1
|
Davis SN, Klumker SM, Mitchell AA, Coppage MA, Labonté JM, Quigg A. Life in the PFAS lane: The impact of perfluoroalkyl substances on photosynthesis, cellular exudates, nutrient cycling, and composition of a marine microbial community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:171977. [PMID: 38547969 DOI: 10.1016/j.scitotenv.2024.171977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/23/2024] [Accepted: 03/23/2024] [Indexed: 04/12/2024]
Abstract
Perfluoroalkyl substances (PFAS) are of great ecological concern, however, exploration of their impact on bacteria-phytoplankton consortia is limited. This study employed a bioassay approach to investigate the effect of unary exposures of increasing concentrations of PFAS (perfluorooctane sulfonate (PFOS) and 6:2 fluorotelomer sulfonate (6:2 FTS)) on microbial communities from the northwestern Gulf of Mexico. Each community was examined for changes in growth and photophysiology, exudate production and shifts in community structure (16S and 18S rRNA genes). 6:2 FTS did not alter the growth or health of phytoplankton communities, as there were no changes relative to the controls (no PFOS added). On the other hand, PFOS elicited significant phototoxicity (p < 0.05), altering PSII antennae size, lowering PSII connectivity, and decreasing photosynthetic efficiency over the incubation (four days). PFOS induced a cellular protective response, indicated by significant increases (p < 0.001) in the release of transparent exopolymer particles (TEP) compared to the control. Eukaryotic communities (18S rRNA gene) changed substantially (p < 0.05) and to a greater extent than prokaryotic communities (16S rRNA gene) in PFOS treatments. Community shifts were concentration-dependent for eukaryotes, with the low treatment (5 mg/L PFOS) dominated by Coscinodiscophyceae (40 %), and the high treatment (30 mg/L PFOS) marked by a Trebouxiophyceae (50 %) dominance. Prokaryotic community shifts were not concentration dependent, as both treatment levels became depleted in Cyanobacteriia and were dominated by members of the Bacteroidia, Gammaproteobacteria, and Alphaproteobacteria classes. Further, PFOS significantly decreased (p < 0.05) the Shannon diversity and Pielou's evenness across treatments for eukaryotes, and in the low treatment (5 mg/L PFOS) for prokaryotes. These findings show that photophysiology was not impacted by 6:2 FTS but PFOS elicited toxicity that impacted photosynthesis, exudate release, and community composition. This research is crucial in understanding how PFOS impacts microbial communities.
Collapse
Affiliation(s)
- Sarah N Davis
- Department of Marine Biology, Texas A&M University at Galveston, 200 Seawolf Parkway, Galveston, TX 77553, USA.
| | - Shaley M Klumker
- Department of Marine Biology, Texas A&M University at Galveston, 200 Seawolf Parkway, Galveston, TX 77553, USA
| | - Alexis A Mitchell
- Department of Marine Biology, Texas A&M University at Galveston, 200 Seawolf Parkway, Galveston, TX 77553, USA
| | - Marshall A Coppage
- Department of Biological Sciences, University of South Carolina, 715 Sumter Street, Columbia, SC 29208, USA
| | - Jessica M Labonté
- Department of Marine Biology, Texas A&M University at Galveston, 200 Seawolf Parkway, Galveston, TX 77553, USA
| | - Antonietta Quigg
- Department of Marine Biology, Texas A&M University at Galveston, 200 Seawolf Parkway, Galveston, TX 77553, USA; Department of Oceanography, Texas A&M University, 3146 TAMU, College Station, TX 77843, USA; Department of Ecology and Conservation Biology, Texas A&M University, 534 John Kimbrough Boulevard, College Station, TX 77843, USA
| |
Collapse
|
2
|
Ortmann AC, Cobanli SE, Wohlgeschaffen G, Poon HY, Ryther C, Greer CW, Wasserscheid J, Elias M, Robinson B, King TL. Factors that affect water column hydrocarbon concentrations have minor impacts on microbial responses following simulated diesel fuel spills. MARINE POLLUTION BULLETIN 2023; 194:115358. [PMID: 37567129 DOI: 10.1016/j.marpolbul.2023.115358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 07/24/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023]
Abstract
Effects of season and mixing on hydrocarbon concentrations and the microbial community response was explored in a series of mesocosm experiments simulating surface spills of diesel into coastal waters. Mixing of any amount contributed to hydrocarbons entering the water column, but diesel fuel composition had a significant effect on hydrocarbon concentrations. Higher initial concentrations of aromatic hydrocarbons resulted in higher water column concentrations, with minimal differences among seasons due to high variability. Regardless of the concentrations of hydrocarbons, prokaryotes increased and there were higher relative abundances of hydrocarbon affiliated bacteria with indications of biodegradation within 4 d of exposure. As concentrations decreased over time, the eukaryote community shifted from the initial community to one which appeared to be composed of organisms with some resilience to hydrocarbons. This series of experiments demonstrates the wide range of conditions under which natural attenuation of diesel fuel is an effective response.
Collapse
Affiliation(s)
- Alice C Ortmann
- Centre for Offshore Oil, Gas and Energy Research, Fisheries and Oceans Canada, Bedford Institute of Oceanography, 1 Challenger Drive, Dartmouth, NS B2Y 4A2, Canada.
| | - Susan E Cobanli
- Centre for Offshore Oil, Gas and Energy Research, Fisheries and Oceans Canada, Bedford Institute of Oceanography, 1 Challenger Drive, Dartmouth, NS B2Y 4A2, Canada
| | - Gary Wohlgeschaffen
- Centre for Offshore Oil, Gas and Energy Research, Fisheries and Oceans Canada, Bedford Institute of Oceanography, 1 Challenger Drive, Dartmouth, NS B2Y 4A2, Canada
| | - Ho Yin Poon
- Centre for Offshore Oil, Gas and Energy Research, Fisheries and Oceans Canada, Bedford Institute of Oceanography, 1 Challenger Drive, Dartmouth, NS B2Y 4A2, Canada
| | - Camilla Ryther
- Dalhousie University, 6299 South Street, Halifax, NS B3H 4R2, Canada
| | - Charles W Greer
- National Research Council of Canada, Energy, Mining and Environment Research Centre, 6100 Royalmount Ave, Montreal, PQ H4P 2R2, Canada
| | - Jessica Wasserscheid
- National Research Council of Canada, Energy, Mining and Environment Research Centre, 6100 Royalmount Ave, Montreal, PQ H4P 2R2, Canada
| | - Miria Elias
- National Research Council of Canada, Energy, Mining and Environment Research Centre, 6100 Royalmount Ave, Montreal, PQ H4P 2R2, Canada
| | - Brian Robinson
- Centre for Offshore Oil, Gas and Energy Research, Fisheries and Oceans Canada, Bedford Institute of Oceanography, 1 Challenger Drive, Dartmouth, NS B2Y 4A2, Canada
| | - Thomas L King
- Centre for Offshore Oil, Gas and Energy Research, Fisheries and Oceans Canada, Bedford Institute of Oceanography, 1 Challenger Drive, Dartmouth, NS B2Y 4A2, Canada
| |
Collapse
|
3
|
Osland MJ, Hughes AR, Armitage AR, Scyphers SB, Cebrian J, Swinea SH, Shepard CC, Allen MS, Feher LC, Nelson JA, O'Brien CL, Sanspree CR, Smee DL, Snyder CM, Stetter AP, Stevens PW, Swanson KM, Williams LH, Brush JM, Marchionno J, Bardou R. The impacts of mangrove range expansion on wetland ecosystem services in the southeastern United States: Current understanding, knowledge gaps, and emerging research needs. GLOBAL CHANGE BIOLOGY 2022; 28:3163-3187. [PMID: 35100489 DOI: 10.1111/gcb.16111] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Climate change is transforming ecosystems and affecting ecosystem goods and services. Along the Gulf of Mexico and Atlantic coasts of the southeastern United States, the frequency and intensity of extreme freeze events greatly influence whether coastal wetlands are dominated by freeze-sensitive woody plants (mangrove forests) or freeze-tolerant grass-like plants (salt marshes). In response to warming winters, mangroves have been expanding and displacing salt marshes at varying degrees of severity in parts of north Florida, Louisiana, and Texas. As winter warming accelerates, mangrove range expansion is expected to increasingly modify wetland ecosystem structure and function. Because there are differences in the ecological and societal benefits that salt marshes and mangroves provide, coastal environmental managers are challenged to anticipate the effects of mangrove expansion on critical wetland ecosystem services, including those related to carbon sequestration, wildlife habitat, storm protection, erosion reduction, water purification, fisheries support, and recreation. Mangrove range expansion may also affect wetland stability in the face of extreme climatic events and rising sea levels. Here, we review the current understanding of the effects of mangrove range expansion and displacement of salt marshes on wetland ecosystem services in the southeastern United States. We also identify critical knowledge gaps and emerging research needs regarding the ecological and societal implications of salt marsh displacement by expanding mangrove forests. One consistent theme throughout our review is that there are ecological trade-offs for consideration by coastal managers. Mangrove expansion and marsh displacement can produce beneficial changes in some ecosystem services, while simultaneously producing detrimental changes in other services. Thus, there can be local-scale differences in perceptions of the impacts of mangrove expansion into salt marshes. For very specific local reasons, some individuals may see mangrove expansion as a positive change to be embraced, while others may see mangrove expansion as a negative change to be constrained.
Collapse
Affiliation(s)
- Michael J Osland
- Wetland and Aquatic Research Center, U.S. Geological Survey, Lafayette, Louisiana, USA
| | - A Randall Hughes
- Northeastern University Marine Science Center, Nahant, Massachusetts, USA
| | - Anna R Armitage
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas, USA
| | - Steven B Scyphers
- Northeastern University Marine Science Center, Nahant, Massachusetts, USA
| | - Just Cebrian
- Northern Gulf Institute, Mississippi State University, Stennis Space Center, Mississippi, USA
| | - Savannah H Swinea
- Northeastern University Marine Science Center, Nahant, Massachusetts, USA
| | | | | | - Laura C Feher
- Wetland and Aquatic Research Center, U.S. Geological Survey, Lafayette, Louisiana, USA
| | - James A Nelson
- University of Louisiana at Lafayette, Lafayette, Louisiana, USA
| | | | | | | | - Caitlin M Snyder
- Apalachicola National Estuarine Research Reserve, Eastpoint, Florida, USA
| | | | - Philip W Stevens
- Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute, St. Petersburg, Florida, USA
| | - Kathleen M Swanson
- Mission-Aransas National Estuarine Research Reserve, Port Aransas, Texas, USA
| | | | - Janell M Brush
- Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute, Gainesville, Florida, USA
| | - Joseph Marchionno
- Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute, Gainesville, Florida, USA
| | - Rémi Bardou
- Northeastern University Marine Science Center, Nahant, Massachusetts, USA
| |
Collapse
|
4
|
Cobanli SE, Wohlgeschaffen G, Ryther C, MacDonald J, Gladwell A, Watts T, Greer CW, Elias M, Wasserscheid J, Robinson B, King TL, Ortmann AC. Microbial community response to simulated diluted bitumen spills in coastal seawater and implications for oil spill response. FEMS Microbiol Ecol 2022; 98:6563616. [PMID: 35380637 DOI: 10.1093/femsec/fiac033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/02/2022] [Accepted: 04/01/2022] [Indexed: 11/12/2022] Open
Abstract
Oil spills in coastal waters can have devastating impacts on local ecosystems, from the microscopic base through to mammals and seabirds. Increasing transport of diluted bitumen, has led to concerns about how this novel product might impact coastal ecosystems. A mesocosm study determined that the type of diluent and the season can affect the concentrations of hydrocarbons entering the water column from a surface spill. Those same mesocosms were sampled to determine if diluent type and season also affected the microbial response a surface spill. Overall, there were no differences in impacts among the three types of diluted bitumen, but there were consistent responses to all products within each season. Although microbial abundances with diluted bitumen rarely differed from unoiled controls, community structure in these organisms shifted in response to hydrocarbons, with hydrocarbon-degrading bacteria becoming more abundant. The relative abundance of heterotrophic eukaryotes also increased with diluted bitumen, with few photosynthetic organisms responding positively to oil. Overall shifts in the microbial communities were minimal relative to spills of conventional oil products, with low concentrations of hydrocarbons in the water column. Oil spill response should focus on addressing the surface slick to prevent sinking or stranding to minimize ecosystem impacts.
Collapse
Affiliation(s)
- Susan E Cobanli
- Centre for Offshore Oil, Gas and Energy Research, Fisheries and Oceans Canada, Canada
| | - Gary Wohlgeschaffen
- Centre for Offshore Oil, Gas and Energy Research, Fisheries and Oceans Canada, Canada
| | | | | | | | | | - Charles W Greer
- National Research Council of Canada, Energy, Mining and Environment Research Centre, Canada
| | - Miria Elias
- National Research Council of Canada, Energy, Mining and Environment Research Centre, Canada
| | - Jessica Wasserscheid
- National Research Council of Canada, Energy, Mining and Environment Research Centre, Canada
| | - Brian Robinson
- Centre for Offshore Oil, Gas and Energy Research, Fisheries and Oceans Canada, Canada
| | - Thomas L King
- Centre for Offshore Oil, Gas and Energy Research, Fisheries and Oceans Canada, Canada
| | - Alice C Ortmann
- Centre for Offshore Oil, Gas and Energy Research, Fisheries and Oceans Canada, Canada
| |
Collapse
|
5
|
From Surface Water to the Deep Sea: A Review on Factors Affecting the Biodegradation of Spilled Oil in Marine Environment. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10030426] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Over the past century, the demand for petroleum products has increased rapidly, leading to higher oil extraction, processing and transportation, which result in numerous oil spills in coastal-marine environments. As the spilled oil can negatively affect the coastal-marine ecosystems, its transport and fates captured a significant interest of the scientific community and regulatory agencies. Typically, the environment has natural mechanisms (e.g., photooxidation, biodegradation, evaporation) to weather/degrade and remove the spilled oil from the environment. Among various oil weathering mechanisms, biodegradation by naturally occurring bacterial populations removes a majority of spilled oil, thus the focus on bioremediation has increased significantly. Helping in the marginal recognition of this promising technique for oil-spill degradation, this paper reviews recently published articles that will help broaden the understanding of the factors affecting biodegradation of spilled oil in coastal-marine environments. The goal of this review is to examine the effects of various environmental variables that contribute to oil degradation in the coastal-marine environments, as well as the factors that influence these processes. Physico-chemical parameters such as temperature, oxygen level, pressure, shoreline energy, salinity, and pH are taken into account. In general, increase in temperature, exposure to sunlight (photooxidation), dissolved oxygen (DO), nutrients (nitrogen, phosphorous and potassium), shoreline energy (physical advection—waves) and diverse hydrocarbon-degrading microorganisms consortium were found to increase spilled oil degradation in marine environments. In contrast, higher initial oil concentration and seawater pressure can lower oil degradation rates. There is limited information on the influences of seawater pH and salinity on oil degradation, thus warranting additional research. This comprehensive review can be used as a guide for bioremediation modeling and mitigating future oil spill pollution in the marine environment by utilizing the bacteria adapted to certain conditions.
Collapse
|
6
|
Kamalanathan M, Hillhouse J, Claflin N, Rodkey T, Mondragon A, Prouse A, Nguyen M, Quigg A. Influence of nutrient status on the response of the diatom Phaeodactylum tricornutum to oil and dispersant. PLoS One 2021; 16:e0259506. [PMID: 34851969 PMCID: PMC8635359 DOI: 10.1371/journal.pone.0259506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 10/20/2021] [Indexed: 12/04/2022] Open
Abstract
Phytoplankton play a central role in our ecosystems, they are responsible for nearly 50 percent of the global primary productivity and major drivers of macro-elemental cycles in the ocean. Phytoplankton are constantly subjected to stressors, some natural such as nutrient limitation and some manmade such as oil spills. With increasing oil exploration activities in coastal zones in the Gulf of Mexico and elsewhere, an oil spill during nutrient-limited conditions for phytoplankton growth is highly likely. We performed a multifactorial study exposing the diatom Phaeodactylum tricornutum (UTEX 646) to oil and/or dispersants under nitrogen and silica limitation as well as co-limitation of both nutrients. Our study found that treatments with nitrogen limitation (-N and–N-Si) showed overall lower growth and chlorophyll a, lower photosynthetic antennae size, lower maximum photosynthetic efficiency, lower protein in exopolymeric substance (EPS), but higher connectivity between photosystems compared to non-nitrogen limited treatments (-Si and +N+Si) in almost all the conditions with oil and/or dispersants. However, certain combinations of nutrient limitation and oil and/or dispersant differed from this trend indicating strong interactive effects. When analyzed for significant interactive effects, the–N treatment impact on cellular growth in oil and oil plus dispersant conditions; and oil and oil plus dispersant conditions on cellular growth in–N-Si and–N treatments were found to be significant. Overall, we demonstrate that nitrogen limitation can affect the oil resistant trait of P. tricornutum, and oil with and without dispersants can have interactive effects with nutrient limitation on this diatom.
Collapse
Affiliation(s)
- Manoj Kamalanathan
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas, United States of America
- * E-mail: ,
| | - Jessica Hillhouse
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas, United States of America
| | - Noah Claflin
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas, United States of America
| | - Talia Rodkey
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas, United States of America
| | - Andrew Mondragon
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas, United States of America
| | - Alexandra Prouse
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas, United States of America
| | - Michelle Nguyen
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas, United States of America
| | - Antonietta Quigg
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas, United States of America
- Department of Oceanography, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
7
|
Bacosa HP, Mabuhay-Omar JA, Balisco RAT, Omar DM, Inoue C. Biodegradation of binary mixtures of octane with benzene, toluene, ethylbenzene or xylene (BTEX): insights on the potential of Burkholderia, Pseudomonas and Cupriavidus isolates. World J Microbiol Biotechnol 2021; 37:122. [PMID: 34151386 DOI: 10.1007/s11274-021-03093-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/14/2021] [Indexed: 01/20/2023]
Abstract
The contamination of the environment by crude oil and its by-products, mainly composed of aliphatic and aromatic hydrocarbons, is a widespread problem. Biodegradation by bacteria is one of the processes responsible for the removal of these pollutants. This study was conducted to determine the abilities of Burkholderia sp. B5, Cupriavidus sp. B1, Pseudomonas sp. T1, and another Cupriavidus sp. X5 to degrade binary mixtures of octane (representing aliphatic hydrocarbons) with benzene, toluene, ethylbenzene, or xylene (BTEX as aromatic hydrocarbons) at a final concentration of 100 ppm under aerobic conditions. These strains were isolated from an enriched bacterial consortium (Yabase or Y consortium) that prefer to degrade aromatic hydrocarbon over aliphatic hydrocarbons. We found that B5 degraded all BTEX compounds more rapidly than octane. In contrast, B1, T1 and X5 utilized more of octane over BTX compounds. B5 also preferred to use benzene over octane with varying concentrations of up to 200 mg/l. B5 possesses alkane hydroxylase (alkB) and catechol 2,3-dioxygenase (C23D) genes, which are responsible for the degradation of alkanes and aromatic hydrocarbons, respectively. This study strongly supports our notion that Burkholderia played a key role in the preferential degradation of aromatic hydrocarbons over aliphatic hydrocarbons in the previously characterized Y consortium. The preferential degradation of more toxic aromatic hydrocarbons over aliphatics is crucial in risk-based bioremediation.
Collapse
Affiliation(s)
- Hernando P Bacosa
- Environmental Science Program, Department of Biological Sciences, College of Science and Mathematics, Mindanao State University-Iligan Institute of Technology, Tibanga, 9200, Iligan, Lanao del Norte, Philippines.,Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
| | - Jhonamie A Mabuhay-Omar
- College of Fisheries and Aquatic Sciences, Western Philippines University-Puerto Princesa, Sta. Monica, 5300, Puerto Princesa, Palawan, Philippines.
| | - Rodulf Anthony T Balisco
- College of Fisheries and Aquatic Sciences, Western Philippines University-Puerto Princesa, Sta. Monica, 5300, Puerto Princesa, Palawan, Philippines
| | - Dawin M Omar
- College of Engineering, Architecture and Technology, Palawan State University, Tiniguiban, 5300, Puerto Princesa, Palawan, Philippines
| | - Chihiro Inoue
- Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
| |
Collapse
|
8
|
Quigg A, Parsons M, Bargu S, Ozhan K, Daly KL, Chakraborty S, Kamalanathan M, Erdner D, Cosgrove S, Buskey EJ. Marine phytoplankton responses to oil and dispersant exposures: Knowledge gained since the Deepwater Horizon oil spill. MARINE POLLUTION BULLETIN 2021; 164:112074. [PMID: 33540275 DOI: 10.1016/j.marpolbul.2021.112074] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/16/2020] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
The Deepwater Horizon oil spill of 2010 brought the ecology and health of the Gulf of Mexico to the forefront of the public's and scientific community's attention. Not only did we need a better understanding of how this oil spill impacted the Gulf of Mexico ecosystem, but we also needed to apply this knowledge to help assess impacts from perturbations in the region and guide future response actions. Phytoplankton represent the base of the food web in oceanic systems. As such, alterations of the phytoplankton community propagate to upper trophic levels. This review brings together new insights into the influence of oil and dispersant on phytoplankton. We bring together laboratory, mesocosm and field experiments, including insights into novel observations of harmful algal bloom (HAB) forming species and zooplankton as well as bacteria-phytoplankton interactions. We finish by addressing knowledge gaps and highlighting key topics for research in novel areas.
Collapse
Affiliation(s)
- Antonietta Quigg
- Texas A&M University at Galveston, 200 Seawolf Parkway, Galveston, TX 77553, USA.
| | - Michael Parsons
- Florida Gulf Coast University, 10501 FGCU Blvd South, Fort Myers, FL 33965, USA.
| | - Sibel Bargu
- Louisiana State University, 1235 Energy, Coast & Environment Building, Baton Rouge, LA 70803, USA.
| | - Koray Ozhan
- Middle East Technical University, P.O. Box 28, 33731 Erdemli, Mersin, Turkey.
| | - Kendra L Daly
- University of South Florida, 140 Seventh Ave S., St. Petersburg, FL 33701, USA.
| | - Sumit Chakraborty
- Mote Marine Laboratory, 1600 Ken Thompson Parkway, Sarasota, FL 34236, USA.
| | - Manoj Kamalanathan
- Texas A&M University at Galveston, 200 Seawolf Parkway, Galveston, TX 77553, USA.
| | - Deana Erdner
- University of Texas Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA.
| | - Sarah Cosgrove
- University of Texas Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA.
| | - Edward J Buskey
- University of Texas Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA.
| |
Collapse
|
9
|
Bacosa HP, Kang A, Lu K, Liu Z. Initial oil concentration affects hydrocarbon biodegradation rates and bacterial community composition in seawater. MARINE POLLUTION BULLETIN 2021; 162:111867. [PMID: 33276157 DOI: 10.1016/j.marpolbul.2020.111867] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 11/17/2020] [Accepted: 11/22/2020] [Indexed: 06/12/2023]
Abstract
During oil spills in the field or for laboratory incubation studies, different oil concentrations are often encountered or applied, yet how initial oil concentration affects biodegradation rates of hydrocarbons and the development of oil degraders remains unclear. We incubated seawater for 50 d with different oil concentrations (0, 50, 100, 200, 400 and 800 ppm). n-Alkanes and polycyclic aromatic hydrocarbons (PAHs), and the bacterial community were analyzed periodically. Results show that the biodegradation rates of alkanes, derived from first order kinetics, decreased with increasing oil concentration, but percent residual was ~50% regardless of the initial concentration. In contrast, the biodegradation rates of PAHs increased with concentration, and the percent residual increased with oil concentration. Increasing oil concentration resulted in increased abundances of Rhodobacterales, Altererythrobacter, and Neptuniibacter. However, Alcanivorax abundance was barely detected in 400 and 800 ppm. Overall, oil concentration critically affected the degradation of hydrocarbons and the bacterial community.
Collapse
Affiliation(s)
- Hernando P Bacosa
- Marine Science Institute, The University of Texas at Austin, 750 Channel View Drive, Port Aransas, TX 78373, USA; Department of Biological Sciences, Mindanao State University-Iligan Institute of Technology, Iligan City 9200, Philippines.
| | - Andrew Kang
- Marine Science Institute, The University of Texas at Austin, 750 Channel View Drive, Port Aransas, TX 78373, USA; University of Guam Marine Laboratory, UOG Station, Mangilao, Guam 96923, USA
| | - Kaijun Lu
- Marine Science Institute, The University of Texas at Austin, 750 Channel View Drive, Port Aransas, TX 78373, USA
| | - Zhanfei Liu
- Marine Science Institute, The University of Texas at Austin, 750 Channel View Drive, Port Aransas, TX 78373, USA
| |
Collapse
|
10
|
Rowe GT, Fernando H, Elferink C, Ansari GAS, Sullivan J, Heathman T, Quigg A, Petronella Croisant S, Wade TL, Santschi PH. Polycyclic aromatic hydrocarbons (PAHs) cycling and fates in Galveston Bay, Texas, USA. PLoS One 2020; 15:e0243734. [PMID: 33370322 PMCID: PMC7769252 DOI: 10.1371/journal.pone.0243734] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/28/2020] [Indexed: 11/18/2022] Open
Abstract
The cycling and fate of polycyclic aromatic hydrocarbons (PAHs) is not well understood in estuarine systems. It is critical now more than ever given the increased ecosystem pressures on these critical coastal habitats. A budget of PAHs and cycling has been created for Galveston Bay (Texas) in the northwestern Gulf of Mexico, an estuary surrounded by 30-50% of the US capacity of oil refineries and chemical industry. We estimate that approximately 3 to 4 mt per year of pyrogenic PAHs are introduced to Galveston Bay via gaseous exchange from the atmosphere (ca. 2 mt/year) in addition to numerous spills of petrogenic PAHs from oil and gas operations (ca. 1.0 to 1.9 mt/year). PAHs are cycled through and stored in the biota, and ca. 20 to 30% of the total (0.8 to 1.5 mt per year) are estimated to be buried in the sediments. Oysters concentrate PAHs to levels above their surroundings (water and sediments) and contain substantially greater concentrations than other fish catch (shrimp, blue crabs and fin fish). Smaller organisms (infaunal invertebrates, phytoplankton and zooplankton) might also retain a significant fraction of the total, but direct evidence for this is lacking. The amount of PAHs delivered to humans in seafood, based on reported landings, is trivially small compared to the total inputs, sediment accumulation and other possible fates (metabolic remineralization, export in tides, etc.), which remain poorly known. The generally higher concentrations in biota from Galveston Bay compared to other coastal habitats can be attributed to both intermittent spills of gas and oil and the bay's close proximity to high production of pyrogenic PAHs within the urban industrial complex of the city of Houston as well as periodic flood events that transport PAHs from land surfaces to the Bay.
Collapse
Affiliation(s)
- Gilbert T. Rowe
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas, United States of America
| | - Harshica Fernando
- Department of Chemistry, Prairie View A&M University, Prairie View, Texas, United States of America
| | - Cornelis Elferink
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - G. A. Shakeel Ansari
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - John Sullivan
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Thomas Heathman
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas, United States of America
| | - Antonietta Quigg
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas, United States of America
- Department of Oceanography, Texas A&M University, College Station, Texas, United States of America
| | | | - Terry L. Wade
- Department of Oceanography, Texas A&M University, College Station, Texas, United States of America
| | - Peter H. Santschi
- Department of Oceanography, Texas A&M University, College Station, Texas, United States of America
- Department of Marine and Coastal Environmental Science, Texas A&M University at Galveston, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
11
|
Marine Snow Aggregates are Enriched in Polycyclic Aromatic Hydrocarbons (PAHs) in Oil Contaminated Waters: Insights from a Mesocosm Study. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2020. [DOI: 10.3390/jmse8100781] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Marine snow was implicated in the transport of oil to the seafloor during the Deepwater Horizon oil spill, but the exact processes remain controversial. In this study, we investigated the concentrations and distributions of the 16 USEPA priority polycyclic aromatic hydrocarbons (PAHs) in marine snow aggregates collected during a mesocosm experiment. Seawater only, oil in a water accommodated fraction (WAF), and Corexit-enhanced WAF (DCEWAF) were incubated for 16 d. Both WAF and DCEWAF aggregates were enriched in heavy molecular weight PAHs but depleted in naphthalene. DCEWAF aggregates had 2.6 times more total 16 PAHs than the WAF (20.5 vs. 7.8 µg/g). Aggregates in the WAF and DCEWAF incorporated 4.4% and 19.3%, respectively of the total PAHs in the mesocosm tanks. Our results revealed that marine snow sorbed and scavenged heavy molecular weight PAHs in the water column and the application of Corexit enhanced the incorporation of PAHs into the sinking aggregates.
Collapse
|
12
|
Bacosa HP, Steichen J, Kamalanathan M, Windham R, Lubguban A, Labonté JM, Kaiser K, Hala D, Santschi PH, Quigg A. Polycyclic aromatic hydrocarbons (PAHs) and putative PAH-degrading bacteria in Galveston Bay, TX (USA), following Hurricane Harvey (2017). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:34987-34999. [PMID: 32588304 DOI: 10.1007/s11356-020-09754-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 06/15/2020] [Indexed: 05/14/2023]
Abstract
Hurricane Harvey was the wettest hurricane in US history bringing record rainfall and widespread flooding in Houston, TX. The resulting storm- and floodwaters largely emptied into the Galveston Bay. Surface water was collected from 10 stations during five cruises to investigate the concentrations and sources of 16 priority polycyclic aromatic hydrocarbons (PAHs), and relative abundances of PAH-degrading bacteria. Highest PAH levels (102-167 ng/L) were detected during the first sampling event, decreasing to 36-69 ng/L within a week. Four sites had elevated concentrations of carcinogenic benzo[a]pyrene that exceeded the Texas Standard for Surface Water threshold. The highest relative abundances of known PAH-degrading bacteria Burkholderiaceae, Comamonadaceae, and Sphingomonadales were detected during the first and second sampling events. PAH origins were about 60% pyrogenic, 2% petrogenic, and the remainder of mixed sources. This study improves our understanding on the fate, source, and distributions of PAHs in Galveston Bay after an extreme flooding event.
Collapse
Affiliation(s)
- Hernando P Bacosa
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX, 77553, USA.
- Department of Marine and Coastal Environmental Science, Texas A&M University at Galveston, Galveston, TX, 77553, USA.
| | - Jamie Steichen
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX, 77553, USA
| | - Manoj Kamalanathan
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX, 77553, USA
| | - Rachel Windham
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX, 77553, USA
| | - Arnold Lubguban
- Department of Chemical Engineering & Technology, Mindanao State University-Iligan Institute of Technology, 9200, Iligan City, Lanao del Norte, Philippines
| | - Jessica M Labonté
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX, 77553, USA
| | - Karl Kaiser
- Department of Marine and Coastal Environmental Science, Texas A&M University at Galveston, Galveston, TX, 77553, USA
- Department of Oceanography, Texas A&M University, College Station, TX, 77843, USA
| | - David Hala
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX, 77553, USA
| | - Peter H Santschi
- Department of Marine and Coastal Environmental Science, Texas A&M University at Galveston, Galveston, TX, 77553, USA
- Department of Oceanography, Texas A&M University, College Station, TX, 77843, USA
| | - Antonietta Quigg
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX, 77553, USA
- Department of Oceanography, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
13
|
Park BS, Erdner DL, Bacosa HP, Liu Z, Buskey EJ. Potential effects of bacterial communities on the formation of blooms of the harmful dinoflagellate Prorocentrum after the 2014 Texas City "Y" oil spill (USA). HARMFUL ALGAE 2020; 95:101802. [PMID: 32439059 DOI: 10.1016/j.hal.2020.101802] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/30/2020] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
The association between phytoplankton blooms and oil spills is still controversial despite numerous studies. Surprisingly, to date, there have been no studies on the effect of bacterial communities (BCs) exposed to crude oil on phytoplankton growth, even though crude oil changes BCs, which can then affect phytoplankton growth and species composition. Co-culture with crude oil-exposed BCs significantly stimulated the growth of Prorocentrum texanum in the laboratory. To gain more direct evidence, oil-degrading bacteria from oil-contaminated sediment collected after the Texas City "Y" oil spill were isolated, and changes in dinoflagellate growth when co-cultured with single bacterial isolates was investigated. The oil-degrading bacterial isolates significantly stimulated the growth of dinoflagellates (axenic and xenic cultures) through releasing growth-promoting substances. This study provides new evidence for the potential role of oil-degrading bacteria in the formation of phytoplankton blooms after an oil spill.
Collapse
Affiliation(s)
- Bum Soo Park
- Marine Science Institute, University of Texas at Austin, Port Aransas, TX 78373, USA; Marine Ecosystem Research Center, Korea Institute of Ocean Science and Technology, Busan 49111, South Korea.
| | - Deana L Erdner
- Marine Science Institute, University of Texas at Austin, Port Aransas, TX 78373, USA
| | - Hernando P Bacosa
- Marine Science Institute, University of Texas at Austin, Port Aransas, TX 78373, USA
| | - Zhanfei Liu
- Marine Science Institute, University of Texas at Austin, Port Aransas, TX 78373, USA
| | - Edward J Buskey
- Marine Science Institute, University of Texas at Austin, Port Aransas, TX 78373, USA
| |
Collapse
|
14
|
Fernandes C, Khandeparker RDS, Shenoy BD. High abundance of Vibrio in tarball-contaminated seawater from Vagator beach, Goa, India. MARINE POLLUTION BULLETIN 2020; 150:110773. [PMID: 31796236 DOI: 10.1016/j.marpolbul.2019.110773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/22/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
Tarballs are semi-solid remnants of crude oil and they are formed in marine environment after oil-spill incidents. They are composed of diverse hydrocarbons; some of which are recalcitrant in nature. Recent studies based on amplicon sequencing of 16S rRNA gene suggested that tarballs support hundreds of bacterial genera and provided insights into their role as hydrocarbon degraders and potential human pathogens. In this study, bacterial composition of tarball-contaminated seawater from Vagator beach, Goa, India was characterized by amplicon sequencing of V3-V4 regions of 16S rRNA gene. The DNA data revealed an unusual surge of Vibrio in sea-water contaminated with tarballs in May 2018 (16.16% OTUs), compared to tarball-free seawater samples collected in March 2018 (no detectable OTUs) and September 2018 (0.17% OTUs). Further studies are required to investigate if Vibrio species form biofilms on tarballs which may act as good reservoirs for their survival and transmission success.
Collapse
Affiliation(s)
- Clafy Fernandes
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, 403004, Goa, India
| | - Rakhee D S Khandeparker
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, 403004, Goa, India.
| | - Belle Damodara Shenoy
- CSIR-National Institute of Oceanography Regional Centre, 176, Lawson's Bay Colony, Visakhapatnam 530017, India
| |
Collapse
|
15
|
Gemmell BJ, Bacosa HP, Dickey BO, Gemmell CG, Alqasemi LR, Buskey EJ. Rapid alterations to marine microbiota communities following an oil spill. ECOTOXICOLOGY (LONDON, ENGLAND) 2018; 27:505-516. [PMID: 29556940 DOI: 10.1007/s10646-018-1923-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/24/2018] [Indexed: 06/08/2023]
Abstract
Field data from the first several days after an oil spill is rare but crucial for our understanding of a spill's impact on marine microbiota given their short generation times. Field data collected within days of the Texas City "Y" oil spill showed that exposure to crude oil can rapidly imbalance populations of marine microbiota, which leads to the proliferation of more resistant organisms. Vibrionales bacteria were up to 48 times higher than background concentrations at the most impacted sites and populations of the dinoflagellate Prorocentrum texanum increased significantly as well. Laboratory microcosm experiments with a natural plankton community showed that P. texanum grew significantly faster under oiled conditions but monocultures of P. texanum did not. Additional laboratory experiments with natural communities from Tampa Bay, Florida showed similar results although a different species dominated, P. minimum. In both cases, tolerance to the presence of crude oil was enhanced by higher sensitivity of grazers led to a release from grazing pressure and allows Prorocentrum species to dominate after an oil spill. The results suggest careful monitoring for Vibrionales and Prorocentrum during future spills would be beneficial given the potential implications to human health.
Collapse
Affiliation(s)
- Brad J Gemmell
- Department of Integrative Biology, University of South Florida, Tampa, FL, 33620, USA.
| | - Hernando P Bacosa
- Marine Science Department, University of Texas at Austin, Port Aransas, TX, 78373, USA
| | - Ben O Dickey
- Marine Science Department, University of Texas at Austin, Port Aransas, TX, 78373, USA
| | - Colbi G Gemmell
- Department of Integrative Biology, University of South Florida, Tampa, FL, 33620, USA
- Marine Science Department, University of Texas at Austin, Port Aransas, TX, 78373, USA
| | - Lama R Alqasemi
- Department of Integrative Biology, University of South Florida, Tampa, FL, 33620, USA
| | - Edward J Buskey
- Marine Science Department, University of Texas at Austin, Port Aransas, TX, 78373, USA
| |
Collapse
|
16
|
Doyle SM, Whitaker EA, De Pascuale V, Wade TL, Knap AH, Santschi PH, Quigg A, Sylvan JB. Rapid Formation of Microbe-Oil Aggregates and Changes in Community Composition in Coastal Surface Water Following Exposure to Oil and the Dispersant Corexit. Front Microbiol 2018; 9:689. [PMID: 29696005 PMCID: PMC5904270 DOI: 10.3389/fmicb.2018.00689] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 03/23/2018] [Indexed: 12/15/2022] Open
Abstract
During the Deepwater Horizon (DWH) oil spill, massive quantities of oil were deposited on the seafloor via a large-scale marine oil-snow sedimentation and flocculent accumulation (MOSSFA) event. The role of chemical dispersants (e.g., Corexit) applied during the DWH oil spill clean-up in helping or hindering the formation of this MOSSFA event are not well-understood. Here, we present the first experiment related to the DWH oil spill to specifically investigate the relationship between microbial community structure, oil and Corexit®, and marine oil-snow in coastal surface waters. We observed the formation of micron-scale aggregates of microbial cells around droplets of oil and dispersant and found that their rate of formation was directly related to the concentration of oil within the water column. These micro-aggregates are potentially important precursors to the formation of larger marine oil-snow particles. Therefore, our observation that Corexit® significantly enhanced their formation suggests dispersant application may play a role in the development of MOSSFA events. We also observed that microbial communities in marine surface waters respond to oil and oil plus Corexit® differently and much more rapidly than previously measured, with major shifts in community composition occurring within only a few hours of experiment initiation. In the oil-amended treatments without Corexit®, this manifested as an increase in community diversity due to the outgrowth of several putative aliphatic- and aromatic-hydrocarbon degrading genera, including phytoplankton-associated taxa. In contrast, microbial community diversity was reduced in mesocosms containing chemically dispersed oil. Importantly, different consortia of hydrocarbon degrading bacteria responded to oil and chemically dispersed oil, indicating that functional redundancy in the pre-spill community likely results in hydrocarbon consumption in both undispersed and dispersed oils, but by different bacterial taxa. Taken together, these data improve our understanding of how dispersants influence the degradation and transport of oil in marine surface waters following an oil spill and provide valuable insight into the early response of complex microbial communities to oil exposure.
Collapse
Affiliation(s)
- Shawn M Doyle
- Department of Oceanography, Texas A&M University, College Station, TX, United States
| | - Emily A Whitaker
- Department of Oceanography, Texas A&M University, College Station, TX, United States
| | - Veronica De Pascuale
- Department of Oceanography, Texas A&M University, College Station, TX, United States
| | - Terry L Wade
- Department of Oceanography, Texas A&M University, College Station, TX, United States.,Geochemical and Environmental Research Group, Texas A&M University, College Station, TX, United States
| | - Anthony H Knap
- Department of Oceanography, Texas A&M University, College Station, TX, United States.,Geochemical and Environmental Research Group, Texas A&M University, College Station, TX, United States
| | - Peter H Santschi
- Department of Oceanography, Texas A&M University, College Station, TX, United States.,Department of Marine Science, Texas A&M University at Galveston, Galveston, TX, United States
| | - Antonietta Quigg
- Department of Oceanography, Texas A&M University, College Station, TX, United States.,Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX, United States
| | - Jason B Sylvan
- Department of Oceanography, Texas A&M University, College Station, TX, United States
| |
Collapse
|