1
|
Cvetkovska M. Algae use the underwater light spectrum to sense depth. Nature 2025; 637:553-554. [PMID: 39695286 DOI: 10.1038/d41586-024-04079-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
|
2
|
Volpe C, Nymark M, Andersen T, Winge P, Lavaud J, Vadstein O. Skeletonema marinoi ecotypes show specific habitat-related responses to fluctuating light supporting high potential for growth under photobioreactor light regime. THE NEW PHYTOLOGIST 2024; 243:145-161. [PMID: 38736026 DOI: 10.1111/nph.19788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/09/2024] [Indexed: 05/14/2024]
Abstract
Diatoms are a diverse group of phytoplankton usually dominating areas characterized by rapidly shifting light conditions. Because of their high growth rates and interesting biochemical profile, their biomass is considered for various commercial applications. This study aimed at identifying strains with superior growth in a photobioreactor (PBR) by screening the natural intraspecific diversity of ecotypes isolated from different habitats. We investigated the effect of PBR light fluctuating on a millisecond scale (FL, simulating the light in a PBR) on 19 ecotypes of the diatom Skeletonema marinoi isolated from the North Sea-Baltic Sea area. We compare growth, pigment ratios, phylogeny, photo-physiological variables and photoacclimation strategies between all strains and perform qPCR and absorption spectra analysis on a subset of strains. Our results show that the ecotypes responded differently to FL, and have contrasting photo-physiological and photoprotective strategies. The strains from Kattegat performed better in FL, and shared common photoacclimation and photoprotection strategies that are the results of adaptation to the specific light climate of the Kattegat area. The strains that performed better with FL conditions had a high light (HL)-acclimated phenotype coupled with unique nonphotochemical quenching features. Based on their characteristics, three strains were identified as good candidates for growth in PBRs.
Collapse
Affiliation(s)
- Charlotte Volpe
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, N-7491, Trondheim, Norway
- Department of Fisheries and New Biomarine Industry, SINTEF Ocean, N-7465, Trondheim, Norway
| | - Marianne Nymark
- Department of Fisheries and New Biomarine Industry, SINTEF Ocean, N-7465, Trondheim, Norway
- Department of Biology, Norwegian University of Science and Technology, N-7491, Trondheim, Norway
| | - Tom Andersen
- Department of Biosciences, Section for Aquatic Biology and Toxicology (AQUA), University of Oslo, N-0316, Oslo, Norway
| | - Per Winge
- Department of Biology, Norwegian University of Science and Technology, N-7491, Trondheim, Norway
| | - Johann Lavaud
- LEMAR-Laboratory of Marine Environmental Sciences, UMR6539 CNRS, Univ Brest, Ifremer, IRD, Institut Européen de la Mer, Technopôle Brest-Iroise, rue Dumont d'Urville, Plouzané, 29280, France
| | - Olav Vadstein
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, N-7491, Trondheim, Norway
| |
Collapse
|
3
|
Jesus B, Jauffrais T, Trampe E, Méléder V, Ribeiro L, Bernhard JM, Geslin E, Kühl M. Microscale imaging sheds light on species-specific strategies for photo-regulation and photo-acclimation of microphytobenthic diatoms. Environ Microbiol 2023; 25:3087-3103. [PMID: 37671646 DOI: 10.1111/1462-2920.16499] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/23/2023] [Indexed: 09/07/2023]
Abstract
Intertidal microphytobenthic (MPB) biofilms are key sites for coastal primary production, predominantly by pennate diatoms exhibiting photo-regulation via non-photochemical quenching (NPQ) and vertical migration. Movement is the main photo-regulation mechanism of motile (epipelic) diatoms and because they can move from light, they show low-light acclimation features such as low NPQ levels, as compared to non-motile (epipsammic) forms. However, most comparisons of MPB species-specific photo-regulation have used low light acclimated monocultures, not mimicking environmental conditions. Here we used variable chlorophyll fluorescence imaging, fluorescent labelling in sediment cores and scanning electron microscopy to compare the movement and NPQ responses to light of four epipelic diatom species from a natural MPB biofilm. The diatoms exhibited different species-specific photo-regulation features and a large NPQ range, exceeding that reported for epipsammic diatoms. This could allow epipelic species to coexist in compacted light niches of MPB communities. We show that diatom cell orientation within MPB can be modulated by light, where diatoms oriented themselves more perpendicular to the sediment surface under high light vs. more parallel under low light, demonstrating behavioural, photo-regulatory response by varying their light absorption cross-section. This highlights the importance of considering species-specific responses and understanding cell orientation and photo-behaviour in MPB research.
Collapse
Affiliation(s)
- Bruno Jesus
- Nantes Université, Institut des Substances et Organismes de la Mer, ISOMer, UR2160, Nantes, France
| | - Thierry Jauffrais
- Ifremer, IRD, Univ Nouvelle-Calédonie, Univ La Réunion, CNRS, UMR 9220 ENTROPIE, RBE/LEAD, Noumea, New Caledonia
- Université d'Angers, Nantes Université, Le Mans Université, Angers, France
| | - Erik Trampe
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - Vona Méléder
- Nantes Université, Institut des Substances et Organismes de la Mer, ISOMer, UR2160, Nantes, France
| | - Lourenço Ribeiro
- MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network Associated Laboratory, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Joan M Bernhard
- Geology and Geophysics Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Emmanuelle Geslin
- Université d'Angers, Nantes Université, Le Mans Université, Angers, France
| | - Michael Kühl
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| |
Collapse
|
4
|
Xu W, Lin Y, Wang Y, Li Y, Zhu H, Zhou H. Phenotypic Analysis and Molecular Characterization of Enlarged Cell Size Mutant in Nannochloropsis oceanica. Int J Mol Sci 2023; 24:13595. [PMID: 37686401 PMCID: PMC10487731 DOI: 10.3390/ijms241713595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
The cell cycle is the fundamental cellular process of eukaryotes. Although cell-cycle-related genes have been identified in microalgae, their cell cycle progression differs from species to species. Cell enlargement in microalgae is an essential biological trait. At the same time, there are various causes of cell enlargement, such as environmental factors, especially gene mutations. In this study, we first determined the phenotypic and biochemical characteristics of a previously obtained enlarged-cell-size mutant of Nannochloropsis oceanica, which was designated ECS. Whole-genome sequencing analysis of the insertion sites of ECS indicated that the insertion fragment is integrated inside the 5'-UTR of U/P-type cyclin CYCU;1 and significantly decreases the gene expression of this cyclin. In addition, the transcriptome showed that CYCU;1 is a highly expressed cyclin. Furthermore, cell cycle analysis and RT-qPCR of cell-cycle-related genes showed that ECS maintains a high proportion of 4C cells and a low proportion of 1C cells, and the expression level of CYCU;1 in wild-type (WT) cells is significantly increased at the end of the light phase and the beginning of the dark phase. This means that CYCU;1 is involved in cell division in the dark phase. Our results explain the reason for the larger ECS size. Mutation of CYCU;1 leads to the failure of ECS to fully complete cell division in the dark phase, resulting in an enlargement of the cell size and a decrease in cell density, which is helpful to understand the function of CYCU;1 in the Nannochloropsis cell cycle.
Collapse
Affiliation(s)
- Weinan Xu
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361000, China; (W.X.); (Y.L.); (Y.W.); (Y.L.)
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361000, China;
| | - Yihua Lin
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361000, China; (W.X.); (Y.L.); (Y.W.); (Y.L.)
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361000, China;
| | - Yu Wang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361000, China; (W.X.); (Y.L.); (Y.W.); (Y.L.)
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361000, China;
| | - Yanyan Li
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361000, China; (W.X.); (Y.L.); (Y.W.); (Y.L.)
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361000, China;
| | - Hongmei Zhu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361000, China;
| | - Hantao Zhou
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361000, China; (W.X.); (Y.L.); (Y.W.); (Y.L.)
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361000, China;
| |
Collapse
|
5
|
Nezafatian E, Farhadian O, Yegdaneh A, Safavi M, Daneshvar E, Bhatnagar A. Enhanced production of bioactive compounds from marine microalgae Tetraselmis tetrathele under salinity and light stresses: A two-stage cultivation strategy. BIORESOURCE TECHNOLOGY 2023; 376:128899. [PMID: 36933578 DOI: 10.1016/j.biortech.2023.128899] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
This study leveraged the salinity and light intensity stresses during the stationary phase for enhancing the pigment contents and antioxidant capacity of Tetraselmis tetrathele. The highest pigments content was obtained in cultures under salinity stress (40 g L-1) illuminated using fluorescent light. Furthermore, the best inhibitory concentration (IC50) for scavenging the 2, 2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radicals was found as 79.53 µg mL-1 in ethanol extract and cultures under red LED light stress (300 µmol m-2 s-1). The highest antioxidant capacity in a ferric-reducing antioxidant power (FRAP) assay (1,778.6 µM Fe+2) was found in ethanol extract and cultures under salinity stress illuminated using fluorescent light. Maximum scavenging of the 2.2-diphenyl-1-picrylhydrazyl (DPPH) radical was found in ethyl acetate extracts under light and salinity stresses. These results indicated that abiotic stresses could enhance the pigment and antioxidant components of T. tetrathele, which are value-added compounds in the pharmaceutical, cosmetic, and food industries.
Collapse
Affiliation(s)
- Elham Nezafatian
- Department of Natural Resources, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Omidvar Farhadian
- Department of Natural Resources, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Afsaneh Yegdaneh
- Department of Pharmacognosy, School of Pharmacy and Pharmaceutical Sciences and Isfahan Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maliheh Safavi
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), 3353-5111 Tehran, Iran
| | - Ehsan Daneshvar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130 Mikkeli, Finland
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130 Mikkeli, Finland
| |
Collapse
|
6
|
Kan C, Zhao Y, Sun KM, Tang X, Zhao Y. The inhibition and recovery mechanisms of the diatom Phaeodactylum tricornutum in response to high light stress - A study combining physiological and transcriptional analysis. JOURNAL OF PHYCOLOGY 2023; 59:418-431. [PMID: 36798977 DOI: 10.1111/jpy.13323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 05/28/2023]
Abstract
By combining physiological/biochemical and transcriptional analysis, the inhibition and recovery mechanisms of Phaeodactylum tricornutum in response to extreme high light stress (1300 μmol photons · m-2 · s-1 ) were elucidated. The population growth was inhibited in the first 24 h and started to recover from 48 h. At 24 h, photoinhibition was exhibited as the changes of PSII photosynthetic parameters and decrease in cellular pigments, corresponding to the downregulation of genes encoding light-harvesting complex and pigments synthesis. Changes in those photosynthetic parameters and genes were kept until 96 h, indicating that the decrease of light absorption abilities might be one strategy for photoacclimation. In the meanwhile, we observed elevated cellular ROS levels, dead cells proportions, and upregulation of genes encoding antioxidant materials and proteasome pathway at 24 h. Those stress-related parameters and genes recovered to the controls at 96 h, indicating a stable intracellular environment after photoacclimation. Finally, genes involving carbon metabolisms were upregulated from 24 to 96 h, which ensured the energy supply for keeping high base and nucleotide excision repair abilities, leading to the recovery of cell cycle progression. We concluded that P. tricornutum could overcome photoinhibition by decreasing light-harvesting abilities, enhancing carbon metabolisms, activating anti-oxidative functions, and elevating repair abilities. The parameters of light harvesting, carbon metabolisms, and repair processes were responsible for the recovery phase, which could be considered long-term adaptive strategies for diatoms under high light stress.
Collapse
Affiliation(s)
- Chengxiang Kan
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao, China
| | - Yirong Zhao
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao, China
| | - Kai-Ming Sun
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Qingdao, China
| | - Xuexi Tang
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yan Zhao
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
7
|
Calvaruso C, Stefanidis K, Büchel C. Photoacclimation impacts the molecular features of photosystem supercomplexes in the centric diatom Thalassiosira pseudonana. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148589. [PMID: 35779585 DOI: 10.1016/j.bbabio.2022.148589] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 06/10/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
In diatoms, light-harvesting processes take place in a specific group of proteins, called fucoxanthin chlorophyll a/c proteins (FCP). This group includes many members and represents the major characteristic of the diatom photosynthetic apparatus, with specific pigments bound (chlorophyll c, fucoxanthin, diadino- and diatoxanthin besides chlorophyll a). In thylakoids, FCP and photosystems (PS) form multimeric supercomplexes. In this study, we compared the biochemical properties of PS supercomplexes isolated from Thalassiosira pseudonana cells grown under low light or high light conditions, respectively. High light acclimation changed the molecular features of the PS and their ratio in thylakoids. In PSII, no obvious changes in polypeptide composition were observed, whereas for PSI changes in one specific group of FCP proteins were detected. As reported before, the amount of xanthophyll cycle pigments and their de-epoxidation ratio was increased in PSI under HL. In PSII, however, no additional xanthophyll cycle pigments occurred, but the de-epoxidation ratio was increased as well. This comparison suggests how mechanisms of photoprotection might take place within and in the proximity of the PS, which gives new insights into the capacity of diatoms to adapt to different conditions and in different environments.
Collapse
Affiliation(s)
- Claudio Calvaruso
- Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Konstantinos Stefanidis
- Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Claudia Büchel
- Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
8
|
Potential for the Production of Carotenoids of Interest in the Polar Diatom Fragilariopsis cylindrus. Mar Drugs 2022; 20:md20080491. [PMID: 36005496 PMCID: PMC9409807 DOI: 10.3390/md20080491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/15/2022] [Accepted: 07/27/2022] [Indexed: 01/25/2023] Open
Abstract
Carotenoid xanthophyll pigments are receiving growing interest in various industrial fields due to their broad and diverse bioactive and health beneficial properties. Fucoxanthin (Fx) and the inter-convertible couple diadinoxanthin–diatoxanthin (Ddx+Dtx) are acknowledged as some of the most promising xanthophylls; they are mainly synthesized by diatoms (Bacillariophyta). While temperate strains of diatoms have been widely investigated, recent years showed a growing interest in using polar strains, which are better adapted to the natural growth conditions of Nordic countries. The aim of the present study was to explore the potential of the polar diatom Fragilariopsis cylindrus in producing Fx and Ddx+Dtx by means of the manipulation of the growth light climate (daylength, light intensity and spectrum) and temperature. We further compared its best capacity to the strongest xanthophyll production levels reported for temperate counterparts grown under comparable conditions. In our hands, the best growing conditions for F. cylindrus were a semi-continuous growth at 7 °C and under a 12 h light:12 h dark photoperiod of monochromatic blue light (445 nm) at a PUR of 11.7 μmol photons m−2 s−1. This allowed the highest Fx productivity of 43.80 µg L−1 day−1 and the highest Fx yield of 7.53 µg Wh−1, more than two times higher than under ‘white’ light. For Ddx+Dtx, the highest productivity (4.55 µg L−1 day−1) was reached under the same conditions of ‘white light’ and at 0 °C. Our results show that F. cylindrus, and potentially other polar diatom strains, are very well suited for Fx and Ddx+Dtx production under conditions of low temperature and light intensity, reaching similar productivity levels as model temperate counterparts such as Phaeodactylum tricornutum. The present work supports the possibility of using polar diatoms as an efficient cold and low light-adapted bioresource for xanthophyll pigments, especially usable in Nordic countries.
Collapse
|
9
|
Iwasaki K, Szabó M, Tamburic B, Evenhuis C, Zavafer A, Kuzhiumparambil U, Ralph P. Investigating the impact of light quality on macromolecular composition of Chaetoceros muelleri. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:554-564. [PMID: 34635201 DOI: 10.1071/fp21131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
Diatoms (Bacillariophyceae) are important to primary productivity of aquatic ecosystems. This algal group is also a valuable source of high value compounds that are utilised as aquaculture feed. The productivity of diatoms is strongly driven by light and CO2 availability, and macro- and micronutrient concentrations. The light dependency of biomass productivity and metabolite composition is well researched in diatoms, but information on the impact of light quality, particularly the productivity return on energy invested when using different monochromatic light sources, remains scarce. In this work, the productivity return on energy invested of improving growth rate, photosynthetic activity, and metabolite productivity of the diatom Chaetoceros muelleri under defined wavelengths (blue, red, and green) as well as while light is analysed. By adjusting the different light qualities to equal photosynthetically utilisable radiation, it was found that the growth rate and photosynthetic oxygen evolution was unchanged under white, blue, and green light, but it was lower under red light. Blue light improved the productivity return on energy invested for biomass, total protein, total lipid, total carbohydrate, and in fatty acids production, which would suggest that blue light should be used for aquaculture feed production.
Collapse
Affiliation(s)
- Kenji Iwasaki
- Climate Change Cluster (C3), Faculty of Science, University of Technology Sydney, NSW, Australia
| | - Milán Szabó
- Climate Change Cluster (C3), Faculty of Science, University of Technology Sydney, NSW, Australia; and Institute of Plant Biology, Biological Research Centre, Hungary, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Bojan Tamburic
- Water Research Centre, School of Civil and Environmental Engineering, UNSW, Sydney, NSW, Australia
| | - Christian Evenhuis
- Climate Change Cluster (C3), Faculty of Science, University of Technology Sydney, NSW, Australia
| | - Alonso Zavafer
- Climate Change Cluster (C3), Faculty of Science, University of Technology Sydney, NSW, Australia; and Research School of Biology, Australian National University, Canberra, ACT, Australia
| | | | - Peter Ralph
- Climate Change Cluster (C3), Faculty of Science, University of Technology Sydney, NSW, Australia
| |
Collapse
|
10
|
Buck JM, Kroth PG, Lepetit B. Identification of sequence motifs in Lhcx proteins that confer qE-based photoprotection in the diatom Phaeodactylum tricornutum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1721-1734. [PMID: 34651379 DOI: 10.1111/tpj.15539] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/11/2021] [Indexed: 05/08/2023]
Abstract
Photosynthetic organisms in nature often experience light fluctuations. While low light conditions limit the energy uptake by algae, light absorption exceeding the maximal rate of photosynthesis may go along with enhanced formation of potentially toxic reactive oxygen species. To preempt high light-induced photodamage, photosynthetic organisms evolved numerous photoprotective mechanisms. Among these, energy-dependent fluorescence quenching (qE) provides a rapid mechanism to dissipate thermally the excessively absorbed energy. Diatoms thrive in all aquatic environments and thus belong to the most important primary producers on earth. qE in diatoms is provided by a concerted action of Lhcx proteins and the xanthophyll cycle pigment diatoxanthin. While the exact Lhcx activation mechanism of diatom qE is unknown, two lumen-exposed acidic amino acids within Lhcx proteins were proposed to function as regulatory switches upon light-induced lumenal acidification. By introducing a modified Lhcx1 lacking these amino acids into a Phaeodactylum tricornutum Lhcx1-null qE knockout line, we demonstrate that qE is unaffected by these two amino acids. Based on sequence comparisons with Lhcx4, being incapable of providing qE, we perform domain swap experiments of Lhcx4 with Lhcx1 and identify two peptide motifs involved in conferring qE. Within one of these motifs, we identify a tryptophan residue with a major influence on qE establishment. This tryptophan residue is located in close proximity to the diadinoxanthin/diatoxanthin-binding site based on the recently revealed diatom Lhc crystal structure. Our findings provide a structural explanation for the intimate link of Lhcx and diatoxanthin in providing qE in diatoms.
Collapse
Affiliation(s)
- Jochen M Buck
- Plant Ecophysiology, Department of Biology, University of Konstanz, Konstanz, 78457, Germany
| | - Peter G Kroth
- Plant Ecophysiology, Department of Biology, University of Konstanz, Konstanz, 78457, Germany
| | - Bernard Lepetit
- Plant Ecophysiology, Department of Biology, University of Konstanz, Konstanz, 78457, Germany
| |
Collapse
|
11
|
Zhukova NV, Yakovleva IM. Low light acclimation strategy of the brown macroalga Undaria pinnatifida: Significance of lipid and fatty acid remodeling for photosynthetic competence. JOURNAL OF PHYCOLOGY 2021; 57:1792-1804. [PMID: 34486722 DOI: 10.1111/jpy.13209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 08/10/2021] [Accepted: 08/21/2021] [Indexed: 06/13/2023]
Abstract
Brown macroalgae, being important components of benthic communities in temperate regions, are frequently subjected to light limitation. To extend our understanding of their low light acclimation strategies to the regulation of membrane lipid environment, photosynthetic characteristics, lipid class, fatty acid profiles and chloroplast ultrastructure were compared in Undaria pinnatifida (Phaeophyceae, Ochrophyta) after long-term exposure to low and moderate light intensities (LL, 100 and ML, 280 µmol photons · m-2 · s-1 ). We show that light limitation significantly increased PSII quantum efficiency and photosynthetic electron transport rate, enhanced pigment contents and concentration of thylakoid membranes in chloroplasts but decreased the distance between the thylakoid stacks. These physiological alterations at LL were accompanied by a selective remodeling of thylakoid membrane lipids driven by increases in monogalactosyldiacylglycerol (MGDG) and phosphatidylglycerol (PG) contents. Light limitation also induced active production of PG specific trans-Δ3 -hexadecenoic acid and accumulation of n-3 polyunsaturated fatty acids (PUFA) mostly in PG and MGDG at the expense of the rise in 18:3n-3 and 20:5n-3, 18:4n-3, respectively. These changes in lipid and FA profiles are apparently responsible for supporting thylakoid biogenesis and efficient photosynthesis at light limitation, thus contributing to photoacclimation strategies in brown algae. The content of triacylglycerols (TAG) and the level of their PUFA were decreased at LL, suggesting the consumption of TAG as a source of PUFA and energy reserves. Thus, U. pinnatifida is able to successfully overcome periods of low irradiance through the effective light harvesting and utilization that are provided by high flexibility of lipid biosynthesis.
Collapse
Affiliation(s)
- Natalia V Zhukova
- National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Palchevskogo 17, Vladivostok, 690041, Russia
| | - Irina M Yakovleva
- National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Palchevskogo 17, Vladivostok, 690041, Russia
| |
Collapse
|
12
|
Pigment and Fatty Acid Heterogeneity in the Sea Slug Elysia crispata Is Not Shaped by Habitat Depth. Animals (Basel) 2021; 11:ani11113157. [PMID: 34827889 PMCID: PMC8614334 DOI: 10.3390/ani11113157] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/30/2021] [Accepted: 10/30/2021] [Indexed: 01/02/2023] Open
Abstract
Simple Summary Some species of sacoglossan sea slugs are able to steal chloroplasts from the algae they feed on and maintain them functional for several months, a process termed “kleptoplasty”. One of these photosynthetic slugs is Elysia crispata, found in coral reefs of the Gulf of Mexico. This sacoglossan inhabits different depths (0–25 m), being exposed to different food sources and contrasting light conditions. In this work, we characterized the pigment and fatty acid (FA) profiles, and quantified the total lipid, glycolipid and phospholipid contents of E. crispata from shallow (0–4 m) and deeper (8–12 m) waters, after a month of starvation to determine the longest and more stable retention of chloroplasts and its relation to habitat depth. Biochemical analyses allowed the identification of 12 photosynthetic pigments and 27 FAs. Heterogeneity in the composition of pigments confirmed the long-term retention of functional chloroplasts ingested from different algae. However, the differences found in pigment profile, total lipid content, and FA composition on individuals of E. crispata were not related to habitat depth. High amounts of glycolipids, exclusive chloroplast lipids, suggest a good condition of these photosynthetic organelles in animal cells. These results contribute baseline physiological data that may help explain evolutionary associations such as endosymbiosis. Abstract Long-term retention of functional chloroplasts in animal cells occurs only in sacoglossan sea slugs. Analysis of molecules related to the maintenance of these organelles can provide valuable information on this trait (kleptoplasty). The goal of our research was to characterize the pigment and fatty acid (FA) composition of the sea slug Elysia crispata and their associated chloroplasts that are kept functional for a long time, and to quantify total lipid, glycolipid and phospholipid contents, identifying differences between habitats: shallow (0–4 m) and deeper (8–12 m) waters. Specimens were sampled and analyzed after a month of food deprivation, through HPLC, GC-MS and colorimetric methods, to ensure an assessment of long-term kleptoplasty in relation to depth. Pigment signatures indicate that individuals retain chloroplasts from different macroalgal sources. FA classes, phospholipid and glycolipid contents displayed dissimilarities between depths. However, heterogeneities in pigment and FA profiles, as well as total lipid, glycolipid and phospholipid amounts in E. crispata were not related to habitat depth. The high content of chloroplast origin molecules, such as Chl a and glycolipids after a month of starvation, confirms that E. crispata retains chloroplasts in good biochemical condition. This characterization fills a knowledge gap of an animal model commonly employed to study kleptoplasty.
Collapse
|
13
|
Montero O, Velasco M, Miñón J, Marks EAN, Sanz-Arranz A, Rad C. Differential Membrane Lipid Profiles and Vibrational Spectra of Three Edaphic Algae and One Cyanobacterium. Int J Mol Sci 2021; 22:11277. [PMID: 34681936 PMCID: PMC8538821 DOI: 10.3390/ijms222011277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 11/25/2022] Open
Abstract
The membrane glycerolipids of four phototrophs that were isolated from an edaphic assemblage were determined by UPLC-MS after cultivation in a laboratory growth chamber. Identification was carried out by 18S and 16S rDNA sequencing. The algal species were Klebsormidium flaccidum (Charophyta), Oocystis sp. (Chlorophyta), and Haslea spicula (Bacillariophyta), and the cyanobacterium was Microcoleus vaginatus (Cyanobacteria). The glycerolipid profile of Oocystis sp. was dominated by monogalactosyldiacylglycerol (MGDG) species, with MGDG(18:3/16:4) accounting for 68.6%, whereas MGDG(18:3/16:3) was the most abundant glycerolipid in K. flaccidum (50.1%). A ratio of digalactosyldiacylglycerol (DGDG) species to MGDG species (DGDG/MGDG) was shown to be higher in K. flaccidum (0.26) than in Oocystis sp. (0.14). This ratio increased under high light (HL) as compared to low light (LL) in all the organisms, with its highest value being shown in cyanobacterium (0.38-0.58, LL-HL). High contents of eicosapentaenoic acid (EPA, C20:5) and hexadecenoic acid were observed in the glycerolipids of H. spicula. Similar Fourier transform infrared (FTIR) and Raman spectra were found for K. flaccidum and Oocystis sp. Specific bands at 1629.06 and 1582.78 cm-1 were shown by M. vaginatus in the Raman spectra. Conversely, specific bands in the FTIR spectrum were observed for H. spicula at 1143 and 1744 cm-1. The results of this study point out differences in the membrane lipid composition between species, which likely reflects their different morphology and evolutionary patterns.
Collapse
Affiliation(s)
- Olimpio Montero
- Institute of Biology and Molecular Genetics (IBGM), Spanish Council for Scientific Research (CSIC), Sanz y Forés Str. 3, 47003 Valladolid, Spain;
| | - Marta Velasco
- Institute of Biology and Molecular Genetics (IBGM), Spanish Council for Scientific Research (CSIC), Sanz y Forés Str. 3, 47003 Valladolid, Spain;
| | - Jorge Miñón
- Composting Research Group UBUCOMP, Faculty of Sciences, University of Burgos, 09001 Burgos, Spain; (J.M.); (C.R.)
| | - Evan A. N. Marks
- BETA Technological Center, University of Vic-University of Central Catalonia, Edifici Can Baumann, Crta. de Roda 70, 08500 Vic, Spain;
| | - Aurelio Sanz-Arranz
- Department of Fisica de la Materia Condensada, University of Valladolid, 47002 Valladolid, Spain;
| | - Carlos Rad
- Composting Research Group UBUCOMP, Faculty of Sciences, University of Burgos, 09001 Burgos, Spain; (J.M.); (C.R.)
| |
Collapse
|
14
|
Kayanja GE, Ibrahim IM, Puthiyaveetil S. Regulation of Phaeodactylum plastid gene transcription by redox, light, and circadian signals. PHOTOSYNTHESIS RESEARCH 2021; 147:317-328. [PMID: 33387192 DOI: 10.1007/s11120-020-00811-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
Diatoms are a diverse group of photosynthetic unicellular algae with a plastid of red-algal origin. As prolific primary producers in the ocean, diatoms fix as much carbon as all rainforests combined. The molecular mechanisms that contribute to the high photosynthetic productivity and ecological success of diatoms are however not yet fully understood. Using the model diatom Phaeodactylum tricornutum, here we show rhythmic transcript accumulation of plastid psaA, psbA, petB, and atpB genes as driven by a free running circadian clock. Treatment with the electron transport inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea overrides the circadian signal by markedly downregulating transcription of psaA, petB, and atpB genes but not the psbA gene. Changes in light quantity produce little change in plastid gene transcription while the effect of light quality seems modest with only the psaA gene responding in a pattern that is dependent on the redox state of the plastoquinone pool. The significance of these plastid transcriptional responses and the identity of the underlying genetic control systems are discussed with relevance to diatom photosynthetic acclimation.
Collapse
Affiliation(s)
- Gilbert E Kayanja
- Department of Biochemistry and Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Iskander M Ibrahim
- Department of Biochemistry and Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Sujith Puthiyaveetil
- Department of Biochemistry and Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
15
|
Divergence of photosynthetic strategies amongst marine diatoms. PLoS One 2020; 15:e0244252. [PMID: 33370327 PMCID: PMC7769462 DOI: 10.1371/journal.pone.0244252] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/07/2020] [Indexed: 11/19/2022] Open
Abstract
Marine phytoplankton, and in particular diatoms, are responsible for almost half of all primary production on Earth. Diatom species thrive from polar to tropical waters and across light environments that are highly complex to relatively benign, and so have evolved highly divergent strategies for regulating light capture and utilization. It is increasingly well established that diatoms have achieved such successful ecosystem dominance by regulating excitation energy available for generating photosynthetic energy via highly flexible light harvesting strategies. However, how different light harvesting strategies and downstream pathways for oxygen production and consumption interact to balance excitation pressure remains unknown. We therefore examined the responses of three diatom taxa adapted to inherently different light climates (estuarine Thalassioisira weissflogii, coastal Thalassiosira pseudonana and oceanic Thalassiosira oceanica) during transient shifts from a moderate to high growth irradiance (85 to 1200 μmol photons m-2 s-1). Transient high light exposure caused T. weissflogii to rapidly downregulate PSII with substantial nonphotochemical quenching, protecting PSII from inactivation or damage, and obviating the need for induction of O2 consuming (light-dependent respiration, LDR) pathways. In contrast, T. oceanica retained high excitation pressure on PSII, but with little change in RCII photochemical turnover, thereby requiring moderate repair activity and greater reliance on LDR. T. pseudonana exhibited an intermediate response compared to the other two diatom species, exhibiting some downregulation and inactivation of PSII, but high repair of PSII and induction of reversible PSII nonphotochemical quenching, with some LDR. Together, these data demonstrate a range of strategies for balancing light harvesting and utilization across diatom species, which reflect their adaptation to sustain photosynthesis under environments with inherently different light regimes.
Collapse
|
16
|
Mann M, Serif M, Wrobel T, Eisenhut M, Madhuri S, Flachbart S, Weber APM, Lepetit B, Wilhelm C, Kroth PG. The Aureochrome Photoreceptor PtAUREO1a Is a Highly Effective Blue Light Switch in Diatoms. iScience 2020; 23:101730. [PMID: 33235981 PMCID: PMC7670200 DOI: 10.1016/j.isci.2020.101730] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/30/2020] [Accepted: 10/21/2020] [Indexed: 02/08/2023] Open
Abstract
Aureochromes represent a unique type of blue light photoreceptors that possess a blue light sensing flavin-binding LOV-domain and a DNA-binding bZIP domain, thus being light-driven transcription factors. The diatom Phaeodactylum tricornutum, a member of the essential marine primary producers, possesses four aureochromes (PtAUREO1a, 1b, 1c, 2). Here we show a dramatic change in the global gene expression pattern of P. tricornutum wild-type cells after a shift from red to blue light. About 75% of the genes show significantly changed transcript levels already after 10 and 60 min of blue light exposure, which includes genes of major transcription factors as well as other photoreceptors. Very surprisingly, this light-induced regulation of gene expression is almost completely inhibited in independent PtAureo1a knockout lines. Such a massive and fast transcriptional change depending on one single photoreceptor is so far unprecedented. We conclude that PtAUREO1a plays a key role in diatoms upon blue light exposure. Blue light induces a very fast transcriptional response in the diatom P. tricornutum This strong response is almost completely inhibited when Aureochrome 1a is absent The results imply a key role of PtAureo1a in blue light-induced responses in diatoms
Collapse
Affiliation(s)
- Marcus Mann
- Institut für Biologie, Universität Leipzig, 04009 Leipzig, Germany
| | - Manuel Serif
- Fachbereich Biologie, Universität Konstanz, 78457 Konstanz, Germany
| | - Thomas Wrobel
- Institut für Biochemie der Pflanzen, Cluster of Excellence on Plant Science (CEPLAS), Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Marion Eisenhut
- Institut für Biochemie der Pflanzen, Cluster of Excellence on Plant Science (CEPLAS), Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Shvaita Madhuri
- Fachbereich Biologie, Universität Konstanz, 78457 Konstanz, Germany
| | - Samantha Flachbart
- Institut für Biochemie der Pflanzen, Cluster of Excellence on Plant Science (CEPLAS), Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Andreas P M Weber
- Institut für Biochemie der Pflanzen, Cluster of Excellence on Plant Science (CEPLAS), Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Bernard Lepetit
- Fachbereich Biologie, Universität Konstanz, 78457 Konstanz, Germany
| | | | - Peter G Kroth
- Fachbereich Biologie, Universität Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
17
|
Wilhelm C, Goss R, Garab G. The fluid-mosaic membrane theory in the context of photosynthetic membranes: Is the thylakoid membrane more like a mixed crystal or like a fluid? JOURNAL OF PLANT PHYSIOLOGY 2020; 252:153246. [PMID: 32777580 DOI: 10.1016/j.jplph.2020.153246] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/14/2020] [Accepted: 07/17/2020] [Indexed: 06/11/2023]
Abstract
Since the publication of the fluid-mosaic membrane theory by Singer and Nicolson in 1972 generations of scientists have adopted this fascinating concept for all biological membranes. Assuming the membrane as a fluid implies that the components embedded in the lipid bilayer can freely diffuse like swimmers in a water body. During the detailed biochemical analysis of the thylakoid protein components of chloroplasts from higher plants and algae, in the '80 s and '90 s it became clear that photosynthetic membranes are not homogeneous either in the vertical or the lateral directions. The lateral heterogeneity became obvious by the differentiation of grana and stroma thylakoids, but also the margins have been identified with a highly specific protein pattern. Further refinement of the fluid mosaic model was needed to take into account the presence of non-bilayer lipids, which are the most abundant lipids in all energy-converting membranes, and the polymorphism of lipid phases, which has also been documented in thylakoid membranes. These observations lead to the question, how mobile the components are in the lipid phase and how this ordering is made and maintained and how these features might be correlated with the non-bilayer propensity of the membrane lipids. Assuming instead of free diffusion, a "controlled neighborhood" replaced the model of fluidity by the model of a "mixed crystal structure". In this review we describe why basic photosynthetic regulation mechanisms depend on arrays of crystal-like lipid-protein macro-assemblies. The mechanisms which define the ordering in macrodomains are still not completely clear, but some recent experiments give an idea how this fascinating order is produced, adopted and maintained. We use the operation of the xanthophyll cycle as a rather well understood model challenging and complementing the standard Singer-Nicolson model via assigning special roles to non-bilayer lipids and non-lamellar lipid phases in the structure and function of thylakoid membranes.
Collapse
Affiliation(s)
- Christian Wilhelm
- Leipzig University, Institute of Biology, SenProf Algal Biotechnology, Permoserstr. 15, 04315, Leipzig, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, D-04103, Leipzig, Germany.
| | - Reimund Goss
- Leipzig University, Institute of Biology, Department of Plant Physiology, Johannisallee 21-23, D-04103, Leipzig, Germany
| | - Gyözö Garab
- Biological Research Centre, Institute of Plant Biology, Temesvári körút 62, H-6726, Szeged, Hungary; University of Ostrava, Department of Physics, Faculty of Science, Chittussiho 10, CZ-710 00, Ostrava, Slezská Ostrava, Czech Republic
| |
Collapse
|
18
|
|
19
|
Resilience and self-regulation processes of microalgae under UV radiation stress. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2020. [DOI: 10.1016/j.jphotochemrev.2019.100322] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Lacour T, Babin M, Lavaud J. Diversity in Xanthophyll Cycle Pigments Content and Related Nonphotochemical Quenching (NPQ) Among Microalgae: Implications for Growth Strategy and Ecology. JOURNAL OF PHYCOLOGY 2020; 56:245-263. [PMID: 31674660 DOI: 10.1111/jpy.12944] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 10/04/2019] [Indexed: 05/12/2023]
Abstract
Xanthophyll cycle-related nonphotochemical quenching (NPQ), which is present in most photoautotrophs, allows dissipation of excess light energy. Xanthophyll cycle-related NPQ depends principally on xanthophyll cycle pigments composition and their effective involvement in NPQ. Xanthophyll cycle-related NPQ is tightly controlled by environmental conditions in a species-/strain-specific manner. These features are especially relevant in microalgae living in a complex and highly variable environment. The goal of this study was to perform a comparative assessment of NPQ ecophysiologies across microalgal taxa in order to underline the specific involvement of NPQ in growth adaptations and strategies. We used both published results and data acquired in our laboratory to understand the relationships between growth conditions (irradiance, temperature, and nutrient availability), xanthophyll cycle composition, and xanthophyll cycle pigments quenching efficiency in microalgae from various taxa. We found that in diadinoxanthin-containing species, the xanthophyll cycle pigment pool is controlled by energy pressure in all species. At any given energy pressure, however, the diatoxanthin content is higher in diatoms than in other diadinoxanthin-containing species. XC pigments quenching efficiency is species-specific and decreases with acclimation to higher irradiances. We found a clear link between the natural light environment of species/ecotypes and quenching efficiency amplitude. The presence of diatoxanthin or zeaxanthin at steady state in all species examined at moderate and high irradiances suggests that cells maintain a light-harvesting capacity in excess to cope with potential decrease in light intensity.
Collapse
Affiliation(s)
| | - Marcel Babin
- Takuvik Joint International Laboratory UMI3376, CNRS (France) & ULaval (Canada), Département de Biologie, Université Laval, Pavillon Alexandre-Vachon, 1045, Avenue de la Médecine, Québec, QC, G1V 0A6, Canada
| | - Johann Lavaud
- Takuvik Joint International Laboratory UMI3376, CNRS (France) & ULaval (Canada), Département de Biologie, Université Laval, Pavillon Alexandre-Vachon, 1045, Avenue de la Médecine, Québec, QC, G1V 0A6, Canada
| |
Collapse
|
21
|
Cointet E, Wielgosz-Collin G, Bougaran G, Rabesaotra V, Gonçalves O, Méléder V. Effects of light and nitrogen availability on photosynthetic efficiency and fatty acid content of three original benthic diatom strains. PLoS One 2019; 14:e0224701. [PMID: 31694047 PMCID: PMC6834396 DOI: 10.1371/journal.pone.0224701] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 10/19/2019] [Indexed: 12/17/2022] Open
Abstract
Microalgal biotechnology has gained considerable importance in recent decades. Applications range from simple biomass production for food and animal feed to valuable products for fuel, pharmaceuticals, health, biomolecules and materials relevant to nanotechnology. There are few reports of the exploration of wider microalgae biodiversity in the literature on high value microalgal compounds, however, because it is believed that there is little to be gained in terms of biomass productivity by examining new strains. Still, without diversity, innovation in biotechnology applications is currently limited. Using microalgal diversity is a very promising way to match species and processes for a specific biotechnological application. In this context, three benthic marine diatom strains (Entomoneis paludosa NCC18.2, Nitzschia alexandrina NCC33, and Staurosira sp NCC182) were selected for their lipid production and growth capacities. Using PAM fluorometry and FTIR spectroscopy, this study investigated the impact of nitrogen repletion and depletion as well as light intensity (30, 100, and 400 μmol.photons.m-2.s-1) on their growth, photosynthetic performance and macromolecular content, with the aim of improving the quality of their lipid composition. Results suggest that under high light and nitrogen limitation, the photosynthetic machinery is negatively impacted, leading cells to reduce their growth and accumulate lipids and/or carbohydrates. However, increasing lipid content under stressful conditions does not increase the production of lipids of interest: PUFA, ARA and EPA production decreases. Culture conditions to optimize production of such fatty acids in these three original strains led to a balance between economic and ecophysiological constraints: low light and no nitrogen limitation led to better photosynthetic capacities associated with energy savings, and hence a more profitable approach.
Collapse
Affiliation(s)
- Eva Cointet
- Université de Nantes, Laboratoire Mer Molécules Santé, Nantes, France
- * E-mail:
| | | | | | - Vony Rabesaotra
- Université de Nantes, Laboratoire Mer Molécules Santé, Nantes, France
| | | | - Vona Méléder
- Université de Nantes, Laboratoire Mer Molécules Santé, Nantes, France
| |
Collapse
|
22
|
Kennedy F, Martin A, Bowman JP, Wilson R, McMinn A. Dark metabolism: a molecular insight into how the Antarctic sea-ice diatom Fragilariopsis cylindrus survives long-term darkness. THE NEW PHYTOLOGIST 2019; 223:675-691. [PMID: 30985935 PMCID: PMC6617727 DOI: 10.1111/nph.15843] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/02/2019] [Indexed: 05/27/2023]
Abstract
Light underneath Antarctic sea-ice is below detectable limits for up to 4 months of the year. The ability of Antarctic sea-ice diatoms to survive this prolonged darkness relies on their metabolic capability. This study is the first to examine the proteome of a prominent sea-ice diatom in response to extended darkness, focusing on the protein-level mechanisms of dark survival. The Antarctic diatom Fragilariopsis cylindrus was grown under continuous light or darkness for 120 d. The whole cell proteome was quantitatively analysed by nano-LC-MS/MS to investigate metabolic changes that occur during sustained darkness and during recovery under illumination. Enzymes of metabolic pathways, particularly those involved in respiratory processes, tricarboxylic acid cycle, glycolysis, the Entner-Doudoroff pathway, the urea cycle and the mitochondrial electron transport chain became more abundant in the dark. Within the plastid, carbon fixation halted while the upper sections of the glycolysis, gluconeogenesis and pentose phosphate pathways became less active. We have discovered how F. cylindrus utilises an ancient alternative metabolic mechanism that enables its capacity for long-term dark survival. By sustaining essential metabolic processes in the dark, F. cylindrus retains the functionality of the photosynthetic apparatus, ensuring rapid recovery upon re-illumination.
Collapse
Affiliation(s)
- Fraser Kennedy
- Institute for Marine and Antarctic StudiesUniversity of TasmaniaHobart7000TasmaniaAustralia
| | - Andrew Martin
- Institute for Marine and Antarctic StudiesUniversity of TasmaniaHobart7000TasmaniaAustralia
| | - John P. Bowman
- Centre for Food Safety and InnovationTasmanian Institute of AgricultureHobart7000TasmaniaAustralia
| | - Richard Wilson
- Central Science LaboratoryUniversity of TasmaniaHobart7000TasmaniaAustralia
| | - Andrew McMinn
- Institute for Marine and Antarctic StudiesUniversity of TasmaniaHobart7000TasmaniaAustralia
| |
Collapse
|
23
|
Broddrick JT, Du N, Smith SR, Tsuji Y, Jallet D, Ware MA, Peers G, Matsuda Y, Dupont CL, Mitchell BG, Palsson BO, Allen AE. Cross-compartment metabolic coupling enables flexible photoprotective mechanisms in the diatom Phaeodactylum tricornutum. THE NEW PHYTOLOGIST 2019; 222:1364-1379. [PMID: 30636322 PMCID: PMC6594073 DOI: 10.1111/nph.15685] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 12/20/2018] [Indexed: 05/07/2023]
Abstract
Photoacclimation consists of short- and long-term strategies used by photosynthetic organisms to adapt to dynamic light environments. Observable photophysiology changes resulting from these strategies have been used in coarse-grained models to predict light-dependent growth and photosynthetic rates. However, the contribution of the broader metabolic network, relevant to species-specific strategies and fitness, is not accounted for in these simple models. We incorporated photophysiology experimental data with genome-scale modeling to characterize organism-level, light-dependent metabolic changes in the model diatom Phaeodactylum tricornutum. Oxygen evolution and photon absorption rates were combined with condition-specific biomass compositions to predict metabolic pathway usage for cells acclimated to four different light intensities. Photorespiration, an ornithine-glutamine shunt, and branched-chain amino acid metabolism were hypothesized as the primary intercompartment reductant shuttles for mediating excess light energy dissipation. Additionally, simulations suggested that carbon shunted through photorespiration is recycled back to the chloroplast as pyruvate, a mechanism distinct from known strategies in photosynthetic organisms. Our results suggest a flexible metabolic network in P. tricornutum that tunes intercompartment metabolism to optimize energy transport between the organelles, consuming excess energy as needed. Characterization of these intercompartment reductant shuttles broadens our understanding of energy partitioning strategies in this clade of ecologically important primary producers.
Collapse
Affiliation(s)
- Jared T. Broddrick
- Division of Biological SciencesUC San DiegoLa JollaCA92093USA
- Department of BioengineeringUC San DiegoLa JollaCA92093USA
| | - Niu Du
- Scripps Institution of OceanographyUC San DiegoLa JollaCA92093USA
- J. Craig Venter InstituteLa JollaCA92037USA
| | | | - Yoshinori Tsuji
- Department of Environmental BioscienceKwansei Gakuin UniversitySanda669‐1337Japan
| | - Denis Jallet
- Department of BiologyColorado State UniversityFort CollinsCO80523USA
| | - Maxwell A. Ware
- Department of BiologyColorado State UniversityFort CollinsCO80523USA
| | - Graham Peers
- Department of BiologyColorado State UniversityFort CollinsCO80523USA
| | - Yusuke Matsuda
- Department of Environmental BioscienceKwansei Gakuin UniversitySanda669‐1337Japan
| | | | - B. Greg Mitchell
- Scripps Institution of OceanographyUC San DiegoLa JollaCA92093USA
| | | | - Andrew E. Allen
- Scripps Institution of OceanographyUC San DiegoLa JollaCA92093USA
- J. Craig Venter InstituteLa JollaCA92037USA
| |
Collapse
|
24
|
Baldisserotto C, Sabia A, Ferroni L, Pancaldi S. Biological aspects and biotechnological potential of marine diatoms in relation to different light regimens. World J Microbiol Biotechnol 2019; 35:35. [PMID: 30712106 DOI: 10.1007/s11274-019-2607-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 01/27/2019] [Indexed: 11/25/2022]
Abstract
As major primary producers in marine environments, diatoms are considered a valuable feedstock of biologically active compounds for application in several biotechnological fields. Due to their metabolic plasticity, especially for light perception and use and in order to make microalgal production more environmentally sustainable, marine diatoms are considered good candidates for the large-scale cultivation. Among physical parameters, light plays a primary role. Even if sunlight is cost-effective, the employment of artificial light becomes a winning strategy if a high-value microalgal biomass is produced. Several researches on marine diatoms are designed to study the influence of different light regimens to increase biomass production enriched in biotechnologically high-value compounds (lipids, carotenoids, proteins, polysaccharides), or with emphasised photonic properties of the frustule.
Collapse
Affiliation(s)
- Costanza Baldisserotto
- Department of Life Sciences and Biotechnology, University of Ferrara, C.so Ercole I d'Este, 32, 44121, Ferrara, Italy
| | - Alessandra Sabia
- Department of Life Sciences and Biotechnology, University of Ferrara, C.so Ercole I d'Este, 32, 44121, Ferrara, Italy
| | - Lorenzo Ferroni
- Department of Life Sciences and Biotechnology, University of Ferrara, C.so Ercole I d'Este, 32, 44121, Ferrara, Italy
| | - Simonetta Pancaldi
- Department of Life Sciences and Biotechnology, University of Ferrara, C.so Ercole I d'Este, 32, 44121, Ferrara, Italy.
| |
Collapse
|
25
|
Long M, Tallec K, Soudant P, Le Grand F, Donval A, Lambert C, Sarthou G, Jolley DF, Hégaret H. Allelochemicals from Alexandrium minutum induce rapid inhibition of metabolism and modify the membranes from Chaetoceros muelleri. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.09.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
26
|
Yan D, Beardall J, Gao K. Variation in cell size of the diatom Coscinodiscus granii influences photosynthetic performance and growth. PHOTOSYNTHESIS RESEARCH 2018; 137:41-52. [PMID: 29322482 DOI: 10.1007/s11120-017-0476-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 12/27/2017] [Indexed: 06/07/2023]
Abstract
Cell size has implications for the package effect in photon absorption as well as for metabolic scaling of metabolism. In this study, we have avoided species-related differences by using isolates of the marine planktonic diatom Coscinodiscus granii with cells of different sizes and grown at different light intensities to investigate their energy allocation strategies. To make full use of incident light, several fold variations in cellular chlorophyll a content were employed across cell size. This modulation of pigment-related light absorbance was deemed effective as similar light absorbing capacities were found in all treatments. Unexpected low values of O2 evolution rate at the highest irradiance level of 450 μmol photons m-2 s-1 were found in medium and large cells, regardless of more photons being absorbed under these conditions, suggesting the operation of alternative electron flows acting as electron sinks. The growth rate was generally larger at higher irradiance levels except for the large cells, in which growth slowed at 450 μmol photons m-2 s-1, suggesting that larger cells achieved a balance between growth and photoprotection by sacrificing growth rate when exposed to high light. Although the ratio of carbon demand to rates of uncatalysed CO2 diffusion to the cell surface reached around 20 in large cells grown under higher irradiance, the carbon fixation rate was not lowered, due to the presence of a highly effective carbon dioxide concentrating mechanism.
Collapse
Affiliation(s)
- Dong Yan
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, China
| | - John Beardall
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Kunshan Gao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
27
|
Malerba ME, Palacios MM, Palacios Delgado YM, Beardall J, Marshall DJ. Cell size, photosynthesis and the package effect: an artificial selection approach. THE NEW PHYTOLOGIST 2018; 219:449-461. [PMID: 29658153 DOI: 10.1111/nph.15163] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/08/2018] [Indexed: 06/08/2023]
Abstract
Cell size correlates with most traits among phytoplankton species. Theory predicts that larger cells should show poorer photosynthetic performance, perhaps due to reduced intracellular self-shading (i.e. package effect). Yet current theory relies heavily on interspecific correlational approaches and causal relationships between size and photosynthetic machinery have remained untested. As a more direct test, we applied 250 generations of artificial selection (c. 20 months) to evolve the green microalga Dunaliella teriolecta (Chlorophyta) toward different mean cell sizes, while monitoring all major photosynthetic parameters. Evolving larger sizes (> 1500% difference in volume) resulted in reduced oxygen production per chlorophyll molecule - as predicted by the package effect. However, large-evolved cells showed substantially higher rates of oxygen production - a finding unanticipated by current theory. In addition, volume-specific photosynthetic pigments increased with size (Chla+b), while photo-protectant pigments decreased (β-carotene). Finally, larger cells displayed higher growth performances and Fv /Fm , steeper slopes of rapid light curves (α) and smaller light-harvesting antennae (σPSII ) with higher connectivity (ρ). Overall, evolving a common ancestor into different sizes showed that the photosynthetic characteristics of a species coevolves with cell volume. Moreover, our experiment revealed a trade-off between chlorophyll-specific (decreasing with size) and volume-specific (increasing with size) oxygen production in a cell.
Collapse
Affiliation(s)
- Martino E Malerba
- Centre of Geometric Biology, School of Biological Sciences, Monash University, Melbourne, Vic., 3800, Australia
| | - Maria M Palacios
- Department of Marine Biology and Aquaculture, ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Qld, 4811, Australia
| | | | - John Beardall
- School of Biological Sciences, Monash University, Melbourne, Vic., 3800, Australia
| | - Dustin J Marshall
- Centre of Geometric Biology, School of Biological Sciences, Monash University, Melbourne, Vic., 3800, Australia
| |
Collapse
|
28
|
Wagner H, Jakob T, Fanesi A, Wilhelm C. Towards an understanding of the molecular regulation of carbon allocation in diatoms: the interaction of energy and carbon allocation. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0410. [PMID: 28717020 DOI: 10.1098/rstb.2016.0410] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2017] [Indexed: 11/12/2022] Open
Abstract
In microalgae, the photosynthesis-driven CO2 assimilation delivers cell building blocks that are used in different biosynthetic pathways. Little is known about how the cell regulates the subsequent carbon allocation to, for example, cell growth or for storage. However, knowledge about these regulatory mechanisms is of high biotechnological and ecological importance. In diatoms, the situation becomes even more complex because, as a consequence of their secondary endosymbiotic origin, the compartmentation of the pathways for the primary metabolic routes is different from green algae. Therefore, the mechanisms to manipulate the carbon allocation pattern cannot be adopted from the green lineage. This review describes the general pathways of cellular energy distribution from light absorption towards the final allocation of carbon into macromolecules and summarizes the current knowledge of diatom-specific allocation patterns. We further describe the (limited) knowledge of regulatory mechanisms of carbon partitioning between lipids, carbohydrates and proteins in diatoms. We present solutions to overcome the problems that hinder the identification of regulatory elements of carbon metabolism.This article is part of the themed issue 'The peculiar carbon metabolism in diatoms'.
Collapse
Affiliation(s)
- Heiko Wagner
- Department of Plant Physiology, Leipzig University, Institute of Biology, Johannisallee 21-23, 04103 Leipzig, Germany
| | - Torsten Jakob
- Department of Plant Physiology, Leipzig University, Institute of Biology, Johannisallee 21-23, 04103 Leipzig, Germany
| | - Andrea Fanesi
- Department of Plant Physiology, Leipzig University, Institute of Biology, Johannisallee 21-23, 04103 Leipzig, Germany
| | - Christian Wilhelm
- Department of Plant Physiology, Leipzig University, Institute of Biology, Johannisallee 21-23, 04103 Leipzig, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
| |
Collapse
|
29
|
Huang W, Daboussi F. Genetic and metabolic engineering in diatoms. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0411. [PMID: 28717021 DOI: 10.1098/rstb.2016.0411] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2017] [Indexed: 12/23/2022] Open
Abstract
Diatoms have attracted considerable attention due to their success in diverse environmental conditions, which probably is a consequence of their complex origins. Studies of their metabolism will provide insight into their adaptation capacity and are a prerequisite for metabolic engineering. Several years of investigation have led to the development of the genome engineering tools required for such studies, and a profusion of appropriate tools is now available for exploring and exploiting the metabolism of these organisms. Diatoms are highly prized in industrial biotechnology, due to both their richness in natural lipids and carotenoids and their ability to produce recombinant proteins, of considerable value in diverse markets. This review provides an overview of recent advances in genetic engineering methods for diatoms, from the development of gene expression cassettes and gene delivery methods, to cutting-edge genome-editing technologies. It also highlights the contributions of these rapid developments to both basic and applied research: they have improved our understanding of key physiological processes; and they have made it possible to modify the natural metabolism to favour the production of specific compounds or to produce new compounds for green chemistry and pharmaceutical applications.This article is part of the themed issue 'The peculiar carbon metabolism in diatoms'.
Collapse
Affiliation(s)
- Weichao Huang
- LISBP, Université de Toulouse, CNRS, INRA, INSA (LISBP-INSA Toulouse), 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Fayza Daboussi
- LISBP, Université de Toulouse, CNRS, INRA, INSA (LISBP-INSA Toulouse), 135 Avenue de Rangueil, 31077 Toulouse, France
| |
Collapse
|
30
|
Büchel C, Wilhelm C, Wagner V, Mittag M. Functional proteomics of light-harvesting complex proteins under varying light-conditions in diatoms. JOURNAL OF PLANT PHYSIOLOGY 2017; 217:38-43. [PMID: 28709708 DOI: 10.1016/j.jplph.2017.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/08/2017] [Accepted: 06/09/2017] [Indexed: 06/07/2023]
Abstract
Comparative proteome analysis of subcellular compartments like thylakoid membranes and their associated supercomplexes can deliver important in-vivo information on the molecular basis of physiological functions which go far beyond to that what can be learnt from transcriptional-based gene expression studies. For instance, the finding that light intensity influences mainly the relative stoichiometry of subunits could be obtained only by high resolution proteome analysis. The high sensitivity of LC-ESI-MS/MS based proteome analysis allows the determination of proteins in very small subfractions along with their non-labeled semi quantitative analysis. This provides insights in the protein-protein interactions of supercomplexes that are the operative units in intact cells. Here, we have focused on functional proteome approaches for the identification of microalgal light-harvesting complex proteins in chloroplasts and the eyespot in general and in detail for those of diatoms that are exposed to varying light conditions.
Collapse
Affiliation(s)
- Claudia Büchel
- Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Christian Wilhelm
- Institute of Biology, Department of Plant Physiology, University of Leipzig, 04103 Leipzig, Germany
| | - Volker Wagner
- Institute of General Botany and Plant Physiology, Friedrich Schiller University, 07743 Jena, Germany
| | - Maria Mittag
- Institute of General Botany and Plant Physiology, Friedrich Schiller University, 07743 Jena, Germany.
| |
Collapse
|
31
|
Kroth PG, Wilhelm C, Kottke T. An update on aureochromes: Phylogeny - mechanism - function. JOURNAL OF PLANT PHYSIOLOGY 2017; 217:20-26. [PMID: 28797596 DOI: 10.1016/j.jplph.2017.06.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/21/2017] [Accepted: 06/23/2017] [Indexed: 05/20/2023]
Abstract
Light is important for algae, as it warrants metabolic independence via photosynthesis. In addition to the absorption of light by the photosystems, algae possess a variety of specific photoreceptors that allow the quantification of the light fluxes as well as the assessment of light qualities. About a decade ago, aureochromes have been described in the xanthophyte alga Vaucheria frigida. These proteins represent a new type of blue light photoreceptor as they possess both a light-oxygen-voltage (LOV) domain for light reception as well as a basic region leucine zipper (bZIP) domain for DNA binding, indicating that they represent light-driven transcription factors. Aureochromes so far have been detected only in a single group of algae, photosynthetic stramenopiles, but not in any other prokaryotic or eukaryotic organisms. Recent biophysical work on aureochromes in the absence and the presence of DNA revealed the mechanism of allosteric communication between the sensor and effector domains despite their unusual inversed arrangement. Different molecular models have been proposed to describe the effect of light on DNA binding. Functional characterization of mutants of the diatom Phaeodactylum tricornutum, in which the aureochrome genes have been silenced or deleted, indicate that different aureochromes may have different functions, being involved in central processes like light acclimation and regulation of the cell cycle.
Collapse
Affiliation(s)
- Peter G Kroth
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany.
| | - Christian Wilhelm
- Institute of Biology, University of Leipzig, Johannisallee 21-23, 04103 Leipzig, Germany
| | - Tilman Kottke
- Department of Chemistry, Physical and Biophysical Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| |
Collapse
|
32
|
Mann M, Serif M, Jakob T, Kroth PG, Wilhelm C. PtAUREO1a and PtAUREO1b knockout mutants of the diatom Phaeodactylum tricornutum are blocked in photoacclimation to blue light. JOURNAL OF PLANT PHYSIOLOGY 2017; 217:44-48. [PMID: 28610707 DOI: 10.1016/j.jplph.2017.05.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/22/2017] [Accepted: 05/29/2017] [Indexed: 05/20/2023]
Abstract
Aureochromes are blue light receptors specifically found in photosynthetic Stramenopiles (algae). Four different Aureochromes have been identified in the marine diatom Phaeodactylum tricornutum (PtAUREO 1a, 1b, 1c, and 2). Since blue light is necessary for high light acclimation in diatoms, it has been hypothesized that Aureochromes might play an important role in the light acclimation capacity of diatoms. This hypothesis was supported by an RNAi knockdown line of PtAUREO1a, which showed a phenotype different from wild type cells when grown in either blue or red light. Here, we show for the first time the phenotype and the photoacclimation reaction of TALEN-mediated knockout mutants of PtAUREO1a and PtAUREO1b, clearly proving the necessity of Aureochromes for light acclimation under blue light. However, both mutants do also show specific differences in their respective phenotypes. Hence, PtAUREO1a and 1b are not functionally redundant in photoacclimation to blue light, and their specific contribution needs to be clarified further.
Collapse
Affiliation(s)
- Marcus Mann
- Institute of Biology, Department of Plant Physiology, University of Leipzig, D-04103 Leipzig, Germany.
| | - Manuel Serif
- Plant Ecophysiology, Fachbereich Biologie, Universität Konstanz, D-78457 Konstanz, Germany
| | - Torsten Jakob
- Institute of Biology, Department of Plant Physiology, University of Leipzig, D-04103 Leipzig, Germany
| | - Peter G Kroth
- Plant Ecophysiology, Fachbereich Biologie, Universität Konstanz, D-78457 Konstanz, Germany
| | - Christian Wilhelm
- Institute of Biology, Department of Plant Physiology, University of Leipzig, D-04103 Leipzig, Germany
| |
Collapse
|
33
|
Sayanova O, Mimouni V, Ulmann L, Morant-Manceau A, Pasquet V, Schoefs B, Napier JA. Modulation of lipid biosynthesis by stress in diatoms. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160407. [PMID: 28717017 PMCID: PMC5516116 DOI: 10.1098/rstb.2016.0407] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2017] [Indexed: 12/19/2022] Open
Abstract
Diatoms are responsible for up to 40% of the carbon fixation in our oceans. The fixed carbon is moved through carbon metabolism towards the synthesis of organic molecules that are consumed through interlocking foodwebs, and this process is strongly impacted by the abiotic environment. However, it has become evident that diatoms can be used as 'platform' organisms for the production of high valuable bio-products such as lipids, pigments and carbohydrates where stress conditions can be used to direct carbon metabolism towards the commercial production of these compounds. In the first section of this review, some aspects of carbon metabolism in diatoms and how it is impacted by environmental factors are briefly described. The second section is focused on the biosynthesis of lipids and in particular omega-3 long-chain polyunsaturated fatty acids and how low temperature stress impacts on the production of these compounds. In a third section, we review the recent advances in bioengineering for lipid production. Finally, we discuss new perspectives for designing strains for the sustainable production of high-value lipids.This article is part of the themed issue 'The peculiar carbon metabolism in diatoms'.
Collapse
Affiliation(s)
- Olga Sayanova
- Department of Plant Sciences, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Virginie Mimouni
- Metabolism, Bioengineering of Microalgal Molecules and Applications, Mer Molécules Santé, UBL, IUML-FR 3473 CNRS, University of Le Mans, Le Mans-Laval, France
| | - Lionel Ulmann
- Metabolism, Bioengineering of Microalgal Molecules and Applications, Mer Molécules Santé, UBL, IUML-FR 3473 CNRS, University of Le Mans, Le Mans-Laval, France
| | - Annick Morant-Manceau
- Metabolism, Bioengineering of Microalgal Molecules and Applications, Mer Molécules Santé, UBL, IUML-FR 3473 CNRS, University of Le Mans, Le Mans-Laval, France
| | - Virginie Pasquet
- Metabolism, Bioengineering of Microalgal Molecules and Applications, Mer Molécules Santé, UBL, IUML-FR 3473 CNRS, University of Le Mans, Le Mans-Laval, France
| | - Benoît Schoefs
- Metabolism, Bioengineering of Microalgal Molecules and Applications, Mer Molécules Santé, UBL, IUML-FR 3473 CNRS, University of Le Mans, Le Mans-Laval, France
| | - Johnathan A Napier
- Department of Plant Sciences, Rothamsted Research, Harpenden AL5 2JQ, UK
| |
Collapse
|
34
|
Moutier W, Duforêt-Gaurier L, Thyssen M, Loisel H, Mériaux X, Courcot L, Dessailly D, Rêve AH, Grégori G, Alvain S, Barani A, Brutier L, Dugenne M. Evolution of the scattering properties of phytoplankton cells from flow cytometry measurements. PLoS One 2017; 12:e0181180. [PMID: 28708882 PMCID: PMC5510878 DOI: 10.1371/journal.pone.0181180] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/27/2017] [Indexed: 11/19/2022] Open
Abstract
After the exponential growth phase, variability in the scattering efficiency of phytoplankton cells over their complete life cycle is not well characterised. Bulk measurements are impacted by senescent cells and detritrus. Thus the analysis of the evolution of the optical properties thanks to their morphological and/or intra-cellular variations remains poorly studied. Using the Cytosense flow cytometer (CytoBuoy b.v., NL), the temporal course of the forward and sideward efficiencies of two phytoplankton species (Thalassiosira pseudonana and Chlamydomonas concordia) were analyzed during a complete life-cycle. These two species differ considerably from a morphological point of view. Over the whole experiment, the forward and sideward efficiencies of Thalassiosira pseudonana were, on average, respectively 2.2 and 1.6 times higher than the efficiencies of Chlamydomonas concordia. Large intra-species variability of the efficiencies were observed over the life cycle of the considered species. It highlights the importance of considering the optical properties of phytoplankton cells as a function of the population growth stage of the considered species. Furthermore, flow cytometry measurements were combined with radiative transfer simulations and biogeochemical and optical measurements. Results showed that the real refractive index of the chloroplast is a key parameter driving the sideward signal and that a simplistic two-layered model (cytoplasm-chloroplast) seems particularly appropriate to represent the phytoplankton cells.
Collapse
Affiliation(s)
- William Moutier
- Univ. Littoral Côte d’Opale, Univ. Lille, CNRS, UMR 8187, LOG, Laboratoire d’Océanologie et de Géosciences, F 62930 Wimereux, France
- * E-mail:
| | - Lucile Duforêt-Gaurier
- Univ. Littoral Côte d’Opale, Univ. Lille, CNRS, UMR 8187, LOG, Laboratoire d’Océanologie et de Géosciences, F 62930 Wimereux, France
| | - Mélilotus Thyssen
- Aix-Marseille Université, Université de Toulon, CNRS, IRD, MIO UM 110, Mediterranean Institute of Oceanography, 13288 Marseille, France
| | - Hubert Loisel
- Univ. Littoral Côte d’Opale, Univ. Lille, CNRS, UMR 8187, LOG, Laboratoire d’Océanologie et de Géosciences, F 62930 Wimereux, France
| | - Xavier Mériaux
- Univ. Littoral Côte d’Opale, Univ. Lille, CNRS, UMR 8187, LOG, Laboratoire d’Océanologie et de Géosciences, F 62930 Wimereux, France
| | - Lucie Courcot
- Univ. Littoral Côte d’Opale, Univ. Lille, CNRS, UMR 8187, LOG, Laboratoire d’Océanologie et de Géosciences, F 62930 Wimereux, France
| | - David Dessailly
- Univ. Littoral Côte d’Opale, Univ. Lille, CNRS, UMR 8187, LOG, Laboratoire d’Océanologie et de Géosciences, F 62930 Wimereux, France
| | - Anne-Hélène Rêve
- Univ. Lille, UMR CNRS 8187 - LOG - Laboratoire d’Océanologie et de Géosciences, 62930 Wimereux, France
| | - Gérald Grégori
- Aix-Marseille Université, Université de Toulon, CNRS, IRD, MIO UM 110, Mediterranean Institute of Oceanography, 13288 Marseille, France
| | - Séverine Alvain
- Centre National de la Recherche Scientifique, UMR CNRS 8187 - LOG - Laboratoire d’Océanologie et de Géosciences, 62930 Wimereux, France
| | - Aude Barani
- Aix-Marseille Université, Université de Toulon, CNRS, IRD, MIO UM 110, Mediterranean Institute of Oceanography, 13288 Marseille, France
| | - Laurent Brutier
- Univ. Littoral Côte d’Opale, Univ. Lille, CNRS, UMR 8187, LOG, Laboratoire d’Océanologie et de Géosciences, F 62930 Wimereux, France
| | - Mathilde Dugenne
- Aix-Marseille Université, Université de Toulon, CNRS, IRD, MIO UM 110, Mediterranean Institute of Oceanography, 13288 Marseille, France
| |
Collapse
|
35
|
Ozkan A, Rorrer GL. Effects of light intensity on the selectivity of lipid and chitin nanofiber production during photobioreactor cultivation of the marine diatom Cyclotella sp. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.04.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
36
|
Lepetit B, Gélin G, Lepetit M, Sturm S, Vugrinec S, Rogato A, Kroth PG, Falciatore A, Lavaud J. The diatom Phaeodactylum tricornutum adjusts nonphotochemical fluorescence quenching capacity in response to dynamic light via fine-tuned Lhcx and xanthophyll cycle pigment synthesis. THE NEW PHYTOLOGIST 2017; 214:205-218. [PMID: 27870063 DOI: 10.1111/nph.14337] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 10/17/2016] [Indexed: 05/24/2023]
Abstract
Diatoms contain a highly flexible capacity to dissipate excessively absorbed light by nonphotochemical fluorescence quenching (NPQ) based on the light-induced conversion of diadinoxanthin (Dd) into diatoxanthin (Dt) and the presence of Lhcx proteins. Their NPQ fine regulation on the molecular level upon a shift to dynamic light conditions is unknown. We investigated the regulation of Dd + Dt amount, Lhcx gene and protein synthesis and NPQ capacity in the diatom Phaeodactylum tricornutum after a change from continuous low light to 3 d of sine (SL) or fluctuating (FL) light conditions. Four P. tricornutum strains with different NPQ capacities due to different expression of Lhcx1 were included. All strains responded to dynamic light comparably, independently of initial NPQ capacity. During SL, NPQ capacity was strongly enhanced due to a gradual increase of Lhcx2 and Dd + Dt amount. During FL, cells enhanced their NPQ capacity on the first day due to increased Dd + Dt, Lhcx2 and Lhcx3; already by the second day light acclimation was accomplished. While quenching efficiency of Dt was strongly lowered during SL conditions, it remained high throughout the whole FL exposure. Our results highlight a more balanced and cost-effective photoacclimation strategy of P. tricornutum under FL than under SL conditions.
Collapse
Affiliation(s)
- Bernard Lepetit
- UMR7266 'LIENSs', CNRS Université de La Rochelle, Institut du Littoral et de l'Environnement, 2 rue Olympe de Gouges, La Rochelle, 17000, France
- Zukunftskolleg, Pflanzliche Ökophysiologie, Universität Konstanz, Konstanz, 78457, Germany
| | - Gautier Gélin
- UMR7266 'LIENSs', CNRS Université de La Rochelle, Institut du Littoral et de l'Environnement, 2 rue Olympe de Gouges, La Rochelle, 17000, France
| | - Mariana Lepetit
- UMR7266 'LIENSs', CNRS Université de La Rochelle, Institut du Littoral et de l'Environnement, 2 rue Olympe de Gouges, La Rochelle, 17000, France
| | - Sabine Sturm
- Zukunftskolleg, Pflanzliche Ökophysiologie, Universität Konstanz, Konstanz, 78457, Germany
| | - Sascha Vugrinec
- Zukunftskolleg, Pflanzliche Ökophysiologie, Universität Konstanz, Konstanz, 78457, Germany
| | - Alessandra Rogato
- Institute of Biosciences and BioResources, CNR, Via P. Castellino 111, Naples, 80131, Italy
- Stazione Zoologica Anton Dohrn Villa Comunale, Naples, 80121, Italy
| | - Peter G Kroth
- Zukunftskolleg, Pflanzliche Ökophysiologie, Universität Konstanz, Konstanz, 78457, Germany
| | - Angela Falciatore
- Laboratoire de Biologie Computationnelle et Quantitative, Sorbonne Universités, UPMC, Institut de Biologie Paris-Seine, CNRS, 15 rue de l'Ecole de Médecine, Paris, 75006, France
| | - Johann Lavaud
- UMR7266 'LIENSs', CNRS Université de La Rochelle, Institut du Littoral et de l'Environnement, 2 rue Olympe de Gouges, La Rochelle, 17000, France
- Département de Biologie, UMI 3376 TAKUVIK, CNRS/Université Laval, Pavillon Alexandre-Vachon, 1045 avenue de la Médecine, Québec, QC, G1V 0A6, Canada
| |
Collapse
|
37
|
Wagner H, Fanesi A, Wilhelm C. Title: Freshwater phytoplankton responses to global warming. JOURNAL OF PLANT PHYSIOLOGY 2016; 203:127-134. [PMID: 27344409 DOI: 10.1016/j.jplph.2016.05.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 05/25/2016] [Accepted: 05/30/2016] [Indexed: 06/06/2023]
Abstract
Global warming alters species composition and function of freshwater ecosystems. However, the impact of temperature on primary productivity is not sufficiently understood and water quality models need to be improved in order to assess the quantitative and qualitative changes of aquatic communities. On the basis of experimental data, we demonstrate that the commonly used photosynthetic and water chemistry parameters alone are not sufficient for modeling phytoplankton growth under changing temperature regimes. We present some new aspects of the acclimation process with respect to temperature and how contrasting responses may be explained by a more complete physiological knowledge of the energy flow from photons to new biomass. We further suggest including additional bio-markers/traits for algal growth such as carbon allocation patterns to increase the explanatory power of such models. Although carbon allocation patterns are promising and functional cellular traits for growth prediction under different nutrient and light conditions, their predictive power still waits to be tested with respect to temperature. A great challenge for the near future will be the prediction of primary production efficiencies under the global change scenario using a uniform model for phytoplankton assemblages.
Collapse
Affiliation(s)
- Heiko Wagner
- Leipzig University, Institute of Biology, Department of Plant Physiology, Johannisallee 21-23, D-04103 Leipzig, Germany.
| | - Andrea Fanesi
- Leipzig University, Institute of Biology, Department of Plant Physiology, Johannisallee 21-23, D-04103 Leipzig, Germany
| | - Christian Wilhelm
- Leipzig University, Institute of Biology, Department of Plant Physiology, Johannisallee 21-23, D-04103 Leipzig, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, D-04103 Leipzig, Germany
| |
Collapse
|
38
|
Meneghesso A, Simionato D, Gerotto C, La Rocca N, Finazzi G, Morosinotto T. Photoacclimation of photosynthesis in the Eustigmatophycean Nannochloropsis gaditana. PHOTOSYNTHESIS RESEARCH 2016; 129:291-305. [PMID: 27448115 DOI: 10.1007/s11120-016-0297-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 07/14/2016] [Indexed: 05/22/2023]
Abstract
Nannochloropsis is an eukaryotic alga of the phylum Heterokonta, originating from a secondary endosymbiotic event. In this work, we investigated how the photosynthetic apparatus responds to growth in different light regimes in Nannochloropsis gaditana. We found that intense illumination induces the decrease of both photosystem I and II contents and their respective antenna sizes. Cells grown in high light showed a larger capacity for electron transport, with enhanced cyclic electron transport around photosystem I, contributing to photoprotection from excess illumination. Even when exposed to excess light intensities for several days, N. gaditana cells did not activate constitutive responses such as nonphotochemical quenching and the xanthophyll cycle. These photoprotection mechanisms in N. gaditana thus play a role in acclimation to fast changes in illumination within a time range of minutes, while regulation of the electron flow capacity represents a long-term response to prolonged exposure to excess light.
Collapse
Affiliation(s)
- Andrea Meneghesso
- Dipartimento di Biologia, Università di Padova, Via U. Bassi 58/B, 35121, Padua, Italy
| | - Diana Simionato
- Dipartimento di Biologia, Università di Padova, Via U. Bassi 58/B, 35121, Padua, Italy
| | - Caterina Gerotto
- Dipartimento di Biologia, Università di Padova, Via U. Bassi 58/B, 35121, Padua, Italy
| | - Nicoletta La Rocca
- Dipartimento di Biologia, Università di Padova, Via U. Bassi 58/B, 35121, Padua, Italy
| | - Giovanni Finazzi
- Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168, Centre National de la Recherche Scientifique (CNRS), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Université Grenoble Alpes, Institut National Recherche Agronomique (INRA), Institut de Recherche en Sciences et Technologies pour le Vivant (iRTSV), CEA Grenoble, 38054, Grenoble Cedex 9, France
| | - Tomas Morosinotto
- Dipartimento di Biologia, Università di Padova, Via U. Bassi 58/B, 35121, Padua, Italy.
| |
Collapse
|
39
|
Hunsperger HM, Ford CJ, Miller JS, Cattolico RA. Differential Regulation of Duplicate Light-Dependent Protochlorophyllide Oxidoreductases in the Diatom Phaeodactylum tricornutum. PLoS One 2016; 11:e0158614. [PMID: 27367227 PMCID: PMC4930169 DOI: 10.1371/journal.pone.0158614] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/17/2016] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Diatoms (Bacilliariophyceae) encode two light-dependent protochlorophyllide oxidoreductases (POR1 and POR2) that catalyze the penultimate step of chlorophyll biosynthesis in the light. Algae live in dynamic environments whose changing light levels induce photoacclimative metabolic shifts, including altered cellular chlorophyll levels. We hypothesized that the two POR proteins may be differentially adaptive under varying light conditions. Using the diatom Phaeodactylum tricornutum as a test system, differences in POR protein abundance and por gene expression were examined when this organism was grown on an alternating light:dark cycles at different irradiances; exposed to continuous light; and challenged by a significant decrease in light availability. RESULTS For cultures maintained on a 12h light: 12h dark photoperiod at 200μE m-2 s-1 (200L/D), both por genes were up-regulated during the light and down-regulated in the dark, though por1 transcript abundance rose and fell earlier than that of por2. Little concordance occurred between por1 mRNA and POR1 protein abundance. In contrast, por2 mRNA and POR2 protein abundances followed similar diurnal patterns. When 200L/D P. tricornutum cultures were transferred to continuous light (200L/L), the diurnal regulatory pattern of por1 mRNA abundance but not of por2 was disrupted, and POR1 but not POR2 protein abundance dropped steeply. Under 1200μE m-2 s-1 (1200L/D), both por1 mRNA and POR1 protein abundance displayed diurnal oscillations. A compromised diel por2 mRNA response under 1200L/D did not impact the oscillation in POR2 abundance. When cells grown at 1200L/D were then shifted to 50μE m-2 s-1 (50L/D), por1 and por2 mRNA levels decreased swiftly but briefly upon light reduction. Thereafter, POR1 but not POR2 protein levels rose significantly in response to this light stepdown. CONCLUSION Given the sensitivity of diatom por1/POR1 to real-time light cues and adherence of por2/POR2 regulation to the diurnal cycle, we suggest that POR1 supports photoacclimation, whereas POR2 is the workhorse for daily chlorophyll synthesis.
Collapse
Affiliation(s)
- Heather M. Hunsperger
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Christopher J. Ford
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - James S. Miller
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Rose Ann Cattolico
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
40
|
Wagner H, Jakob T, Lavaud J, Wilhelm C. Photosystem II cycle activity and alternative electron transport in the diatom Phaeodactylum tricornutum under dynamic light conditions and nitrogen limitation. PHOTOSYNTHESIS RESEARCH 2016; 128:151-161. [PMID: 26650230 DOI: 10.1007/s11120-015-0209-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 11/28/2015] [Indexed: 06/05/2023]
Abstract
Alternative electron sinks are an important regulatory mechanism to dissipate excessively absorbed light energy particularly under fast changing dynamic light conditions. In diatoms, the cyclic electron transport (CET) around Photosystem II (PS II) is an alternative electron transport pathway (AET) that contributes to avoidance of overexcitation under high light illumination. The combination of nitrogen limitation and high-intensity irradiance regularly occurs under natural conditions and is expected to force the imbalance between light absorption and the metabolic use of light energy. The present study demonstrates that under N limitation, the amount of AET and the activity of CETPSII in the diatom Phaeodactylum tricornutum were increased. Thereby, the activity of CETPSII was linearly correlated with the amount of AET rates. It is concluded that CETPSII significantly contributes to AET in P. tricornutum. Surprisingly, CETPSII was found to be activated already at the end of the dark period under N-limited conditions. This coincided with a significantly increased degree of reduction of the plastoquinone (PQ) pool. The analysis of the macromolecular composition of cells of P. tricornutum under N-limited conditions revealed a carbon allocation in favor of carbohydrates during the light period and their degradation during the dark phase. A possible linkage between the activity of CETPSII and degree of reduction of the PQ pool on the one side and the macromolecular changes on the other is discussed.
Collapse
Affiliation(s)
- Heiko Wagner
- Department of Biology, University of Leipzig, Johannisallee 21-23, 04103, Leipzig, Germany
| | - Torsten Jakob
- Department of Biology, University of Leipzig, Johannisallee 21-23, 04103, Leipzig, Germany.
| | - Johann Lavaud
- Institute for Coastal Research and Environment (ILE), UMRi 7266 'LIENSs', CNRS/University of La Rochelle, 2 rue Olympe de Gouges, 17000, La Rochelle Cedex, France
- Department of Biology, UMI 3376 TAKUVIK, CNRS/University Laval, Pavillon Alexandre-Vachon, 1045 avenue de la Médecine, Québec, Québec, G1V 0A6, Canada
| | - Christian Wilhelm
- Department of Biology, University of Leipzig, Johannisallee 21-23, 04103, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
| |
Collapse
|
41
|
Hewes CD. The color of mass culture: spectral characteristics of a shallow water column through shade-limited algal growth dynamics(1). JOURNAL OF PHYCOLOGY 2016; 52:252-259. [PMID: 27037590 DOI: 10.1111/jpy.12393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/15/2016] [Indexed: 06/05/2023]
Abstract
It is envisioned that mass algal cultivation for commercial biofuels production will entail the use of large raceway pond systems, which typically have shade-limited photosynthetic growth within depths of 20-30 cm. The attenuation of light and spectral qualities of red, green, and blue wavelengths in a 20-cm water column as a function of Chl-a concentration during exponential and linear phases of growth dynamics for the marine diatom Thalassiosira pseudonana was examined under laboratory conditions. While photosynthetically available radiation (PAR) was in excess throughout the water column during the phase of exponential growth, PAR became rate limiting differently for red, green, and blue wavelengths during the phase of linear growth. The transition from exponential to linear growth occurred at 1-2 mg Chl-a · L-1, whereby a scalar ~5 μmol photons · m-2 · s-1 at 20-cm depth was found to occur as would be anticipated having the compensation point for where rates of photosynthesis and respiration are equal. During the phase of linear growth, red wavelengths became increasingly dominant at depth as Chl-a concentrations increased, being contrary to the optical conditions for those natural bodies of water that forced the evolution of phytoplankton photosynthesis. It is hypothesized this dramatic difference in water column optics between natural and synthetic environments could influence a variety of biological reactions, importantly non-photochemical quenching capacities, which could negatively impact crop yield.
Collapse
Affiliation(s)
- Christopher D Hewes
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, 92093-0202, USA
| |
Collapse
|
42
|
Lavaud J, Six C, Campbell DA. Photosystem II repair in marine diatoms with contrasting photophysiologies. PHOTOSYNTHESIS RESEARCH 2016; 127:189-99. [PMID: 26156125 DOI: 10.1007/s11120-015-0172-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 06/25/2015] [Indexed: 05/23/2023]
Abstract
Skeletonema costatum and Phaeodactylum tricornutum are model marine diatoms with differing strategies for non-photochemical dissipation of excess excitation energy within photosystem II (PSII). We showed that S. costatum, with connectivity across the pigment bed serving PSII, and limited capacity for induction of sustained non-photochemical quenching (NPQ), maintained a large ratio of [PSII(Total)]/[PSII(Active)] to buffer against fluctuations in light intensity. In contrast, P. tricornutum, with a larger capacity to induce sustained NPQ, could maintain a lower [PSII(Total)]/[PSII(Active)]. Induction of NPQ was correlated with an active PSII repair cycle in both species, and inhibition of chloroplastic protein synthesis with lincomycin leads to run away over-excitation of remaining PSII(Active), particularly in S. costatum. We discuss these distinctions in relation to the differing capacities, induction and relaxation rates for NPQ, and as strain adaptations to the differential light regimes of their originating habitats. The present work further confirms the important role for the light-dependent fast regulation of photochemistry by NPQ interacting with PSII repair cycle capacity in the ecophysiology of both pennate and centric diatoms.
Collapse
Affiliation(s)
- Johann Lavaud
- UMRi 7266 'LIENSs', Institut du Littoral et de l'Environnement (ILE), CNRS-University of La Rochelle, 2 rue Olympe de Gouges, 17000, La Rochelle Cedex, France.
| | - Christophe Six
- Department of Biology, Mount Allison University, Sackville, NB E4L 1G7, Canada
- UMR 7144 'Adaptation et Diversité en Milieu Marin', 'Marine Phototrophic Prokaryotes' group, Centre National pour la Recherche Scientifique (CNRS), Station Biologique de Roscoff, Place George Teissier, 29680, Roscoff, France
- UMR 7144 'Adaptation et Diversité en Milieu Marin', 'Marine Phototrophic Prokaryotes' group, Université Pierre et Marie Curie (Paris 06), Station Biologique de Roscoff, Place George Teissier, 29680, Roscoff, France
| | - Douglas A Campbell
- Department of Biology, Mount Allison University, Sackville, NB E4L 1G7, Canada
| |
Collapse
|
43
|
Tu W, Li Y, Liu W, Wu L, Xie X, Zhang Y, Wilhelm C, Yang C. Spring Ephemerals Adapt to Extremely High Light Conditions via an Unusual Stabilization of Photosystem II. FRONTIERS IN PLANT SCIENCE 2016; 6:1189. [PMID: 26779223 PMCID: PMC4702278 DOI: 10.3389/fpls.2015.01189] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/30/2015] [Indexed: 05/29/2023]
Abstract
Ephemerals, widely distributed in the Gobi desert, have developed significant characteristics to sustain high photosynthetic efficiency under high light (HL) conditions. Since the light reaction is the basis for photosynthetic conversion of solar energy to chemical energy, the photosynthetic performances in thylakoid membrane of the spring ephemerals in response to HL were studied. Three plant species, namely two C3 spring ephemeral species of Cruciferae: Arabidopsis pumila (A. pumila) and Sisymbrium altissimum (S. altissimum), and the model plant Arabidopsis thaliana (A. thaliana) were chosen for the study. The ephemeral A. pumila, which is genetically close to A. thaliana and ecologically in the same habitat as S. altissimum, was used to avoid complications arising from the superficial differences resulted from comparing plants from two extremely contrasting ecological groups. The findings manifested that the ephemerals showed significantly enhanced activities of photosystem (PS) II under HL conditions, while the activities of PSII in A. thaliana were markedly decreased under the same conditions. Detailed analyses of the electron transport processes revealed that the increased plastoquinone pool oxidization, together with the enhanced PSI activities, ensured a lowered excitation pressure to PSII of both ephemerals, and thus facilitated the photosynthetic control to avoid photodamage to PSII. The analysis of the reaction centers of the PSs, both in terms of D1 protein turnover kinetics and the long-term adaptation, revealed that the unusually stable PSs structure provided the basis for the ephemerals to carry out high photosynthetic performances. It is proposed that the characteristic photosynthetic performances of ephemerals were resulted from effects of the long-term adaptation to the harsh environments.
Collapse
Affiliation(s)
- Wenfeng Tu
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Yang Li
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Wu Liu
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Lishuan Wu
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Xiaoyan Xie
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Yuanming Zhang
- Key Laboratory of Biogeography and Bioresource, Xinjiang Institute of Ecology and Geography, Chinese Academy of SciencesUrumqi, China
| | - Christian Wilhelm
- Institute of Biology, Department of Plant Physiology, University of LeipzigLeipzig, Germany
| | - Chunhong Yang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of SciencesBeijing, China
| |
Collapse
|
44
|
Fortunato AE, Annunziata R, Jaubert M, Bouly JP, Falciatore A. Dealing with light: the widespread and multitasking cryptochrome/photolyase family in photosynthetic organisms. JOURNAL OF PLANT PHYSIOLOGY 2015; 172:42-54. [PMID: 25087009 DOI: 10.1016/j.jplph.2014.06.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/17/2014] [Accepted: 06/19/2014] [Indexed: 05/19/2023]
Abstract
Light is essential for the life of photosynthetic organisms as it is a source of energy and information from the environment. Light excess or limitation can be a cause of stress however. Photosynthetic organisms exhibit sophisticated mechanisms to adjust their physiology and growth to the local environmental light conditions. The cryptochrome/photolyase family (CPF) is composed of flavoproteins with similar structures that display a variety of light-dependent functions. This family encompasses photolyases, blue-light activated enzymes that repair ultraviolet-light induced DNA damage, and cryptochromes, known for their photoreceptor functions in terrestrial plants. For this review, we searched extensively for CPFs in the available genome databases to trace the distribution and evolution of this protein family in photosynthetic organisms. By merging molecular data with current knowledge from the functional characterization of CPFs from terrestrial and aquatic organisms, we discuss their roles in (i) photoperception, (ii) biological rhythm regulation and (iii) light-induced stress responses. We also explore their possible implication in light-related physiological acclimation and their distribution in phototrophs living in different environments. The outcome of this structure-function analysis reconstructs the complex scenarios in which CPFs have evolved, as highlighted by the novel functions and biochemical properties of the most recently described family members in algae.
Collapse
Affiliation(s)
- Antonio Emidio Fortunato
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7238, Computational and Quantitative Biology, F-75006 Paris, France; CNRS, UMR 7238, Computational and Quantitative Biology, F-75006 Paris, France
| | - Rossella Annunziata
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7238, Computational and Quantitative Biology, F-75006 Paris, France; CNRS, UMR 7238, Computational and Quantitative Biology, F-75006 Paris, France
| | - Marianne Jaubert
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7238, Computational and Quantitative Biology, F-75006 Paris, France; CNRS, UMR 7238, Computational and Quantitative Biology, F-75006 Paris, France
| | - Jean-Pierre Bouly
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7238, Computational and Quantitative Biology, F-75006 Paris, France; CNRS, UMR 7238, Computational and Quantitative Biology, F-75006 Paris, France.
| | - Angela Falciatore
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7238, Computational and Quantitative Biology, F-75006 Paris, France; CNRS, UMR 7238, Computational and Quantitative Biology, F-75006 Paris, France.
| |
Collapse
|
45
|
Affiliation(s)
- Chris Bowler
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS UMR8197 Inserm U1024, 75005 Paris, France
| | - Angela Falciatore
- Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR 7238, Laboratory of Computational and Quantitative Biology, F-75006 Paris, France
| |
Collapse
|