1
|
Haseeba KP, Vethamony P, Veerasingam S, Aboobacker VM, Al-Khayat JA. A comprehensive review of oil residues in the world oceans: types, characteristics, sources and distribution. MARINE POLLUTION BULLETIN 2025; 217:118106. [PMID: 40373572 DOI: 10.1016/j.marpolbul.2025.118106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 04/15/2025] [Accepted: 05/03/2025] [Indexed: 05/17/2025]
Abstract
The increasing industrialization and extensive utilization of petroleum products, resulting in the emergence of its residues, contribute to the formation of tar. Their accumulation is strongly influenced by environmental factors, including winds, currents, and coastal geomorphology. This review explores the physical characteristics and primary sources of tar residues, with particular focus on tanker operations and oil spill incidents. It further synthesizes the existing literature, focusing on regional tar surveys in the North Atlantic, Pacific and Indian Oceans, the Mediterranean Sea and the Arabian Gulf, aiming to consolidate current knowledge and compare regional tar concentrations. Global assessments of tar concentrations reveal notable spatial variability, with the Mediterranean Sea exhibiting the highest concentration, followed by the Arabian Gulf and the Caribbean Sea. Lower concentrations were recorded in the Pacific's Bering Sea and Gulf of Alaska areas characterized by limited shipping activity. However, non-standardized sampling strategies, inconsistencies in tow techniques, and irregular tar surveys introduce considerable uncertainty in assessing the distribution of tar residues. Significant gaps are identified in quantitative and qualitative assessments and source identification, resulting in systematic documentation of coastal tar concentrations. Despite regulatory advancements including the implementation of MARPOL Annex I, and technological improvements like segregated ballast systems, tar pollution remains a global concern. The review also highlights the urgent need for long-term monitoring, standardized methodologies, and improved risk assessment to inform effective management, particularly in tourism-dependent coastal regions.
Collapse
Affiliation(s)
- Kaiprath Puthiyapurayil Haseeba
- UNESCO Chair in Marine Sciences, Environmental Science Center, Qatar University, P.O. Box: 2713, Doha, Qatar; Department of Biological and Environmental Sciences, Qatar University, P.O. Box: 2713, Doha, Qatar
| | - Ponnumony Vethamony
- UNESCO Chair in Marine Sciences, Environmental Science Center, Qatar University, P.O. Box: 2713, Doha, Qatar.
| | - Subramanian Veerasingam
- UNESCO Chair in Marine Sciences, Environmental Science Center, Qatar University, P.O. Box: 2713, Doha, Qatar
| | | | - Jassim Abdullah Al-Khayat
- UNESCO Chair in Marine Sciences, Environmental Science Center, Qatar University, P.O. Box: 2713, Doha, Qatar
| |
Collapse
|
2
|
Huelbes S, Gómez M, Martínez I, Triay-Portella R, González-Pleiter M, Herrera A. Microplastics in Cronius ruber: Links to Wastewater Discharges. Animals (Basel) 2025; 15:1420. [PMID: 40427297 PMCID: PMC12108379 DOI: 10.3390/ani15101420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/26/2025] [Accepted: 05/09/2025] [Indexed: 05/29/2025] Open
Abstract
Microplastic pollution in the ocean is a growing problem. It affects the entire ecosystem and, therefore, the species that inhabit it. Plastics can be filtered or ingested by organisms, entering and negatively affecting individuals. Among the populations affected are crustaceans. In previous studies, fibers have been found mainly in the stomach contents of these animals, although other types, such as pellets, have also been found. This study examines the presence of microplastics in Cronius ruber, an invasive crab species in the Canary Islands, and investigates their potential links to nearby wastewater discharges. A total of 63 crabs were sampled from four beaches in Gran Canaria in 2021, and their stomach contents were analyzed through alkaline digestion, filtration, and micro-Fourier transform infrared spectroscopy (micro-FTIR). Microplastics were detected in 52% of individuals; the particles averaged 0.7 ± 0.5 mm in length, with an average of 1.73 ± 1.02 particles per crab. Fibers constituted 89% of the microplastics, with blue and black being the predominant colors. Rayon, commonly used in textiles, was the most frequently identified polymer (52%), highlighting the role of wastewater from laundry processes as a significant pollution source. Beaches close to unauthorized wastewater discharges, such as Anfi del Mar (n = 3) and El Puertillo (n = 32), showed the highest contamination levels, with a frequency of occurrence (FO) of microplastic particles of 67% and 58%, respectively. Playa de Las Nieves was the one with the lowest contamination level (n = 22), with a frequency of occurrence of microplastic particles of 41%. This is the first study to document microplastic ingestion in C. ruber, raising concerns about its ecological presence and the potential bioaccumulation of contaminants in marine ecosystems. Further research is essential to understand the long-term consequences of microplastic exposure on invasive species and their possible roles in pollutant transfer through food webs.
Collapse
Affiliation(s)
- Sofía Huelbes
- Marine Ecophysiology Group (EOMAR), Instituto Universitario de Investigación en Acuicultura Sostenible y Ecosistemas Marinos (ECOAQUA), Universidad de Las Palmas de Gran Canaria, 35017 Canary Islands, Spain; (M.G.); (I.M.); (A.H.)
| | - May Gómez
- Marine Ecophysiology Group (EOMAR), Instituto Universitario de Investigación en Acuicultura Sostenible y Ecosistemas Marinos (ECOAQUA), Universidad de Las Palmas de Gran Canaria, 35017 Canary Islands, Spain; (M.G.); (I.M.); (A.H.)
| | - Ico Martínez
- Marine Ecophysiology Group (EOMAR), Instituto Universitario de Investigación en Acuicultura Sostenible y Ecosistemas Marinos (ECOAQUA), Universidad de Las Palmas de Gran Canaria, 35017 Canary Islands, Spain; (M.G.); (I.M.); (A.H.)
| | - Raül Triay-Portella
- Biodiversity and Conservation Group (BIOCON), Instituto Universitario de Investigación en Acuicultura Sostenible y Ecosistemas Marinos (ECOAQUA), Universidad de Las Palmas de Gran Canaria, 35017 Canary Islands, Spain;
| | - Miguel González-Pleiter
- Department of Biology, Faculty of Science, Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| | - Alicia Herrera
- Marine Ecophysiology Group (EOMAR), Instituto Universitario de Investigación en Acuicultura Sostenible y Ecosistemas Marinos (ECOAQUA), Universidad de Las Palmas de Gran Canaria, 35017 Canary Islands, Spain; (M.G.); (I.M.); (A.H.)
| |
Collapse
|
3
|
Mondal R, Sarkar DJ, Bhattacharyya S, Raja R, Chaudhuri P, Biswas JK, Kumar Das B. Health risk assessment of microplastics contamination in the daily diet of South Asian countries. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138527. [PMID: 40378741 DOI: 10.1016/j.jhazmat.2025.138527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 04/30/2025] [Accepted: 05/06/2025] [Indexed: 05/19/2025]
Abstract
South Asian countries face a major threat concerning microplastics (MPs) contamination in food. This study explores the existing evidence of MPs in major foods of South Asian countries and links with available health risk indices through meta-analysis. Overall range of MPs in treated water, bottled water, fish, milk, salt, wheat, rice, and sugar were 0.75-35.33 particles L-1, 0.07-500 particles L-1, 0.006-361.6 particles g-1, 11.1-295.5 particles L-1, 0.01-350 particles g-1, 4.57 particles g-1, 0.303 particles g-1 and 0.343 particles g-1, respectively. Daily intake of MPs through food items was estimated with a range of 508-2280 particles person-1 day-1 depending on age group. Hazard score of MPs contaminated food indicates high to very high hazard scores in salt with an average PHI of 10,817.6 followed by fish (9012.9), milk (4900.4) and drinking water (3752.9) which are higher than the global values. High-risk polymers include Polyvinyl Chloride, Polyacrylamide, Styrene-Butadiene copolymer, Polyester, Polyurethane, and Polyamide. Average rate of microplastics ingestion ranged between 0.64 and 36.3 g person-1 year-1 with fish stand apex followed by bottled water, salt and milk. This study further investigates research gaps on MPs contamination in the foods of South Asian countries. Overall, the present study summarised the present level of MPs ingestion through different food sources in South Asian countries, highlighting the need for strong regulation to monitor level of MPs contamination in food.
Collapse
Affiliation(s)
- Riashree Mondal
- School of Environmental Studies, Jadavpur University, Kolkata, West Bengal 700032, India
| | - Dhruba Jyoti Sarkar
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, West Bengal 700120, India.
| | - Subarna Bhattacharyya
- School of Environmental Studies, Jadavpur University, Kolkata, West Bengal 700032, India.
| | - Ramij Raja
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, West Bengal 700120, India
| | - Punarbasu Chaudhuri
- Department of Environmental Science, University of Calcutta, Kolkata, West Bengal 700019, India
| | - Jayanta Kumar Biswas
- Department of Ecological Studies, University of Kalyani, Kalyani, West Bengal 741235, India
| | - Basanta Kumar Das
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, West Bengal 700120, India
| |
Collapse
|
4
|
Mesquita YW, Massignani CCVN, Di Domenico M, Nagai RH. Microplastic occurrence, distribution, and zonation at Paraná's beaches-South of Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:12883-12895. [PMID: 40338430 DOI: 10.1007/s11356-025-36491-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 04/30/2025] [Indexed: 05/09/2025]
Abstract
Microplastics are emerging pollutants that are increasingly reported on beaches and potentially impacting the environment and ecosystems. This study presents the first assessment of microplastic (MP) abundance and distribution on oceanic beaches of Paraná, South Brazil. Surface sediments samples retrieved from different beach zones across four beaches were analyzed for their MP (in the 1 to 5 mm size fraction-large microplastics) abundance, morphotype, and polymer composition. MP were found on all the studied beaches, totaling 846 particles, with mean concentrations of 51.9 MP/m2 or 2.3 MP/kg dw. The most common morphotypes were fragments (40%), styrofoam (28%), and foams (10%), mainly composed of polyethylene (35%) and polypropylene (29%). MP concentration distribution significantly differed between beach zones, and morphotype distribution showed differences between beaches. MP distribution followed a cross-shore pattern, with the backshore as a main accumulation area. Our study suggests that natural environmental factors such as grain size and beach slope primarily control MP distribution and accumulation along sandy shores. At the same time, the proximity of potential MP sources influences morphotype variation among beaches.
Collapse
Affiliation(s)
- Yan Weber Mesquita
- Graduate Program in Coastal and Oceanic Systems, Federal University of Paraná, Av Beira-Mar, S/N, Pontal Do Sul, Pontal Do Paraná, PR, 83255-976, Brazil
- Oceanographic Institute, University of Sao Paulo, Praça Do Oceanográfico, 191, São Paulo, SP, 05508-120, Brazil
| | | | - Maikon Di Domenico
- Center for Marine Studies, Federal University of Paraná, Pontal Do Sul, Av Beira-Mar, S/N, Pontal Do Paraná, PR, 83255-976, Brazil
| | - Renata Hanae Nagai
- Graduate Program in Coastal and Oceanic Systems, Federal University of Paraná, Av Beira-Mar, S/N, Pontal Do Sul, Pontal Do Paraná, PR, 83255-976, Brazil.
- Oceanographic Institute, University of Sao Paulo, Praça Do Oceanográfico, 191, São Paulo, SP, 05508-120, Brazil.
| |
Collapse
|
5
|
Li J, Liang X, Ye Y, Mao S, Lü J, Qu C, Qi P. The role of marine microalgae in the transmission of HOCs from contaminated microplastics in the aqueous environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 372:126010. [PMID: 40057170 DOI: 10.1016/j.envpol.2025.126010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 02/15/2025] [Accepted: 03/05/2025] [Indexed: 04/01/2025]
Abstract
The prevalence of microplastics in marine environments is recognized for its ecotoxicological risks as vectors for hydrophobic organic contaminants (HOCs). This study explored the role of microalgae as vectors in the transfer of Phenanthrene (Phe) from contaminated microplastics to marine filter feeders. Employing a spatial exposure system, the sorption of Phe onto polyethylene (PE) particles, its desorption mediated by microalgae into microalgal suspensions, and subsequent accumulation in the tissues of filter feeders were investigated. In the spatial exposure system for clams, after 28 days of exposure, Phe concentrations in clams' tissues were 67.71 ng/g and 84.21 ng/g for the medium with and without microalgae, respectively; however, no statistically significant difference was observed between them (p > 0.05). In the spatial exposure system for mussels, the highest Phe concentrations in mussels' tissues were 277.71 ± 25.98 μg/g in the digestive glands after 3 days of exposure and 185.32 ± 35.76 μg/g in the mantle after 6 days of exposure, both in the Tetraselmis helgolandica suspension. Significant differences were observed between the control group and the T. helgolandica suspension group from 3 to 10 days of exposure (p < 0.05). Although microalgae were confirmed to enhance the desorption of Phe from PE particles, their role in significantly increasing the bioaccumulation of Phe in filter feeders was less than anticipated, showing no significant long-term differences between experimental groups with and without microalgae. The potential biodegradation of Phe by marine organisms was also observed, which may have contributed to the overall transfer and bioaccumulation processes, introducing an additional layer of complexity to the interpretation of the results. These findings suggest that microalgae can act as intermediate carriers facilitating the transfer of Phe, albeit with the impact of various influencing factors not aligning with initial hypotheses. The study highlights the need for further investigation into how different microalgal species and environmental conditions affect the fate of HOCs absorbed by microplastics, contributing to an enriched understanding of microplastic impacts in marine ecosystems. This establishes that microalgae mediate the transfer of Phe from microplastics into benthic filter feeders, affirming their role as significant vectors in contaminant dynamics.
Collapse
Affiliation(s)
- Jiji Li
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Xinjie Liang
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Yingying Ye
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China.
| | - Shuai Mao
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Jiayin Lü
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Chengkai Qu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Pengzhi Qi
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China
| |
Collapse
|
6
|
González-Curbelo MÁ, Cruz-Pérez A, Gutiérrez-Bouzán C, López-Mesas M. Assessing microplastic pollution along the Caribbean coast of La Guajira, Colombia. MARINE POLLUTION BULLETIN 2025; 212:117511. [PMID: 39752817 DOI: 10.1016/j.marpolbul.2024.117511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/21/2024] [Accepted: 12/27/2024] [Indexed: 03/05/2025]
Abstract
Microplastic pollution has become a global environmental issue, severely impacting marine ecosystems. In Colombia, understanding of marine microplastic pollution remains limited, necessitating targeted efforts for prevention and conservation. This study presents the first assessment of microplastics along 125 km of the Caribbean coast of La Guajira region in Colombia. Sediment samples from seven beaches (Palomino, Dibulla, Camarones, Riohacha, Valle de los Cangrejos, Mayapo, and Jimatsu) were analyzed for microplastic during two sampling periods, encompassing color, morphology, and polymer composition determined by Fourier transform infrared spectroscopy. Microplastics were found at Dibulla, Camarones, Riohacha, and Mayapo beaches during the two sampling periods (2.4 ± 0.6 to 12 ± 2 particles/m2 in one period, and 3.2 ± 0.8 to 22 ± 7 particles/m2 in the other). Filaments from fishing activities predominated, with microplastics mostly light-colored and composed of polypropylene, polyethylene, and polystyrene. While microplastic concentrations varied among beach use, differences between the two sampling periods were not statistically significant.
Collapse
Affiliation(s)
- Miguel Ángel González-Curbelo
- Departamento de Ciencias Básicas, Facultad de Ingeniería, Universidad EAN, Calle 79 n° 11-45, Bogotá D.C., Colombia; Institut d'Investigació Tèxtil i Cooperació Industrial de Terrassa (INTEXTER), Universitat Politècnica de Catalunya, C/Colom 15, 08222 Terrassa, Spain.
| | - Andrés Cruz-Pérez
- Facultad de Estadística, Universidad Santo Tomás, Carrera 9 n° 51-11, Bogotá D.C. 110231, Colombia
| | - Carmen Gutiérrez-Bouzán
- Institut d'Investigació Tèxtil i Cooperació Industrial de Terrassa (INTEXTER), Universitat Politècnica de Catalunya, C/Colom 15, 08222 Terrassa, Spain
| | - Montserrat López-Mesas
- GTS-UAB Research Group, Department of Chemistry, Faculty of Science, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| |
Collapse
|
7
|
Thanigaivel S, Kamalesh R, Ragini YP, Saravanan A, Vickram AS, Abirami M, Thiruvengadam S. Microplastic pollution in marine environments: An in-depth analysis of advanced monitoring techniques, removal technologies, and future challenges. MARINE ENVIRONMENTAL RESEARCH 2025; 205:106993. [PMID: 39914291 DOI: 10.1016/j.marenvres.2025.106993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/28/2025] [Accepted: 02/01/2025] [Indexed: 03/08/2025]
Abstract
Microplastics, recognized as toxic contaminants, have pervaded terrestrial, atmospheric, and marine environments, transitioning from emerging pollutants to pervasive threats. About 10 % of the plastic produced worldwide enters into the ocean which constitutes 85 % of marine litter. Microplastic distribution holds the highest concentration in the Atlantic Ocean whereas the Southern Ocean holds the lowest. Concerning microplastics, reports state that each year about 1.3 million metric tons of microplastics enter the ocean. The microparticles account for about 90 % of the floating ocean debris and over 75 % of these particles originate from land-based sources which include urban runoff, and mismanaged wastes. This review offers a thorough examination of the sources of microplastics and their environmental consequences and ecological impacts. The ubiquity of microplastics necessitates robust control measures, starting with their monitoring and detection in aquatic ecosystems to assess the effectiveness of mitigation strategies. Current removal methods, including physical, chemical, and bio-based techniques, are detailed, alongside advances in filtration, separation, and integrated hybrid approaches for microplastic control. The review concludes with perspectives on the limitations of existing methods and directions for future research in microplastic monitoring, detection, and removal.
Collapse
Affiliation(s)
- S Thanigaivel
- Department of Biotechnology, Faculty of Science & Humanities, SRM Institute of Science and Technology, Chengalpattu district, Kattankulathur, Tamil Nadu, 603203, India
| | - R Kamalesh
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical And Technical Sciences, Chennai, 602105, India
| | - Y P Ragini
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical And Technical Sciences, Chennai, 602105, India
| | - A Saravanan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical And Technical Sciences, Chennai, 602105, India.
| | - A S Vickram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical And Technical Sciences, Chennai, 602105, India
| | - M Abirami
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| | - S Thiruvengadam
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| |
Collapse
|
8
|
Lozano-Bilbao E, Jurado-Ruzafa A, Hardisson A, Lorenzo JM, González JA, González-Weller D, Paz S, Rubio C, Techetach M, Guillén F, Gutiérrez ÁJ. Tracing metals in Mediterranean and Atlantic Sardina pilchardus: Unveiling impacts on food safety. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178042. [PMID: 39674159 DOI: 10.1016/j.scitotenv.2024.178042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/04/2024] [Accepted: 12/08/2024] [Indexed: 12/16/2024]
Abstract
This study evaluates the concentration of metals and trace elements (Al, Cd, Cu, Fe, Li, Pb, Zn) in the muscle tissue of Sardina pilchardus from three northeast Atlantic localities (Lisbon, Canary Islands, Rabat) and two western Mediterranean sites (Málaga, Cartagena) to assess food safety and environmental impact. A total of 100 sardines were sampled between January and June 2019, with specimens collected, homogenized by size and weight, and analyzed for metal content using Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). Results show significant geographical variation in metal concentrations, with Cartagena exhibiting the highest levels due to industrial and urban activities, while the Canary Islands had the lowest, likely influenced by geographical isolation and stringent environmental regulations. Intermediate levels were observed in Lisbon, Rabat, and Málaga, with Rabat ranking second highest. Importantly, none of the samples exceeded EU safety limits for lead (0.3 mg/kg) or cadmium (0.25 mg/kg), confirming their suitability for human consumption regarding metal content. These findings emphasize the role of local environmental and industrial factors in influencing metal bioaccumulation in marine ecosystems. Genetic and ecological dynamics, such as the Almería-Oran Front and the Canary Islands' isolation, likely contribute to these patterns. The study underscores the importance of continuous monitoring to safeguard food safety and marine ecosystem health. Despite Cartagena's elevated contamination levels, which pose a higher potential risk if sardine consumption is frequent, sardines from all locations remain within safety limits. Moving forward, research should prioritize long-term monitoring and explore genetic and ecological factors influencing bioaccumulation trends, contributing to sustainable management and effective pollution control measures. This highlights the interconnectedness of environmental health and human dietary safety, emphasizing the need for a proactive approach to monitoring marine contamination.
Collapse
Affiliation(s)
- Enrique Lozano-Bilbao
- Grupo Interuniversitario de Toxicología Alimentaria y Ambiental, Facultad de Medicina, Universidad de La Laguna (ULL), Campus de Ofra, San Cristóbal de La Laguna, 38071 Santa Cruz de Tenerife, Spain; Grupo de Investigación en Ecología Marina Aplicada y Pesquerías (EMAP), Instituto de Investigación de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, Campus de Tafira, Las Palmas de Gran Canaria, 35017 Las Palmas, Spain.
| | - Alba Jurado-Ruzafa
- Spanish Institute of Oceanography, Oceanographic Center of the Canary Islands (IEO, CSIC), Santa Cruz de Tenerife 38180, Spain
| | - Arturo Hardisson
- Grupo Interuniversitario de Toxicología Alimentaria y Ambiental, Facultad de Medicina, Universidad de La Laguna (ULL), Campus de Ofra, San Cristóbal de La Laguna, 38071 Santa Cruz de Tenerife, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Área de Toxicología, Universidad de La Laguna, Campus de Ofra, San Cristóbal de La Laguna, 38071 Santa Cruz de Tenerife, Spain
| | - José M Lorenzo
- Grupo de Investigación en Ecología Marina Aplicada y Pesquerías (EMAP), Instituto de Investigación de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, Campus de Tafira, Las Palmas de Gran Canaria, 35017 Las Palmas, Spain
| | - José A González
- Grupo de Investigación en Ecología Marina Aplicada y Pesquerías (EMAP), Instituto de Investigación de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, Campus de Tafira, Las Palmas de Gran Canaria, 35017 Las Palmas, Spain
| | - Dailos González-Weller
- Grupo Interuniversitario de Toxicología Alimentaria y Ambiental, Facultad de Medicina, Universidad de La Laguna (ULL), Campus de Ofra, San Cristóbal de La Laguna, 38071 Santa Cruz de Tenerife, Spain; Servicio Público Canario de Salud, Laboratorio Central, Santa Cruz de Tenerife, 38006 Santa Cruz de Tenerife, Spain
| | - Soraya Paz
- Grupo Interuniversitario de Toxicología Alimentaria y Ambiental, Facultad de Medicina, Universidad de La Laguna (ULL), Campus de Ofra, San Cristóbal de La Laguna, 38071 Santa Cruz de Tenerife, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Área de Toxicología, Universidad de La Laguna, Campus de Ofra, San Cristóbal de La Laguna, 38071 Santa Cruz de Tenerife, Spain
| | - Carmen Rubio
- Grupo Interuniversitario de Toxicología Alimentaria y Ambiental, Facultad de Medicina, Universidad de La Laguna (ULL), Campus de Ofra, San Cristóbal de La Laguna, 38071 Santa Cruz de Tenerife, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Área de Toxicología, Universidad de La Laguna, Campus de Ofra, San Cristóbal de La Laguna, 38071 Santa Cruz de Tenerife, Spain
| | - Mohamed Techetach
- Environmental and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Morocco
| | - Fernando Guillén
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Área de Toxicología, Universidad de La Laguna, Campus de Ofra, San Cristóbal de La Laguna, 38071 Santa Cruz de Tenerife, Spain
| | - Ángel J Gutiérrez
- Grupo Interuniversitario de Toxicología Alimentaria y Ambiental, Facultad de Medicina, Universidad de La Laguna (ULL), Campus de Ofra, San Cristóbal de La Laguna, 38071 Santa Cruz de Tenerife, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Área de Toxicología, Universidad de La Laguna, Campus de Ofra, San Cristóbal de La Laguna, 38071 Santa Cruz de Tenerife, Spain
| |
Collapse
|
9
|
Domínguez-Hernández C, Vega-Moreno D, Villanova-Solano C, Hernández-Sánchez C, Lambre ME, Hernández-Borges J. Characterization of pyroplastics from the North Atlantic. MARINE POLLUTION BULLETIN 2024; 208:116960. [PMID: 39270560 DOI: 10.1016/j.marpolbul.2024.116960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024]
Abstract
This work describes for the first time the presence of pyroplastics in the Canary Islands (Spain). A total of 300 pyroplastics, identified between 2021 and 2024 in three beaches of the island of Tenerife, present mainly grey and dark colors, a mean weight of 6.8 ± 13.4 g and mean dimensions of 34.2 ± 17.0 mm (X), 24.5 ± 12.2 mm (Y) and 14.4 ± 6.4 (Z). A wide variety of encapsulated and semi-encapsulated materials were also found in the pyroplastics matrix, such as rocks, wood, charcoal and unmelted plastic inclusions. Fourier-transform infrared spectroscopy analysis revealed that polyethylene and polypropylene were the main types of plastic found, 61.3 % and 33.6 %, respectively. However, an important number of pyroplastics composed of more than one polymer were also found, coexisting even mixtures of polyester and polyethylene or polyethylene and styrene-ethylene-butylene-styrene in the same matrix. X-ray fluorescence spectroscopy analysis revealed the presence of a wide range of elements, being remarkable the high concentration of some heavy metals such as Pb and Cr, registering mean concentration values of 205.3 ± 6.3 mg·kg-1 and 51.1 ± 8.9 mg·kg-1, respectively. A good correlation was also found for these two metals in a total of 22 pyroplastics, which could be indicative of the presence of PbCrO4 as additive, widely used in the plastic industry for its bright yellow color, but currently regulated and restricted due to its harmful effects on human and environment health. Also noteworthy is the large variety of remains of marine organisms identified attached to the surface of the pyroplastics, such as algae, bryozoans, arthropods and molluscs, among others, which could indicate that these formations may act as a transport vector for such marine organisms.
Collapse
Affiliation(s)
- Cristopher Domínguez-Hernández
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n°, 38206 San Cristóbal de La Laguna, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n°, 38206 San Cristóbal de La Laguna, Spain
| | - Daura Vega-Moreno
- Departamento de Química, Universidad de Las Palmas de Gran Canaria (ULPGC), Juan de Quesada, s/n°, 35001 Las Palmas de Gran Canaria, Spain
| | - Cristina Villanova-Solano
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n°, 38206 San Cristóbal de La Laguna, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n°, 38206 San Cristóbal de La Laguna, Spain
| | - Cintia Hernández-Sánchez
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n°, 38206 San Cristóbal de La Laguna, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Forense y Legal y Parasitología, Área de Medicina Preventiva y Salud Pública, Facultad de Ciencias de la Salud, C/ Sta. María Soledad, s/n°, Santa Cruz de Tenerife, Spain
| | - Maria Elisa Lambre
- Departamento de Biología Animal, Edafología y Geología, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n°, 38206 San Cristóbal de La Laguna, Spain
| | - Javier Hernández-Borges
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n°, 38206 San Cristóbal de La Laguna, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n°, 38206 San Cristóbal de La Laguna, Spain.
| |
Collapse
|
10
|
Domínguez-Hernández C, Villanova-Solano C, Álvarez-Méndez SJ, Pestano M, Tejera G, Arias Á, Díaz-Peña FJ, Hernández-Borges J, Hernández-Sánchez C. Anthropogenic debris pollution in yellow-legged gull (Larus michahellis atlantis) nests in biosphere reserves of the Canary Islands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175209. [PMID: 39098411 DOI: 10.1016/j.scitotenv.2024.175209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/28/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
Anthropogenic debris, particularly plastic pollution, has emerged as a significant environmental threat to biodiversity. Given that seabirds interact with artificial debris through ingestion, entanglement, and nest incorporation, it is particularly important to quantify the quantity, origins, and chemical composition of these debris items. In this work, it was evaluated for the first time the occurrence of anthropogenic debris in nests of yellow-legged gull (Larus michahellis atlantis) in biosphere reserves of the Canary Islands (Spain). A total of 48 abandoned nests were collected from five remote and hardly accessible sampling areas, revealing that 81.3 % contained anthropogenic waste, with plastic accounting for 34.7 % of the debris, followed by metal (33.6 %) and paper (19.6 %). On average, 32.8 ± 40.9 items were found per nest. Regarding the origin, food packagings (47.8 %), personal hygiene products (21.7 %), and textiles (15.8 %) were identified as the predominant sources. Furthermore, the polymer composition of the plastics was characterised by means of Fourier-transform infrared spectroscopy analysis, being polyester the most abundant (38.2 %), followed by polyethylene (25.6 %) and rayon (10.3 %). The incorporation of anthropogenic debris into nest construction may result from outdoor human activities carried out far from nesting areas.
Collapse
Affiliation(s)
- Cristopher Domínguez-Hernández
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, 38206 San Cristóbal de La Laguna, Tenerife, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n°, 38206 San Cristóbal de La Laguna, Tenerife, Spain
| | - Cristina Villanova-Solano
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, 38206 San Cristóbal de La Laguna, Tenerife, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n°, 38206 San Cristóbal de La Laguna, Tenerife, Spain
| | - Sergio J Álvarez-Méndez
- Departamento de Química Orgánica, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, s/n°, 38206 San Cristóbal de La Laguna, Tenerife, Spain
| | - Miguel Pestano
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, 38206 San Cristóbal de La Laguna, Tenerife, Spain
| | - Gustavo Tejera
- Canary Islands' Ornithology and Natural History Group (GOHNIC), Buenavista del Norte, Tenerife, Spain
| | - Ángeles Arias
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Tenerife, Spain
| | - Francisco J Díaz-Peña
- Departamento de Biología Animal, Edafología y Geología, Facultad de Ciencias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, Tenerife, Spain
| | - Javier Hernández-Borges
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, 38206 San Cristóbal de La Laguna, Tenerife, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n°, 38206 San Cristóbal de La Laguna, Tenerife, Spain
| | - Cintia Hernández-Sánchez
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n°, 38206 San Cristóbal de La Laguna, Tenerife, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Tenerife, Spain.
| |
Collapse
|
11
|
Ardusso MG, Fernández Severini MD, Abasto B, Prieto G, Rimondino G, Malanca F, Buzzi NS. First multi-compartment approach to microplastics in an urbanized estuary of Argentina: The case of Magallana gigas. MARINE POLLUTION BULLETIN 2024; 208:117027. [PMID: 39332338 DOI: 10.1016/j.marpolbul.2024.117027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/05/2024] [Accepted: 09/17/2024] [Indexed: 09/29/2024]
Abstract
This study assesses MP in water, sediment, gills, and digestive tract of the oyster Magallana gigas in three Bahía Blanca estuary sites, Argentina, using, Pollution Load Index (PLI) and SEM/EDX (Scanning Electron Microscopy with Energy-dispersive X-ray spectroscopy) and FTIR (Fourier-transform infrared spectroscopy) techniques. A total of 51 MPs were detected in water (mean: 16 items L-1) and 126 in sediments (mean: 1399 items Kg-1) with no significant differences between sites. In oysters, 186 MPs were found, with no significant differences in the MPs load between gills (mean: 2.41 items g-1 w.w), digestive tract (2.06 ± 2 items g-1 w.w), and the total tissues. Transparent fiber MPs were predominant, with cellulose, polyamides, polyethylene terephthalate and polyethylene being common polymers. SEM/EDX showed Si, Fe, Cl, Na, Ti, Al, K, Ca and suspended particulate matter on MP surfaces. The PLI indicated a low-risk level for estuary bivalves and water, suggesting minimal MPs impact.
Collapse
Affiliation(s)
- Maialen G Ardusso
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, B8000FWB Bahía Blanca, Buenos Aires, Argentina.
| | - Melisa D Fernández Severini
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, B8000FWB Bahía Blanca, Buenos Aires, Argentina
| | - Benjamín Abasto
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, B8000FWB Bahía Blanca, Buenos Aires, Argentina
| | - Germán Prieto
- Instituto de Física del Sur (IFISUR), CONICET/UNS, Av. Alem 1253, B8000, Bahía Blanca, Buenos Aires, Argentina; Departamento de Ingeniería, Universidad Nacional del Sur, B8000 Bahía Blanca, Buenos Aires, Argentina
| | - Guido Rimondino
- Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Fabio Malanca
- Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Natalia S Buzzi
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, B8000FWB Bahía Blanca, Buenos Aires, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), San Juan 670, B8000ICN Bahía Blanca, Buenos Aires, Argentina.
| |
Collapse
|
12
|
Incera M, Valbuena L, Falcón J, González EL, González-Porto M, Martín-García L, Martín-Sosa P, Gago J. Assessment of seabed litter at Concepción Seamount (Canary island) using a remotely operated towed vehicle. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123654. [PMID: 38402933 DOI: 10.1016/j.envpol.2024.123654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 02/27/2024]
Abstract
The seafloor is recognised as a major sink for marine litter. However, studies conducted in this compartment addressing marine litter densities and its interactions with fauna are scarce, mainly due to sampling constraints. In this paper, we assess marine litter density, composition and interactions with marine communities and evaluate its relationship with fishing activities at the "Banco de la Concepción" seamount (Canary Islands, Spain). We took advantage of underwater video records taken with a Remotely Operated Towed Vehicle in the framework of the LIFE IP INTEMARES project. A total of 56 video transects were analysed covering about 9 km with 19 h of video recording. Transects were categorised as high, low, and null fishing effort based on the Vessel Monitoring System (VMS) positional data registered between 2009 and 2017. Litter items were recorded in 70% of the transects with a mean density of 2122 (±2464) items km-2. There were significant differences in litter densities over the three levels of fishing pressure, with a density decrease from stations of high to stations of null fishing pressure. Regarding categories, plastic was by far the most abundant category found (83.1%), mainly consisting of fishing lines, both monofilaments and entangled longlines. The study of the interactions of marine litter with fauna showed that less than 20% of the items presented an interaction with benthic organisms either by causing or not a visible impact. The sponge Asconema setubalense accounted for more than half (57.4%) of all interactions, but only 5% of all A. setubalense specimens showed physical damage.
Collapse
Affiliation(s)
- M Incera
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO), CSIC, Subida a Radio Faro, 50, Vigo, 36390, Spain.
| | - L Valbuena
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO), CSIC, Subida a Radio Faro, 50, Vigo, 36390, Spain
| | - J Falcón
- Centro Oceanográfico de Canarias, Instituto Español de Oceanografía (IEO), CSIC, C/ Farola del Mar, 22, Dársena Pesquera, Santa Cruz de Tenerife, 38180, Spain
| | - E L González
- Centro Oceanográfico de Canarias, Instituto Español de Oceanografía (IEO), CSIC, C/ Farola del Mar, 22, Dársena Pesquera, Santa Cruz de Tenerife, 38180, Spain
| | - M González-Porto
- Centro Oceanográfico de Canarias, Instituto Español de Oceanografía (IEO), CSIC, C/ Farola del Mar, 22, Dársena Pesquera, Santa Cruz de Tenerife, 38180, Spain
| | - L Martín-García
- Centro Oceanográfico de Canarias, Instituto Español de Oceanografía (IEO), CSIC, C/ Farola del Mar, 22, Dársena Pesquera, Santa Cruz de Tenerife, 38180, Spain
| | - P Martín-Sosa
- Centro Oceanográfico de Canarias, Instituto Español de Oceanografía (IEO), CSIC, C/ Farola del Mar, 22, Dársena Pesquera, Santa Cruz de Tenerife, 38180, Spain
| | - J Gago
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO), CSIC, Subida a Radio Faro, 50, Vigo, 36390, Spain
| |
Collapse
|
13
|
García-Regalado A, Herrera A, Almeda R. Microplastic and mesoplastic pollution in surface waters and beaches of the Canary Islands: A review. MARINE POLLUTION BULLETIN 2024; 201:116230. [PMID: 38479326 DOI: 10.1016/j.marpolbul.2024.116230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/27/2024] [Accepted: 03/03/2024] [Indexed: 04/07/2024]
Abstract
The Canary Archipelago is a group of volcanic islands located in the North Atlantic Ocean with high marine biodiversity. This archipelago intercepts the Canary Current, the easternmost branch of the Azores Current in the North Atlantic Subtropical Gyre, which brings large amounts of litter from remote sources via oceanic transportation. It is, therefore, particularly vulnerable to marine plastic pollution. Here, we present a review of the available studies on mesoplastics and microplastics in the Canary Islands over the last decade to evaluate the level and distribution of plastic pollution in this archipelago. Specifically, we focused on data from beaches and surface waters to assess the pollution level among the different islands as well as between windward and leeward zones, and the main characteristics (size, type, colour, and polymer) of the plastics found in the Canary Islands. The concentrations of meso- and MPs on beaches ranged from 1.5 to 2972 items/m2 with a mean of 381 ± 721 items/m2. The concentration of MPs (>200 μm) in surface waters was highly variable with mean values of 998 × 103 ± 3364 × 103 items/km2 and 10 ± 31 items/m3. Plastic pollution in windward beaches was one order of magnitude significantly higher than in leeward beaches. The accumulation of MPs in surface waters was higher in the leeward zones of the high-elevation islands, corresponding to the Special Areas of Conservation (ZECs) and where the presence of marine litter windrows (MLW) has been reported. Microplastic fragments of polyethylene of the colour category "white/clear/uncoloured" were the most common type of plastic reported in both beaches and surface waters. More studies on the occurrence of MLW in ZECS and plastic pollution in the water column and sediments, including small-size fractions (<200 μm), are needed to better assess the level of plastic pollution and its fate in the Canary Islands. Overall, this review confirms that the Canary Archipelago is a hotspot of oceanic plastic pollution, with concentrations of MPs in surface waters in the highest range reported for oceanic islands and one of the highest recorded mean concentrations of beached meso- and microplastics in the world.
Collapse
Affiliation(s)
| | - Alicia Herrera
- EOMAR, ECOAQUA, Universidad de Las Palmas de Gran Canaria, Spain
| | - Rodrigo Almeda
- EOMAR, ECOAQUA, Universidad de Las Palmas de Gran Canaria, Spain.
| |
Collapse
|
14
|
Sousa-Guedes D, Bessa F, Queiruga A, Teixeira L, Reis V, Gonçalves JA, Marco A, Sillero N. Lost and found: Patterns of marine litter accumulation on the remote Island of Santa Luzia, Cabo Verde. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123338. [PMID: 38218543 DOI: 10.1016/j.envpol.2024.123338] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/21/2023] [Accepted: 01/09/2024] [Indexed: 01/15/2024]
Abstract
Santa Luzia, an uninhabited island in the archipelago of Cabo Verde, serves as a natural laboratory and important nesting site for loggerhead turtles Carettacaretta. The island constitutes an Integral Natural Reserve and a Marine Protected Area. We assessed marine litter accumulation on sandy beaches of the island and analysed their spatial patterns using two sampling methods: at a fine scale, sand samples from 1 × 1 m squares were collected, identifying debris larger than 1 mm; at a coarse scale, drone surveys were conducted to identify visible marine debris (>25 mm) in aerial images. We sampled six points on three beaches of the island: Achados (three points), Francisca (two points) and Palmo Tostão (one point). Then, we modelled the abundance of marine debris using topographical variables as explanatory factors, derived from digital surface models (DSM). Our findings reveal that the island is a significant repository for marine litter (>84% composed of plastics), with up to 917 plastic items per m2 in the sand samples and a maximum of 38 macro-debris items per m2 in the drone surveys. Plastic fragments dominate, followed by plastic pellets (at the fine-scale approach) and fishing materials (at the coarse-scale approach). We observed that north-facing, higher-elevation beaches accumulate more large marine litter, while slope and elevation affect their spatial distribution within the beach. Achados Beach faces severe marine debris pollution challenges, and the upcoming climate changes could exacerbate this problem.
Collapse
Affiliation(s)
- Diana Sousa-Guedes
- Centro de Investigação em Ciências Geo-Espaciais (CICGE), Faculdade de Ciências da Universidade do Porto, Alameda do Monte da Virgem, 4430-146 Vila Nova de Gaia, Portugal; University of Coimbra, MARE - Marine and Environmental Sciences Centre/ ARNET Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; Estación Biológica de Doñana, CSIC, C/ Américo Vespucio, s/n, 41092 Sevilla, Spain; BIOS.CV - Conservation of the Environment and Sustainable Development, CP 52111, Sal Rei, Boa Vista Island, Cabo Verde.
| | - Filipa Bessa
- University of Coimbra, MARE - Marine and Environmental Sciences Centre/ ARNET Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal.
| | | | | | - Vitória Reis
- Centro de Investigação em Ciências Geo-Espaciais (CICGE), Faculdade de Ciências da Universidade do Porto, Alameda do Monte da Virgem, 4430-146 Vila Nova de Gaia, Portugal.
| | - José Alberto Gonçalves
- Departamento de Geociências, Ambiente e Ordenamento do Território (DGAOT), Faculdade de Ciências da Universidade do Porto, Portugal; CIIMAR Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros de Leixões, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
| | - Adolfo Marco
- Estación Biológica de Doñana, CSIC, C/ Américo Vespucio, s/n, 41092 Sevilla, Spain; BIOS.CV - Conservation of the Environment and Sustainable Development, CP 52111, Sal Rei, Boa Vista Island, Cabo Verde.
| | - Neftalí Sillero
- Centro de Investigação em Ciências Geo-Espaciais (CICGE), Faculdade de Ciências da Universidade do Porto, Alameda do Monte da Virgem, 4430-146 Vila Nova de Gaia, Portugal.
| |
Collapse
|
15
|
Bentaallah MEA, Baghdadi D, Gündoğdu S, Megharbi A, Taibi NE, Büyükdeveci F. Assessment of microplastic abundance and impact on recreational beaches along the western Algerian coastline. MARINE POLLUTION BULLETIN 2024; 199:116007. [PMID: 38176161 DOI: 10.1016/j.marpolbul.2023.116007] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/16/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
Microplastics (MPs) have attracted global attention due to their ubiquity and potential impact on the environment. However, MPs are poorly documented along the Algerian coast. To address this data gap, this study investigated the presence of MPs on three recreational beaches in western Algeria (Stidia, Sablettes and Mersat El Hadjaj). The mean MP abundance for the three beaches was estimated at 55.47 ± 48.01 items/m2. Characterization of MPs shape revealed that fragments (79.81 %) were dominant, followed by pellets (10.58 %), filaments (5.57 %), and foam (3.85 %). An assessment of the Microplastic Pollution Index, the Pellet Pollution Index, and the Coefficient of Microplastic Impact, revealed the presence of very low to moderate levels of MPs on the beaches. This presence was associated with minimal beach pollution and moderate overall impact. The sector analysis approach results confirm that there are two different magnitudes of MPs presence that can negatively impact on the environmental quality of the studied beaches.
Collapse
Affiliation(s)
- Mohammed El Amine Bentaallah
- Laboratory of environment and sustainable development, biological sciences department, Relizane university, Algeria.
| | - Djilali Baghdadi
- Laboratory of environment and sustainable development, biological sciences department, Relizane university, Algeria
| | - Sedat Gündoğdu
- Faculty of Fisheries, Cukurova University, 1330 Adana, Turkey
| | - Ahmed Megharbi
- Laboratory of environment and sustainable development, biological sciences department, Relizane university, Algeria
| | - Nasr-Eddine Taibi
- Laboratory of Protection, Valorisation of Marine and Coastal Resources, and Molecular Systematics, Faculty of Nature & Life Science, Mostaganem university, Algeria
| | - Ferhat Büyükdeveci
- Faculty of Fisheries, Cukurova University, 1330 Adana, Turkey; Adana Directorate of Provincial Food, Agriculture and Livestock, Adana, Turkey
| |
Collapse
|
16
|
Aksun Tümerkan ET, Köse E, Aksu S, Mol O, Kantamaneni K, Başkurt S, Çınar E, Emiroğlu Ö. Beadlet anemone: A novel bio-indicator of microplastic pollution in the marine environment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119538. [PMID: 37948964 DOI: 10.1016/j.jenvman.2023.119538] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/15/2023] [Accepted: 11/04/2023] [Indexed: 11/12/2023]
Abstract
Extensive usage of plastic in different industries and household usage has degraded to microplastic due to environmental conditions over the last year. While several researchers conducted the determination of microplastic (MP) bioaccumulation from rivers to stormwater, except for some filter-feeding species used as a bioindicator, to achieve a holistic approach to the fate of MPs in the marine system, sea anemone was used as an indicator. Microplastics were extracted from surface seawater, sediment, and sea anemones from the same sampling area and characterized. The extracted MPs were confirmed by confocal micro-Raman spectroscopy, and the morphology of the MPs was investigated by scanning electron microscopy (SEM). The results showed that the accumulation of microplastics and the type of polymer, shape, colour, and size of these persistent pollutants varied in sediment, surface water, and sea anemone. The abundance of MPs was different, and grey-coloured MPs were detected at a relatively higher level in sea anemones, from 8.7 to 13.3%, and more minor MPs (less than 0.5 mm) at 43.4-56.8% were detected in sea anemones among the sampling stations. In terms of polymer type, there are relatively more types of polymers classified in sea anemones among the sampling stations (six different types of polymers). These results indicated that the utilization of sea anemones as a bioindicator for MPs could be a critical factor in a better understanding of their pathway in the marine ecosystem. This study proved that analysing sea anemones as an indicator could offer a reliable, fast, and time-saving approach for detecting microplastic accumulation in marine systems.
Collapse
Affiliation(s)
- Elif Tuğçe Aksun Tümerkan
- Department of Food Processing-Food Technology, Ankara Yıldırım Beyazıt University, Vocational School of Health Services, Ankara, Turkey; AYBU Central Research Laboratory, Application and Research Center, Ankara Yıldırım Beyazıt Univer-sity, Ankara, 06010, Turkey.
| | - Esengül Köse
- Department of Environmental Protection Technologies, Eskişehir Vocational School, Eskişehir Osmangazi University, Eskişehir, Turkey.
| | - Sadi Aksu
- Vocational School of Health Services, Eskişehir Osmangazi University, Eskişehir, Turkey.
| | - Oğuzcan Mol
- Department of Biology, Faculty of Science, Eskişehir,Osmangazi University, Eskişehir, Turkey.
| | - Komali Kantamaneni
- School of Engineering, University of Central Lancashire, Preston, PR1 2HE, United Kingdom.
| | - Sercan Başkurt
- Department of Biology, Faculty of Science, Eskişehir,Osmangazi University, Eskişehir, Turkey.
| | - Emre Çınar
- Department of Biology, Faculty of Science, Eskişehir,Osmangazi University, Eskişehir, Turkey.
| | - Özgür Emiroğlu
- Department of Biology, Faculty of Science, Eskişehir,Osmangazi University, Eskişehir, Turkey.
| |
Collapse
|
17
|
Pham CK, Estevez SG, Pereira JM, Herrera L, Rodríguez Y, Domínguez-Hernández C, Villanova-Solano C, Hernández-Sánchez C, Díaz-Peña FJ, Hernández-Borges J. Three-dimensional evaluation of beaches of oceanic islands as reservoirs of plastic particles in the open ocean. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165798. [PMID: 37506916 DOI: 10.1016/j.scitotenv.2023.165798] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/19/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Abstract
The quantification of plastic debris on beaches has been extensively used as an indicator of plastic pollution in the marine environment. However, most efforts have focused on surface layers, with few investigations looking deeper into the substrate, thus underestimating total standing stocks. Such information is crucial to improve our understanding of where plastic accumulates in the oceans. In this study, we investigated the three-dimensional distribution of plastic (>1 mm) in three sandy beaches located in oceanic islands of the North Atlantic (Azores and the Canary Islands) that are known to accumulate significant quantities of small plastic debris at the surface layer. On each beach, we collected a total of 16 sediment cores down to 1 m depth, from the high tide line up to the backshore following a stratified random sampling design spread across four different levels across the beach. Samples were taken every 10 cm down to 1 m into the sand. Our results revealed the presence of plastic items in the deepest layers with subsurface layers accounting for 84 % of the total plastic abundance and with a similar pattern in terms of size, shape, colour and composition. Furthermore, we found increasing plastic concentrations towards the upper levels of the beach, indicating longer term accumulation in the backshore. Collectively, this study suggests that the plastic items reaching sandy beaches of the Macaronesia are being incorporated into its deepest layers, acting as reservoirs of plastic in the open ocean.
Collapse
Affiliation(s)
- Christopher K Pham
- Instituto de Investigação em Ciências do Mar - OKEANOS, Universidade dos Açores, Horta, Portugal.
| | - Sofia G Estevez
- Instituto de Investigação em Ciências do Mar - OKEANOS, Universidade dos Açores, Horta, Portugal
| | - João M Pereira
- Instituto de Investigação em Ciências do Mar - OKEANOS, Universidade dos Açores, Horta, Portugal
| | - Laura Herrera
- Instituto de Investigação em Ciências do Mar - OKEANOS, Universidade dos Açores, Horta, Portugal
| | - Yasmina Rodríguez
- Instituto de Investigação em Ciências do Mar - OKEANOS, Universidade dos Açores, Horta, Portugal
| | - Cristopher Domínguez-Hernández
- Departamento de Química, Universidad de La Laguna (ULL), San Cristóbal de La Laguna, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), San Cristóbal de La Laguna, Spain
| | - Cristina Villanova-Solano
- Departamento de Química, Universidad de La Laguna (ULL), San Cristóbal de La Laguna, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), San Cristóbal de La Laguna, Spain
| | - Cintia Hernández-Sánchez
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), San Cristóbal de La Laguna, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna (ULL), San Cristóbal de La Laguna, Spain
| | - Francisco J Díaz-Peña
- Departamento de Biología Animal, Edafología y Geología, Universidad de La Laguna (ULL), San Cristóbal de La Laguna, Spain
| | - Javier Hernández-Borges
- Departamento de Química, Universidad de La Laguna (ULL), San Cristóbal de La Laguna, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), San Cristóbal de La Laguna, Spain
| |
Collapse
|
18
|
Matos DM, Ramos JA, Bessa F, Silva V, Rodrigues I, Antunes S, Dos Santos I, Coentro J, Brandão ALC, Batista de Carvalho LAE, Marques MPM, Santos S, Paiva VH. Anthropogenic debris ingestion in a tropical seabird community: Insights from taxonomy and foraging distribution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165437. [PMID: 37437636 DOI: 10.1016/j.scitotenv.2023.165437] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/20/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
Oceans have been considered as an unlimited supply of goods and services, but resource extraction and waste disposal became ubiquitous and have been damaging the health of marine ecosystems. Finding suitable sentinel species of the human impacts on the oceans is thus imperative, since they may work as early warnings of disruptive situations. In this study, we investigated how taxonomy and foraging distribution influenced the occurrence of anthropogenic debris among five seabird species inhabiting the tropical Atlantic region. Occurrence of anthropogenic debris was assessed using faeces of breeding individuals as a proxy of ingestion. A total of 268 particles were extracted from all samples. The categories "fragments" and "fibres", as well as the colour "blue", were the most prevalent characteristics across species. There was a high diversity of polymers from cellulosic particles to synthetic plastics (Anthropogenic Cellulosic 26.9 %; Polyester 7.7 %; Varnish 5.8 %; Polypropylene 1.9 %). Species with a more coastal foraging strategy exhibited higher occurrence and number of anthropogenic debris when compared to species foraging comparably more in pelagic areas. This suggests that anthropogenic debris are more prevalent in coastal foraging areas, where human activities occur in higher number and frequency (e.g., fisheries) and sources of freshwater input from inland are at close distance. These results provide more evidence to the growing perception on the ubiquity and diversity of anthropogenic debris in the marine environment, and further support the usefulness of using seabirds as bio-indicators of anthropogenic pollution in both neritic and oceanic regions.
Collapse
Affiliation(s)
- D M Matos
- University of Coimbra, MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal.
| | - J A Ramos
- University of Coimbra, MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Filipa Bessa
- University of Coimbra, MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Vítor Silva
- University of Coimbra, MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Isabel Rodrigues
- Biosfera Cabo Verde, Sul do Cemitério, Rua 5 - Caixa Postal 233, São Vicente, Cabo Verde
| | - Stefan Antunes
- Biosfera Cabo Verde, Sul do Cemitério, Rua 5 - Caixa Postal 233, São Vicente, Cabo Verde
| | - I Dos Santos
- University of Coimbra, MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - João Coentro
- University of Coimbra, MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - A L C Brandão
- University of Coimbra, Molecular Physical-Chemistry R&D Unit, Department of Chemistry, 3004-535 Coimbra, Portugal
| | - L A E Batista de Carvalho
- University of Coimbra, Molecular Physical-Chemistry R&D Unit, Department of Chemistry, 3004-535 Coimbra, Portugal
| | - M P M Marques
- University of Coimbra, Molecular Physical-Chemistry R&D Unit, Department of Chemistry, 3004-535 Coimbra, Portugal; University of Coimbra, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Sara Santos
- University of Coimbra, MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - V H Paiva
- University of Coimbra, MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| |
Collapse
|
19
|
Campillo A, Almeda R, Vianello A, Gómez M, Martínez I, Navarro A, Herrera A. Searching for hotspots of neustonic microplastics in the Canary Islands. MARINE POLLUTION BULLETIN 2023; 192:115057. [PMID: 37201348 DOI: 10.1016/j.marpolbul.2023.115057] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/20/2023]
Abstract
In this study, we investigated the concentration, distribution, and characteristics of neustonic MPs in the Canary Islands, with a particular focus on the island leeward zones, where a high accumulation of floating marine microplastics is expected. Samples were collected with a manta net at 15 different sites from Alegranza to La Gomera during the IMPLAMAC expedition. The microplastic concentration in surface waters ranged from 0.27 MPs/m3 in Alegranza to 136.7 MPs/m3 in the south of Gran Canaria. The highest concentration of MPs found was due to the presence of a sea-surface slick, also called "marine litter windrow", formed in the south of Gran Canaria. The most abundant zooplankton group in the neuston was copepods, except at the marine litter windrow where fish larvae and eggs predominated. This indicates that coastal areas where marine litter windrows are formed have a high risk of MP ingestion and potential adverse effects on biota.
Collapse
Affiliation(s)
- Alex Campillo
- Marine Ecophysiology Group (EOMAR), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Rodrigo Almeda
- Marine Ecophysiology Group (EOMAR), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Alvise Vianello
- Department of the Built Environment, Aalborg University, Thomas Manns Vej 23, 9220 Aalborg Øst, Denmark
| | - May Gómez
- Marine Ecophysiology Group (EOMAR), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Ico Martínez
- Marine Ecophysiology Group (EOMAR), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Alberto Navarro
- Marine Ecophysiology Group (EOMAR), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Alicia Herrera
- Marine Ecophysiology Group (EOMAR), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain.
| |
Collapse
|
20
|
Hernández-Sánchez C, Pestana-Ríos ÁA, Villanova-Solano C, Domínguez-Hernández C, Díaz-Peña FJ, Rodríguez-Álvarez C, Lecuona M, Arias Á. Bacterial Colonization of Microplastics at the Beaches of an Oceanic Island, Tenerife, Canary Islands. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3951. [PMID: 36900968 PMCID: PMC10001659 DOI: 10.3390/ijerph20053951] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
(1) Isolated systems, such as oceanic islands, are increasingly experiencing important problems related to microplastic debris on their beaches. The formation of microbial biofilm on the surface of microplastics present in marine environments provides potential facilities for microorganisms to survive under the biofilm. Moreover, microplastics act as a vehicle for the dispersion of pathogenic organisms, constituting a new route of exposure for humans. (2) In this study, the microbial content (FIO and Vibrio spp. and Staphylococcus aureus) of microplastics (fragments and pellets) collected from seven beaches of the oceanic island of Tenerife, in the Canary Islands (Spain), was determined. (3) Results showed that Escherichia coli was present in 57.1% of the fragments and 28.5% of the pellets studied. In the case of intestinal Enterococci, 85.7% of the fragments and 57.1% of the pellets tested positive for this parameter. Finally, 100% of the fragments and 42.8% of the pellets analyzed from the different beaches contained Vibrio spp. (4) This study shows that microplastics act as reservoirs of microorganisms that can increase the presence of bacteria indicating faecal and pathogenic contamination in bathing areas.
Collapse
Affiliation(s)
- Cintia Hernández-Sánchez
- Department of Preventive Medicine and Public Health, Toxicology, Legal and Forensic Medicine and Parasitology, Health Science Faculty, University of La Laguna (ULL), Campus de Ofra s/n, 38071 Santa Cruz de Tenerife, Spain
- Institute of Tropical Diseases and Public Health of the Canary Islands, University of La Laguna (ULL), Avda, Astrofísico Fco. Sánchez, s/n°, 38206 San Cristóbal de La Laguna, Spain
| | - Ángel Antonio Pestana-Ríos
- Department of Preventive Medicine and Public Health, Toxicology, Legal and Forensic Medicine and Parasitology, Health Science Faculty, University of La Laguna (ULL), Campus de Ofra s/n, 38071 Santa Cruz de Tenerife, Spain
| | - Cristina Villanova-Solano
- Institute of Tropical Diseases and Public Health of the Canary Islands, University of La Laguna (ULL), Avda, Astrofísico Fco. Sánchez, s/n°, 38206 San Cristóbal de La Laguna, Spain
- Departmental Unit of Analytical Chemistry, Chemistry Department, Science Faculty, University of La Laguna (ULL), Avda Astrofísico Fco. Sánchez, s/n°, 38206 San Cristóbal de La Laguna, Spain
| | - Cristopher Domínguez-Hernández
- Institute of Tropical Diseases and Public Health of the Canary Islands, University of La Laguna (ULL), Avda, Astrofísico Fco. Sánchez, s/n°, 38206 San Cristóbal de La Laguna, Spain
- Departmental Unit of Analytical Chemistry, Chemistry Department, Science Faculty, University of La Laguna (ULL), Avda Astrofísico Fco. Sánchez, s/n°, 38206 San Cristóbal de La Laguna, Spain
| | - Francisco Javier Díaz-Peña
- Department of Animal Biology, Soil Science and Geology, Science Faculty, University of La Laguna (ULL), Avda, Astrofísico Fco. Sánchez, s/n°, 38206 San Cristóbal de La Laguna, Spain
| | - Cristobalina Rodríguez-Álvarez
- Department of Preventive Medicine and Public Health, Toxicology, Legal and Forensic Medicine and Parasitology, Health Science Faculty, University of La Laguna (ULL), Campus de Ofra s/n, 38071 Santa Cruz de Tenerife, Spain
| | - María Lecuona
- Microbiology and Infection Control Service of the University Hospital of the Canary Islands (HUC), 38071 Tenerife, Spain
| | - Ángeles Arias
- Department of Preventive Medicine and Public Health, Toxicology, Legal and Forensic Medicine and Parasitology, Health Science Faculty, University of La Laguna (ULL), Campus de Ofra s/n, 38071 Santa Cruz de Tenerife, Spain
| |
Collapse
|
21
|
Wu X, Zhong C, Wang T, Zou X. Assessment on the pollution level and risk of microplastics on bathing beaches: a case study of Liandao, China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:383. [PMID: 36763164 PMCID: PMC9911957 DOI: 10.1007/s10661-023-10994-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Microplastic pollution on bathing beaches threatens the health of human beings and coastal organisms. There is a lack of assessment on the level of microplastic pollution and the health risk associated with plastics. As one of the earliest open bathing beaches in China, Liandao is well known as the two high-quality beaches. However, little is known about the extent of microplastic pollution on these bathing beaches. Based on the analysis of microplastic pollution abundance, distribution, shape, size, color, and composition at the Liandao bathing beaches, this study puts forward a novel approach to comprehensively evaluate the microplastic pollution level and risk level by using the Nemerow pollution index (NPI) and polymer hazard index (PHI). The results show that the average abundance of microplastics on the Liandao bathing beaches is 135.42 ± 49.58 items/kg; the main shapes are fibers, fragments, and granules. Most of the microplastics are transparent, brown, and black, accounting for 71.54%, and they have an average particle size of 0.63 ± 0.43 mm. The main components are PE, PP, PS, PET, and nylon, of which nylon appears in the highest proportion (54.77%). The microplastic NPI and PHI values are 0.38 and 74.81, respectively, indicating that the pollution level and health risk index of microplastics on the Liandao bathing beaches are both low. With the increase in population and per capita consumption, plastic waste generated on land will continue to increase. Finally, this study puts forward some suggestions regarding microplastic monitoring, plastic waste management, and environmental attitudes and behavior.
Collapse
Affiliation(s)
- Xiaowei Wu
- School of History, Culture and Tourism, Huaiyin Normal University, Huaian, 223300, China
| | - Chongqing Zhong
- School of Urban and Environmental Sciences, Huaiyin Normal University, Huaian, 223300, China
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing, 210093, China
| | - Teng Wang
- College of Oceanography, Hohai University, Nanjing, 210093, China
| | - Xinqing Zou
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
22
|
Navarro A, Luzardo OP, Gómez M, Acosta-Dacal A, Martínez I, Felipe de la Rosa J, Macías-Montes A, Suárez-Pérez A, Herrera A. Microplastics ingestion and chemical pollutants in seabirds of Gran Canaria (Canary Islands, Spain). MARINE POLLUTION BULLETIN 2023; 186:114434. [PMID: 36495613 DOI: 10.1016/j.marpolbul.2022.114434] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/13/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Plastic pollution constitutes an environmental problem in the Canary Islands nowadays. Nevertheless, studies evaluating the impact of plastics on its avifauna are still scarce. Gastrointestinal tracts of 88 birds belonging to 14 species were studied for the presence of plastics. Moreover, their livers were analyzed for the determination of bromodiphenyl ethers (BDEs), polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs). Among Cory's shearwaters (n = 45), the frequency of occurrence of plastic ingestion was considerably high (88.89 %). This species had the highest mean value of items (7.22 ± 5.66) and most of them were compatible with lines derived from fishing gear. PCBs and PAHs were detected in all of the samples and OCPs in the great majority of them (98.86 %). Our results highlight the problems that plastic debris (mainly for seabirds) and organic pollutants pose to these species.
Collapse
Affiliation(s)
- Alberto Navarro
- Marine Ecophysiology Group (EOMAR), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain.
| | - Octavio Pérez Luzardo
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain
| | - May Gómez
- Marine Ecophysiology Group (EOMAR), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Andrea Acosta-Dacal
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Ico Martínez
- Marine Ecophysiology Group (EOMAR), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Jorge Felipe de la Rosa
- Facultad de Veterinaria, Universidad de Las Palmas de Gran Canaria, Arucas, Las Palmas, Spain
| | - Ana Macías-Montes
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain
| | | | - Alicia Herrera
- Marine Ecophysiology Group (EOMAR), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain
| |
Collapse
|
23
|
Weidlich S, Lenz M. Abundance, composition and sources of beach litter on the Cape Verdean island São Vicente. MARINE POLLUTION BULLETIN 2022; 185:114258. [PMID: 36330934 DOI: 10.1016/j.marpolbul.2022.114258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
This study represents the first assessment of beach litter on an island of the west African archipelagic state of Cape Verde. On five beaches of São Vicente, litter was collected along transects and classified according to the OSPAR protocol, with the Matrix Scoring Technique used to allocate it to four sources. Beach litter on São Vicente is highly variable in both amount and composition, while land- and sea-based sources contribute to litter loads to different extents depending on the use and geographic orientation of the beach. Four of the five surveyed beaches exhibited litter loads that were similar to pollution levels previously described for other oceanic islands, while a north-eastern-facing beach featured exceptionally high loads. This was presumably because it receives litter from distant sources due to its exposure to a major ocean surface current.
Collapse
Affiliation(s)
- Sabine Weidlich
- Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria.
| | - Mark Lenz
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Marine Ecology Department, Düsternbrooker Weg 20, 24105 Kiel, Germany.
| |
Collapse
|
24
|
Courtene-Jones W, van Gennip S, Penicaud J, Penn E, Thompson RC. Synthetic microplastic abundance and composition along a longitudinal gradient traversing the subtropical gyre in the North Atlantic Ocean. MARINE POLLUTION BULLETIN 2022; 185:114371. [PMID: 36423567 DOI: 10.1016/j.marpolbul.2022.114371] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Plastic pollution has been reported in the North Atlantic Ocean since the 1970s, yet limited data over subsequent decades pose challenges when assessing spatio-temporal trends in relation to global leakages and intervention strategies. This study quantified microplastics within the upper ocean along a longitudinal transect of the North Atlantic and its subtropical gyre. Microplastics were sampled from surface and subsurface (-25 m) water using a manta trawl and NIKSIN bottle respectively. The surface water polymer community varied significantly between geographic positions ('inshore', 'gyre', 'open ocean'), and was significantly influenced by fragment quantity. Compared to other positions, the North Atlantic gyre was associated with high concentrations of polyethylene, polypropylene, acrylic and polyamide fragments. Subsurface water was dominated by polyamide and polyester fibres. Backtracked 2-year Lagrangian simulations illustrated connectivity patterns. Continued monitoring of microplastics throughout the water column of the North Atlantic Ocean is required to address knowledge gaps and assess spatio-temporal trends.
Collapse
Affiliation(s)
- Winnie Courtene-Jones
- International Marine Litter Research Unit, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, Devon PL4 8AA, UK.
| | | | | | | | - Richard C Thompson
- International Marine Litter Research Unit, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, Devon PL4 8AA, UK
| |
Collapse
|
25
|
Jiang X, Conner N, Lu K, Tunnell JW, Liu Z. Occurrence, distribution, and associated pollutants of plastic pellets (nurdles) in coastal areas of South Texas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156826. [PMID: 35750165 DOI: 10.1016/j.scitotenv.2022.156826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Nurdles, also known as plastic resin pellets, are now a major source of plastic pollution on beaches globally, thus it is important to elucidate their weathering patterns and environmental fates as well as the associated pollutants. In this study we collected nurdles from 24 sites in the coastal bend region of south Texas, covering areas from the near shore railway stations to the adjacent bays and barrier islands. The morphologies of nurdles and associated pollutants including polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and mercury, were investigated. The results showed that the nurdles varied greatly in color, shape, polymer composition, and oxidation degree. More than 80 % of the nurdles were made with polyethylene, and the rest with polypropylene, polyester, polystyrene, polyethylene-vinyl acetate, and polyvinyl chloride based on Fourier Transform Infrared Spectroscopy (FTIR) analysis. PCBs were not detected on nurdles. PAHs and mercury on nurdles were detected at 12 % and 20 % of the sampling sites. The total concentrations of detectable PAHs ranged from 92.59 to 1787.23 ng/g-nurdle, and the detectable mercury concentrations ranged from 1.23 to 22.25 ng/g-nurdle. Although the concentrations of these pollutants were not at the acute toxic effect level, the presence of PAHs and mercury suggested the potential risk of pollutant exposure to marine organisms in ecosystems, given the fact that nurdles are persistent in the environment.
Collapse
Affiliation(s)
- Xiangtao Jiang
- University of Texas Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, United States of America
| | - Niki Conner
- University of Texas Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, United States of America
| | - Kaijun Lu
- University of Texas Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, United States of America
| | - Jace W Tunnell
- University of Texas Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, United States of America
| | - Zhanfei Liu
- University of Texas Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, United States of America.
| |
Collapse
|
26
|
Domínguez-Hernández C, Villanova-Solano C, Sevillano-González M, Hernández-Sánchez C, González-Sálamo J, Ortega-Zamora C, Díaz-Peña FJ, Hernández-Borges J. Plastitar: A new threat for coastal environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156261. [PMID: 35644393 DOI: 10.1016/j.scitotenv.2022.156261] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/02/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Oil residues have been frequently found on the coasts all over the world as a result of different accidental releases. Their partial evaporation and solidification onto the coastal rocks can produce the formation of a new solid structure forming an agglomerate with other materials, mainly microplastics (though wood, glass, sand and rocks were also found), yielding to a new plastic formation, name herein for the first time as "plastitar". These new formations have been found in several of the islands of the Canary Islands archipelago (Spain). Their study has shown that these new formations can be permanently attached to the rock, occupying even a 56% of the sampled area with an heterogeneous distribution. It was also observed that the studied plastitar was composed mainly of tar and polyethylene (90.6% of the studied particles) and polypropylene (9.4% of the studied particles) microplastics, primarily fragments (82.5%), pellets (15.7%) and lines (1.8%). The ever more frequent presence of plastics and, in particular, microplastics in coastal environments can lead to the common occurrence of these new plastic formations (probably present in other parts of the world), which long-term effects on the coasts should be further investigated.
Collapse
Affiliation(s)
- Cristopher Domínguez-Hernández
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez s/n. 38206, San Cristóbal de La Laguna, Spain
| | - Cristina Villanova-Solano
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez s/n. 38206, San Cristóbal de La Laguna, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez s/n. 38206, San Cristóbal de La Laguna, Spain
| | - Marta Sevillano-González
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez s/n. 38206, San Cristóbal de La Laguna, Spain
| | - Cintia Hernández-Sánchez
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez s/n. 38206, San Cristóbal de La Laguna, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Forense y Legal y Parasitología, Área de Medicina Preventiva y Salud Pública, Escuela Politécnica Superior de Ingeniería, Sección de Náutica, Máquinas y Radioelectrónica Naval, Universidad de La Laguna (ULL), Vía Auxiliar Paso Alto 2. 38001, Santa Cruz de Tenerife, Spain
| | - Javier González-Sálamo
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez s/n. 38206, San Cristóbal de La Laguna, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez s/n. 38206, San Cristóbal de La Laguna, Spain; Department of Chemistry, Sapienza University, P.le Aldo Moro 5. 00185 Rome, Italy
| | - Cecilia Ortega-Zamora
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez s/n. 38206, San Cristóbal de La Laguna, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez s/n. 38206, San Cristóbal de La Laguna, Spain
| | - Francisco Javier Díaz-Peña
- Departamento de Biología Animal, Edafología y Geología, Facultad de Ciencias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez s/n. 38206, San Cristóbal de La Laguna, Spain
| | - Javier Hernández-Borges
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez s/n. 38206, San Cristóbal de La Laguna, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez s/n. 38206, San Cristóbal de La Laguna, Spain.
| |
Collapse
|
27
|
Lozoya JP, Rodríguez M, Azcune G, Lacerot G, Pérez-Parada A, Lenzi J, Rossi F, de Mello FT. Stranded pellets in Fildes Peninsula (King George Island, Antarctica): New evidence of Southern Ocean connectivity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155830. [PMID: 35561917 DOI: 10.1016/j.scitotenv.2022.155830] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Plastic and microplastic debris is transported by ocean currents over long distances, reaching remote areas, far from its original source. In Polar Regions, microplastics (MPs) can come from local activities or be transported from lower latitudes, with the former being the likely and major source. Although historically Antarctica was considered isolated from the global ocean, there is recent evidence of materials and organisms being transported in and out of the Southern Ocean, despite its multi-front structure. During the austral summer of 2019, beach surveys were conducted on the NW coast of the Fildes Peninsula (King George Island). The beach was characterised, and the first 2 cm of sediment from 5 quadrants (50 × 50 cm) along 100 m of the highest strandline were collected. Large microplastics (LMPs) and mesoplastics (MesoPs) were isolated, counted, measured, weighed and classified by shape. Polymer composition was analysed by FTIR and ageing estimated by Carbonyl Index. We found 293 items of LMPs (188 items) and MesoPs (105 items), with a total average density (±SD) of 234.4 ± 166 items m-2. Foams (130.4 ± 76.3), fragments (58.4 ± 56.0) and pellets (44.0 ± 50.5) were the most abundant shapes. The main polymers found were polystyrene, polypropylene, and polyethylene. We found pellets among the MesoPs, being the first record for beaches in Antarctica. The presence of these primary MPs south of 62°S not only alerts about their possible direct consequences on Antarctic ecosystems, but also gives empirical evidence for the passive entry of plastic debris from lower latitudes through cross-frontal exchanges, providing new evidence of a global connectivity of the Southern Ocean. Despite increasing research, knowledge of plastics dynamics and their impact in the Southern Ocean and Antarctica is still limited but certainly necessary.
Collapse
Affiliation(s)
- J P Lozoya
- Centro Universitario Regional del Este (CURE), Universidad de la República (UDELAR), Cachimba del Rey entre Bvar. Artigas y Av. Aparicio Saravia, 20000 Maldonado, Uruguay.
| | - M Rodríguez
- Centro Universitario Regional del Este (CURE), Universidad de la República (UDELAR), Ruta nacional N°9 intersección con ruta N°15, Rocha, Uruguay.
| | - G Azcune
- Centro Universitario Regional del Este (CURE), Universidad de la República (UDELAR), Ruta nacional N°9 intersección con ruta N°15, Rocha, Uruguay.
| | - G Lacerot
- Centro Universitario Regional del Este (CURE), Universidad de la República (UDELAR), Cachimba del Rey entre Bvar. Artigas y Av. Aparicio Saravia, 20000 Maldonado, Uruguay.
| | - A Pérez-Parada
- Centro Universitario Regional del Este (CURE), Universidad de la República (UDELAR), Ruta nacional N°9 intersección con ruta N°15, Rocha, Uruguay.
| | - J Lenzi
- Centro de Investigación y Conservación Marina (CICMAR), Uruguay
| | - F Rossi
- Centro Universitario Regional del Este (CURE), Universidad de la República (UDELAR), Cachimba del Rey entre Bvar. Artigas y Av. Aparicio Saravia, 20000 Maldonado, Uruguay
| | - F Teixeira de Mello
- Centro Universitario Regional del Este (CURE), Universidad de la República (UDELAR), Cachimba del Rey entre Bvar. Artigas y Av. Aparicio Saravia, 20000 Maldonado, Uruguay.
| |
Collapse
|
28
|
Grini H, Metallaoui S, González-Fernández D, Bensouilah M. First evidence of plastic pollution in beach sediments of the Skikda coast (northeast of Algeria). MARINE POLLUTION BULLETIN 2022; 181:113831. [PMID: 35714545 DOI: 10.1016/j.marpolbul.2022.113831] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
This study is the first attempt to provide original data on plastics debris occurrence in beach sediments of the Gulf of Skikda in Algeria (southwestern Mediterranean). Sediment samples from seven beaches were collected to extract, quantify and characterize mesoplastics and microplastics. Particles were classified by size into mesoplastics (5-25 mm) and large microplastics (1-5 mm). Overall, microplastics were the most abundant size fraction in terms of number of items. The average mass of mesoplastics was twice that of microplastics, revealing a notable reservoir of plastics that is scarcely ever reported in the literature. The predominant types were fragments and pellets, white/transparent in color. The average concentrations of total plastic were 1067.19 ± 625.62 items/m2, 106.98 ± 62.39 items/kg, and 50.65 ± 9.82 g/m2, showing variability between beaches and within sampling sites. Thus, the Skikda coast has high levels of pollution compared to other areas of the Mediterranean Sea.
Collapse
Affiliation(s)
- Halima Grini
- Department of Natural and Life Sciences, Faculty of Sciences, University of 20 août 1955-Skikda, Skikda, Algeria; Laboratory of Physico-Chemistry Research on Surfaces and Interfaces, University of 20 août 1955-Skikda, Skikda, Algeria.
| | - Sophia Metallaoui
- Department of Natural and Life Sciences, Faculty of Sciences, University of 20 août 1955-Skikda, Skikda, Algeria; Research Laboratory on Interactions of Biodiversity, Ecosystems and Biotechnology, University of 20 août 1955-Skikda, Skikda, Algeria
| | - Daniel González-Fernández
- Department of Biology, University Institute of Marine Research INMAR, University of Cádiz and European University of the Seas, Puerto Real, Spain
| | - Mourad Bensouilah
- Eco-Biology Laboratory for Marine Environments and Costal Areas, Marine Sciences Department, University of Badji Mokhtar-Annaba, Annaba, Algeria
| |
Collapse
|
29
|
Herrera A, Acosta-Dacal A, Pérez Luzardo O, Martínez I, Rapp J, Reinold S, Montesdeoca-Esponda S, Montero D, Gómez M. Bioaccumulation of additives and chemical contaminants from environmental microplastics in European seabass (Dicentrarchus labrax). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153396. [PMID: 35092768 DOI: 10.1016/j.scitotenv.2022.153396] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Marine microplastic pollution is one of the biggest environmental problems we face. The growth of plastic production has not ceased since the 1950s and it is currently estimated that 368 tons of plastic were produced in 2019 (PlascticsEurope, 2020). Geyer et al. (2017) estimate that 79% of the plastic produced in the world still remains in the environment; this plastic due to the effect of degradation and subsequent fragmentation, is present in the form of microplastics in all oceans and, due to its small size can be ingested by fish and filter-feeding organisms. In addition, microplastics have additives and chemical contaminants associated with them, and the potential effect of microplastic ingestion on marine organisms, and through them, the potential risk to humans, is unknown. In the present study, European seabass (Dicentrarchus labrax) were fed for 60 days with three treatments: Control (feed), MP (feed with 10% virgin microplastics) and EMP (feed with 10% environmental microplastics), being the first study to evaluate long-term accumulation of contaminants due to ingestion of environmental microplastics (EMP) in fish. Both plastic additives such as PBDEs, and chemical contaminants adsorbed from the environment such as PCBs and DDE, were analyzed in the EMP, feed and liver. The concentration of microplastics in the feed was calculated based on the MPs/zooplankton wet weight (WW) ratio of 0.1 found in an area of maximum accumulation in the Canary Islands. Therefore, it is an experiment that simulates real conditions, but in the worst-case scenario, using both, concentrations based on data obtained in oceanographic campaigns and microplastics collected from the environment. Our results show that in this scenario, additives and chemical contaminants adsorbed on EMPs bioaccumulate in fish liver due to long-term ingestion of microplastics.
Collapse
Affiliation(s)
- Alicia Herrera
- Marine Ecophysiology Group (EOMAR), Iu-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain.
| | - Andrea Acosta-Dacal
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016 Las Palmas de Gran Canaria, Spain
| | - Octavio Pérez Luzardo
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016 Las Palmas de Gran Canaria, Spain
| | - Ico Martínez
- Marine Ecophysiology Group (EOMAR), Iu-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Jorge Rapp
- Marine Ecophysiology Group (EOMAR), Iu-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Stefanie Reinold
- Marine Ecophysiology Group (EOMAR), Iu-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Sarah Montesdeoca-Esponda
- Instituto de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Daniel Montero
- Grupo de Investigación en Acuicultura (GIA), Iu-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain
| | - May Gómez
- Marine Ecophysiology Group (EOMAR), Iu-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain
| |
Collapse
|
30
|
Herrera A, Rivera JA, Moreno T, Martínez I, Gómez M. First inventory of marine debris on Alegranza, an uninhabited island in the Northeast Atlantic. MARINE POLLUTION BULLETIN 2022; 178:113604. [PMID: 35366546 DOI: 10.1016/j.marpolbul.2022.113604] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Alegranza is the most northerly island of the Canary Islands archipelago, the first obstacle crossed by the Canary Current. From July to October 2020, six expeditions were led to the island to make a first inventory of marine debris and its possible source and origin. In total, 3667 objects weighing 321 kg were removed, excluding wooden objects. Of these, 97.7% were plastics, the most abundant being drink bottles (25.4%). While knowing the origin, source and pathway of debris is difficult, legible labels provided valuable information. In Alegranza, 66.7% of the legible bottle labels indicated Asian countries of manufacture, which is evidence that the source is maritime traffic in the region. The lobster trap license labels from the east coast of the United States and Canada were dated from 1999 to 2018, supporting both the exogenous origin and long lifetime in the ocean of these debris.
Collapse
Affiliation(s)
- Alicia Herrera
- Marine Ecophysiology Group (EOMAR), Iu-ECOAQUA, Universidad de Las Palmas de Gran Canaria, 35017 Campus Universitario de Tafira, Canary Islands, Spain; Asociación para la Conservación Medioambiental Latitud Azul, Spain.
| | | | - Teresa Moreno
- Instituto Politécnico de Formación Profesional Marítimo-Pesquero de Canarias, Spain
| | - Ico Martínez
- Marine Ecophysiology Group (EOMAR), Iu-ECOAQUA, Universidad de Las Palmas de Gran Canaria, 35017 Campus Universitario de Tafira, Canary Islands, Spain
| | - May Gómez
- Marine Ecophysiology Group (EOMAR), Iu-ECOAQUA, Universidad de Las Palmas de Gran Canaria, 35017 Campus Universitario de Tafira, Canary Islands, Spain
| |
Collapse
|
31
|
Kaur K, Reddy S, Barathe P, Oak U, Shriram V, Kharat SS, Govarthanan M, Kumar V. Microplastic-associated pathogens and antimicrobial resistance in environment. CHEMOSPHERE 2022; 291:133005. [PMID: 34813845 DOI: 10.1016/j.chemosphere.2021.133005] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/04/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
The ubiquitous use of microplastics and their release into the environment especially the water bodies by anthropogenic/industrial activities are the major resources for microplastic contamination. The widespread and often injudicious use of antimicrobial drugs or antibiotics in various sectors including human health and hygiene, agriculture, animal husbandry and food industries are leading to the release of antibiotics into the wastewater/sewage and other water bodies, particularly in urban setups and thus leads to the antimicrobial resistance (AMR) in the microbes. Microplastics are emerging as the hubs as well as effective carriers of these microbial pathogens beside their AMR-genes (ARGs) in marine, freshwater, sewage/wastewater, and urban river ecosystems. These drug resistant bacteria interact with microplastics forming synthetic plastispheres, the ideal niche for biofilm formations which in turn facilitates the transfer of ARGs via horizontal gene transfer and further escalates the occurrence and levels of AMR. Microplastic-associated AMR is an emerging threat for human health and healthcare besides being a challenge for the research community for effective management/address of this menace. In this review, we encompass the increasing prevalence of microplastics in environment, emphasizing mainly on water environments, how they act as centers and vectors of microbial pathogens with their associated bacterial assemblage compositions and ultimately lead to AMR. It further discusses the mechanistic insights on how microplastics act as hosts of biofilms (creating the plastisphere). We have also presented the modern toolbox used for microplastic-biofilm analyses. A review on potential strategies for addressing microplastic-associated AMR is given with recent success stories, challenges and future prospects.
Collapse
Affiliation(s)
- Kawaljeet Kaur
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune, 411016, Maharashtra, India
| | - Sagar Reddy
- Department of Botany, Prof. Ramkrishna More College, Savitribai Phule Pune University, Akurdi, Pune, 411016, Maharashtra, India
| | - Pramod Barathe
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune, 411016, Maharashtra, India
| | - Uttara Oak
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune, 411016, Maharashtra, India
| | - Varsha Shriram
- Department of Botany, Prof. Ramkrishna More College, Savitribai Phule Pune University, Akurdi, Pune, 411016, Maharashtra, India
| | - Sanjay S Kharat
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune, 411016, Maharashtra, India
| | - M Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daehak-ro, Buk-gu, Daegu, 41566, South Korea.
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune, 411016, Maharashtra, India.
| |
Collapse
|
32
|
Villanova-Solano C, Díaz-Peña FJ, Hernández-Sánchez C, González-Sálamo J, González-Pleiter M, Vega-Moreno D, Fernández-Piñas F, Fraile-Nuez E, Machín F, Hernández-Borges J. Microplastic pollution in sublittoral coastal sediments of a North Atlantic island: The case of La Palma (Canary Islands, Spain). CHEMOSPHERE 2022; 288:132530. [PMID: 34653476 DOI: 10.1016/j.chemosphere.2021.132530] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/25/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
In this work, the microplastic content of sediments collected in July 2020 between 5 and 7 m depth was studied in four locations of La Palma island (Canary Islands, Spain). At each sampling location, three samples were taken parallel to the shoreline. The microplastic content in each sampling corer was studied every 2.5 cm depth after digestion with a H2O2 solution followed by flotation in a saturated NaCl solution. Visualization of the final filtrates under a stereomicroscope revealed that all the sediment samples evaluated contained mostly microfibers (98.3%) which were mainly white/colorless (86.0%) and blue (9.8%), with an average length of 2423 ± 2235 (SD) mm and an average concentration of 2682 ± 827 items per kg of dry weight, being the total number of items found 1,019. Fourier Transform Infrared microscopy analysis of 13.9% (n = 139) of the microfibers also showed that they were mainly cellulosic (81.3%). No significant differences were found between the depths of the sediment. However, significant differences were found between the number of fibers from the sampling sites at the east and west of the island. Such variability could be driven by the winds and ocean mesoscale dynamics in the area. This study confirms the wide distribution of microfibers in sediments from an oceanic island like La Palma, providing their first report in marine sediments of the Canary Islands.
Collapse
Affiliation(s)
- Cristina Villanova-Solano
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206, San Cristóbal de La Laguna, Spain
| | - Francisco J Díaz-Peña
- Departamento de Biología Animal, Edafología y Geología, Facultad de Ciencias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206, San Cristóbal de La Laguna, Spain
| | - Cintia Hernández-Sánchez
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Forense y Legal y Parasitología, Área de Medicina Preventiva y Salud Pública, Escuela Politécnica Superior de Ingeniería, Sección de Náutica, Máquinas y Radioelectrónica Naval, Universidad de La Laguna (ULL), Vía Auxiliar Paso Alto, 2, 38001, Santa Cruz de Tenerife, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206, San Cristóbal de La Laguna, Spain
| | - Javier González-Sálamo
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206, San Cristóbal de La Laguna, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206, San Cristóbal de La Laguna, Spain
| | - Miguel González-Pleiter
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, E-28049, Madrid, Spain
| | - Daura Vega-Moreno
- Departamento de Química, Universidad de Las Palmas de Gran Canaria (ULPGC), Spain
| | - Francisca Fernández-Piñas
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, E-28049, Madrid, Spain
| | - Eugenio Fraile-Nuez
- Centro Oceanográfico de Canarias, Instituto Español de Oceanografía (IEO), Consejo Superior de Investigaciones Científicas (CSIC), Calle Farola del Mar, 22, 38180, Santa Cruz de Tenerife, Spain
| | - Francisco Machín
- Departamento de Física, Universidad de Las Palmas de Gran Canaria (ULPGC), Spain
| | - Javier Hernández-Borges
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206, San Cristóbal de La Laguna, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206, San Cristóbal de La Laguna, Spain.
| |
Collapse
|
33
|
Terzi Y, Gedik K, Eryaşar AR, Öztürk RÇ, Şahin A, Yılmaz F. Microplastic contamination and characteristics spatially vary in the southern Black Sea beach sediment and sea surface water. MARINE POLLUTION BULLETIN 2022; 174:113228. [PMID: 34875479 DOI: 10.1016/j.marpolbul.2021.113228] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 05/16/2023]
Abstract
In this study, the abundance, and characteristics of the microplastics on the southern coast of the Black Sea were assessed. More than 70% of the detected microplastics were smaller than 2.5 mm and mostly consisted of fibers and fragments. The average microplastic abundance in the beach sediment and seawater were 64.06 ± 8.95 particles/kg and 18.68 ± 3.01 particles/m3, respectively. The western coast of the study area (Marmara region) was the most polluted area, and a spatially significant difference was determined in terms of abundance. The composition in the beach sediment (particles/kg) was dominated by styrene acrylonitrile copolymer (SAC) (40.53%), polyethylene terephthalate (PET) (38.75%), and polyethylene (PE) (6.91%), whereas the seawater (particles/m3) was dominated by PET (57.26%), PE (13.52%), and polypropylene PP (11.24%). The results of our study can be a baseline for environmental modeling studies and experimental studies on the marine organisms inhabiting the Black Sea.
Collapse
Affiliation(s)
- Yahya Terzi
- Department of Fisheries Technology Engineering, Faculty of Marine Sciences, Karadeniz Technical University, 61530 Trabzon, Turkey.
| | - Kenan Gedik
- Vocational School of Technical Sciences, Recep Tayyip Erdoğan University, 53100 Rize, Turkey
| | - Ahmet Raif Eryaşar
- Vocational School of Technical Sciences, Recep Tayyip Erdoğan University, 53100 Rize, Turkey
| | - Rafet Çağrı Öztürk
- Department of Fisheries Technology Engineering, Faculty of Marine Sciences, Karadeniz Technical University, 61530 Trabzon, Turkey
| | - Ahmet Şahin
- Department of Fisheries Technology Engineering, Faculty of Marine Sciences, Karadeniz Technical University, 61530 Trabzon, Turkey
| | - Fatih Yılmaz
- Vocational School of Technical Sciences, Recep Tayyip Erdoğan University, 53100 Rize, Turkey
| |
Collapse
|
34
|
López ADF, Fabiani M, Lassalle VL, Spetter CV, Severini MDF. Critical review of the characteristics, interactions, and toxicity of micro/nanomaterials pollutants in aquatic environments. MARINE POLLUTION BULLETIN 2022; 174:113276. [PMID: 35090270 DOI: 10.1016/j.marpolbul.2021.113276] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 05/23/2023]
Abstract
A wide range of contaminants of emerging concern such as micro/nanoplastics (MPs/PNPs) and metal-nanoparticles (Me-NPs) from anthropogenic activities have been identified in aquatic environments. The hazardous effects of these micro/nanomaterials as pollutants in organisms and the lack of knowledge about their behavior in aquatic environments have generated growing concern in the scientific community. The nanomaterials have a colloidal-type behavior due to their size range but with differences in their physicochemical properties. This review comprises the behavior of micro/nanomaterials pollutants and the physicochemical interactions between MPs/PNPs and Me-NPs in aquatic environments, and their potential toxicological effects in organisms. Moreover, this article describes the potential use of Me-NPs to remove MPs/PNPs present in the water column due to their photocatalytic and magnetic properties. It also discusses the challenge to determine harmful effects of micro/nanomaterials pollutants in organisms and provides future research directions to improve integrated management strategies to mitigate their environmental impact.
Collapse
Affiliation(s)
- A D Forero López
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, B8000FWB Bahía Blanca, Buenos Aires, Argentina.
| | - M Fabiani
- Instituto de Química del Sur (INQUISUR), Av. Alem 1253, B8000CPB Bahía Blanca, Buenos Aires, Argentina
| | - V L Lassalle
- Instituto de Química del Sur (INQUISUR), Av. Alem 1253, B8000CPB Bahía Blanca, Buenos Aires, Argentina; Departamento de Química, Universidad Nacional del Sur (UNS), Avenida Alem 1253, B8000CPB Bahía Blanca, Buenos Aires, Argentina
| | - C V Spetter
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, B8000FWB Bahía Blanca, Buenos Aires, Argentina; Departamento de Química, Universidad Nacional del Sur (UNS), Avenida Alem 1253, B8000CPB Bahía Blanca, Buenos Aires, Argentina
| | - M D Fernandez Severini
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, B8000FWB Bahía Blanca, Buenos Aires, Argentina.
| |
Collapse
|
35
|
Reinold S, Herrera A, Stile N, Saliu F, Hernández-González C, Martinez I, Ortega Z, Marrero MD, Lasagni M, Gómez M. An annual study on plastic accumulation in surface water and sediment cores from the coastline of Tenerife (Canary Island, Spain). MARINE POLLUTION BULLETIN 2021; 173:113072. [PMID: 34700151 DOI: 10.1016/j.marpolbul.2021.113072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 05/06/2023]
Abstract
Sediment core samples from high tide lines and in submerged zones as well as surface water samples from eight beaches of Tenerife were analysed. Sampling was conducted over a period of one year in intervals of 5 weeks. The majority of particles were found in the high tide sediment (66%), followed by water samples (23%) and finally in sediment from submerged zones (11%). Regarding the particle amount per volume (items/L), accumulation in sediment samples was statistically higher compared to water samples. Mean values of items/L were higher in high tide sediments. In high tide and water samples, mostly white and transparent particles >1 mm were found. More than 70% were represented by fragments. In sediments from submerged zones, yellow and blue microparticles (<1 mm) were predominant and 61.9% consisted of fibres. Larger particles were mainly identified as PP, PE, PS, PTFE and PVC, while polymer types of smaller particles were more variable.
Collapse
Affiliation(s)
- Stefanie Reinold
- Marine Ecophysiology Group (EOMAR), Iu-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Campus Universitario de Tafira, 35017, Canary Islands, Spain.
| | - Alicia Herrera
- Marine Ecophysiology Group (EOMAR), Iu-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Campus Universitario de Tafira, 35017, Canary Islands, Spain.
| | - Nicolò Stile
- Earth and Environmental Science Department, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy.
| | - Francesco Saliu
- Earth and Environmental Science Department, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy.
| | - Carlos Hernández-González
- Centro Oceanográfico de Canarias, Instituto Español de Oceanografía, Santa Cruz de Tenerife, Canary Islands, Spain.
| | - Ico Martinez
- Marine Ecophysiology Group (EOMAR), Iu-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Campus Universitario de Tafira, 35017, Canary Islands, Spain.
| | - Zaida Ortega
- Departamento de Ingeniería de Procesos, Universidad de Las Palmas de Gran Canaria, Campus Universitario de Tafira, 35017, Canary Islands, Spain.
| | - María Dolores Marrero
- Departamento de Ingeniería de Procesos, Universidad de Las Palmas de Gran Canaria, Campus Universitario de Tafira, 35017, Canary Islands, Spain.
| | - Marina Lasagni
- Earth and Environmental Science Department, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy.
| | - May Gómez
- Marine Ecophysiology Group (EOMAR), Iu-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Campus Universitario de Tafira, 35017, Canary Islands, Spain.
| |
Collapse
|
36
|
Analysis of microplastics-sorbed endocrine-disrupting compounds in pellets and microplastic fragments from beaches. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Truchet DM, López ADF, Ardusso MG, Rimondino GN, Buzzi NS, Malanca FE, Spetter CV, Severini MDF. Microplastics in bivalves, water and sediments from a touristic sandy beach of Argentina. MARINE POLLUTION BULLETIN 2021; 173:113023. [PMID: 34695691 DOI: 10.1016/j.marpolbul.2021.113023] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/22/2021] [Accepted: 09/29/2021] [Indexed: 05/05/2023]
Abstract
This study assesses for the first time the concentrations of microplastics (MPs) in sediments, water and two human-consumed mussels with different ecological traits (Amarilladesma mactroides and Brachidontes rodriguezii) in a touristic sandy beach of Argentina. MPs were characterized through FTIR and SEM/EDX techniques. All the samples presented MPs with similar concentrations as other human-impacted coastal areas of the world, being black and blue fibers of < 0.5 and 0.5-1 mm the most abundant. SEM images exhibited cracks and fractures with clay minerals and microorganisms adhered to MPs surface. EDX spectrums showed potentially toxic elements, such as Cr, Ti, and Mo. FTIR identified polymers such as cellulose, polyamides, and polyacrylates in most of the samples analyzed. Our study demonstrates that microplastic pollution is a common threat to sandy beaches in Argentina, worsened by plastic particles carrying metal ions with potential toxic effects to the biota, including A. mactroides, an endangered species.
Collapse
Affiliation(s)
- D M Truchet
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, B8000FWB, Bahía Blanca, Buenos Aires, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), San Juan 670, B8000ICN, Bahía Blanca, Buenos Aires, Argentina
| | - A D Forero López
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, B8000FWB, Bahía Blanca, Buenos Aires, Argentina.
| | - M G Ardusso
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, B8000FWB, Bahía Blanca, Buenos Aires, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), San Juan 670, B8000ICN, Bahía Blanca, Buenos Aires, Argentina
| | - G N Rimondino
- Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria X5000HUA, Córdoba, Argentina
| | - N S Buzzi
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, B8000FWB, Bahía Blanca, Buenos Aires, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), San Juan 670, B8000ICN, Bahía Blanca, Buenos Aires, Argentina
| | - F E Malanca
- Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria X5000HUA, Córdoba, Argentina
| | - C V Spetter
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, B8000FWB, Bahía Blanca, Buenos Aires, Argentina; Departamento de Química, Universidad Nacional del Sur (UNS), Avenida Alem 1253, B8000CPB, Bahía Blanca, Buenos Aires, Argentina
| | - M D Fernández Severini
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, B8000FWB, Bahía Blanca, Buenos Aires, Argentina.
| |
Collapse
|
38
|
Zhang T, Lin L, Li D, Wu S, Kong L, Wang J, Shi H. The microplastic pollution in beaches that served as historical nesting grounds for green turtles on Hainan Island, China. MARINE POLLUTION BULLETIN 2021; 173:113069. [PMID: 34695689 DOI: 10.1016/j.marpolbul.2021.113069] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/08/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
This study evaluated microplastic pollution in beaches that have served as historical nesting grounds for green turtles in Hainan Island, China and explored the sources of microplastic pollutants to conduct habitat restoration for sea turtles. The average abundance of the microplastics in the beach surface sediments was 2567.38 ± 2937.37 pieces·m-2 or 641.85 ± 734.34 thousand pieces·m-3, foam and plastic block were the main microplastics identified. Microplastic size was predominantly within the 0.05-1 mm category (small microplastic particles), and most microplastic particles were white. Polystyrene and polyethylene were the dominant plastic compositions. The type and compositions of microplastics indicate that most microplastics in this study were broken from large plastic blocks and foam. To reduce the threat of microplastic pollution to marine life, including sea turtles, we suggested removing plastic litter, especially small plastic on beaches, and replacing and recovering the foam used in aquaculture before it ages and fragments.
Collapse
Affiliation(s)
- Ting Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Liu Lin
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Deqin Li
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Shannan Wu
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Li Kong
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Jichao Wang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Haitao Shi
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China.
| |
Collapse
|
39
|
Lefebvre C, Rojas IJ, Lasserre J, Villette S, Lecomte S, Cachot J, Morin B. Stranded in the high tide line: Spatial and temporal variability of beached microplastics in a semi-enclosed embayment (Arcachon, France). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149144. [PMID: 34346359 DOI: 10.1016/j.scitotenv.2021.149144] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/02/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Coastal environments are a predominant ultimate destination of marine debris, becoming a key focus of studies assessing microplastic (MP) contamination. Here, we described the visible fraction of MP (from 0.5 to 5 mm) that washed up during the high tide at different sites of a semi-enclosed mesotidal bay and investigated the main abiotic factors driving MP beaching. Three contrasted beaches of the Arcachon Bay (SW France) were monitored on a monthly basis during 2019. Samplings were made along a 100 m longitudinal transect at the high-water strandline (4 quadrats of 0.25m2) and at an intermediate tidal range. Each sampled particle was characterized by morphometric data (e.g. size, shape, color, roughness) and polymer identification was performed by ATR-FTIR technique. Results show that MP concentration was higher on the beach located at the mouth of the bay (36.0 ± 39.2 MP.m-2) than at the back and the outside of the bay (respectively 2.7 ± 4.4 and 1.7 ± 2.4 MP.m-2). This may be related to the strong currents at the entry of the embayment and the beach orientation, exposed to predominant winds. Beached MP were mainly pre-production pellets and fragments as they represented respectively 49% and 39% of all analyzed shapes. Polymers with low density were particularly abundant. Polyethylene represented 69% of all the particles while polypropylene accounted for 17% and polystyrene for 10%. We also observed that MP were mostly washed up when wind, waves and river flow were more intense. Analysis suggest that wind direction and speed are key factors influencing beaching as strong onshore wind enhance this process.
Collapse
Affiliation(s)
- Charlotte Lefebvre
- EPOC, University of Bordeaux, CNRS, OASU, EPHE, UMR 5805, 33600 Pessac, France; CBMN, University of Bordeaux, CNRS, Bordeaux INP, UMR 5248, 33600, Pessac, France
| | - Isabel Jalón Rojas
- EPOC, University of Bordeaux, CNRS, OASU, EPHE, UMR 5805, 33600 Pessac, France
| | - Juliette Lasserre
- EPOC, University of Bordeaux, CNRS, OASU, EPHE, UMR 5805, 33600 Pessac, France
| | - Sandrine Villette
- CBMN, University of Bordeaux, CNRS, Bordeaux INP, UMR 5248, 33600, Pessac, France
| | - Sophie Lecomte
- CBMN, University of Bordeaux, CNRS, Bordeaux INP, UMR 5248, 33600, Pessac, France
| | - Jérôme Cachot
- EPOC, University of Bordeaux, CNRS, OASU, EPHE, UMR 5805, 33600 Pessac, France
| | - Bénédicte Morin
- EPOC, University of Bordeaux, CNRS, OASU, EPHE, UMR 5805, 33600 Pessac, France.
| |
Collapse
|
40
|
Xie Q, Li HX, Lin L, Li ZL, Huang JS, Xu XR. Characteristics of expanded polystyrene microplastics on island beaches in the Pearl River Estuary: abundance, size, surface texture and their metals-carrying capacity. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:1632-1643. [PMID: 33420883 DOI: 10.1007/s10646-020-02329-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
While expanded polystyrene (EPS) microplastics have been widely recognized as one of the most important components of plastic litter in the intertidal zones of the global ocean, our understanding of their environmental fate on island beaches is insufficient. In this study, we intended to reveal that the latest EPS microplastic pollution status on 5 island beaches in the Pearl River Estuary, China, by comprehensively assessing the abundance, distribution, size, surface texture and carrying capacity of heavy metals (Cd, As, Cr, Ni, Cu, Pb, Mn, Fe, Al). High level of EPS microplastic abundance ranged from 328 to 82,276 particles m-2 was found, with the highest abundance at Guishan Island and the lowest at Dong'ao Island. Spatial distribution of EPS microplastic abundance was significantly different among different islands. EPS microplastics in the size range of 1-2 mm were the most abundant. The content of heavy metals in EPS microplastics collected on the beaches was greater than that in the new EPS products. The average concentrations of heavy metals in EPS microplastics from 5 islands are Cd (0.27 ± 0.19 μg g-1), As (5.50 ± 3.84 μg g-1), Cr (14.9 ± 8.25 μg g-1), Cu (15.0 ± 7.66 μg g-1), Ni (17.2 ± 17.6 μg g-1), Pb (24.8 ± 7.39 μg g-1), Mn (730 ± 797 μg g-1), Fe (8340 ± 4760 μg g-1), and Al (9624 ± 6187 μg g-1), respectively. The correlation between heavy metals in EPS microplastics and sediments was better than that between heavy metals in EPS microplastics and seawater. The study results indicated that EPS microplastics could act as a carrier for the transport of heavy metals, which might pose a threat to biological and human health.
Collapse
Affiliation(s)
- Qun Xie
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China
- Analytical and Testing Center, Guangdong Ocean University, Zhanjiang, 524088, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Heng-Xiang Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Lang Lin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Zhen-Liang Li
- Analytical and Testing Center, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Jian-Sheng Huang
- Fishery College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Xiang-Rong Xu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| |
Collapse
|
41
|
Vega-Moreno D, Abaroa-Pérez B, Rein-Loring PD, Presas-Navarro C, Fraile-Nuez E, Machín F. Distribution and transport of microplastics in the upper 1150 m of the water column at the Eastern North Atlantic Subtropical Gyre, Canary Islands, Spain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147802. [PMID: 34034192 DOI: 10.1016/j.scitotenv.2021.147802] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 04/20/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
Nowadays it is widely known that pollution by microplastics (MP) at the open ocean covers immense areas. Buoyant plastics tend to accumulate in areas of convergence at the sea surface such as subtropical gyres, while non-buoyant plastics accumulate at the seafloor. However, previous studies have revealed that the total amount of plastic in the different oceans is not well correlated with the concentrations measured at the sea surface and the sea floor, evidencing a significant amount of missing plastic in the oceans. This deviation could be related to an underestimation of the role played by small fragments of plastic and fibers in the oceans. Furthermore, microplastic fragments with a density lower than the density of seawater have been gathered hundreds of meters below the sea surface in the Pacific Ocean due to their size and shape. The main objective of this study is to carry out, for the first time, an equivalent analysis along the water column for the Atlantic Ocean. In that sense, a total number of 51 samples were collected during four different oceanographic cruises between February and December 2019, from the sea surface down to 1150 m depth at the open ocean waters of the Canary Islands region (Spain). For each sample, 72 l of seawater were filtered on board with a mesh size of 100 μm, where the presence of microplastics has been clearly observed. Our results reveal the presence of microplastics at least up to 1150 m depth, at the Northeastern Atlantic Subtropical Gyre with noticeable seasonal differences. The spatial distribution of these small fragments and fibers at the water column is mainly related to the oceanic dynamics and mesoscale convective flows, overcoming the MP motion induced by their own buoyancy. Moreover, these microplastics have being transported by the ocean dynamics as passive drifters.
Collapse
Affiliation(s)
- Daura Vega-Moreno
- Departamento de Química, Universidad de Las Palmas de Gran Canaria (ULPGC), Spain.
| | - Bárbara Abaroa-Pérez
- Departamento de Química, Universidad de Las Palmas de Gran Canaria (ULPGC), Spain
| | | | - Carmen Presas-Navarro
- Centro Oceanográfico de Canarias, Instituto Español de Oceanografía (IEO), Consejo Superior de Investigaciones Científicas (CSIC), Spain
| | - Eugenio Fraile-Nuez
- Centro Oceanográfico de Canarias, Instituto Español de Oceanografía (IEO), Consejo Superior de Investigaciones Científicas (CSIC), Spain.
| | - Francisco Machín
- Departamento de Física, Universidad de Las Palmas de Gran Canaria (ULPGC), Spain
| |
Collapse
|
42
|
Turner A, Williams T, Pitchford T. Transport, weathering and pollution of plastic from container losses at sea: Observations from a spillage of inkjet cartridges in the North Atlantic Ocean. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117131. [PMID: 33895572 DOI: 10.1016/j.envpol.2021.117131] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/22/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
Observations of beached polypropylene inkjet cartridges, spilled from a ship container lost in the North Atlantic Ocean, have been compiled through calls on international social media. Within a period of four years from the spillage, a total of about 1500 cartridges was reported in locations as far apart as Florida and northern Norway. The distribution of cartridges reflected the principal surface currents in the ocean, with some carried by the Azores and Canary currents around the North Atlantic Gyre, and others transported northwards with the North Atlantic and Norwegian currents. Along the shorelines of the UK and Ireland, there was a clear, preferential accumulation of cartridges on west- and south-facing coasts, consistent with the direction of the North Atlantic current and the heading of the principal winds. Dates of first sightings in various regions throughout the North Atlantic (and as reported on social media) suggested that cartridges traveled on average at around 6-13 cm s-1. These observations and estimates were largely consistent with simulations of the dispersion of free floating, neutrally buoyant particles from the spillage site derived from PlasticAdrift, an empirical model based on drifter tracking data. Microscopic and X-ray fluorescence analyses of selected cartridges revealed a high degree of exterior weathering, resulting in chalking and embrittlement of the polypropylene and the formation of microplastics rich in Ti, chemical fouling of interior ink foams (where still present) by Fe oxides, and, in some cases, the presence of an electronic chip containing Cu, Au and brominated compounds. Significantly, the latter characteristic renders cartridges as electrical and electronic waste and means that current, conventional regulations on plastic cargo lost at sea are not applicable here. More generally, the study highlights the potential usefulness of social media-led citizen science to marine research, and inadequacies in the relevance and robustness of instruments and conventions that deal with plastic waste in the ocean.
Collapse
Affiliation(s)
- Andrew Turner
- School of Geography, Earth and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK.
| | - Tracey Williams
- School of Geography, Earth and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
| | - Tom Pitchford
- School of Geography, Earth and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
| |
Collapse
|
43
|
Martín-Lara MA, Godoy V, Quesada L, Lozano EJ, Calero M. Environmental status of marine plastic pollution in Spain. MARINE POLLUTION BULLETIN 2021; 170:112677. [PMID: 34186451 DOI: 10.1016/j.marpolbul.2021.112677] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/17/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
The excessive use of plastic in our society is causing a massive accumulation, since it is a non-biodegradable product and with still poor recycling rates. This effect can be observed in the seas, which more and more plastic waste are accumulating. The present work is a critical review, based on all currently available literature, that reports environmental status of marine plastic pollution, especially microplastic pollution, in Spain. The three Spanish water areas with the highest presence of plastics are the Alboran Sea, the Gulf of Alicante and the vicinity of Barcelona probably related to fishing and industrial activities and high population densities. With regard to microplastic contamination on beaches in Spain, annual monitoring by the Spanish government shows contamination along the entire coast of the country, with particularly high concentrations in the Canary Islands (between 800 and 8800 particles/m2 in spring). Between 40 and 50% of the particles analyzed were pellets and the main factors postulated for the distribution of these particles are marine currents and the geomorphological characteristics. With regards to biota, ingestion of microplastics by fish has been intensely confirmed and, important differences were observed between the locations of the sampling, being bogues (Boops boops) one of the fish species more studied in Spain. Finally, the work includes a revision of European and Spanish legislation about plastics and marine pollution and some strategies to reduce this kind of contamination in Spain.
Collapse
Affiliation(s)
- M A Martín-Lara
- Department of Chemical Engineering University of Granada, 18071 Granada, Spain.
| | - V Godoy
- Department of Chemical Engineering University of Granada, 18071 Granada, Spain.
| | - L Quesada
- Department of Chemical Engineering University of Granada, 18071 Granada, Spain.
| | - E J Lozano
- Department of Chemical Engineering University of Granada, 18071 Granada, Spain.
| | - M Calero
- Department of Chemical Engineering University of Granada, 18071 Granada, Spain.
| |
Collapse
|
44
|
Muñiz-González AB, Silva CJM, Patricio Silva AL, Campos D, Pestana JLT, Martínez-Guitarte JL. Suborganismal responses of the aquatic midge Chironomus riparius to polyethylene microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:146981. [PMID: 34088153 DOI: 10.1016/j.scitotenv.2021.146981] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/04/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
Freshwater riverbeds are a major repository of microplastics (MPs) from inland activities. Benthic macroinvertebrates that live in close contact with sediments seem to ingest a considerable amount of such plastic particles. The effects of MPs on life-history traits are relatively well-known, but the suborganismal mechanisms underlying such effects remain unclear. This study addressed the potential effects of low-density polyethylene (LDPE) MPs on Chironomus riparius larvae at cellular and molecular levels. Fourth instar C. riparius larvae were exposed to 0.025 and 2.5 g/kg LDPE of dry sediment (sizes: <32 and 32-45 μm; with irregular shape) under laboratory conditions for 48 h. These short-term exposures to environmental concentrations of LDPE MPs induced changes in the energy reserves (mostly by decreasing carbohydrates and increasing lipids), increased antioxidant and detoxification responses (tGSH, CAT, and GST), and induced increases in the activity of AChE (related to neurotransmission). In addition, at the gene level, exposure to MPs modified mRNA levels of InR, Dis, EcR, Dronc, Met (endocrine system), Def (immune system), PARP, ATM, NLK, and Decay (DNA repair), generating important alterations in the C. riparius development and response to unfavorable situations. This study provides new evidence of the effects of LDPE MPs at the suborganismal level, filling the gap in knowledge regarding the mechanisms underlying the toxicity of MPs and spotlighting gene expression analyses as early indicators of MP toxicity in C. riparius which were confirmed by Integrated biomarker response analyses highlighting the gene expression as sensible and useful endpoints for LPDE pollution in freshwaters. These results, coupled with previous investigations on responses at the organismal level, emphasizes the potential adverse effects of LDPE MPs on C. riparius, which may compromise freshwater benthic communities, considering its ecological role within these habitats.
Collapse
Affiliation(s)
- Ana-Belén Muñiz-González
- Environmental Toxicology and Biology Group, Mathematical and Fluid Physics, Department, Sciences Faculty, UNED, Madrid, Spain.
| | - Carlos J M Silva
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ana L Patricio Silva
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Diana Campos
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - João L T Pestana
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - José-Luis Martínez-Guitarte
- Environmental Toxicology and Biology Group, Mathematical and Fluid Physics, Department, Sciences Faculty, UNED, Madrid, Spain
| |
Collapse
|
45
|
Hernández-Sánchez C, González-Sálamo J, Díaz-Peña FJ, Fraile-Nuez E, Hernández-Borges J. Arenas Blancas (El Hierro island), a new hotspot of plastic debris in the Canary Islands (Spain). MARINE POLLUTION BULLETIN 2021; 169:112548. [PMID: 34091246 DOI: 10.1016/j.marpolbul.2021.112548] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 06/12/2023]
Abstract
The present work has studied the incidence and type of micro (1-5 mm), meso (5-25 mm) and macroplastics (>25 mm) that have reached Arenas Blancas beach, located in the north coast of El Hierro island, in the Canary Islands (Spain), from October 2019 to May 2020 (13 sampling dates with 3 sampling points each). Taking into consideration the three studied plastic debris fractions (macro, meso and microplastics), a total of 9206 items were found, which had a total weight of 1169.7 g and a concentration of 891.3 ± 91.5 items/m2 (118.3 ± 17.8 g/m2 and 2.3 ± 0.4 g/L). Regarding their colour, most of them were transparent/white/clear, especially in the microplastic fraction in which they accounted for a 68% of the total. Attenuated Total Reflectance Fourier Transform Infrared spectroscopy of meso and microplastic fractions indicated that most of the particles were either polypropylene and polyethylene followed by polystyrene in a much lower amount. In general, the total amount of plastic debris that arrives to the beach by the persistent oceanic current pattern linked to the easternmost branch of the North Atlantic Subtropical Gyre is comparable to those of the most contaminated beaches of the Canary Islands archipelago, suggesting that a new hotspot of plastic debris arrival has been found.
Collapse
Affiliation(s)
- Cintia Hernández-Sánchez
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Forense y Legal y Parasitología, Área de Medicina Preventiva y Salud Pública, Escuela Politécnica Superior de Ingeniería, Sección de Náutica, Máquinas y Radioelectrónica Naval, Universidad de La Laguna (ULL), Vía Auxiliar Paso Alto, 2, 38001 Santa Cruz de Tenerife, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL). Avda. Astrofísico Fco. Sánchez, s/n°, 38206 San Cristóbal de La Laguna, Spain.
| | - Javier González-Sálamo
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL). Avda. Astrofísico Fco. Sánchez, s/n°, 38206 San Cristóbal de La Laguna, Spain; Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, Spain
| | - Francisco J Díaz-Peña
- Departamento de Biología Animal, Edafología y Geología. Facultad de Ciencias, Universidad de La Laguna (ULL). Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, Spain
| | - Eugenio Fraile-Nuez
- Centro Oceanográfico de Canarias, Instituto Español de Oceanografía (IEO), Consejo Superior de Investigaciones Científicas (CSIC), Calle Farola del Mar, 22, 38180 Santa Cruz de Tenerife, Spain
| | - Javier Hernández-Borges
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL). Avda. Astrofísico Fco. Sánchez, s/n°, 38206 San Cristóbal de La Laguna, Spain; Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, Spain.
| |
Collapse
|
46
|
Santana-Viera S, Montesdeoca-Esponda S, Sosa-Ferrera Z, Santana-Rodríguez JJ. UV filters and UV stabilisers adsorbed in microplastic debris from beach sand. MARINE POLLUTION BULLETIN 2021; 168:112434. [PMID: 33964666 DOI: 10.1016/j.marpolbul.2021.112434] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
Microplastics (MPs) in oceans adsorb different types of pollutants, which can negatively impact the food chain. The extensive use of personal care products (PCPs) has led to their ubiquitous environmental presence, and their partition between plastic matrices and surroundings is determined by their physico-chemical characteristics and environmental conditions. This work develops and applies a methodology to determine 12 UV filters (UVFs) and UV stabilisers (UVSs) in MPs collected in beach sand. The analyses were carried out by ultrasound-assisted extraction and ultrahigh-performance liquid chromatography with tandem mass spectrometry detection. The validated procedure was applied to MPs samples taken in sand samples from 13 beaches on the Canary Islands (Spain). The results showed the presence of 10 UV filters and UV stabilisers at concentrations between 1 and 4031 ng·g-1, where octocrylene was the most frequently found. The target analytes were present in all the sampling beaches.
Collapse
Affiliation(s)
- Sergio Santana-Viera
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain
| | - Sarah Montesdeoca-Esponda
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain.
| | - Zoraida Sosa-Ferrera
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain
| | - José Juan Santana-Rodríguez
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain
| |
Collapse
|
47
|
Carvalho JPS, Silva TS, Costa MF. Distribution, characteristics and short-term variability of microplastics in beach sediment of Fernando de Noronha Archipelago, Brazil. MARINE POLLUTION BULLETIN 2021; 166:112212. [PMID: 33690085 DOI: 10.1016/j.marpolbul.2021.112212] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
Fernando de Noronha Archipelago is highly vulnerable to microplastic pollution, which has been previously reported with snapshot samplings on the site. The present study has performed daily beach sediment samplings on the archipelago, aiming to assess the distribution, characteristics and short-term variability of microplastics (1-5 mm), expressing concentrations in three different units. The concentrations ranged from 0.6 ± 2.5 particles/m2 to 1059.3 ± 1385.6 particles/m2 and showed a large spatial and temporal small-scale variability. The results indicate that microplastic contamination is recurrent in Fernando de Noronha and the distribution of these particles is associated with a combination of various physical processes. A wider comparison with results obtained in beaches worldwide was possible using different units of concentration, but standard methods for sampling and analysis of microplastics is needed to better understanding of large-scale spatial and temporal variability.
Collapse
Affiliation(s)
- Julia P S Carvalho
- Laboratory of Ecology and Management of Estuarine and Coastal Ecosystems, Federal University of Pernambuco (UFPE), Oceanography Department, Av. Arquitetura s/n, 50740-550 Recife, PE, Brazil.
| | - Thaiane S Silva
- Laboratory of Ecology and Management of Estuarine and Coastal Ecosystems, Federal University of Pernambuco (UFPE), Oceanography Department, Av. Arquitetura s/n, 50740-550 Recife, PE, Brazil
| | - Monica F Costa
- Laboratory of Ecology and Management of Estuarine and Coastal Ecosystems, Federal University of Pernambuco (UFPE), Oceanography Department, Av. Arquitetura s/n, 50740-550 Recife, PE, Brazil
| |
Collapse
|
48
|
Rapp J, Herrera A, Bondyale-Juez DR, González-Pleiter M, Reinold S, Asensio M, Martínez I, Gómez M. Microplastic ingestion in jellyfish Pelagia noctiluca (Forsskal, 1775) in the North Atlantic Ocean. MARINE POLLUTION BULLETIN 2021; 166:112266. [PMID: 33770553 DOI: 10.1016/j.marpolbul.2021.112266] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 03/09/2021] [Accepted: 03/09/2021] [Indexed: 05/24/2023]
Abstract
The present study is the first evidence-based study about the ingestion of plastic and microplastics in jellyfish Pelagia noctiluca in the North Atlantic Ocean. A bloom of this organism was collected from Gran Canaria Island coast. It was digested using KOH to quantify the plastic particles and by separating the umbrella from tentacles. About 97% of the organisms analysed showed the presence of microdebris. The majority of the microfibers were with blue or uncorrected fibre concentrations and mainly composed of cotton. Their presence in the gastrovascular cavity of the jellyfish was confirmed. These results warn about the impact of various factors such as jellyfish health, the transfer to jellyfish predators, human consumption of jelly fish, and the transport of carbon and microplastics in the water column.
Collapse
Affiliation(s)
- Jorge Rapp
- Marine Ecophysiology Group (EOMAR), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Campus Universitario de Tafira, Las Palmas de Gran Canaria, Canary Islands, Spain.
| | - Alicia Herrera
- Marine Ecophysiology Group (EOMAR), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Campus Universitario de Tafira, Las Palmas de Gran Canaria, Canary Islands, Spain; Asociación para la Conservación Medioambiental Latitud Azul, Av Mesa y López 57-15A, Las Palmas de Gran Canaria, Spain.
| | - Daniel R Bondyale-Juez
- Marine Ecophysiology Group (EOMAR), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Campus Universitario de Tafira, Las Palmas de Gran Canaria, Canary Islands, Spain.
| | - Miguel González-Pleiter
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain.
| | - Stefanie Reinold
- Marine Ecophysiology Group (EOMAR), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Campus Universitario de Tafira, Las Palmas de Gran Canaria, Canary Islands, Spain.
| | - Maite Asensio
- Asociación para la Conservación Medioambiental Latitud Azul, Av Mesa y López 57-15A, Las Palmas de Gran Canaria, Spain.
| | - Ico Martínez
- Marine Ecophysiology Group (EOMAR), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Campus Universitario de Tafira, Las Palmas de Gran Canaria, Canary Islands, Spain.
| | - May Gómez
- Marine Ecophysiology Group (EOMAR), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Campus Universitario de Tafira, Las Palmas de Gran Canaria, Canary Islands, Spain.
| |
Collapse
|
49
|
Pérez-Alvelo KM, Llegus EM, Forestier-Babilonia JM, Elías-Arroyo CV, Pagán-Malavé KN, Bird-Rivera GJ, Rodríguez-Sierra CJ. Microplastic pollution on sandy beaches of Puerto Rico. MARINE POLLUTION BULLETIN 2021; 164:112010. [PMID: 33485022 DOI: 10.1016/j.marpolbul.2021.112010] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
Caribbean islands, including Puerto Rico, are biodiversity hotspots threatened by microplastics (<5 mm). Little is known about the extent of microplastic pollution in coastal sandy beaches of Puerto Rico. Sand from six northern beaches was collected in the high tide line to determine microplastic abundance (0.3-4.75 mm). Península La Esperanza, the most polluted beach, exhibited higher average abundance (17 items/kg dw) and diversity. High urbanization, industrial/port activities, and riverine input are likely sources of plastic debris on this beach. The other beaches showed lower and similar average abundance (3 to 7 items/kg dw) despite having distinct potential point and non-point sources. Overall, fibers (40%), fragments (28%) and foams (27%) predominated (n = 102 particles). Results showed comparable levels to other world beaches, some classified as highly contaminated, but only when transforming units to items/m2. Preliminary ATR-FTIR analysis identified mainly polyethylene. It is imperative to have plastics source reduction through waste management.
Collapse
Affiliation(s)
- Kiani M Pérez-Alvelo
- College of Natural Sciences, Rio Piedras Campus, University of Puerto Rico, San Juan 00925, Puerto Rico
| | - Eduardo M Llegus
- Department of Environmental Health, Graduate School of Public Health, Medical Sciences Campus, University of Puerto Rico, PO Box 365067, San Juan 00936-5067, Puerto Rico
| | - Janet M Forestier-Babilonia
- Department of Environmental Health, Graduate School of Public Health, Medical Sciences Campus, University of Puerto Rico, PO Box 365067, San Juan 00936-5067, Puerto Rico
| | - Camila V Elías-Arroyo
- Department of Environmental Health, Graduate School of Public Health, Medical Sciences Campus, University of Puerto Rico, PO Box 365067, San Juan 00936-5067, Puerto Rico
| | - Keisharie N Pagán-Malavé
- Department of Environmental Health, Graduate School of Public Health, Medical Sciences Campus, University of Puerto Rico, PO Box 365067, San Juan 00936-5067, Puerto Rico
| | - Guillermo J Bird-Rivera
- Department of Environmental Health, Graduate School of Public Health, Medical Sciences Campus, University of Puerto Rico, PO Box 365067, San Juan 00936-5067, Puerto Rico
| | - Carlos J Rodríguez-Sierra
- Department of Environmental Health, Graduate School of Public Health, Medical Sciences Campus, University of Puerto Rico, PO Box 365067, San Juan 00936-5067, Puerto Rico.
| |
Collapse
|
50
|
Rahman A, Sarkar A, Yadav OP, Achari G, Slobodnik J. Potential human health risks due to environmental exposure to nano- and microplastics and knowledge gaps: A scoping review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143872. [PMID: 33310568 DOI: 10.1016/j.scitotenv.2020.143872] [Citation(s) in RCA: 317] [Impact Index Per Article: 79.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 05/02/2023]
Abstract
Microplastics are an emerging global environmental contaminant that are affecting multiple spheres. Despite their ubiquity in all spheres of life and ecology, little is known about the health effects of microplastics exposure to humans. This scoping review explores the existing evidence on the potential human health effects of microplastics and subsequent knowledge gaps. An electronic search of published articles in PubMed, Scopus, EMBASE, Cochrane databases, and Google Scholar was conducted using a combination of subject headings and keywords relating to microplastics and human health effects. The initial search resulted in 17,043 published articles and grey literature documents. After a full review of published articles and their references, 129 publications were identified for further detailed review. These articles indicate that human exposure to microplastics can occur through ingestion, inhalation, and dermal contact due to their presence in food, water, air, and consumer products. Microplastics exposure can cause toxicity through oxidative stress, inflammatory lesions, and increased uptake or translocation. Several studies have demonstrated the potentiality of metabolic disturbances, neurotoxicity, and increased cancer risk in humans. Moreover, microplastics have been found to release their constituent compounds as well as those that are adsorbed onto their surface. Further research is needed to quantify the effects of microplastics on human health and their pathogenesis.
Collapse
Affiliation(s)
- Arifur Rahman
- Division of Community Health and Humanities, Faculty of Medicine, Memorial University St. John's, NL A1B 3V6, Canada.
| | - Atanu Sarkar
- Division of Community Health and Humanities, Faculty of Medicine, Memorial University St. John's, NL A1B 3V6, Canada.
| | - Om Prakash Yadav
- Division of Community Health and Humanities, Faculty of Medicine, Memorial University St. John's, NL A1B 3V6, Canada.
| | - Gopal Achari
- Department of Civil Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada.
| | | |
Collapse
|