1
|
Hook SE, Foster S, Althaus F, Bearham D, Angel BM, Revill AT, Simpson SL, Strzelecki J, Cresswell T, Hayes KR. The distribution of metal and petroleum-derived contaminants within sediments around oil and gas infrastructure in the Gippsland Basin, Australia. MARINE POLLUTION BULLETIN 2023; 193:115196. [PMID: 37421917 DOI: 10.1016/j.marpolbul.2023.115196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/10/2023]
Abstract
As oil and gas infrastructure comes to the end of its working life, a decommissioning decision must be made: should the infrastructure be abandoned in situ, repurposed, partially removed, or fully removed? Environmental contaminants around oil and gas infrastructure could influence these decisions because contaminants in sediments could degrade the value of the infrastructure as habitat, enter the seafood supply if the area is re-opened for commercial and/or recreational fishing, or be made biologically available as sediment is resuspended when the structures are moved. An initial risk hypothesis, however, may postulate that these concerns are only relevant if contaminant concentrations are above screening values that predict the possibility of environmental harm or contaminant bioaccumulation. To determine whether a substantive contaminants-based risk assessment is needed for infrastructure in the Gippsland Basin (South-eastern Australia), we measured the concentration of metals and polycyclic aromatic hydrocarbons (PAHs) in benthic sediments collected around eight platforms earmarked for decommissioning. The measurements were compared to preset screening values and to background contaminant concentrations in reference sites. Lead (Pb), zinc (Zn), PAHs and other contaminants were occasionally measured at concentrations that exceeded reference values, most often within 150 m of the platforms. The exceedance of a few screening values by contaminants at some platforms indicates that these platforms require further analysis to determine the contaminant risks associated with any decommissioning option.
Collapse
Affiliation(s)
| | | | | | | | - Brad M Angel
- CSIRO Environment, Lucas Heights, NSW, Australia
| | | | | | | | - Tom Cresswell
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia
| | | |
Collapse
|
2
|
Pawlowski J, Bruce K, Panksep K, Aguirre FI, Amalfitano S, Apothéloz-Perret-Gentil L, Baussant T, Bouchez A, Carugati L, Cermakova K, Cordier T, Corinaldesi C, Costa FO, Danovaro R, Dell'Anno A, Duarte S, Eisendle U, Ferrari BJD, Frontalini F, Frühe L, Haegerbaeumer A, Kisand V, Krolicka A, Lanzén A, Leese F, Lejzerowicz F, Lyautey E, Maček I, Sagova-Marečková M, Pearman JK, Pochon X, Stoeck T, Vivien R, Weigand A, Fazi S. Environmental DNA metabarcoding for benthic monitoring: A review of sediment sampling and DNA extraction methods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151783. [PMID: 34801504 DOI: 10.1016/j.scitotenv.2021.151783] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 11/06/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Environmental DNA (eDNA) metabarcoding (parallel sequencing of DNA/RNA for identification of whole communities within a targeted group) is revolutionizing the field of aquatic biomonitoring. To date, most metabarcoding studies aiming to assess the ecological status of aquatic ecosystems have focused on water eDNA and macroinvertebrate bulk samples. However, the eDNA metabarcoding has also been applied to soft sediment samples, mainly for assessing microbial or meiofaunal biota. Compared to classical methodologies based on manual sorting and morphological identification of benthic taxa, eDNA metabarcoding offers potentially important advantages for assessing the environmental quality of sediments. The methods and protocols utilized for sediment eDNA metabarcoding can vary considerably among studies, and standardization efforts are needed to improve their robustness, comparability and use within regulatory frameworks. Here, we review the available information on eDNA metabarcoding applied to sediment samples, with a focus on sampling, preservation, and DNA extraction steps. We discuss challenges specific to sediment eDNA analysis, including the variety of different sources and states of eDNA and its persistence in the sediment. This paper aims to identify good-practice strategies and facilitate method harmonization for routine use of sediment eDNA in future benthic monitoring.
Collapse
Affiliation(s)
- J Pawlowski
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland; Institute of Oceanology, Polish Academy of Sciences, 81-712 Sopot, Poland; ID-Gene Ecodiagnostics, 1202 Geneva, Switzerland
| | - K Bruce
- NatureMetrics Ltd, CABI Site, Bakeham Lane, Egham TW20 9TY, UK
| | - K Panksep
- Institute of Technology, University of Tartu, Tartu 50411, Estonia; Chair of Hydrobiology and Fishery, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia; Chair of Aquaculture, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Estonia
| | - F I Aguirre
- Water Research Institute, National Research Council of Italy (IRSA-CNR), Monterotondo, Rome, Italy
| | - S Amalfitano
- Water Research Institute, National Research Council of Italy (IRSA-CNR), Monterotondo, Rome, Italy
| | - L Apothéloz-Perret-Gentil
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland; ID-Gene Ecodiagnostics, 1202 Geneva, Switzerland
| | - T Baussant
- Norwegian Research Center AS, NORCE Environment, Marine Ecology Group, Mekjarvik 12, 4070 Randaberg, Norway
| | - A Bouchez
- INRAE, CARRTEL, 74200 Thonon-les-Bains, France
| | - L Carugati
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, Ancona 60131, Italy
| | - K Cermakova
- ID-Gene Ecodiagnostics, 1202 Geneva, Switzerland
| | - T Cordier
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland; NORCE Climate, NORCE Norwegian Research Centre AS, Bjerknes Centre for Climate Research, Jahnebakken 5, 5007 Bergen, Norway
| | - C Corinaldesi
- Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Via Brecce Bianche, Ancona 60131, Italy
| | - F O Costa
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - R Danovaro
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, Ancona 60131, Italy
| | - A Dell'Anno
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, Ancona 60131, Italy
| | - S Duarte
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - U Eisendle
- University of Salzburg, Dept. of Biosciences, 5020 Salzburg, Austria
| | - B J D Ferrari
- Swiss Centre for Applied Ecotoxicology (Ecotox Centre), EPFL ENAC IIE-GE, 1015 Lausanne, Switzerland
| | - F Frontalini
- Department of Pure and Applied Sciences, Urbino University, Urbino, Italy
| | - L Frühe
- Technische Universität Kaiserslautern, Ecology Group, D-67663 Kaiserslautern, Germany
| | - A Haegerbaeumer
- Bielefeld University, Animal Ecology, 33615 Bielefeld, Germany
| | - V Kisand
- Institute of Technology, University of Tartu, Tartu 50411, Estonia
| | - A Krolicka
- Norwegian Research Center AS, NORCE Environment, Marine Ecology Group, Mekjarvik 12, 4070 Randaberg, Norway
| | - A Lanzén
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Pasaia, Gipuzkoa, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Bizkaia, Spain
| | - F Leese
- University of Duisburg-Essen, Faculty of Biology, Aquatic Ecosystem Research, Germany
| | - F Lejzerowicz
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA
| | - E Lyautey
- Univ. Savoie Mont Blanc, INRAE, CARRTEL, 74200 Thonon-les-Bains, France
| | - I Maček
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; Faculty of Mathematics, Natural Sciences and Information Technologies (FAMNIT), University of Primorska, Glagoljaška 8, 6000 Koper, Slovenia
| | - M Sagova-Marečková
- Czech University of Life Sciences, Dept. of Microbiology, Nutrition and Dietetics, Prague, Czech Republic
| | - J K Pearman
- Coastal and Freshwater Group, Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand
| | - X Pochon
- Coastal and Freshwater Group, Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand; Institute of Marine Science, University of Auckland, Warkworth 0941, New Zealand
| | - T Stoeck
- Technische Universität Kaiserslautern, Ecology Group, D-67663 Kaiserslautern, Germany
| | - R Vivien
- Swiss Centre for Applied Ecotoxicology (Ecotox Centre), EPFL ENAC IIE-GE, 1015 Lausanne, Switzerland
| | - A Weigand
- National Museum of Natural History Luxembourg, 25 Rue Münster, L-2160 Luxembourg, Luxembourg
| | - S Fazi
- Water Research Institute, National Research Council of Italy (IRSA-CNR), Monterotondo, Rome, Italy.
| |
Collapse
|
3
|
Tiburcio SRG, Macrae A, Peixoto RS, da Costa Rachid CTC, Mansoldo FRP, Alviano DS, Alviano CS, Ferreira DF, de Queiroz Venâncio F, Ferreira DF, Vermelho AB. Sulphate-reducing bacterial community structure from produced water of the Periquito and Galo de Campina onshore oilfields in Brazil. Sci Rep 2021; 11:20311. [PMID: 34645885 PMCID: PMC8514479 DOI: 10.1038/s41598-021-99196-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 09/09/2021] [Indexed: 12/28/2022] Open
Abstract
Sulphate-reducing bacteria (SRB) cause fouling, souring, corrosion and produce H2S during oil and gas production. Produced water obtained from Periquito (PQO) and Galo de Campina (GC) onshore oilfields in Brazil was investigated for SRB. Produced water with Postgate B, Postgate C and Baars media was incubated anaerobically for 20 days. DNA was extracted, 16S rDNA PCR amplified and fragments were sequenced using Illumina TruSeq. 4.2 million sequence reads were analysed and deposited at NCBI SAR accession number SRP149784. No significant differences in microbial community composition could be attributed to the different media but significant differences in the SRB were observed between the two oil fields. The dominant bacterial orders detected from both oilfields were Desulfovibrionales, Pseudomonadales and Enterobacteriales. The genus Pseudomonas was found predominantly in the GC oilfield and Pleomorphominas and Shewanella were features of the PQO oilfield. 11% and 7.6% of the sequences at GC and PQO were not classified at the genus level but could be partially identified at the order level. Relative abundances changed for Desulfovibrio from 29.8% at PQO to 16.1% at GC. Clostridium varied from 2.8% at PQO and 2.4% at GC. These data provide the first description of SRB from onshore produced water in Brazil and reinforce the importance of Desulfovibrionales, Pseudomonadales, and Enterobacteriales in produced water globally. Identifying potentially harmful microbes is an important first step in developing microbial solutions that prevent their proliferation.
Collapse
Affiliation(s)
- Samyra Raquel Gonçalves Tiburcio
- Post Graduate Program in Plant Biotechnology and Bioprocesses, Decania, Center for Health Sciences, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Andrew Macrae
- Post Graduate Program in Plant Biotechnology and Bioprocesses, Decania, Center for Health Sciences, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
- Institute of Microbiology Paulo de Góes, Brasil, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
| | - Raquel Silva Peixoto
- Post Graduate Program in Plant Biotechnology and Bioprocesses, Decania, Center for Health Sciences, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Institute of Microbiology Paulo de Góes, Brasil, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | | | - Felipe Raposo Passos Mansoldo
- Institute of Microbiology Paulo de Góes, Brasil, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- BIOINOVAR - Biocatalysis, Bioproducts and Bioenergy Lab, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Daniela Sales Alviano
- Post Graduate Program in Plant Biotechnology and Bioprocesses, Decania, Center for Health Sciences, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Institute of Microbiology Paulo de Góes, Brasil, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Celuta Sales Alviano
- Post Graduate Program in Plant Biotechnology and Bioprocesses, Decania, Center for Health Sciences, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Institute of Microbiology Paulo de Góes, Brasil, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Davis Fernandes Ferreira
- Post Graduate Program in Plant Biotechnology and Bioprocesses, Decania, Center for Health Sciences, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, USA
| | | | | | - Alane Beatriz Vermelho
- Post Graduate Program in Plant Biotechnology and Bioprocesses, Decania, Center for Health Sciences, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Institute of Microbiology Paulo de Góes, Brasil, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- BIOINOVAR - Biocatalysis, Bioproducts and Bioenergy Lab, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Cordier T, Alonso‐Sáez L, Apothéloz‐Perret‐Gentil L, Aylagas E, Bohan DA, Bouchez A, Chariton A, Creer S, Frühe L, Keck F, Keeley N, Laroche O, Leese F, Pochon X, Stoeck T, Pawlowski J, Lanzén A. Ecosystems monitoring powered by environmental genomics: A review of current strategies with an implementation roadmap. Mol Ecol 2021; 30:2937-2958. [PMID: 32416615 PMCID: PMC8358956 DOI: 10.1111/mec.15472] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 04/25/2020] [Accepted: 05/06/2020] [Indexed: 01/02/2023]
Abstract
A decade after environmental scientists integrated high-throughput sequencing technologies in their toolbox, the genomics-based monitoring of anthropogenic impacts on the biodiversity and functioning of ecosystems is yet to be implemented by regulatory frameworks. Despite the broadly acknowledged potential of environmental genomics to this end, technical limitations and conceptual issues still stand in the way of its broad application by end-users. In addition, the multiplicity of potential implementation strategies may contribute to a perception that the routine application of this methodology is premature or "in development", hence restraining regulators from binding these tools into legal frameworks. Here, we review recent implementations of environmental genomics-based methods, applied to the biomonitoring of ecosystems. By taking a general overview, without narrowing our perspective to particular habitats or groups of organisms, this paper aims to compare, review and discuss the strengths and limitations of four general implementation strategies of environmental genomics for monitoring: (a) Taxonomy-based analyses focused on identification of known bioindicators or described taxa; (b) De novo bioindicator analyses; (c) Structural community metrics including inferred ecological networks; and (d) Functional community metrics (metagenomics or metatranscriptomics). We emphasise the utility of the three latter strategies to integrate meiofauna and microorganisms that are not traditionally utilised in biomonitoring because of difficult taxonomic identification. Finally, we propose a roadmap for the implementation of environmental genomics into routine monitoring programmes that leverage recent analytical advancements, while pointing out current limitations and future research needs.
Collapse
Affiliation(s)
- Tristan Cordier
- Department of Genetics and EvolutionScience IIIUniversity of GenevaGenevaSwitzerland
| | - Laura Alonso‐Sáez
- AZTIMarine ResearchBasque Research and Technology Alliance (BRTA)Spain
| | | | - Eva Aylagas
- Red Sea Research Center (RSRC)Biological and Environmental Sciences and Engineering (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - David A. Bohan
- AgroécologieINRAEUniversity of BourgogneUniversity Bourgogne Franche‐ComtéDijonFrance
| | | | - Anthony Chariton
- Department of Biological SciencesMacquarie UniversitySydneyNSWAustralia
| | - Simon Creer
- School of Natural SciencesBangor UniversityGwyneddUK
| | - Larissa Frühe
- Department of EcologyTechnische Universität KaiserslauternKaiserslauternGermany
| | | | - Nigel Keeley
- Benthic Resources and Processes GroupInstitute of Marine ResearchTromsøNorway
| | - Olivier Laroche
- Benthic Resources and Processes GroupInstitute of Marine ResearchTromsøNorway
| | - Florian Leese
- Aquatic Ecosystem ResearchFaculty of BiologyUniversity of Duisburg‐EssenEssenGermany
- Centre for Water and Environmental Research (ZWU)University of Duisburg‐EssenEssenGermany
| | - Xavier Pochon
- Coastal & Freshwater GroupCawthron InstituteNelsonNew Zealand
- Institute of Marine ScienceUniversity of AucklandWarkworthNew Zealand
| | - Thorsten Stoeck
- Department of EcologyTechnische Universität KaiserslauternKaiserslauternGermany
| | - Jan Pawlowski
- Department of Genetics and EvolutionScience IIIUniversity of GenevaGenevaSwitzerland
- ID‐Gene EcodiagnosticsGenevaSwitzerland
- Institute of OceanologyPolish Academy of SciencesSopotPoland
| | - Anders Lanzén
- AZTIMarine ResearchBasque Research and Technology Alliance (BRTA)Spain
- Basque Foundation for ScienceIKERBASQUEBilbaoSpain
| |
Collapse
|
5
|
Frühe L, Dully V, Forster D, Keeley NB, Laroche O, Pochon X, Robinson S, Wilding TA, Stoeck T. Global Trends of Benthic Bacterial Diversity and Community Composition Along Organic Enrichment Gradients of Salmon Farms. Front Microbiol 2021; 12:637811. [PMID: 33995296 PMCID: PMC8116884 DOI: 10.3389/fmicb.2021.637811] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/23/2021] [Indexed: 01/04/2023] Open
Abstract
The analysis of benthic bacterial community structure has emerged as a powerful alternative to traditional microscopy-based taxonomic approaches to monitor aquaculture disturbance in coastal environments. However, local bacterial diversity and community composition vary with season, biogeographic region, hydrology, sediment texture, and aquafarm-specific parameters. Therefore, without an understanding of the inherent variation contained within community complexes, bacterial diversity surveys conducted at individual farms, countries, or specific seasons may not be able to infer global universal pictures of bacterial community diversity and composition at different degrees of aquaculture disturbance. We have analyzed environmental DNA (eDNA) metabarcodes (V3-V4 region of the hypervariable SSU rRNA gene) of 138 samples of different farms located in different major salmon-producing countries. For these samples, we identified universal bacterial core taxa that indicate high, moderate, and low aquaculture impact, regardless of sampling season, sampled country, seafloor substrate type, or local farming and environmental conditions. We also discuss bacterial taxon groups that are specific for individual local conditions. We then link the metabolic properties of the identified bacterial taxon groups to benthic processes, which provides a better understanding of universal benthic ecosystem function(ing) of coastal aquaculture sites. Our results may further guide the continuing development of a practical and generic bacterial eDNA-based environmental monitoring approach.
Collapse
Affiliation(s)
- Larissa Frühe
- Ecology Group, Technische Universität Kaiserslautern, Kaiserslautern, Germany
| | - Verena Dully
- Ecology Group, Technische Universität Kaiserslautern, Kaiserslautern, Germany
| | - Dominik Forster
- Ecology Group, Technische Universität Kaiserslautern, Kaiserslautern, Germany
| | - Nigel B Keeley
- Biosecurity, Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand.,Institute of Marine Research, Bergen, Norway
| | - Olivier Laroche
- Biosecurity, Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand
| | - Xavier Pochon
- Biosecurity, Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand.,Institute of Marine Science, University of Auckland, Auckland, New Zealand
| | - Shawn Robinson
- St. Andrews Biological Station, Department of Fisheries and Oceans, St. Andrews, NB, Canada
| | | | - Thorsten Stoeck
- Ecology Group, Technische Universität Kaiserslautern, Kaiserslautern, Germany
| |
Collapse
|
6
|
Nguyen TT, Paulsen JE, Landfald B. Seafloor deposition of water-based drill cuttings generates distinctive and lengthy sediment bacterial community changes. MARINE POLLUTION BULLETIN 2021; 164:111987. [PMID: 33515825 DOI: 10.1016/j.marpolbul.2021.111987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
The spatial extent and persistence of bacterial change caused by deposition of water-based drill cuttings on the seafloor were explored by a community-wide approach. Ten centimeter sediment cores were sampled along transects extending from ≤15 m to 250 m from three nearby drilling sites in the southern Barents Sea. Eight months, 8 years and 15 years, respectively, had passed since the completion of the drillings. At locations heavily affected by drill cuttings, the two most recent sites showed distinct, corresponding deviances from native Barents Sea bacterial community profiles. Otherwise marginal groups, including Mollicutes and Clostridia, showed significant increases in relative abundance. Beyond 100 m from the boreholes the microbiotas appeared undisturbed, as they did at any distance from the 15-years old borehole. The extent of the biological distortion, as indicated by the present microbial study, agreed with previously published macrofaunal surveys at the same drilling sites.
Collapse
Affiliation(s)
- Tan T Nguyen
- Norwegian College of Fishery Science, UiT The Arctic University of Norway, PO Box 6050 Langnes, 9037 Tromsø, Norway.
| | | | - Bjarne Landfald
- Norwegian College of Fishery Science, UiT The Arctic University of Norway, PO Box 6050 Langnes, 9037 Tromsø, Norway.
| |
Collapse
|
7
|
Lanzén A, Mendibil I, Borja Á, Alonso-Sáez L. A microbial mandala for environmental monitoring: Predicting multiple impacts on estuarine prokaryote communities of the Bay of Biscay. Mol Ecol 2020; 30:2969-2987. [PMID: 32479653 DOI: 10.1111/mec.15489] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/08/2020] [Accepted: 05/15/2020] [Indexed: 02/06/2023]
Abstract
Routine monitoring of benthic biodiversity is critical for managing and understanding the anthropogenic impacts on marine, transitional and freshwater ecosystems. However, traditional reliance on morphological identification generally makes it cost-prohibitive to increase the scale of monitoring programmes. Metabarcoding of environmental DNA has clear potential to overcome many of the problems associated with traditional monitoring, with prokaryotes and other microorganisms showing particular promise as bioindicators. However, due to the limited knowledge regarding the ecological roles and responses of environmental microorganisms to different types of pressure, the use of de novo approaches is necessary. Here, we use two such approaches for the prediction of multiple impacts present in estuaries and coastal areas of the Bay of Biscay based on microbial communities. The first (Random Forests) is a machine learning method while the second (Threshold Indicator Taxa Analysis and quantile regression splines) is based on de novo identification of bioindicators. Our results show that both methods overlap considerably in the indicator taxa identified, but less for sequence variants. Both methods also perform well in spite of the complexity of the studied ecosystem, providing predictive models with strong correlation to reference values and fair to good agreement with ecological status groups. The ability to predict several specific types of pressure is especially appealing. The cross-validated models and biotic indices developed can be directly applied to predict the environmental status of estuaries in the same geographical region, although more work is needed to evaluate and improve them for use in new regions or habitats.
Collapse
Affiliation(s)
- Anders Lanzén
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Pasaia, Gipuzkoa, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Bizkaia, Spain
| | - Iñaki Mendibil
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Pasaia, Gipuzkoa, Spain
| | - Ángel Borja
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Pasaia, Gipuzkoa, Spain
| | - Laura Alonso-Sáez
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Pasaia, Gipuzkoa, Spain
| |
Collapse
|
8
|
Lelchat F, Dussauze M, Lemaire P, Theron M, Toffin L, Le Floch S. Measuring the biological impact of drilling waste on the deep seafloor: An experimental challenge. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:122132. [PMID: 32062395 DOI: 10.1016/j.jhazmat.2020.122132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
The depletion of traditional oil fields is driving the oil & gas industry to explore new exploitation sites previously considered as unprofitable. Deep-sea oil fields represent one of these new areas of exploitation. Well drilling during exploration and production operations generate large quantities of drilling waste whose biological impact on the deep-sea floor remains largely unknown. Because of the harsh abiotic factors characterizing this environment, the evaluation of this impact remains challenging. High hydrostatic pressure is the prominent factor which will affect in-situ biological processes. This review will examine the feedback on the various strategies used to evaluate the biological impact of deep-sea drilling waste deposition as well as the current technological limitations. Given the complexity of this issue, a good perspective strategy would be to trend towards the research and development of more relevant bioassays, especially considering the crucial factor of hydrostatic pressure.
Collapse
Affiliation(s)
- F Lelchat
- Cedre, 715 rue Alain Colas - CS 41836, 29218 Brest Cedex 2, France; Leo viridis, 140 Avenue Graham Bell, 29280 Plouzané, France.
| | - M Dussauze
- EA 4324 ORPHY, Université de Bretagne Occidentale, Université de Brest, 6 avenue LE GORGEU, CS 93837, 29238 Brest Cedex 3, France
| | - P Lemaire
- TOTAL FLUIDES SAS, 24 cours Michelet - 92800 Puteaux, 342 241 908 RCS Nanterre, France
| | - M Theron
- EA 4324 ORPHY, Université de Bretagne Occidentale, Université de Brest, 6 avenue LE GORGEU, CS 93837, 29238 Brest Cedex 3, France
| | - L Toffin
- Laboratoire de Microbiologie des Environnements Extrêmes, UMR6197, Ifremer Centre de Bretagne, ZI de la pointe du diable, CS 10070, 29280 Plouzané, France
| | - S Le Floch
- Cedre, 715 rue Alain Colas - CS 41836, 29218 Brest Cedex 2, France
| |
Collapse
|
9
|
Potts LD, Perez Calderon LJ, Gubry-Rangin C, Witte U, Anderson JA. Characterisation of microbial communities of drill cuttings piles from offshore oil and gas installations. MARINE POLLUTION BULLETIN 2019; 142:169-177. [PMID: 31232291 DOI: 10.1016/j.marpolbul.2019.03.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/03/2019] [Accepted: 03/08/2019] [Indexed: 06/09/2023]
Abstract
Drill cuttings (DC) are produced during hydrocarbon drilling operations and are composed of subsurface rock coated with hydrocarbons and drilling fluids. Historic disposal of DC at sea has resulted in the formation of large piles on the seabed that may be left in situ following infrastructure decommissioning. This study provides a first insight into the microbial abundance, diversity and community structure of two DC piles from North Sea oil and gas installations. The abundance of both bacteria and archaea was lower in DC than in surrounding natural sediments. Microbial diversity and richness within DC were low but increased with distance from the piles. Microbial community structure was significantly different in DC piles compared to nearby natural sediments. DC bacterial communities were dominated by Halomonas, Dietzia and Dethiobacter. The presence of such organisms suggests a potential function of hydrocarbon degradation ability and may play an active role in DC pile remediation.
Collapse
Affiliation(s)
- Lloyd D Potts
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom; Chemical and Materials Engineering, School of Engineering, University of Aberdeen, Aberdeen, United Kingdom.
| | - Luis J Perez Calderon
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom; Chemical and Materials Engineering, School of Engineering, University of Aberdeen, Aberdeen, United Kingdom
| | - Cecile Gubry-Rangin
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Ursula Witte
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - James A Anderson
- Chemical and Materials Engineering, School of Engineering, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|