versatile, and easy to handle. The 360-degree field of view enabled observing and counting fishes, which were more abundant at dusk than dawn or noon, around the anchor. Despite remaining challenges, 360-degree cameras are useful tools for monitoring animal interactions with marine energy devices.
Collapse
|
23
|
Fang G, Yu H, Sheng H, Chen C, Tang Y, Liang Z. Seasonal variations and co-occurrence networks of bacterial communities in the water and sediment of artificial habitat in Laoshan Bay, China. PeerJ 2022; 9:e12705. [PMID: 35036171 PMCID: PMC8740510 DOI: 10.7717/peerj.12705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/07/2021] [Indexed: 12/03/2022] Open
Abstract
Marine bacteria in the seawater and seafloor are essential parts of Earth’s biodiversity, as they are critical participants of the global energy flow and the material cycles. However, their spatial-temporal variations and potential interactions among varied biotopes in artificial habitat are poorly understood. In this study, we profiled the variations of bacterial communities among seasons and areas in the water and sediment of artificial reefs using 16S rRNA gene sequencing, and analyzed the potential interaction patterns among microorganisms. Distinct bacterial community structures in the two biotopes were exhibited. The Shannon diversity and the richness of phyla in the sediment were higher, while the differences among the four seasons were more evident in the water samples. The seasonal variations of bacterial communities in the water were more distinct, while significant variations among four areas were only observed in the sediment. Correlation analysis revealed that nitrite and mud content were the most important factors influencing the abundant OTUs in the water and sediment, respectively. Potential interactions and keystone species were identified based on the three co-occurrence networks. Results showed that the correlations among bacterial communities in the sediment were lower than in the water. Besides, the abundance of the top five abundant species and five keystone species had different changing patterns among four seasons and four areas. These results enriched our understanding of the microbial structures, dynamics, and interactions of microbial communities in artificial habitats, which could provide new insights into planning, constructing and managing these special habitats in the future.
Collapse
Affiliation(s)
- Guangjie Fang
- Fisheries College, Ocean University of China, Qingdao, Shandong, China
| | - Haolin Yu
- Fisheries College, Ocean University of China, Qingdao, Shandong, China
| | - Huaxiang Sheng
- Fisheries College, Ocean University of China, Qingdao, Shandong, China
| | - Chuanxi Chen
- College of ocean and earth sciences, Xiamen University, Xiamen, Fujian, China
| | - Yanli Tang
- Fisheries College, Ocean University of China, Qingdao, Shandong, China
| | - Zhenlin Liang
- Marine College, Shandong University, Weihai, Shandong, China
| |
Collapse
|
24
|
Fang G, Yu H, Sheng H, Tang Y, Liang Z. Comparative analysis of microbial communities between water and sediment in Laoshan Bay marine ranching with varied aquaculture activities. MARINE POLLUTION BULLETIN 2021; 173:112990. [PMID: 34634629 DOI: 10.1016/j.marpolbul.2021.112990] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
We profiled and compared the bacterial and protist community compositions and dynamics in the Laoshan Bay marine ranching involving varied aquaculture activities. The dominant species, differential species and community compositions among the five aquaculture areas, two habitats and two periods were significantly different. The relationships between microbial communities and environmental factors were analyzed. We found that microbial communities in the water were more sensitive to the environmental changes than sediment, and the responses of bacterial and protist communities to the disturbances were varied. To meet the challenges of higher aquaculture density, the proportion of the positive correlations among co-occurrence networks in the water increased markedly from July to November; while the positive proportion in the sediment was stable. Potential ecological interactions and keystone taxa between bacteria and protists were studied. These results advanced our understanding of how mariculture stressors affect microbial communities in marine ranching.
Collapse
Affiliation(s)
- Guangjie Fang
- Fisheries College, Ocean University of China, Qingdao 266002, China
| | - Haolin Yu
- Fisheries College, Ocean University of China, Qingdao 266002, China
| | - Huaxiang Sheng
- Fisheries College, Ocean University of China, Qingdao 266002, China
| | - Yanli Tang
- Fisheries College, Ocean University of China, Qingdao 266002, China.
| | - Zhenlin Liang
- Marine College, Shandong University, Weihai 264200, China
| |
Collapse
|
25
|
Effects of the artificial reef and flow field environment on the habitat selection behavior of Sebastes schlegelii juveniles. Appl Anim Behav Sci 2021. [DOI: 10.1016/j.applanim.2021.105492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Van Hoeck RV, Paxton AB, Bohnenstiehl DR, Taylor JC, Fodrie FJ, Peterson CH. Passive acoustic monitoring complements traditional methods for assessing marine habitat enhancement outcomes. Ecosphere 2021. [DOI: 10.1002/ecs2.3840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Rebecca V. Van Hoeck
- Institute of Marine Sciences University of North Carolina at Chapel Hill 3431 Arendell Street Morehead City North Carolina 28557 USA
| | - Avery B. Paxton
- CSS‐Inc. 10301 Democracy Lane, Suite 300 Fairfax Virginia 22030 USA
- National Centers for Coastal Ocean Science National Ocean Service National Oceanic and Atmospheric Administration 101 Pivers Island Road Beaufort North Carolina 28516 USA
| | - DelWayne R. Bohnenstiehl
- Department of Marine, Earth, and Atmospheric Sciences and Center for Geospatial Analytics North Carolina State University 2800 Faucette Drive Raleigh North Carolina 27607 USA
| | - J. Christopher Taylor
- National Centers for Coastal Ocean Science National Ocean Service National Oceanic and Atmospheric Administration 101 Pivers Island Road Beaufort North Carolina 28516 USA
| | - F. Joel Fodrie
- Institute of Marine Sciences University of North Carolina at Chapel Hill 3431 Arendell Street Morehead City North Carolina 28557 USA
| | - Charles H. Peterson
- Institute of Marine Sciences University of North Carolina at Chapel Hill 3431 Arendell Street Morehead City North Carolina 28557 USA
| |
Collapse
|
27
|
The Hydrodynamic Characteristics Induced by Multiple Layouts of Typical Artificial M-Type Reefs with Sea Currents Typical of Liaodong Bay, Bohai Sea. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2021. [DOI: 10.3390/jmse9111155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Artificial reefs are effective measures to improve the marine ecological environment and increase fishery production. However, there are several geometries being investigated nowadays and their setup, including the spacing between groups of them, can provide dissimilar effects on hydrodynamics. To enhance the understanding of this topic, in this paper, the focus is mainly on M-Type artificial reefs that will be adopted in Juehua Island, Liaodong Bay, China. An experimental campaign was carried out in order to simulate the influence that M-Type unit reef groups may have on the local flow field and the Particle Image Velocimetry (PIV) technique has been implemented to provide velocity maps. The results showed that with the increase of velocity’s current approaching the artificial reef, the height, length and area of the upwelling and the back vortex rise with the increase of spacing between the artificial reefs. Furthermore, when comparing different geometrical configurations with similar currents approaching the artificial reef, the maximum values of both upwelling and back vortex were obtained when the spacing between unit reefs was 1.25 L. Finally, the entropy method was used to evaluate the effects on the flow field under four kinds of spacing based on the hydrodynamic characteristics and the economic cost. The comprehensive score obtained for all the configurations followed the order 1.25 L > 1.50 L > 0.75 L > 1.00 L. Therefore, it is suggested that the original design spacing should be increased by 25% when the M-type unit reef is put into practice. Additionally, after having completed a comparative analysis, it is recommended to further change the reef group into four reef monocases. By executing this adjustment, the unit reef cost was reduced by 10%, and the influence range on the flow field increased by 10%, and this result can consequently achieve greater ecological benefits with less economic input. The results of this study provide a preliminary reference for the construction of artificial reefs M-Type from the perspective of theory and practice.
Collapse
|
28
|
Zhang R, Liu H, Zhang Q, Zhang H, Zhao J. Trophic interactions of reef-associated predatory fishes (Hexagrammos otakii and Sebastes schlegelii) in natural and artificial reefs along the coast of North Yellow Sea, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148250. [PMID: 34118674 DOI: 10.1016/j.scitotenv.2021.148250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
Large reef-associated predatory fishes play important roles in aquatic ecosystem along coast because of their ecological functions and economic values to recreational and commercial fisheries. This study was carried out to assess the function of artificial reefs as alternative habitats for two common reef-associated predatory fishes in the north of Yellow Sea, China, Fat Greenling Hexagrammos otakii and Korean rockfish Sebastes schlegelii. According to the catch per unit effort (CPUE), the biomass of predatory fishes at the artificial reef was comparable (H. otakii) to or higher (S. schlegelii) than the natural reef, highlighting the environmental fitness of the artificial reef. Gut content analysis (GCA) showed that H. otakii preyed primarily on Decapod and Amphipoda, while S. schlegelii exhibited higher dependence on fish (Blinniidae and Gobiidae) and Decapod. Collectively, prey richness and diversity were greater at the natural reef relative to the artificial reef, and prey availability may be different between the two reef types. Stable isotopic analysis (SIA) in conjunction with the Bayesian mixing model (MixSIAR) revealed spatial and interspecific difference on the diet composition of H. otakii and S. schlegelii as well. Based on GCA and MixSIAR result, the habitat-specific effect on the prey availability was confirmed. Additionally, comparisons on trophic niche breadth and niche overlap indicated higher trophic diversity but relatively lower food resources partitioning degree for both species at the natural reef than at the artificial reef. Our results suggest that artificial reefs may harbor a different prey assemblage comparing to natural reef but can support large populations of predatory reef-associated fishes and accommodate their coexistence.
Collapse
Affiliation(s)
- Rongliang Zhang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, People's Republic of China; Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Hui Liu
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, People's Republic of China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, People's Republic of China
| | - Qianqian Zhang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, People's Republic of China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, People's Republic of China
| | - Hua Zhang
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, People's Republic of China
| | - Jianmin Zhao
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, People's Republic of China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, People's Republic of China.
| |
Collapse
|
29
|
Erosive Degradation Study of Concrete Augmented by Mussel Shells for Marine Construction. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2021. [DOI: 10.3390/jmse9101087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This work proposes a green material for artificial reefs to be placed in Galicia (northwest Spain) taking into account the principles of circular economy and sustainability of the ecosystem. New concrete formulations for marine applications, based on cement and/or sand replacement by mussel shells, are analyzed in terms of resistance to abrasion. The interest lies in the importance of the canning industry of Galicia, which generates important quantities of shell residues with negative environmental consequences. Currently, the tests to determine the abrasion erosion resistance of concrete on hydraulic structures involve large and complex devices. According to this, an experimental test has been proposed to estimate and compare the wear resistance of these concretes and, consequently, to analyze the environmental performance of these structures. First, a numerical analysis validated with experimental data was conducted to design the test. Subsequently, experimental tests were performed using a slurry tank in which samples with conventional cement and sand were partially replaced by mussel shell. The abrasive erosion effect of concrete components was analyzed by monitoring the mass loss. It shows an asymptotic trend with respect to time that has been modeled by Generalized Additive Model (GAM) and nonlinear regression models. The results were compared to concrete containing only conventional cement and sand. Replacing sand and/or cement by different proportions of mussel shells has not significantly reduced the resistance of concrete against erosive degradation, except for the case where a high amount of sand (20 wt.%) is replaced. Its resistance against the erosive abrasion is increased, losing between 0.1072 and 0.0310 wt.% lower than common concrete. In all the remaining cases (replacements of the 5–10 wt.% of sand and cement), the effect of mussel replacement on erosive degradation is not significant. These results encourage the use of mussel shells in the composition of concrete, taking into account that we obtain the same degradation properties, even more so considering an important residue in the canning industry (and part of the seabed) that can be valorized.
Collapse
|
30
|
O’Shaughnessy KA, Perkol-Finkel S, Strain EMA, Bishop MJ, Hawkins SJ, Hanley ME, Lunt P, Thompson RC, Hadary T, Shirazi R, Yunnie ALE, Amstutz A, Milliet L, Yong CLX, Firth LB. Spatially Variable Effects of Artificially-Created Physical Complexity on Subtidal Benthos. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.690413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In response to the environmental damage caused by urbanization, Nature-based Solutions (NbS) are being implemented to enhance biodiversity and ecosystem processes with mutual benefits for society and nature. Although the field of NbS is flourishing, experiments in different geographic locations and environmental contexts have produced variable results, with knowledge particularly lacking for the subtidal zone. This study tested the effects of physical complexity on colonizing communities in subtidal habitats in two urban locations: (1) Plymouth, United Kingdom (northeast Atlantic) and (2) Tel Aviv, Israel (eastern Mediterranean) for 15- and 12-months, respectively. At each location, physical complexity was manipulated using experimental tiles that were either flat or had 2.5 or 5.0 cm ridges. In Plymouth, biological complexity was also manipulated through seeding tiles with habitat-forming mussels. The effects of the manipulations on taxon and functional richness, and community composition were assessed at both locations, and in Plymouth the survival and size of seeded mussels and abundance and size of recruited mussels were also assessed. Effects of physical complexity differed between locations. Physical complexity did not influence richness or community composition in Plymouth, while in Tel Aviv, there were effects of complexity on community composition. In Plymouth, effects of biological complexity were found with mussel seeding reducing taxon richness, supporting larger recruited mussels, and influencing community composition. Our results suggest that outcomes of NbS experiments are context-dependent and highlight the risk of extrapolating the findings outside of the context in which they were tested.
Collapse
|
31
|
Marine artificial reefs, a meta-analysis of their design, objectives and effectiveness. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01538] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
32
|
An Experimental Investigation of Turbulence Features Induced by Typical Artificial M-Shaped Unit Reefs. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041393] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Artificial reefs are considered to have the function of repairing and improving the coastal habitat and increasing the fishery production, which are mainly achieved by changing the regional hydrodynamic conditions. The characteristics of flow turbulence structure are an important part of the regional hydrodynamic characteristics. Different methods are used to evaluate the performance of artificial reefs according to their shape and the purpose for which the reef was built. For this study, the M-shaped unit reefs, which are to be put into the area of Liaodong Bay, were selected as the research object and have never been fully investigated before. Experimental tests were conducted to assess the effect of these M-shaped artificial reefs on the vertical and longitudinal turbulent intensity under different hydraulic conditions and geometries, and datasets were collected by using the Particle Image Velocimetry technique implemented within the experimental facility. The distribution and variation characteristics of the turbulence intensity were analyzed, and the main results obtained can confirm that in the artificial reef area, there was an extremely clear turbulent boundary. Furthermore, the area of influence of the longitudinal turbulence was identified to be larger than that of the vertical turbulence, and the position where the maximum turbulence intensity appeared was close to where the maximum velocity was measured. Finally, results demonstrate that low turbulence conditions are typically located in front of the unit reef, the general turbulence area is located within the upwelling zone, and the more intense turbulence area is located between the two M-shaped monocases. These results are extremely important, because they provide the local authorities with specific knowledge about what could be the effect of these M-shaped reefs within the area where they will be implemented, and therefore, specific actions can be taken in consideration with the geometrical setup suggested as an optimal solution within this study.
Collapse
|
33
|
Assessment of the Performance of an Artificial Reef Made of Modular Elements through Small Scale Experiments. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2021. [DOI: 10.3390/jmse9020130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Artificial reefs have proven to be an optimal and effective solution in stabilizing coastlines around the world. They are submerged structures that imitate the protection service provided by natural reefs accomplishing the functions of dissipating wave energy and protecting beach morphology, but also being an ecological solution. In this paper, 2D small-scale experiments were performed to analyze the hydrodynamic, morphological, and ecological behavior of an artificial reef constructed of modular elements. Two typical beach-dune profiles were constructed in a wave flume over which two locations of an artificial reef were tested. From these tests, transmission coefficients were obtained as well as the beach profile response to the presence of the artificial reef. These results are used to discuss about the hydrodynamic, morphological, and ecological performance of the artificial reef. The proposed artificial reef showed good morphological performance while its hydrodynamic function had limited success. In turn, the ecologic performance was theoretically addressed.
Collapse
|
34
|
Guo Z, Wang L, Cong W, Jiang Z, Liang Z. Comparative Analysis of the Ecological Succession of Microbial Communities on Two Artificial Reef Materials. Microorganisms 2021; 9:microorganisms9010120. [PMID: 33419197 PMCID: PMC7825563 DOI: 10.3390/microorganisms9010120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/23/2020] [Accepted: 01/01/2021] [Indexed: 12/02/2022] Open
Abstract
Concrete and wood are commonly used to manufacture artificial reefs (ARs) worldwide for marine resource enhancement and habitat restoration. Although microbial biofilms play an important role in marine ecosystems, the microbial communities that colonize concrete and wooden ARs and their temporal succession have rarely been studied. In this study, the temporal succession of the microbial communities on concrete and wooden AR blocks and the driving factors were investigated. The composition of the microbial communities underwent successive shifts over time: among the six dominant phyla, the relative abundances of Proteobacteria, Cyanobacteria and Gracilibacteria significantly decreased in wood, as did that of Cyanobacteria in concrete. Operational taxonomic units (OTU) richness and Shannon index were significantly higher in concrete than in wood. Non-metric multidimensional scaling ordination placed the microbial communities in two distinct clusters corresponding to the two substrate materials. The macrobenthic compositions of concrete and wood were broadly similar and shifted over time, especially in the first five weeks. The Shannon index of the microbial communities in concrete and wood increased significantly with the organism coverage. The results provide fundamental data on microbial community succession during the initial deployment of ARs and contribute to understanding the ecological effects of ARs.
Collapse
Affiliation(s)
| | | | | | - Zhaoyang Jiang
- Correspondence: (Z.J.); (Z.L.); Tel.: +86-0631-568-8511 (Z.L.)
| | - Zhenlin Liang
- Correspondence: (Z.J.); (Z.L.); Tel.: +86-0631-568-8511 (Z.L.)
| |
Collapse
|
35
|
Experimental Study on the Influence of an Artificial Reef on Cross-Shore Morphodynamic Processes of a Wave-Dominated Beach. WATER 2020. [DOI: 10.3390/w12102947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Artificial reefs are being implemented around the world for their multi-functions including coastal protection and environmental improvement. To better understand the hydrodynamic and morphodynamic roles of an artificial reef (AR) in beach protection, a series of experiments were conducted in a 50 m-long wave flume configured with a 1:10 sloping beach and a model AR (1.8 m long × 0.3 m high) with 0.2 m submergence depth. Five regular and five irregular wave conditions were generated on two types of beach profiles (with/without model AR) to study the cross-shore hydrodynamic and morphological evolution process. The influences of AR on the processes are concluded as follows: (1) AR significantly decreases the incident wave energy, and its dissipation effect differs for higher and lower harmonics under irregular wave climates; (2) AR changes the cross-shore patterns of hydrodynamic factors (significant wave height, wave skewness and asymmetry, and undertow), leading to the movement of shoaling and breaking zones; (3) the beach evolution is characterized by a sandbar and a scarp which respectively sit at a higher and lower location on the profile with AR than natural beach without AR; (4) the cross-shore morphological features indicate that AR can lead to beach state transformation toward reflective state; (5) the scarp retreat process can be described by a model where the scarp location depends linearly on the natural exponential of time with the fitting parameters determined by wave run-up reduced by AR. This study demonstrates cross-shore effects of AR as a beach protection structure that changes wave dynamics in surf and swash zone, reduces offshore sediment transport, and induces different morphological features.
Collapse
|
36
|
Taormina B, Laurans M, Marzloff MP, Dufournaud N, Lejart M, Desroy N, Leroy D, Martin S, Carlier A. Renewable energy homes for marine life: Habitat potential of a tidal energy project for benthic megafauna. MARINE ENVIRONMENTAL RESEARCH 2020; 161:105131. [PMID: 32966914 DOI: 10.1016/j.marenvres.2020.105131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
An increasing number of offshore structures are being deployed worldwide to meet the growing demand for renewable energy. Besides energy production, these structures can also provide new artificial habitats to a diversity of fish and crustacean species. This study characterises how concrete mattresses that stabilise the submarine power cable of a tidal energy test site can increase habitat capacity for benthic megafauna. A five-year monitoring, which relied on both visual counts and video-based surveys by divers, revealed that these mattresses provide a suitable habitat for 5 taxa of large crustaceans and fish. In particular, two commercially valuable species, i.e. the edible crab Cancer pagurus and the European lobster Homarus gammarus, showed a constant occupancy of these artificial habitats throughout the course of the project. The shape and the number of shelters available below individual mattresses largely determine potential for colonisation by mobile megafauna. Local physical characteristics of the implantation site (e.g. substratum type, topography, exposition to current etc.) significantly impact amount and type of shelters provided by the concrete mattresses. Thus, to characterise habitat potential of artificial structures, it is not only essential to consider (i) the design of the structures, but also to (ii) account for their interactions with local environmental conditions when deployed on the seafloor.
Collapse
Affiliation(s)
- Bastien Taormina
- France Energies Marines, 525 Avenue Alexis de Rochon, 29280, Plouzané, France; Ifremer, Centre de Bretagne, DYNECO - Laboratoire D'écologie Benthique, ZI de La Pointe Du Diable - CS 10070, 29280, Plouzané, France.
| | - Martial Laurans
- Ifremer, Centre de Bretagne, Laboratoire Ressources Halieutiques, ZI de La Pointe Du Diable - CS 10070, 29280, Plouzané, France
| | - Martin P Marzloff
- Ifremer, Centre de Bretagne, DYNECO - Laboratoire D'écologie Benthique, ZI de La Pointe Du Diable - CS 10070, 29280, Plouzané, France
| | - Noémie Dufournaud
- Ifremer, Centre de Bretagne, Laboratoire Ressources Halieutiques, ZI de La Pointe Du Diable - CS 10070, 29280, Plouzané, France
| | - Morgane Lejart
- France Energies Marines, 525 Avenue Alexis de Rochon, 29280, Plouzané, France
| | - Nicolas Desroy
- Ifremer, Laboratoire Environnement Ressources Bretagne Nord, 38 Rue Du Port Blanc, 35801, Dinard, France
| | - Didier Leroy
- Ifremer, Centre de Bretagne, Laboratoire Ressources Halieutiques, ZI de La Pointe Du Diable - CS 10070, 29280, Plouzané, France
| | - Stéphane Martin
- Ifremer, Centre de Bretagne, Laboratoire Ressources Halieutiques, ZI de La Pointe Du Diable - CS 10070, 29280, Plouzané, France
| | - Antoine Carlier
- Ifremer, Centre de Bretagne, DYNECO - Laboratoire D'écologie Benthique, ZI de La Pointe Du Diable - CS 10070, 29280, Plouzané, France
| |
Collapse
|
37
|
An Assessment of Computational Fluid Dynamics as a Tool to Aid the Design of the HCMR-Artificial-ReefsTM Diving Oasis in the Underwater Biotechnological Park of Crete. SUSTAINABILITY 2020. [DOI: 10.3390/su12124847] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Since recreational diving activities have increased in recent decades, resulting in additional environmental pressure on the coastal zone, the deployment of artificial reefs as a conservation strategy to divert mass ecotourism from fragile natural reefs has been proposed and realized in many areas of the world. Twelve units of a patented naturoid artificial reef technology developed by the Hellenic Centre for Marine Research (HCMR) were deployed in 2015 in the Underwater Biotechnological Park of Crete (UBPC) in order to create an experimental diving oasis and investigate the potential of achieving this aim for the over-exploited coastal ecosystems of this part of the Eastern Mediterranean. Assessment of the degree of establishment of artificial reefs and their ability to mimic natural ecosystems is often monitored through biological surveys and sampling. The measurement of the chemical, physical, and hydrodynamic characteristics of the water mass surrounding artificial reefs is also essential to fully understand their comparison to natural reefs. In particular, the flow field around reefs has been shown to be one of the most important physical factors in determining suitable conditions for the establishment of a number of key species on reef habitats. However, the combination of biological establishment monitoring and realistic flow-field simulation using computational fluid dynamics as a tool to aid in the design improvement of already existing reef installations has not been fully investigated in previous work. They are often reported separately as either ecological or engineering studies. Therefore, this study examined a full-scale numerical simulation of the field flow around individual already installed naturoid reef shapes, and part of their present arrangement on the sea bottom of the UPBC combined with the field-testing of the functionality of the installed artificial reefs concerning fish species aggregation. The results show that the simulated flow characteristics around the HCMR diving oasis artificial reefs were in good general agreement with the results of former studies, both for flows around a single deployed unit and for flows around a cluster of more than one unit. The results also gave good indications of the performance of individual reef units concerning key desirable characteristics such as downstream shadowing and sediment/nutrient upwelling and resuspension. In particular, they confirmed extended low flow levels (less than 0.3 m/s) and in some cases double vortexes on the downstream side of reef units where observed colonization and habitation of some key fish species had taken place. They also showed how the present distribution of units could be optimized to perform better as an integrated reef cluster. The use of computational fluid dynamics, with field survey data, is therefore suggested as a useful design improvement tool for installed reef structures and their deployment arrangement for recreational diving oases that can aid the sustainable development of the coastal zone.
Collapse
|
38
|
Rouse S, Porter JS, Wilding TA. Artificial reef design affects benthic secondary productivity and provision of functional habitat. Ecol Evol 2020; 10:2122-2130. [PMID: 32128143 PMCID: PMC7042684 DOI: 10.1002/ece3.6047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 10/22/2019] [Accepted: 11/15/2019] [Indexed: 11/11/2022] Open
Abstract
Novel hard substratum, introduced through offshore developments, can provide habitat for marine species and thereby function as an artificial reef. To predict the ecological consequences of deploying offshore infrastructure, and sustainably manage the installation of new structures, interactions between artificial reefs and marine ecosystem functions and services must be understood. This requires quantitative data on the relationships between secondary productivity and artificial reef design, across all trophic levels. Benthic secondary productivity is, however, one of the least studied processes on artificial reefs.In this study, we show that productivity rates of a common suspension feeder, Flustra foliacea (Linnaeus 1758), were 2.4 times higher on artificial reefs constructed from "complex" blocks than on reefs constructed from "simple" blocks, which had a smaller surface area.Productivity rates were highest on external areas of reefs. Productivity rates decreased by 1.56%, per cm distance into the reef on complex reefs and 2.93% per cm into the reef on simple block reefs. The differences in productivity rates between reefs constructed from simple and complex blocks are assumed to reflect different current regimes and food supply between the external and internal reef areas, according to reef type. Synthesis and applications. Our results show that artificial reef design can affect secondary productivity at low trophic levels. We demonstrate that the incorporation of voids into reef blocks can lead to a greater proportion of the structure serving as functional habitat for benthic species. By including such modifications into the design of artificial reefs, it may be possible to increase the overall productivity capacity of artificial structures.
Collapse
Affiliation(s)
- Sally Rouse
- Scottish Association for Marine ScienceObanUK
| | - Joanne S. Porter
- International Centre for Island TechnologyHeriot Watt University OrkneyStromnessUK
| | | |
Collapse
|
39
|
O’Shaughnessy KA, Hawkins SJ, Evans AJ, Hanley ME, Lunt P, Thompson RC, Francis RA, Hoggart SPG, Moore PJ, Iglesias G, Simmonds D, Ducker J, Firth LB. Design catalogue for eco-engineering of coastal artificial structures: a multifunctional approach for stakeholders and end-users. Urban Ecosyst 2019. [DOI: 10.1007/s11252-019-00924-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AbstractCoastal urbanisation, energy extraction, food production, shipping and transportation have led to the global proliferation of artificial structures within the coastal and marine environments (sensu “ocean sprawl”), with subsequent loss of natural habitats and biodiversity. To mitigate and compensate impacts of ocean sprawl, the practice of eco-engineering of artificial structures has been developed over the past decade. Eco-engineering aims to create sustainable ecosystems that integrate human society with the natural environment for the benefit of both. The science of eco-engineering has grown markedly, yet synthesis of research into a user-friendly and practitioner-focused format is lacking. Feedback from stakeholders has repeatedly stated that a “photo user guide” or “manual” covering the range of eco-engineering options available for artificial structures would be beneficial. However, a detailed and structured “user guide” for eco-engineering in coastal and marine environments is not yet possible; therefore we present an accessible review and catalogue of trialled eco-engineering options and a summary of guidance for a range of different structures tailored for stakeholders and end-users as the first step towards a structured manual. This work can thus serve as a potential template for future eco-engineering guides. Here we provide suggestions for potential eco-engineering designs to enhance biodiversity and ecosystem functioning and services of coastal artificial structures with the following structures covered: (1) rock revetment, breakwaters and groynes composed of armour stones or concrete units; (2) vertical and sloping seawalls; (3) over-water structures (i.e., piers) and associated support structures; and (4) tidal river walls.
Collapse
|
40
|
Marine Ranching Construction and Management in East China Sea: Programs for Sustainable Fishery and Aquaculture. WATER 2019. [DOI: 10.3390/w11061237] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Marine ranching, which is considered a sustainable fishery mode that has advantages for the ecosystem approach to fishery, the ecosystem approach to aquaculture, and capture-based aquaculture, is rapidly growing in China. The development of marine ranching requires integrating different theoretical frameworks, methodological approaches for conceptual exploring, and models and management of ecosystem frameworks. We reviewed the definition of marine ranching, the history of marine ranching construction in China, and the techniques, principles, and cases of marine ranching construction and management in the East China Sea (ECS). We highlight four major developments in marine ranching in the ECS: (1) marine ranching site selection and design, (2) habitat restoration and construction technologies, (3) stock enhancement and the behavioral control of fishery resources, and (4) marine ranching management. We conclude that this step-wise procedure for marine ranching construction and management could have comprehensive benefits in terms of ecology, the economy, and society. Finally, a synthesis of the existing problems in ECS marine ranching construction, along with future challenges and directions, are outlined.
Collapse
|