1
|
Toustou C, Boulogne I, Gonzalez AA, Bardor M. Comparative RNA-Seq of Ten Phaeodactylum tricornutum Accessions: Unravelling Criteria for Robust Strain Selection from a Bioproduction Point of View. Mar Drugs 2024; 22:353. [PMID: 39195469 DOI: 10.3390/md22080353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
The production of biologics in mammalian cells is hindered by some limitations including high production costs, prompting the exploration of other alternative expression systems that are cheaper and sustainable like microalgae. Successful productions of biologics such as monoclonal antibodies have already been demonstrated in the diatom Phaeodactylum tricornutum; however, limited production yields still remain compared to mammalian cells. Therefore, efforts are needed to make this microalga more competitive as a cell biofactory. Among the seventeen reported accessions of P. tricornutum, ten have been mainly studied so far. Among them, some have already been used to produce high-value-added molecules such as biologics. The use of "omics" is increasingly being described as useful for the improvement of both upstream and downstream steps in bioprocesses using mammalian cells. Therefore, in this context, we performed an RNA-Seq analysis of the ten most used P. tricornutum accessions (Pt1 to Pt10) and deciphered the differential gene expression in pathways that could affect bioproduction of biologics in P. tricornutum. Our results highlighted the benefits of certain accessions such as Pt9 or Pt4 for the production of biologics. Indeed, these accessions seem to be more advantageous. Moreover, these results contribute to a better understanding of the molecular and cellular biology of P. tricornutum.
Collapse
Affiliation(s)
- Charlotte Toustou
- Laboratoire GlycoMEV UR 4358, Université de Rouen Normandie, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, 76000 Rouen, France
| | - Isabelle Boulogne
- Laboratoire GlycoMEV UR 4358, Université de Rouen Normandie, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, 76000 Rouen, France
| | - Anne-Alicia Gonzalez
- MGX-Montpellier GenomiX, Univ. Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Muriel Bardor
- Laboratoire GlycoMEV UR 4358, Université de Rouen Normandie, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, 76000 Rouen, France
- ALGA BIOLOGICS, CURIB, 25 rue Tesnières, 76821 Mont-Saint-Aignan, France
| |
Collapse
|
2
|
Garza EA, Bielinski VA, Espinoza JL, Orlandi K, Alfaro JR, Bolt TM, Beeri K, Weyman PD, Dupont CL. Validating a Promoter Library for Application in Plasmid-Based Diatom Genetic Engineering. ACS Synth Biol 2023; 12:3215-3228. [PMID: 37857380 PMCID: PMC10661051 DOI: 10.1021/acssynbio.3c00163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Indexed: 10/21/2023]
Abstract
While diatoms are promising synthetic biology platforms, there currently exists a limited number of validated genetic regulatory parts available for genetic engineering. The standard method for diatom transformation, nonspecific introduction of DNA into chromosomes via biolistic particle bombardment, is low throughput and suffers from clonal variability and epigenetic effects. Recent developments in diatom engineering have demonstrated that autonomously replicating episomal plasmids serve as stable expression platforms for diverse gene expression technologies. These plasmids are delivered via bacterial conjugation and, when combined with modular DNA assembly technologies, provide a flexibility and speed not possible with biolistic-mediated strain generation. In order to expand the current toolbox for plasmid-based engineering in the diatom Phaeodactylum tricornutum, a conjugation-based forward genetics screen for promoter discovery was developed, and application to a diatom genomic DNA library defined 252 P. tricornutum promoter elements. From this library, 40 promoter/terminator pairs were delivered via conjugation on episomal plasmids, characterized in vivo, and ranked across 4 orders of magnitude difference in reporter gene expression levels.
Collapse
Affiliation(s)
- Erin A. Garza
- J. Craig Venter Institute, La Jolla, California 92037, United States
| | | | - Josh L. Espinoza
- J. Craig Venter Institute, La Jolla, California 92037, United States
| | | | | | | | | | | | | |
Collapse
|
3
|
Behnke J, Cai Y, Gu H, LaRoche J. Short-term response to iron resupply in an iron-limited open ocean diatom reveals rapid decay of iron-responsive transcripts. PLoS One 2023; 18:e0280827. [PMID: 36693065 PMCID: PMC9873189 DOI: 10.1371/journal.pone.0280827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 01/09/2023] [Indexed: 01/25/2023] Open
Abstract
In large areas of the ocean, iron concentrations are insufficient to promote phytoplankton growth. Numerous studies have been conducted to characterize the effect of iron on algae and how algae cope with fluctuating iron concentrations. Fertilization experiments in low-iron areas resulted primarily in diatom-dominated algal blooms, leading to laboratory studies on diatoms comparing low- and high-iron conditions. Here, we focus on the short-term temporal response following iron addition to an iron-starved open ocean diatom, Thalassiosira oceanica. We employed the NanoString platform and analyzed a high-resolution time series on 54 transcripts encoding proteins involved in photosynthesis, N-linked glycosylation, iron transport, as well as transcription factors. Nine transcripts were iron-responsive, with an immediate response to the addition of iron. The fastest response observed was the decrease in transcript levels of proteins involved in iron uptake, followed by an increase in transcript levels of iron-containing enzymes and a simultaneous decrease in the transcript levels of their iron-free replacement enzymes. The transcription inhibitor actinomycin D was used to understand the underlying mechanisms of the decrease of the iron-responsive transcripts and to determine their half-lives. Here, Mn-superoxide dismutase (Mn-SOD), plastocyanin (PETE), ferredoxin (PETF) and cellular repressor of EA1-stimulated genes (CREGx2) revealed longer than average half-lives. Four iron-responsive transcripts showed statistically significant differences in their decay rates between the iron-recovery samples and the actD treatment. These differences suggest regulatory mechanisms influencing gene transcription and mRNA stability. Overall, our study contributes towards a detailed understanding of diatom cell biology in the context of iron fertilization response and provides important observations to assess oceanic diatom responses following sudden changes in iron concentrations.
Collapse
Affiliation(s)
- Joerg Behnke
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- * E-mail: (JB); (JL)
| | - Yun Cai
- Department of Mathematics & Statistics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Hong Gu
- Department of Mathematics & Statistics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Julie LaRoche
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- * E-mail: (JB); (JL)
| |
Collapse
|
4
|
Kassaw TK, Paton AJ, Peers G. Episome-Based Gene Expression Modulation Platform in the Model Diatom Phaeodactylum tricornutum. ACS Synth Biol 2022; 11:191-204. [PMID: 35015507 DOI: 10.1021/acssynbio.1c00367] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Chemically inducible gene expression systems have been an integral part of the advanced synthetic genetic circuit design and are employed for precise dynamic control over genetically engineered traits. However, the current systems for controlling transgene expression in most algae are limited to endogenous promoters that respond to different environmental factors. We developed a highly efficient, tunable, and reversible episome-based transcriptional control system in the model diatom alga, Phaeodactylum tricornutum. We assessed the time- and dose-response dynamics of each expression system using a reporter protein (eYFP) as a readout. Using our circuit configuration, we found two inducible expression systems with a high dynamic range and confirmed the suitability of an episome expression platform for synthetic biological applications in diatoms. These systems are controlled by the presence of β-estradiol and digoxin. Addition of either chemical to transgenic strains activates transcription with a dynamic range of up to ∼180-fold and ∼90-fold, respectively. We demonstrated that our episome-based transcriptional control systems are tunable and reversible in a dose- and time-dependent manner. Using droplet digital polymerase chain reaction (PCR), we also confirmed that inducer-dependent transcriptional activation starts within minutes of inducer application without any detectable transcript in the uninduced controls. The system described here expands the molecular and synthetic biology toolkits in algae and will facilitate future gene discovery and metabolic engineering efforts.
Collapse
Affiliation(s)
- Tessema K. Kassaw
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Andrew J. Paton
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Graham Peers
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
5
|
Kadono T, Tomaru Y, Sato N, Watanabe Y, Suzuki K, Yamada K, Adachi M. Characterization of Chaetoceros lorenzianus-infecting DNA virus-derived promoters of genes from open reading frames of unknown function in Phaeodactylum tricornutum. Mar Genomics 2022; 61:100921. [PMID: 35030498 DOI: 10.1016/j.margen.2021.100921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 11/29/2022]
Abstract
Promoters are key elements for the regulation of gene expression. Recently, we investigated the activity of promoters derived from marine diatom-infecting viruses (DIVs) in marine diatoms. Previously, we focused on potential promoter regions of the replication-associated protein gene and the capsid protein gene of the DIVs. In addition to these genes, two genes of unknown function (VP1 and VP4 genes) have been found in the DIV genomes. In this study, the promoter regions of the VP1 gene and VP4 gene derived from a Chaetoceros lorenzianus-infecting DNA virus (named ClP3 and ClP4, respectively) were newly isolated. ClP4 was found to be a constitutive promoter and displayed the highest activity. In particular, the 3' region of ClP4 (ClP4 3' region) showed a higher promoter activity than full-length ClP4. The ClP4 3' region might involve high-level promoter activity of ClP4. In addition, the ClP4 3' region may be useful for substance production and metabolic engineering of diatoms.
Collapse
Affiliation(s)
- Takashi Kadono
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture and Marine Science, Kochi University, Otsu-200, Monobe, Nankoku, Kochi 783-8502, Japan
| | - Yuji Tomaru
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, National Research and Development Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima 739-0452, Japan
| | - Nao Sato
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture and Marine Science, Kochi University, Otsu-200, Monobe, Nankoku, Kochi 783-8502, Japan
| | - Yumi Watanabe
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture and Marine Science, Kochi University, Otsu-200, Monobe, Nankoku, Kochi 783-8502, Japan
| | - Kengo Suzuki
- euglena Co., Ltd, G-BASE Tamachi 2nd and 3rd floor 5-29-11 Shiba Minato-ku, Tokyo 108-0014, Japan; Microalgae Production Control Technology Laboratory, RIKEN, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
| | - Koji Yamada
- euglena Co., Ltd, G-BASE Tamachi 2nd and 3rd floor 5-29-11 Shiba Minato-ku, Tokyo 108-0014, Japan; Microalgae Production Control Technology Laboratory, RIKEN, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
| | - Masao Adachi
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture and Marine Science, Kochi University, Otsu-200, Monobe, Nankoku, Kochi 783-8502, Japan.
| |
Collapse
|
6
|
Kadono T, Tomaru Y, Suzuki K, Yamada K, Adachi M. The possibility of using marine diatom-infecting viral promoters for the engineering of marine diatoms. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 296:110475. [PMID: 32540005 DOI: 10.1016/j.plantsci.2020.110475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 02/26/2020] [Accepted: 03/18/2020] [Indexed: 06/11/2023]
Abstract
Marine diatoms constitute a major group of unicellular photosynthetic eukaryotes. Diatoms are widely applicable for both basic studies and applied studies. Molecular tools and techniques have been developed for diatom research. Among these tools, several endogenous gene promoters (e.g., the fucoxanthin chlorophyll a/c-binding protein gene promoter) have become available for expressing transgenes in diatoms. Gene promoters that drive transgene expression at a high level are very important for the metabolic engineering of diatoms. Various marine diatom-infecting viruses (DIVs), including both DNA viruses and RNA viruses, have recently been isolated, and their genome sequences have been characterized. Promoters from viruses that infect plants and mammals are widely used as constitutive promoters to achieve high expression of transgenes. Thus, we recently investigated the activity of promoters derived from marine DIVs in the marine diatom, Phaeodactylum tricornutum. We discuss novel viral promoters that will be useful for the future metabolic engineering of diatoms.
Collapse
Affiliation(s)
- Takashi Kadono
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture and Marine Science, Kochi University, Otsu-200, Monobe, Nankoku, Kochi, 783-8502, Japan
| | - Yuji Tomaru
- National Research Institute of Fisheries and Environment of Inland Sea, Japan Fisheries Research and Education Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima, 739-0452, Japan
| | - Kengo Suzuki
- euglena Co., Ltd., G-BASE Tamachi 2nd and 3rd Floor 5-29-11 Shiba Minato-ku, Tokyo, 108-0014, Japan
| | - Koji Yamada
- euglena Co., Ltd., G-BASE Tamachi 2nd and 3rd Floor 5-29-11 Shiba Minato-ku, Tokyo, 108-0014, Japan
| | - Masao Adachi
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture and Marine Science, Kochi University, Otsu-200, Monobe, Nankoku, Kochi, 783-8502, Japan.
| |
Collapse
|
7
|
Rizkallah MR, Frickenhaus S, Trimborn S, Harms L, Moustafa A, Benes V, Gäbler-Schwarz S, Beszteri S. Deciphering Patterns of Adaptation and Acclimation in the Transcriptome of Phaeocystis antarctica to Changing Iron Conditions 1. JOURNAL OF PHYCOLOGY 2020; 56:747-760. [PMID: 32068264 DOI: 10.1111/jpy.12979] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
The haptophyte Phaeocystis antarctica is endemic to the Southern Ocean, where iron supply is sporadic and its availability limits primary production. In iron fertilization experiments, P. antarctica showed a prompt and steady increase in cell abundance compared to heavily silicified diatoms along with enhanced colony formation. Here we utilized a transcriptomic approach to investigate molecular responses to alleviation of iron limitation in P. antarctica. We analyzed the transcriptomic response before and after (14 h, 24 h and 72 h) iron addition to a low-iron acclimated culture. After iron addition, we observed indicators of a quick reorganization of cellular energetics, from carbohydrate catabolism and mitochondrial energy production to anabolism. In addition to typical substitution responses from an iron-economic toward an iron-sufficient state for flavodoxin (ferredoxin) and plastocyanin (cytochrome c6 ), we found other genes utilizing the same strategy involved in nitrogen assimilation and fatty acid desaturation. Our results shed light on a number of adaptive mechanisms that P. antarctica uses under low iron, including the utilization of a Cu-dependent ferric reductase system and indication of mixotrophic growth. The gene expression patterns underpin P. antarctica as a quick responder to iron addition.
Collapse
Affiliation(s)
| | - Stephan Frickenhaus
- Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570, Bremerhaven, Germany
- Centre for Industrial Mathematics, University of Bremen, Bibliothekstrasse 1, 28359 Postfach 330440, 28334, Bremen, Germany
| | - Scarlett Trimborn
- Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570, Bremerhaven, Germany
- Department of Marine Botany, University of Bremen, Bibliothekstrasse 1, 28359 Postfach 330440, 28334, Bremen, Germany
| | - Lars Harms
- Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570, Bremerhaven, Germany
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Ammerländer Herrstrasse 231, 26129, Oldenburg, Germany
| | - Ahmed Moustafa
- Department of Biology, American University in Cairo, P.O. Box 74, 11835, Cairo, Egypt
| | - Vladimir Benes
- European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany
| | - Steffi Gäbler-Schwarz
- Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570, Bremerhaven, Germany
| | - Sara Beszteri
- Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570, Bremerhaven, Germany
| |
Collapse
|
8
|
Ng I, Keskin BB, Tan S. A Critical Review of Genome Editing and Synthetic Biology Applications in Metabolic Engineering of Microalgae and Cyanobacteria. Biotechnol J 2020; 15:e1900228. [DOI: 10.1002/biot.201900228] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/07/2020] [Indexed: 12/13/2022]
Affiliation(s)
- I‐Son Ng
- Department of Chemical EngineeringNational Cheng Kung University Tainan 701 Taiwan
| | - Batuhan Birol Keskin
- Department of Chemical EngineeringNational Cheng Kung University Tainan 701 Taiwan
| | - Shih‐I Tan
- Department of Chemical EngineeringNational Cheng Kung University Tainan 701 Taiwan
| |
Collapse
|
9
|
Abstract
Diatoms can access inorganic iron with remarkable efficiency, but this process is contingent on carbonate ion concentration. As ocean acidification reduces carbonate concentration, inorganic iron uptake may be discouraged in favor of carbonate-independent uptake. We report details of an iron assimilation process that needs no carbonate but requires exogenous compounds produced by cooccurring organisms. We show this process to be critical for diatom growth at high siderophore concentrations, but ineffective at acquiring iron from low-affinity organic chelators or lithogenic particulates. Understanding the caveats associated with iron source preference in diatoms will help predict the impacts of climate change on microbial community structure in high-nitrate low-chlorophyll ecosystems. Iron uptake by diatoms is a biochemical process with global biogeochemical implications. In large regions of the surface ocean diatoms are both responsible for the majority of primary production and frequently experiencing iron limitation of growth. The strategies used by these phytoplankton to extract iron from seawater constrain carbon flux into higher trophic levels and sequestration into sediments. In this study we use reverse genetic techniques to target putative iron-acquisition genes in the model pennate diatom Phaeodactylum tricornutum. We describe components of a reduction-dependent siderophore acquisition pathway that relies on a bacterial-derived receptor protein and provides a viable alternative to inorganic iron uptake under certain conditions. This form of iron uptake entails a close association between diatoms and siderophore-producing organisms during low-iron conditions. Homologs of these proteins are found distributed across diatom lineages, suggesting the significance of siderophore utilization by diatoms in the marine environment. Evaluation of specific proteins enables us to confirm independent iron-acquisition pathways in diatoms and characterize their preferred substrates. These findings refine our mechanistic understanding of the multiple iron-uptake systems used by diatoms and help us better predict the influence of iron speciation on taxa-specific iron bioavailability.
Collapse
|
10
|
Athanasakoglou A, Kampranis SC. Diatom isoprenoids: Advances and biotechnological potential. Biotechnol Adv 2019; 37:107417. [PMID: 31326522 DOI: 10.1016/j.biotechadv.2019.107417] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/09/2019] [Accepted: 07/15/2019] [Indexed: 12/31/2022]
Abstract
Diatoms are among the most productive and ecologically important groups of microalgae in contemporary oceans. Due to their distinctive metabolic and physiological features, they offer exciting opportunities for a broad range of commercial and industrial applications. One such feature is their ability to synthesize a wide diversity of isoprenoid compounds. However, limited understanding of how these molecules are synthesized have until recently hindered their exploitation. Following comprehensive genomic and transcriptomic analysis of various diatom species, the biosynthetic mechanisms and regulation of the different branches of the pathway are now beginning to be elucidated. In this review, we provide a summary of the recent advances in understanding diatom isoprenoid synthesis and discuss the exploitation potential of diatoms as chassis for high-value isoprenoid synthesis.
Collapse
Affiliation(s)
- Anastasia Athanasakoglou
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Sotirios C Kampranis
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark.
| |
Collapse
|
11
|
Kroth PG, Bones AM, Daboussi F, Ferrante MI, Jaubert M, Kolot M, Nymark M, Río Bártulos C, Ritter A, Russo MT, Serif M, Winge P, Falciatore A. Genome editing in diatoms: achievements and goals. PLANT CELL REPORTS 2018; 37:1401-1408. [PMID: 30167805 DOI: 10.1007/s00299-018-2334-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/07/2018] [Indexed: 05/20/2023]
Abstract
Diatoms are major components of phytoplankton and play a key role in the ecology of aquatic ecosystems. These algae are of great scientific importance for a wide variety of research areas, ranging from marine ecology and oceanography to biotechnology. During the last 20 years, the availability of genomic information on selected diatom species and a substantial progress in genetic manipulation, strongly contributed to establishing diatoms as molecular model organisms for marine biology research. Recently, tailored TALEN endonucleases and the CRISPR/Cas9 system were utilized in diatoms, allowing targeted genetic modifications and the generation of knockout strains. These approaches are extremely valuable for diatom research because breeding, forward genetic screens by random insertion, and chemical mutagenesis are not applicable to the available model species Phaeodactylum tricornutum and Thalassiosira pseudonana, which do not cross sexually in the lab. Here, we provide an overview of the genetic toolbox that is currently available for performing stable genetic modifications in diatoms. We also discuss novel challenges that need to be addressed to fully exploit the potential of these technologies for the characterization of diatom biology and for metabolic engineering.
Collapse
Affiliation(s)
- Peter G Kroth
- Fachbereich Biologie, Universität Konstanz, 78457, Konstanz, Germany.
| | - Atle M Bones
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Fayza Daboussi
- LISBP, Université de Toulouse, CNRS, INSA, 135 Avenue de Rangueil, 31077, Toulouse, France
| | - Maria I Ferrante
- Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale 1, Naples, 80121, Italy
| | - Marianne Jaubert
- Laboratoire de Biologie Computationnelle et Quantitative, Institut de Biologie Paris-Seine, Sorbonne Université, CNRS, 75005, Paris, France
| | - Misha Kolot
- Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
- Department of Biochemistry and Molecular Biology, Tel-Aviv University, Tel-Aviv, 69978, Israel
| | - Marianne Nymark
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | | | - Andrés Ritter
- Laboratoire de Biologie Computationnelle et Quantitative, Institut de Biologie Paris-Seine, Sorbonne Université, CNRS, 75005, Paris, France
| | - Monia T Russo
- Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale 1, Naples, 80121, Italy
| | - Manuel Serif
- LISBP, Université de Toulouse, CNRS, INSA, 135 Avenue de Rangueil, 31077, Toulouse, France
| | - Per Winge
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Angela Falciatore
- Laboratoire de Biologie Computationnelle et Quantitative, Institut de Biologie Paris-Seine, Sorbonne Université, CNRS, 75005, Paris, France.
| |
Collapse
|
12
|
Watanabe Y, Kadono T, Kira N, Suzuki K, Iwata O, Ohnishi K, Yamaguchi H, Adachi M. Development of endogenous promoters that drive high-level expression of introduced genes in the model diatom Phaeodactylum tricornutum. Mar Genomics 2018; 42:41-48. [PMID: 30509379 DOI: 10.1016/j.margen.2018.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 06/20/2018] [Accepted: 06/20/2018] [Indexed: 10/28/2022]
Abstract
The marine diatom Phaeodactylum tricornutum is attractive for basic and applied diatom research. We isolated putative endogenous gene promoters derived from genes that are highly expressed in P. tricornutum: the fucoxanthin chlorophyll a/c-binding protein (FCP) C gene, the vacuolar ATP synthase 16-kDa proteolipid subunit (V-ATPase C) gene, the clumping factor A gene and the solute carrier family 34 member 2 gene. Five putative promoter regions were isolated, linked to an antibiotic resistance gene (Sh ble) and transformed into P. tricornutum. Using quantitative RT-PCR, the promoter activities in the transformants were analyzed and compared to that of the diatom endogenous gene promoter, the FCP A gene promoter which has been used for the transformation of P. tricornutum. Among the five isolated potential promoters, the activity of the V-ATPase C gene promoter was approximately 2.73 times higher than that of the FCP A gene promoter. The V-ATPase C gene promoter drove the expression of Sh ble mRNA transcripts under both light and dark conditions at the stationary phase. These results suggest that the V-ATPase C gene promoter is a novel tool for the genetic engineering of P. tricornutum.
Collapse
Affiliation(s)
- Yumi Watanabe
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture and Marine Science, Kochi University, Otsu-200, Monobe, Nankoku, Kochi 783-8502, Japan
| | - Takashi Kadono
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture and Marine Science, Kochi University, Otsu-200, Monobe, Nankoku, Kochi 783-8502, Japan
| | - Nozomu Kira
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture and Marine Science, Kochi University, Otsu-200, Monobe, Nankoku, Kochi 783-8502, Japan
| | - Kengo Suzuki
- Euglena Co., Ltd., 22F, Morinaga Plaza Building, Shiba-5-33-1, Minato-ku, Tokyo 108-0019, Japan
| | - Osamu Iwata
- Euglena Co., Ltd., 22F, Morinaga Plaza Building, Shiba-5-33-1, Minato-ku, Tokyo 108-0019, Japan
| | - Kouhei Ohnishi
- Research Institute of Molecular Genetics, Kochi University, Otsu-200, Nankoku, Kochi 783-8502, Japan
| | - Haruo Yamaguchi
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture and Marine Science, Kochi University, Otsu-200, Monobe, Nankoku, Kochi 783-8502, Japan
| | - Masao Adachi
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture and Marine Science, Kochi University, Otsu-200, Monobe, Nankoku, Kochi 783-8502, Japan.
| |
Collapse
|
13
|
Huang W, Daboussi F. Genetic and metabolic engineering in diatoms. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0411. [PMID: 28717021 DOI: 10.1098/rstb.2016.0411] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2017] [Indexed: 12/23/2022] Open
Abstract
Diatoms have attracted considerable attention due to their success in diverse environmental conditions, which probably is a consequence of their complex origins. Studies of their metabolism will provide insight into their adaptation capacity and are a prerequisite for metabolic engineering. Several years of investigation have led to the development of the genome engineering tools required for such studies, and a profusion of appropriate tools is now available for exploring and exploiting the metabolism of these organisms. Diatoms are highly prized in industrial biotechnology, due to both their richness in natural lipids and carotenoids and their ability to produce recombinant proteins, of considerable value in diverse markets. This review provides an overview of recent advances in genetic engineering methods for diatoms, from the development of gene expression cassettes and gene delivery methods, to cutting-edge genome-editing technologies. It also highlights the contributions of these rapid developments to both basic and applied research: they have improved our understanding of key physiological processes; and they have made it possible to modify the natural metabolism to favour the production of specific compounds or to produce new compounds for green chemistry and pharmaceutical applications.This article is part of the themed issue 'The peculiar carbon metabolism in diatoms'.
Collapse
Affiliation(s)
- Weichao Huang
- LISBP, Université de Toulouse, CNRS, INRA, INSA (LISBP-INSA Toulouse), 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Fayza Daboussi
- LISBP, Université de Toulouse, CNRS, INRA, INSA (LISBP-INSA Toulouse), 135 Avenue de Rangueil, 31077 Toulouse, France
| |
Collapse
|
14
|
Alkaline phosphatase promoter as an efficient driving element for exogenic recombinant in the marine diatom Phaeodactylum tricornutum. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.01.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
15
|
Taddei L, Stella GR, Rogato A, Bailleul B, Fortunato AE, Annunziata R, Sanges R, Thaler M, Lepetit B, Lavaud J, Jaubert M, Finazzi G, Bouly JP, Falciatore A. Multisignal control of expression of the LHCX protein family in the marine diatom Phaeodactylum tricornutum. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3939-51. [PMID: 27225826 PMCID: PMC4915529 DOI: 10.1093/jxb/erw198] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Diatoms are phytoplanktonic organisms that grow successfully in the ocean where light conditions are highly variable. Studies of the molecular mechanisms of light acclimation in the marine diatom Phaeodactylum tricornutum show that carotenoid de-epoxidation enzymes and LHCX1, a member of the light-harvesting protein family, both contribute to dissipate excess light energy through non-photochemical quenching (NPQ). In this study, we investigate the role of the other members of the LHCX family in diatom stress responses. Our analysis of available genomic data shows that the presence of multiple LHCX genes is a conserved feature of diatom species living in different ecological niches. Moreover, an analysis of the levels of four P. tricornutum LHCX transcripts in relation to protein expression and photosynthetic activity indicates that LHCXs are differentially regulated under different light intensities and nutrient starvation, mostly modulating NPQ capacity. We conclude that multiple abiotic stress signals converge to regulate the LHCX content of cells, providing a way to fine-tune light harvesting and photoprotection. Moreover, our data indicate that the expansion of the LHCX gene family reflects functional diversification of its members which could benefit cells responding to highly variable ocean environments.
Collapse
Affiliation(s)
- Lucilla Taddei
- Sorbonne Universités, UPMC, Institut de Biologie Paris-Seine, CNRS, Laboratoire de Biologie Computationnelle et Quantitative, 15 rue de l'Ecole de Médecine, 75006 Paris, France
| | - Giulio Rocco Stella
- Sorbonne Universités, UPMC, Institut de Biologie Paris-Seine, CNRS, Laboratoire de Biologie Computationnelle et Quantitative, 15 rue de l'Ecole de Médecine, 75006 Paris, France Department of Biotechnology, University of Verona, Strada Le Grazie, I-37134 Verona, Italy
| | - Alessandra Rogato
- Sorbonne Universités, UPMC, Institut de Biologie Paris-Seine, CNRS, Laboratoire de Biologie Computationnelle et Quantitative, 15 rue de l'Ecole de Médecine, 75006 Paris, France Institute of Biosciences and BioResources, CNR, Via P. Castellino 111, 80131 Naples, Italy Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Benjamin Bailleul
- Institut de Biologie Physico-Chimique, UMR 7141 CNRS-UPMC, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Antonio Emidio Fortunato
- Sorbonne Universités, UPMC, Institut de Biologie Paris-Seine, CNRS, Laboratoire de Biologie Computationnelle et Quantitative, 15 rue de l'Ecole de Médecine, 75006 Paris, France
| | - Rossella Annunziata
- Sorbonne Universités, UPMC, Institut de Biologie Paris-Seine, CNRS, Laboratoire de Biologie Computationnelle et Quantitative, 15 rue de l'Ecole de Médecine, 75006 Paris, France
| | - Remo Sanges
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Michael Thaler
- Sorbonne Universités, UPMC, Institut de Biologie Paris-Seine, CNRS, Laboratoire de Biologie Computationnelle et Quantitative, 15 rue de l'Ecole de Médecine, 75006 Paris, France
| | - Bernard Lepetit
- Zukunftskolleg, Department of Plant Ecophysiology, University of Konstanz, D-78457 Konstanz, Germany
| | - Johann Lavaud
- UMI 3376 TAKUVIK, CNRS/Université Laval, Département de Biologie, Pavillon Alexandre-Vachon, 1045 avenue de la Médecine, Québec (Québec) G1V 0A6, Canada
| | - Marianne Jaubert
- Sorbonne Universités, UPMC, Institut de Biologie Paris-Seine, CNRS, Laboratoire de Biologie Computationnelle et Quantitative, 15 rue de l'Ecole de Médecine, 75006 Paris, France
| | - Giovanni Finazzi
- Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168, Centre National de la Recherche Scientifique (CNRS), Institut National Recherche Agronomique (INRA), Université Grenoble Alpes, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Institut de Biosciences et Biotechnologies de Grenoble, (BIG), CEA Grenoble, F-38054 Grenoble cedex 9, France
| | - Jean-Pierre Bouly
- Sorbonne Universités, UPMC, Institut de Biologie Paris-Seine, CNRS, Laboratoire de Biologie Computationnelle et Quantitative, 15 rue de l'Ecole de Médecine, 75006 Paris, France
| | - Angela Falciatore
- Sorbonne Universités, UPMC, Institut de Biologie Paris-Seine, CNRS, Laboratoire de Biologie Computationnelle et Quantitative, 15 rue de l'Ecole de Médecine, 75006 Paris, France
| |
Collapse
|
16
|
Characterization of marine diatom-infecting virus promoters in the model diatom Phaeodactylum tricornutum. Sci Rep 2015; 5:18708. [PMID: 26692124 PMCID: PMC4686930 DOI: 10.1038/srep18708] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 11/24/2015] [Indexed: 01/27/2023] Open
Abstract
Viruses are considered key players in phytoplankton population control in oceans. However, mechanisms that control viral gene expression in prominent microalgae such as diatoms remain largely unknown. In this study, potential promoter regions isolated from several marine diatom-infecting viruses (DIVs) were linked to the egfp reporter gene and transformed into the Pennales diatom Phaeodactylum tricornutum. We analysed their activity in cells grown under different conditions. Compared to diatom endogenous promoters, novel DIV promoter (ClP1) mediated a significantly higher degree of reporter transcription and translation. Stable expression levels were observed in transformants grown under both light and dark conditions, and high levels of expression were reported in cells in the stationary phase compared to the exponential phase of growth. Conserved motifs in the sequence of DIV promoters were also found. These results allow the identification of novel regulatory regions that drive DIV gene expression and further examinations of the mechanisms that control virus-mediated bloom control in diatoms. Moreover, the identified ClP1 promoter can serve as a novel tool for metabolic engineering of diatoms. This is the first report describing a promoter of DIVs that may be of use in basic and applied diatom research.
Collapse
|
17
|
Kuczynska P, Jemiola-Rzeminska M, Strzalka K. Photosynthetic Pigments in Diatoms. Mar Drugs 2015; 13:5847-81. [PMID: 26389924 PMCID: PMC4584358 DOI: 10.3390/md13095847] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 09/01/2015] [Accepted: 09/07/2015] [Indexed: 12/16/2022] Open
Abstract
Photosynthetic pigments are bioactive compounds of great importance for the food, cosmetic, and pharmaceutical industries. They are not only responsible for capturing solar energy to carry out photosynthesis, but also play a role in photoprotective processes and display antioxidant activity, all of which contribute to effective biomass and oxygen production. Diatoms are organisms of a distinct pigment composition, substantially different from that present in plants. Apart from light-harvesting pigments such as chlorophyll a, chlorophyll c, and fucoxanthin, there is a group of photoprotective carotenoids which includes β-carotene and the xanthophylls, diatoxanthin, diadinoxanthin, violaxanthin, antheraxanthin, and zeaxanthin, which are engaged in the xanthophyll cycle. Additionally, some intermediate products of biosynthetic pathways have been identified in diatoms as well as unusual pigments, e.g., marennine. Marine algae have become widely recognized as a source of unique bioactive compounds for potential industrial, pharmaceutical, and medical applications. In this review, we summarize current knowledge on diatom photosynthetic pigments complemented by some new insights regarding their physico-chemical properties, biological role, and biosynthetic pathways, as well as the regulation of pigment level in the cell, methods of purification, and significance in industries.
Collapse
Affiliation(s)
- Paulina Kuczynska
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Plant Physiology and Biochemistry, Jagiellonian University, Gronostajowa 7, Krakow 30-387, Poland.
| | - Malgorzata Jemiola-Rzeminska
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Plant Physiology and Biochemistry, Jagiellonian University, Gronostajowa 7, Krakow 30-387, Poland.
- Małopolska Centre of Biotechnology, Gronostajowa 7A, Krakow 30-387, Poland.
| | - Kazimierz Strzalka
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Plant Physiology and Biochemistry, Jagiellonian University, Gronostajowa 7, Krakow 30-387, Poland.
- Małopolska Centre of Biotechnology, Gronostajowa 7A, Krakow 30-387, Poland.
| |
Collapse
|
18
|
Russo MT, Annunziata R, Sanges R, Ferrante MI, Falciatore A. The upstream regulatory sequence of the light harvesting complex Lhcf2 gene of the marine diatom Phaeodactylum tricornutum enhances transcription in an orientation- and distance-independent fashion. Mar Genomics 2015; 24 Pt 1:69-79. [PMID: 26117181 DOI: 10.1016/j.margen.2015.06.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 05/31/2015] [Accepted: 06/17/2015] [Indexed: 10/23/2022]
Abstract
Diatoms are a key phytoplankton group in the contemporary ocean, showing extraordinary adaptation capacities to rapidly changing environments. The recent availability of whole genome sequences from representative species has revealed distinct features in their genomes, like novel combinations of genes encoding distinct metabolisms and a significant number of diatom-specific genes. However, the regulatory mechanisms driving diatom gene expression are still largely uncharacterized. Considering the wide variety of fields of study orbiting diatoms, ranging from ecology, evolutionary biology to biotechnology, it is thus essential to increase our understanding of fundamental gene regulatory processes such as transcriptional regulation. To this aim, we explored the functional properties of the 5'-flanking region of the Phaeodatylum tricornutum Lhcf2 gene, encoding a member of the Light Harvesting Complex superfamily and we showed that this region enhances transcription of a GUS reporter gene in an orientation- and distance-independent fashion. This represents the first example of a cis-regulatory sequence with enhancer-like features discovered in diatoms and it is instrumental for the generation of novel genetic tools and diatom exploitation in different areas of study.
Collapse
Affiliation(s)
| | - Rossella Annunziata
- Sorbonne Universités, UPMC Univ Paris 06, Institut de Biologie Paris-Seine, UMR 7238, F-75006 Paris, France; CNRS, UMR 7238, F-75006 Paris, France
| | - Remo Sanges
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | | | - Angela Falciatore
- Sorbonne Universités, UPMC Univ Paris 06, Institut de Biologie Paris-Seine, UMR 7238, F-75006 Paris, France; CNRS, UMR 7238, F-75006 Paris, France.
| |
Collapse
|
19
|
Affiliation(s)
- Chris Bowler
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS UMR8197 Inserm U1024, 75005 Paris, France
| | - Angela Falciatore
- Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR 7238, Laboratory of Computational and Quantitative Biology, F-75006 Paris, France
| |
Collapse
|