1
|
Flores-Villaseñor H, Velázquez-Román J, León-Sicairos N, Angulo-Zamudio UA, Lira-Morales C, Martínez-García JJ, Acosta-Smith E, Valdés-Flores J, Tapia-Pastrana G, Canizalez-Román A. Serodiversity, antibiotic resistance, and virulence genes of Vibrio parahaemolyticus in oysters collected in coastal areas of northwestern Mexico between 2012 and 2020. Food Microbiol 2024; 123:104567. [PMID: 39038901 DOI: 10.1016/j.fm.2024.104567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 07/24/2024]
Abstract
This study aimed to determine the prevalence of V. parahaemolyticus in oysters from the northwestern coast of Mexico and to identify the serotypes, virulence factors, and antibiotic resistance of the strains. Oyster samples were collected from 2012 to 2020 from the northwest coast of Mexico; biochemical and molecular methods were used to identify V. parahaemolyticus from oysters; antiserum reaction to determine V. parahaemolyticus serotypes, and PCR assays were performed to identify pathogenic (tdh and/or trh) or pandemic (toxRS/new, and/or orf8) strains and antibiotic resistance testing. A total of 441 oyster samples were collected and tested for V. parahaemolyticus. Forty-seven percent of oyster samples were positive for V. parahaemolyticus. Ten different O serogroups and 72 serovars were identified, predominantly serotype O1:KUT with 22.2% and OUT:KUT with 17.3%. Twenty new serotypes that had not been previously reported in our region were identified. We detected 4.3% of pathogenic clones but no pandemic strains. About 73.5% of strains were resistant to at least one antibiotic, mainly ampicillin and ciprofloxacin; 25% were multi-drug resistant. In conclusion, the pathogenic strains in oysters and antibiotic resistance are of public health concern, as the potential for outbreaks throughout northwestern Mexico is well established.
Collapse
Affiliation(s)
- Hector Flores-Villaseñor
- School of Medicine, Autonomous University of Sinaloa, 80019, Culiacan, Sinaloa, Mexico; The Sinaloa State Public Health Laboratory, Secretariat of Health, 80058, Culiacan, Sinaloa, Mexico
| | - Jorge Velázquez-Román
- School of Medicine, Autonomous University of Sinaloa, 80019, Culiacan, Sinaloa, Mexico
| | - Nidia León-Sicairos
- School of Medicine, Autonomous University of Sinaloa, 80019, Culiacan, Sinaloa, Mexico; Pediatric Hospital of Sinaloa, 80200, Culiacan, Sinaloa, Mexico
| | | | - Carolina Lira-Morales
- School of Medicine, Autonomous University of Sinaloa, 80019, Culiacan, Sinaloa, Mexico
| | - Jesús J Martínez-García
- School of Medicine, Autonomous University of Sinaloa, 80019, Culiacan, Sinaloa, Mexico; Pediatric Hospital of Sinaloa, 80200, Culiacan, Sinaloa, Mexico
| | - Erika Acosta-Smith
- School of Medicine, Autonomous University of Sinaloa, 80019, Culiacan, Sinaloa, Mexico
| | - Jorge Valdés-Flores
- Programa Doctorado en Ciencias Biológicas, Facultad de Biología, Universidad Autónoma de Sinaloa, 80040, Culiacán, Sinaloa, Mexico
| | - Gabriela Tapia-Pastrana
- Laboratorio de Investigación Biomédica, Hospital Regional de Alta Especialidad de Oaxaca, IMSS-BIENESTAR, Oaxaca, 71256, Mexico
| | - Adrian Canizalez-Román
- School of Medicine, Autonomous University of Sinaloa, 80019, Culiacan, Sinaloa, Mexico; The Women's Hospital, Secretariat of Health, 80020, Culiacan, Sinaloa, Mexico.
| |
Collapse
|
2
|
Chen J, Zhao Z, Mu X, Wang M, Tang J, Bi Q. Characterization of a marine endolysin LysVPB against Vibrio parahaemolyticus. Protein Expr Purif 2024; 226:106608. [PMID: 39293536 DOI: 10.1016/j.pep.2024.106608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/09/2024] [Accepted: 09/14/2024] [Indexed: 09/20/2024]
Abstract
Currently, there is an urgent to develop safe and environmentally friendly alternatives to antibiotics for combating Vibrio parahaemolyticus. Endolysins are considered promising antibacterial agents due to their desirable range of action and ability to deal with antibiotic-resistant bacteria. While numerous Vibrio phages have been identified, the research on their endolysins is still in its infancy. In this study, a novel endolysin called LysVPB was cloned and expressed in Pichia pastoris. Phylogenetic analysis revealed that LysVPB bears little resemblance to other known endolysins, highlighting its unique nature. Homology modeling identified a putative calcium-binding site in LysVPB. The recombinant LysVPB achieved a lytic activity of 64.8 U/mL and had a molecular weight of approximately 17 kDa. LysVPB exhibited enhanced efficacy at pH 9.0, with 60% of its maximum activity observed within the broad pH range of 6.0-10.0. The catalytic efficiency of LysVPB peaked at 30 °C but significantly declined beyond 50 °C. Ba2+, Co2+, and Cu2+ showed inhibitory effects on the activity of LysVPB, while Ca2+ can boost it to 126.8%. Furthermore, LysVPB exhibited satisfactory efficacy against strains of V. parahaemolyticus. LysVPB is an innovative phage lysin with good characteristics that are specific to certain hosts. The modular nature of LysVPB allows for efficient domain exchange with alternative lysins as antimicrobial components and fusion with antimicrobial peptides. This opens up possibilities for engineering chimeric lysins in a broader range of target hosts with high antimicrobial effectiveness and strong activity under physiological conditions.
Collapse
Affiliation(s)
- Juan Chen
- Department of Laboratory Medicine, Qingdao Central Hospital, Qingdao, China; College of Marine Life Science, Ocean University of China, Qingdao, China
| | - Ziyun Zhao
- Department of Laboratory Medicine, Qingdao Central Hospital, Qingdao, China
| | - Xiaofeng Mu
- Department of Laboratory Medicine, Qingdao Central Hospital, Qingdao, China
| | - Mengxin Wang
- Department of Laboratory Medicine, Qingdao Central Hospital, Qingdao, China
| | - Jun Tang
- Department of Laboratory Medicine, Qingdao Central Hospital, Qingdao, China
| | - Qingqing Bi
- Department of Laboratory Medicine, Qingdao Central Hospital, Qingdao, China.
| |
Collapse
|
3
|
Li Y, Bi S, Guan W, Iddrisu L, Wei S, Chen Y, Sun L, Deng Q, Jiang Y, Fang Z, Gooneratne R. Antibiotic susceptibility of Vibrio parahaemolyticus isolated from prawns and oysters marketed in Zhanjiang, China. MARINE POLLUTION BULLETIN 2024; 206:116712. [PMID: 39018820 DOI: 10.1016/j.marpolbul.2024.116712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/19/2024]
Abstract
To evaluate the antibiotic susceptibility of Vibrio parahaemolyticus from prawns and oysters marketed in Zhanjiang, Guangdong, China. 84 strains of V. parahaemolyticus were isolated from prawns and oysters sampled from 9 major markets. The results showed that 84 V. parahaemolyticus strains had the highest rate of antibiotic resistance to oxytetracycline (69.05 %, 58/84) and the lowest rate of antibiotic resistance to enrofloxacin (1.19 %, 1/84), ciprofloxacin (4.76 %, 4/84) and norfloxacin (7.14 %, 6/84) in quinolone. Meanwhile, 96.42 % of the strains showed multiple antibiotic resistance (MAR). PCR results showed that the resistance phenotype was closely related to the antibiotic resistance genes and efflux pump genes (p < 0.01), and the efflux pump gene was the key causing MAR. The combination of antibiotics significantly eliminated multidrug resistance. In addition, efflux pump inhibitors also reduce MAR. This study may provide information on antibiotic susceptibility, antibiotic resistance and strategies for the control of V. parahaemolyticus.
Collapse
Affiliation(s)
- Yongbin Li
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China
| | - Siyuan Bi
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China; Shenzhen Jinyue Test Technology Co., Ltd., Shenzhen 510100, China
| | - Wenhao Guan
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China
| | - Lukman Iddrisu
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China
| | - Shuai Wei
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yinyan Chen
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China
| | - Lijun Sun
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China
| | - Qi Deng
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yongqing Jiang
- Shenzhen Jinyue Test Technology Co., Ltd., Shenzhen 510100, China; Shenzhen Lvshiyuan Biotechnology Co., Ltd., Shenzhen 510100, China
| | - Zhijia Fang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Ravi Gooneratne
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, Canterbury 7647, New Zealand
| |
Collapse
|
4
|
Yuliani D, Morishita F, Imamura T, Ueki T. Vanadium Accumulation and Reduction by Vanadium-Accumulating Bacteria Isolated from the Intestinal Contents of Ciona robusta. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:338-350. [PMID: 38451444 PMCID: PMC11043195 DOI: 10.1007/s10126-024-10300-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
The sea squirt Ciona robusta (formerly Ciona intestinalis type A) has been the subject of many interdisciplinary studies. Known as a vanadium-rich ascidian, C. robusta is an ideal model for exploring microbes associated with the ascidian and the roles of these microbes in vanadium accumulation and reduction. In this study, we discovered two bacterial strains that accumulate large amounts of vanadium, CD2-88 and CD2-102, which belong to the genera Pseudoalteromonas and Vibrio, respectively. The growth medium composition impacted vanadium uptake. Furthermore, pH was also an important factor in the accumulation and localization of vanadium. Most of the vanadium(V) accumulated by these bacteria was converted to less toxic vanadium(IV). Our results provide insights into vanadium accumulation and reduction by bacteria isolated from the ascidian C. robusta to further study the relations between ascidians and microbes and their possible applications for bioremediation or biomineralization.
Collapse
Affiliation(s)
- Dewi Yuliani
- Laboratory of Molecular and Cellular Physiology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 1-3-1 Kagamiyama, Hiroshima, 739-8526, Japan
- Chemistry Department, Faculty of Mathematics and Natural Sciences, State Islamic University of Malang, Malang, 65145, Indonesia
| | - Fumihiro Morishita
- Laboratory of Molecular and Cellular Physiology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 1-3-1 Kagamiyama, Hiroshima, 739-8526, Japan
| | - Takuya Imamura
- Laboratory of Molecular and Cellular Physiology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 1-3-1 Kagamiyama, Hiroshima, 739-8526, Japan
| | - Tatsuya Ueki
- Laboratory of Molecular and Cellular Physiology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 1-3-1 Kagamiyama, Hiroshima, 739-8526, Japan.
| |
Collapse
|
5
|
Zhu HS, Liang X, Liu JC, Zhong HY, Yang YH, Guan WP, Du ZJ, Ye MQ. Antibiotic and Heavy Metal Co-Resistant Strain Isolated from Enrichment Culture of Marine Sediments, with Potential for Environmental Bioremediation Applications. Antibiotics (Basel) 2023; 12:1379. [PMID: 37760676 PMCID: PMC10526090 DOI: 10.3390/antibiotics12091379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/20/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Antibiotics and heavy metals have caused serious contamination of the environment and even resulted in public health concerns. It has therefore become even more urgent to adopt a sustainable approach to combating these polluted environments. In this paper, we investigated the microbial community of marine sediment samples after 255 days of enrichment culture under Cu (II) and lincomycin stress and ZC255 was the most resistant strain obtained. The 16S rRNA gene sequence confirmed that it belonged to the genus Rossellomorea. Strain ZC255 was resistant to 12 kinds of antibiotics, and had a superior tolerance to Cu (II), Pb (II), Ni (II), Zn (II), Cr (III), and Cd (II). Moreover, it exhibits strong bioremoval ability of Cu and lincomycin. The removal efficiency of Cu (II) and lincomycin can achieve 651 mg/g biomass and 32.5 mg/g biomass, respectively. Strain ZC255 was a promising isolate for pollution bioremediation applications.
Collapse
Affiliation(s)
- Han-Sheng Zhu
- Marine College, Shandong University, Weihai 264209, China; (H.-S.Z.)
| | - Xiao Liang
- Marine College, Shandong University, Weihai 264209, China; (H.-S.Z.)
| | - Jun-Cheng Liu
- SDU-ANU Joint Science College, Shandong University, Weihai 264209, China
| | - Han-Yang Zhong
- Marine College, Shandong University, Weihai 264209, China; (H.-S.Z.)
| | - Yuan-Hang Yang
- Marine College, Shandong University, Weihai 264209, China; (H.-S.Z.)
| | - Wen-Peng Guan
- Marine College, Shandong University, Weihai 264209, China; (H.-S.Z.)
| | - Zong-Jun Du
- Marine College, Shandong University, Weihai 264209, China; (H.-S.Z.)
- Weihai Research Institute of Industrial Technology, Shandong University, Weihai 264209, China
| | - Meng-Qi Ye
- Marine College, Shandong University, Weihai 264209, China; (H.-S.Z.)
- Weihai Research Institute of Industrial Technology, Shandong University, Weihai 264209, China
- Shenzhen Research Institute, Shandong University, Shenzhen 518057, China
| |
Collapse
|
6
|
Kumarage PM, Majeed S, De Silva LADS, Heo GJ. Detection of virulence, antimicrobial resistance, and heavy metal resistance properties in Vibrio anguillarum isolated from mullet (Mugil cephalus) cultured in Korea. Braz J Microbiol 2023; 54:415-425. [PMID: 36735199 PMCID: PMC9944176 DOI: 10.1007/s42770-023-00911-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
In the present study, we identified and characterized 22 strains of V. anguillarum from 145 samples of mullets (Mugill cephallus) cultured in several fish farms in South Korea. They were subjected to pathogenicity tests, antimicrobial susceptibility test, and broth dilution test to detect virulence markers, antimicrobial resistance, and heavy metal resistance properties. All the isolates showed amylase and caseinase activity, followed by gelatinase (90.9%), DNase (45.5%), and hemolysis activities (α = 81.1% and β = 18.2%). The PCR assay revealed that isolates were positive for VAC, ctxAB, AtoxR, tdh, tlh, trh, Vfh, hupO, VPI, and FtoxR virulence genes at different percentages. All the isolates showed multi-drug resistance properties (MAR index ≥ 0.2), while 100% of the isolates were resistant to oxacillin, ticarcillin, streptomycin, and ciprofloxacin. Antimicrobial resistance genes, qnrS (95.5%), qnrB (86.4%), and StrAB (27.3%), were reported. In addition, 40.9% of the isolates were cadmium-tolerant, with the presence of CzcA (86.4%) heavy metal resistance gene. The results revealed potential pathogenicity associated with V. anguillarum in aquaculture and potential health risk associated with consumer health.
Collapse
Affiliation(s)
- P M Kumarage
- Laboratory of Aquatic Animal Medicine, Veterinary Medical Center, College of Veterinary Medicine, Chungbuk National University, Chungdae-Ro 1, Seowon-Gu, Chungbuk, 28644, Cheongju, South Korea
| | - Sana Majeed
- Laboratory of Aquatic Animal Medicine, Veterinary Medical Center, College of Veterinary Medicine, Chungbuk National University, Chungdae-Ro 1, Seowon-Gu, Chungbuk, 28644, Cheongju, South Korea
| | - L A D S De Silva
- Laboratory of Aquatic Animal Medicine, Veterinary Medical Center, College of Veterinary Medicine, Chungbuk National University, Chungdae-Ro 1, Seowon-Gu, Chungbuk, 28644, Cheongju, South Korea
| | - Gang-Joon Heo
- Laboratory of Aquatic Animal Medicine, Veterinary Medical Center, College of Veterinary Medicine, Chungbuk National University, Chungdae-Ro 1, Seowon-Gu, Chungbuk, 28644, Cheongju, South Korea.
| |
Collapse
|
7
|
Ning H, Zhang J, Zhao Q, Lin H, Wang J. Development of the phage lysin-loaded liposomes as preservatives for live clams. Int J Food Microbiol 2023; 387:110059. [PMID: 36580845 DOI: 10.1016/j.ijfoodmicro.2022.110059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Exogenous applications of phage lysins against Vibrio parahaemolyticus (V. parahaemolyticus) are a challenge due to the gram-negative bacteria outer membrane barrier. This study aimed to improve the antibacterial effect of V. parahaemolyticus phage lysin Lysqdvp001 (Lys), the best-characterized lysin with lytic activity against multiple species of Vibrios, by using liposome delivery. Various kinds of Lys-loaded liposome (Lys-lip) systems were designed and tested. The antibacterial activities of cationic guar gum (CGG) containing liposomes were much higher than the other liposomes, causing >5 log10CFU/mL of reductions of V. parahaemolyticus in buffer and severely damaging the bacterial cell structure. Moreover, some CGG liposome formulations retained high antibacterial effect after both 60-80 °C heat treatments and freeze-drying. Besides, the most stable liposome formulation killed 99 % of V. parahaemolyticus in the seawater with live clams, and its depuration rate against the bacterial contaminated clams also reached 99 %.
Collapse
Affiliation(s)
- Houqi Ning
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Jing Zhang
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Qian Zhao
- School of Stomatology of Qingdao University, No. 308, Ningxia Road, 266003 Qingdao, Shandong Province, PR China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Jingxue Wang
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, PR China.
| |
Collapse
|
8
|
Sudan P, Tyagi A, Dar RA, Sharma C, Singh P, B T NK, Chandra M, Arora AK. Prevalence and antimicrobial resistance of food safety related Vibrio species in inland saline water shrimp culture farms. INTERNATIONAL MICROBIOLOGY : THE OFFICIAL JOURNAL OF THE SPANISH SOCIETY FOR MICROBIOLOGY 2023:10.1007/s10123-023-00323-7. [PMID: 36609954 DOI: 10.1007/s10123-023-00323-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/23/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
This study evaluated the potential pathogenicity and antimicrobial resistance (AMR) of Vibrio species isolated from inland saline shrimp culture farms. Out of 200 Vibrio isolates obtained from 166 shrimp/water samples, 105 isolates were identified as V. parahaemolyticus and 31 isolates were identified as V. alginolyticus and V. cholerae, respectively. During PCR screening of virulence-associated genes, the presence of the tlh gene was confirmed in 70 and 19 isolates of V. parahaemolyticus and V. alginolyticus, respectively. Besides, 10 isolates of V. parahaemolyticus were also found positive for trh gene. During antibiotic susceptibility testing (AST), very high resistance to cefotaxime (93.0%), amoxiclav (90.3%), ampicillin (88.2%), and ceftazidime (73.7%) was observed in all Vibrio species. Multiple antibiotic resistance (MAR) index values of Vibrio isolates ranged from 0.00 to 0.75, with 90.1% of isolates showing resistance to ≥ 3 antibiotics. The AST and MAR patterns did not significantly vary sample-wise or Vibrio species-wise. During the minimum inhibitory concentration (MIC) testing of various antibiotics against Vibrio isolates, the highest MIC values were recorded for amoxiclav followed by kanamycin. These results indicated that multi-drug resistant Vibrio species could act as the reservoirs of antibiotic resistance genes in the shrimp culture environment. The limited host range of 12 previously isolated V. parahaemolyticus phages against V. parahaemolyticus isolates from this study indicated that multiple strains of V. parahaemolyticus were prevalent in inland saline shrimp culture farms. The findings of the current study emphasize that routine monitoring of emerging aquaculture areas is critical for AMR pathogen risk assessment.
Collapse
Affiliation(s)
- Prapti Sudan
- College of Fisheries, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, 141004, Punjab, India
| | - Anuj Tyagi
- College of Fisheries, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, 141004, Punjab, India.
| | - Rouf Ahmad Dar
- College of Fisheries, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, 141004, Punjab, India
| | - Chetna Sharma
- College of Fisheries, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, 141004, Punjab, India
| | - Prabjeet Singh
- College of Fisheries, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, 141004, Punjab, India
| | - Naveen Kumar B T
- College of Fisheries, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, 141004, Punjab, India
| | - Mudit Chandra
- College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, 141004, Punjab, India
| | - A K Arora
- College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, 141004, Punjab, India
| |
Collapse
|
9
|
Genomic and Transcriptomic Analysis Reveal Multiple Strategies for the Cadmium Tolerance in Vibrio parahaemolyticus N10-18 Isolated from Aquatic Animal Ostrea gigas Thunberg. Foods 2022; 11:foods11233777. [PMID: 36496584 PMCID: PMC9741282 DOI: 10.3390/foods11233777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/05/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022] Open
Abstract
The waterborne Vibrio parahaemolyticus can cause acute gastroenteritis, wound infection, and septicemia in humans. Pollution of heavy metals in aquatic environments is proposed to link high incidence of the multidrug-resistant (MDR) pathogen. Nevertheless, the genome evolution and heavy metal tolerance mechanism of V. parahaemolyticus in aquatic animals remain to be largely unveiled. Here, we overcome the limitation by characterizing an MDR V. parahaemolyticus N10-18 isolate with high cadmium (Cd) tolerance using genomic and transcriptomic techniques. The draft genome sequence (4,910,080 bp) of V. parahaemolyticus N10-18 recovered from Ostrea gigas Thunberg was determined, and 722 of 4653 predicted genes had unknown function. Comparative genomic analysis revealed mobile genetic elements (n = 11) and heavy metal and antibiotic-resistance genes (n = 38 and 7). The bacterium significantly changed cell membrane structure to resist the Cd2+ (50 μg/mL) stress (p < 0.05). Comparative transcriptomic analysis revealed seven significantly altered metabolic pathways elicited by the stress. The zinc/Cd/mercury/lead transportation and efflux and the zinc ATP-binding cassette (ABC) transportation were greatly enhanced; metal and iron ABC transportation and thiamine metabolism were also up-regulated; conversely, propanoate metabolism and ribose and maltose ABC transportation were inhibited (p < 0.05). The results of this study demonstrate multiple strategies for the Cd tolerance in V. parahaemolyticus.
Collapse
|
10
|
Ning H, Zhang J, Wang Y, Lin H, Wang J. Development of highly efficient artilysins against Vibrio parahaemolyticus via virtual screening assisted by molecular docking. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Efficacy of 405 nm Light-Emitting Diode Illumination and Citral Used Alone and in Combination for Inactivation of Vibrio parahaemolyticus on Shrimp. Foods 2022; 11:foods11142008. [PMID: 35885251 PMCID: PMC9324625 DOI: 10.3390/foods11142008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 02/01/2023] Open
Abstract
Vibrio parahaemolyticus is a widely distributed pathogen, which is frequently the lead cause of infections related to seafood consumption. The objective of the present study was to investigate the antimicrobial effect of the combination of 405 nm light-emitting diode (LED) and citral on V. parahaemolyticus. The antimicrobial effect of LED illumination and citral was evaluated on V. parahaemolyticus not only in phosphate-buffered saline (PBS) but also on shrimp. Quality changes of shrimp were determined by sensory evaluation. Changes in bacteria cell membrane morphology, cell membrane permeability, cell lipid oxidation level, and DNA degradation were examined to provide insights into the antimicrobial mechanism. The combination of LED treatments and citral had better antimicrobial effects than either treatment alone. LED combined with 0.1 mg/mL of citral effectively reduced V. parahaemolyticus from 6.5 log CFU/mL to below the detection limit in PBS. Combined treatment caused a 3.5 log reduction of the pathogen on shrimp within 20 min and a 6 log reduction within 2 h without significant changes in the sensory score. Furthermore, combined LED and citral treatment affected V. parahaemolyticus cellular morphology and outer membrane integrity. The profile of the comet assay and DNA fragmentation analysis revealed that combination treatment did not cause a breakdown of bacterial genomic DNA. In conclusion, LED may act synergistically with citral. They have the potential to be developed as novel microbial intervention strategies.
Collapse
|
12
|
Kalkan S. Heavy metal resistance of marine bacteria on the sediments of the Black Sea. MARINE POLLUTION BULLETIN 2022; 179:113652. [PMID: 35500375 DOI: 10.1016/j.marpolbul.2022.113652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/22/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
The Black Sea is unfortunately globally established as a highly polluted sea, with contaminants from various sources polluting its marine sediments. This study aimed at analyzing heavy metal resistance levels by heterotrophic bacteria colonizing marine sediments across Black Sea shores within Turkey. Twenty-nine bacterial samples from marine sediments were investigated through exposure to sixteen heavy metal salts using the microdilution method. The minimum inhibitory concentration values for bacterial colonies within such marine sediment samples ranged from <0.97 mM/L to >1000 mM/L. Trough and peak minimum inhibitory concentration values were determined at <0.17 mg/mL and > 331 mg/mL. Peak tolerated and peak toxic heavy metals were identified as iron and cadmium, respectively. Resistance ratios were also obtained in this study. Bacillus wiedmannii was identified as the most resistant bacterial population when exposed to heavy metal salts. This study shows occurrence of heavy metal resistant bacteria within Black Sea sediments.
Collapse
Affiliation(s)
- Samet Kalkan
- Recep Tayyip Erdogan University, Faculty of Fisheries, Ataturk Street Fener District, 53100 Merkez, Rize, Turkey.
| |
Collapse
|
13
|
Pavón A, Riquelme D, Jaña V, Iribarren C, Manzano C, Lopez-Joven C, Reyes-Cerpa S, Navarrete P, Pavez L, García K. The High Risk of Bivalve Farming in Coastal Areas With Heavy Metal Pollution and Antibiotic-Resistant Bacteria: A Chilean Perspective. Front Cell Infect Microbiol 2022; 12:867446. [PMID: 35463633 PMCID: PMC9021898 DOI: 10.3389/fcimb.2022.867446] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/09/2022] [Indexed: 11/30/2022] Open
Abstract
Anthropogenic pollution has a huge impact on the water quality of marine ecosystems. Heavy metals and antibiotics are anthropogenic stressors that have a major effect on the health of the marine organisms. Although heavy metals are also associate with volcanic eruptions, wind erosion or evaporation, most of them come from industrial and urban waste. Such contamination, coupled to the use and subsequent misuse of antimicrobials in aquatic environments, is an important stress factor capable of affecting the marine communities in the ecosystem. Bivalves are important ecological components of the oceanic environments and can bioaccumulate pollutants during their feeding through water filtration, acting as environmental sentinels. However, heavy metals and antibiotics pollution can affect several of their physiologic and immunological processes, including their microbiome. In fact, heavy metals and antibiotics have the potential to select resistance genes in bacteria, including those that are part of the microbiota of bivalves, such as Vibrio spp. Worryingly, antibiotic-resistant phenotypes have been shown to be more tolerant to heavy metals, and vice versa, which probably occurs through co- and cross-resistance pathways. In this regard, a crucial role of heavy metal resistance genes in the spread of mobile element-mediated antibiotic resistance has been suggested. Thus, it might be expected that antibiotic resistance of Vibrio spp. associated with bivalves would be higher in contaminated environments. In this review, we focused on co-occurrence of heavy metal and antibiotic resistance in Vibrio spp. In addition, we explore the Chilean situation with respect to the contaminants described above, focusing on the main bivalves-producing region for human consumption, considering bivalves as potential vehicles of antibiotic resistance genes to humans through the ingestion of contaminated seafood.
Collapse
Affiliation(s)
- Alequis Pavón
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Diego Riquelme
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Víctor Jaña
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas (NIAVA), Universidad de Las Américas, Santiago, Chile
| | - Cristian Iribarren
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Camila Manzano
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Carmen Lopez-Joven
- Instituto de Medicina Preventiva Veterinaria, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Sebastián Reyes-Cerpa
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Paola Navarrete
- Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| | - Leonardo Pavez
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas (NIAVA), Universidad de Las Américas, Santiago, Chile
- *Correspondence: Leonardo Pavez, ; Katherine García,
| | - Katherine García
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
- Carrera de Nutrición y Dietética, Universidad Autónoma de Chile, Santiago, Chile
- *Correspondence: Leonardo Pavez, ; Katherine García,
| |
Collapse
|
14
|
Ning H, Cong Y, Lin H, Wang J. Development of cationic peptide chimeric lysins based on phage lysin Lysqdvp001 and their antibacterial effects against Vibrio parahaemolyticus: A preliminary study. Int J Food Microbiol 2021; 358:109396. [PMID: 34560361 DOI: 10.1016/j.ijfoodmicro.2021.109396] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/26/2021] [Accepted: 09/03/2021] [Indexed: 01/22/2023]
Abstract
Cationic peptide chimeric lysins, Lysqdvp001-5aa, Lysqdvp001-10aa and Lysqdvp001-15aa, were designed based on lysin Lysqdvp001 from Vibrio parahaemolyticus (V. parahaemolyticus) phage qdvp001. These chimeric lysins showed equivalent peptidoglycan hydrolysis activities with Lysqdvp001 and could lyse the bacteria from the outside. The antibacterial activity as well as outer and inner membrane permeabilization of Lysqdvp001 and chimeric lysins against V. parahaemolyticus were Lysqdvp001-15aa>Lysqdvp001-10aa>Lysqdvp001-5aa>Lysqdvp001. Lysqdvp001-15aa exhibited an excellent antibacterial activity with minimum inhibition and bactericidal concentrations (MIC and MBC) of 0.2 and 0.4 mg/mL, respectively, and its antibacterial spectrum was much broader than phage qdvp001. Membrane hyperpolarization and membrane phospholipid exposure of V. parahaemolyticus were observed after Lysqdvp001-15aa treatments. Transmission electron microscope (TEM) showed Lysqdvp001-15aa destroyed structure integrity of V. parahaemolyticus. Besides, MIC and MBC of Lysqdvp001-15aa decreased V. parahaemolyticus counts in oyster by 3.20 and 4.03 log10CFU/g. Lysqdvp001-15aa at MBC eradicated about 50% of V. parahaemolyticus biofilms and inhibited over 90% of the formation of the bacterial biofilms.
Collapse
Affiliation(s)
- Houqi Ning
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Yu Cong
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Jingxue Wang
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, PR China.
| |
Collapse
|
15
|
Hubeny J, Harnisz M, Korzeniewska E, Buta M, Zieliński W, Rolbiecki D, Giebułtowicz J, Nałęcz-Jawecki G, Płaza G. Industrialization as a source of heavy metals and antibiotics which can enhance the antibiotic resistance in wastewater, sewage sludge and river water. PLoS One 2021; 16:e0252691. [PMID: 34086804 PMCID: PMC8177550 DOI: 10.1371/journal.pone.0252691] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/19/2021] [Indexed: 11/22/2022] Open
Abstract
The spread of antibiotic resistance is closely related with selective pressure in the environment. Wastewater from industrialized regions is characterized by higher concentrations of these pollutants than sewage from less industrialized areas. The aim of this study was to compare the concentrations of contaminants such as antibiotics and heavy metals (HMs), and to evaluate their impact on the spread of genes encoding resistance to antimicrobial drugs in samples of wastewater, sewage sludge and river water in two regions with different levels of industrialization. The factors exerting selective pressure, which significantly contributed to the occurrence of the examined antibiotic resistance genes (ARGs), were identified. The concentrations of selected gene copy numbers conferring resistance to four groups of antibiotics as well as class 1 and 2 integron-integrase genes were determined in the analyzed samples. The concentrations of six HMs and antibiotics corresponding to genes mediated resistance from 3 classes were determined. Based on network analysis, only some of the analyzed antibiotics correlated with ARGs, while HM levels were correlated with ARG concentrations, which can confirm the important role of HMs in promoting drug resistance. The samples from a wastewater treatment plant (WWTP) located an industrialized region were characterized by higher HM contamination and a higher number of significant correlations between the analyzed variables than the samples collected from a WWTP located in a less industrialized region. These results indicated that treated wastewater released into the natural environment can pose a continuous threat to human health by transferring ARGs, antibiotics and HMs to the environment. These findings shed light on the impact of industrialization on antibiotic resistance dissemination.
Collapse
Affiliation(s)
- Jakub Hubeny
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Monika Harnisz
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
- * E-mail: ,
| | - Ewa Korzeniewska
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Martyna Buta
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Wiktor Zieliński
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Damian Rolbiecki
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Joanna Giebułtowicz
- Department of Bioanalysis and Drug Analysis, Faculty of Pharmacy, Medical University of Warsaw, Warszawa, Poland
| | - Grzegorz Nałęcz-Jawecki
- Department of Environmental Health Sciences, Faculty of Pharmacy, Medical University of Warsaw, Warszawa, Poland
| | - Grażyna Płaza
- Faculty of Organization and Management, Silesian University of Technology, Zabrze, Poland
| |
Collapse
|
16
|
Su C, Chen L. Virulence, resistance, and genetic diversity of Vibrio parahaemolyticus recovered from commonly consumed aquatic products in Shanghai, China. MARINE POLLUTION BULLETIN 2020; 160:111554. [PMID: 32810672 DOI: 10.1016/j.marpolbul.2020.111554] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 05/27/2023]
Abstract
Vibrio parahaemolyticus can cause severe gastroenteritis, septicaemia and even death in humans. Continuous monitoring of V. parahaemolyticus contamination in aquatic products is imperative for ensuring food safety. In this study, we isolated and characterized 561 V. parahaemolyticus strains recovered from 23 species of commonly consumed shellfish, crustaceans, and fish collected in July and August of 2017 in Shanghai, China. The bacterium was not isolated from two fish species Carassius auratus and Parabramis pekinensis. The results revealed a very low occurrence of pathogenic V. parahaemolyticus carrying the toxin genes trh (0.2%) and tdh (0.0%). However, high percentages of resistance to the antimicrobial agents ampicillin (93.0%), rifampin (82.9%), streptomycin (75.4%) and kanamycin (50.1%) were found. A high incidence of tolerance to the heavy metals Hg2+ (74.7%) and Zn2+ (56.2%) was also observed in the isolates. ERIC-PCR-based fingerprinting of MDR isolates (77.5%) revealed 428 ERIC-genotypes, demonstrating remarkable genetic variation among the isolates. The results of this study support the urgent need for food safety risk assessment of aquatic products.
Collapse
Affiliation(s)
- Chenli Su
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, People's Republic of China
| | - Lanming Chen
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, People's Republic of China.
| |
Collapse
|
17
|
Fang J, Cheng H, Yu T, Jiang H. Occurrence of Virulence Factors and Antibiotic and Heavy Metal Resistance in Vibrio parahaemolyticus Isolated from Pacific Mackerel at Markets in Zhejiang, China. J Food Prot 2020; 83:1411-1419. [PMID: 32294206 DOI: 10.4315/jfp-20-091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/06/2020] [Indexed: 12/24/2022]
Abstract
ABSTRACT Vibrio parahaemolyticus is a widespread bacterium in the marine environment and is one of the leading causes of food-derived bacterial poisoning in humans worldwide. The main objective of this study was to determine the prevalence, virulence factors, and antibiotic and heavy metal resistance profiles of V. parahaemolyticus in Pacific mackerel (Pneumatophorus japonicus) from different markets in Zhejiang Province, People's Republic of China. In total, 112 (31.11%) V. parahaemolyticus isolates were identified from 360 Pacific mackerel samples, with an extremely low occurrence of the virulence genes trh (1.79%, 2 of 112) and tdh (0%, 0 of 112). Antibiotic resistance testing revealed that most isolates showed resistance to ampicillin (96.43%, 108 of 112) and streptomycin (90.18%, 101 of 112), whereas all strains were sensitive to kanamycin, florfenicol, cefamandole, and trimethoprim-sulfamethoxazole. Furthermore, 46.43% (52 of 112) of isolates, which had 12 different phenotypes, were classified as multidrug resistant. In addition, the multiple antibiotic resistance index values of isolates were between 0.05 and 0.63, and the maximum multiple antibiotic resistance index was attributed to two isolates that exhibited resistance to 12 antibiotics. Heavy metal resistance patterns were similar among the six different markets. The majority of isolates showed resistance to Cd2+ (78.57%) and Pb2+ (51.79%), and fewer were resistant to Cu2+ (37.50%), Zn2+ (25.00%), Co2+ (9.82%), Ni2+ (6.25%), and Mn2+ (4.46%). No isolates were resistant to Cr3+. In total, 22.32% (25 of 112) of strains were multiheavy metal resistant. Furthermore, multidrug resistance and multiheavy metal resistance were found to be positively correlated in the V. parahaemolyticus strains by using Pearson's correlation analysis (P = 0.008; R = 0.925). This information will contribute to the monitoring of variations in the antibiotic and heavy metal resistance profiles of V. parahaemolyticus strains from seafood and provide insight into the appropriate use of antibiotics and the safe consumption of seafood. HIGHLIGHTS
Collapse
Affiliation(s)
- Jiehong Fang
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Hui Cheng
- Research and Develop Department, Hangzhou Wahaha Group Co. Ltd., Hangzhou, Zhejiang 310018, People's Republic of China
| | - Ting Yu
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Han Jiang
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, People's Republic of China
| |
Collapse
|
18
|
Zampieri BDB, da Costa Andrade V, Chinellato RM, Garcia CAB, de Oliveira MA, Brucha G, de Oliveira AJFC. Heavy metal concentrations in Brazilian port areas and their relationships with microorganisms: can pollution in these areas change the microbial community? ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:512. [PMID: 32661589 DOI: 10.1007/s10661-020-08413-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/07/2020] [Indexed: 06/11/2023]
Abstract
The objectives of this study were to analyze the difference in ways in which metals polluting Brazilian port areas influence bacterial communities and the selection of resistant strains. The hypothesis tested was that port areas would have microbial communities significantly different from a pristine area, mainly due to a greater load of metals found in these areas. Sediment samples were collected in two port areas (Santos and São Sebastião) and one pristine area (Ubatuba). Total DNA was extracted and MiSeq sequencing was performed. A hundred strains were isolated from the same samples and were tested for metal resistance. The community composition was similar in the two port regions, but differed from the pristine area. Microbial diversity was significantly lower in the port areas. The phyla Proteobacteria, Cyanobacteria, and Thermodesulfobacteria exhibited positive correlations with copper and zinc concentrations. Chloroflex, Nitrospirae, Planctomycetes, and Chlorobi exhibited negative correlations with copper, chromium, and zinc. Cr and Zn had higher concentrations at port areas and were responsible to select more metal-resistant strains. Some genera were found to be able to easily develop metal resistance. The most isolated genera were Bacillus, Vibrio, and Pseudomonas. This type of study can illustrate, even in very complex natural environments, the influence of pollution on the community as a whole and the consequences of these changes.
Collapse
Affiliation(s)
- Bruna Del Busso Zampieri
- Department of Biochemistry and Microbiology, School of Biology, São Paulo State University - Rio Claro Campus (UNESP Rio Claro), Av. 24 A, 1515 - Jardim Vila Bela, Rio Claro, São Paulo, 13506-900, Brazil.
| | - Vanessa da Costa Andrade
- Department of Biochemistry and Microbiology, School of Biology, São Paulo State University - Rio Claro Campus (UNESP Rio Claro), Av. 24 A, 1515 - Jardim Vila Bela, Rio Claro, São Paulo, 13506-900, Brazil
| | - Roberta Merguizo Chinellato
- School of Biosciences, São Paulo State University - São Vicente Campus (UNESP São Vicente), Praça Infante Dom Henrique, s/n, Parque Bitaru, São Paulo, 11330-900, Brazil
| | - Carlos Alexandre Borges Garcia
- Department of Chemistry, Center for Exact Sciences and Technology, Federal University of Sergipe - São Cristóvão Campus (UFS São Cristóvão), Cidade Universitária Prof. José Aloísio de Campos Rosa Elze, São Cristóvão, Sergipe, 49100000, Brazil
| | - Marcos Antônio de Oliveira
- School of Biosciences, São Paulo State University - São Vicente Campus (UNESP São Vicente), Praça Infante Dom Henrique, s/n, Parque Bitaru, São Paulo, 11330-900, Brazil
| | - Gunther Brucha
- School of Technological Sciences, Federal University of Alfenas (UNIFAL-MG), Rodovia Aurélio Vilela, n 11.999 Cidade Universitária, Poços de Caldas, Minas Gerais, 37715400, Brazil
| | - Ana Julia Fernandes Cardoso de Oliveira
- School of Biosciences, São Paulo State University - São Vicente Campus (UNESP São Vicente), Praça Infante Dom Henrique, s/n, Parque Bitaru, São Paulo, 11330-900, Brazil
| |
Collapse
|
19
|
Jo S, Shin C, Shin Y, Kim PH, Park JI, Kim M, Park B, So JS. Heavy metal and antibiotic co-resistance in Vibrio parahaemolyticus isolated from shellfish. MARINE POLLUTION BULLETIN 2020; 156:111246. [PMID: 32510388 DOI: 10.1016/j.marpolbul.2020.111246] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 05/04/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
Vibrio parahaemolyticus is a major gastroenteritis-causing pathogen in Korea. Recent studies have reported that heavy metal and antimicrobial resistance in bacteria are related. In this study, we investigated heavy metal and antimicrobial resistance in wild strains of V. parahaemolyticus. First, we isolated and characterized 38 V. parahaemolyticus strains (toxR-positive) from shellfish collected from the West Sea of Korea between May and November 2018. Antibiotic and heavy metal resistance in the 38 strains were tested by disk diffusion assay and broth dilution assay, respectively. Then, we selected seven strains that showed resistance to cobalt (Co2+) and copper (Cu2+), to examine the relationship between heavy metal resistance and antimicrobial resistance. After heavy metal (Co2+ and Cu2+) pretreatment, the seven strains exhibited increased resistance to kanamycin, streptomycin, tetracycline, and gentamycin. Likewise, antimicrobial pretreatment resulted in increased heavy metal tolerance.
Collapse
Affiliation(s)
- SeongBeen Jo
- Department of Biological Engineering, Inha University, Incheon, Republic of Korea
| | - ChangHyeon Shin
- Department of Biological Engineering, Inha University, Incheon, Republic of Korea
| | - YuJin Shin
- Department of Biological Engineering, Inha University, Incheon, Republic of Korea
| | - Poong Ho Kim
- West Sea Fisheries Research Institute, National Institute of Fisheries Science (NIFS), Incheon, Republic of Korea
| | - Jin Il Park
- West Sea Fisheries Research Institute, National Institute of Fisheries Science (NIFS), Incheon, Republic of Korea
| | - Minju Kim
- West Sea Fisheries Research Institute, National Institute of Fisheries Science (NIFS), Incheon, Republic of Korea
| | - Bomi Park
- West Sea Fisheries Research Institute, National Institute of Fisheries Science (NIFS), Incheon, Republic of Korea
| | - Jae-Seong So
- Department of Biological Engineering, Inha University, Incheon, Republic of Korea.
| |
Collapse
|
20
|
Jiang H, Yu T, Yang Y, Yu S, Wu J, Lin R, Li Y, Fang J, Zhu C. Co-occurrence of Antibiotic and Heavy Metal Resistance and Sequence Type Diversity of Vibrio parahaemolyticus Isolated From Penaeus vannamei at Freshwater Farms, Seawater Farms, and Markets in Zhejiang Province, China. Front Microbiol 2020; 11:1294. [PMID: 32676056 PMCID: PMC7333440 DOI: 10.3389/fmicb.2020.01294] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/20/2020] [Indexed: 12/14/2022] Open
Abstract
Vibrio parahaemolyticus is the leading cause of seafood-borne bacterial poisoning in China and is a threat to human health worldwide. The aim of this study was to assess the antibiotic resistance profiles and distribution of heavy metal resistance of V. parahaemolyticus isolates from Penaeus vannamei from freshwater farms, seawater farms, and their corresponding markets in Zhejiang, China and to assess the relationship between multidrug resistance (MDR) and multi-heavy metal resistance (MHMR). Of the 360 P. vannamei samples that we tested, 90 (25.00%) were V. parahaemolyticus positive, but the occurrence of pathogenic isolates carrying the toxin genes tdh (4.44%) and trh (3.33%) was low. None of the tested isolates harbored both the tdh and trh genes. However, antibiotic resistance profiles varied among different sampling locations, levels of resistance to the antibiotics ampicillin (76.67%) and streptomycin (74.44%) were high overall, and MDR isolates were common (40.00% of all isolates). Heavy metal resistance patterns were similar among the different sampling locations. Overall, the majority of V. parahaemolyticus isolates displayed tolerance to Cd2+ (60.00%), and fewer were resistant to Cu2+ (40.00%), Zn2+ (38.89%), Ni2+ (24.44%), Cr3+ (14.44%), and Co2+ (8.89%). In addition, 34.44% (31/90) of isolates tested in this study were found to be MHMR. Using Pearson's correlation analysis, MDR and MHMR were found to be positively correlated (P = 0.004; R = 0.759). The 18 V. parahaemolyticus isolates that were both MDR and MHMR represented 18 sequence types, of which 12 were novel to the PubMLST database, and displayed a high level of genetic diversity, suggesting that dissemination may be affected by mobile genetic elements via horizontal gene transfer. However, a low percentage of class 1 integrons without gene cassettes and no class 2 or 3 integrons were detected in the 18 MDR and MHMR isolates or in the 90 V. parahaemolyticus isolates overall. Thus, we suggest that future research focus on elucidating the mechanisms that lead to a high prevalence of resistance determinants in V. parahaemolyticus. The results of this study provide data that will support aquatic animal health management and food safety risk assessments in the aquaculture industry.
Collapse
Affiliation(s)
- Han Jiang
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Ting Yu
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Yuting Yang
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Shengtao Yu
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Jiangchun Wu
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Rumeng Lin
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Yixian Li
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Jiehong Fang
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Cheng Zhu
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| |
Collapse
|
21
|
He Y, Wang S, Zhang J, Zhang X, Sun F, He B, Liu X. Integrative and Conjugative Elements-Positive Vibrio parahaemolyticus Isolated From Aquaculture Shrimp in Jiangsu, China. Front Microbiol 2019; 10:1574. [PMID: 31379767 PMCID: PMC6657232 DOI: 10.3389/fmicb.2019.01574] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/24/2019] [Indexed: 11/13/2022] Open
Abstract
The development of multidrug- and toxin-resistant bacteria as a result of increasing industrialization and sustained and intense antimicrobial use in aquaculture results in human health problems through increased incidence of food-borne illnesses. Integrative and conjugative elements (ICEs) are self-transmissible mobile genetic elements that allow bacteria to acquire complex new traits through horizontal gene transfer and encode a wide variety of genetic information, including resistance to antibiotics and heavy metals; however, there is a lack of studies of ICEs of environmental origin in Asia. Here, we determined the prevalence, genotypes, heavy metal resistance and antimicrobial susceptibility of 997 presumptive strains of Vibrio parahaemolyticus (tlh+, tdh–), a Gram-negative bacterium that causes gastrointestinal illness in humans, isolated from four species of aquaculture shrimp in Jiangsu, China. We found that 59 of the 997 isolates (5.9%) were ICE-positive, and of these, 9 isolates tested positive for all resistance genes. BLAST analysis showed that similarity for the eight strains to V. parahaemolyticus was 99%. Tracing the V. parahaemolyticus genotypes, showed no significant relevance of genotype among the antimicrobial resistance strains bearing the ICEs or not. Thus, in aquaculture, ICEs are not the major transmission mediators of resistance to antibiotics or heavy metals. We suggest future research to elucidate mechanisms that drive transmission of resistance determinants in V. parahaemolyticus.
Collapse
Affiliation(s)
- Yu He
- College of Food Biological Engineering, Xuzhou University of Technology, Xuzhou, China.,Key Construction Laboratory of Food Resources Development and the Quality Safety in Jiangsu, Xuzhou University of Technology, Xuzhou, China
| | - Shuai Wang
- College of Food Biological Engineering, Xuzhou University of Technology, Xuzhou, China.,Key Construction Laboratory of Food Resources Development and the Quality Safety in Jiangsu, Xuzhou University of Technology, Xuzhou, China
| | - Jianping Zhang
- College of Food Biological Engineering, Xuzhou University of Technology, Xuzhou, China.,Key Construction Laboratory of Food Resources Development and the Quality Safety in Jiangsu, Xuzhou University of Technology, Xuzhou, China
| | - Xueyang Zhang
- College of Environmental Engineering, Xuzhou University of Technology, Xuzhou, China
| | - Fengjiao Sun
- Logistics & Security Department, Shanghai Civil Aviation College, Shanghai, China
| | - Bin He
- Environment Monitoring Station, Zaozhuang Municipal Bureau of Ecology and Environment, Zaozhuang, China
| | - Xiao Liu
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou, China
| |
Collapse
|