1
|
Moir T, Huggett M, Smith T, Gaston T. Thermally Primed Zostera muelleri Seeds Exhibit Higher Germination Rates Than Those From Ambient Conditions. Ecol Evol 2024; 14:e70362. [PMID: 39364035 PMCID: PMC11447082 DOI: 10.1002/ece3.70362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 10/05/2024] Open
Abstract
Seagrasses provide critical ecosystem services such as carbon sequestration, sediment stabilisation and nursery habitat for juvenile fish. Zostera muelleri is ubiquitous within Australian and New Zealand estuaries, however, as a species is relatively understudied. We sourced seeds from a thermally affected east Australian estuary and investigated whether germination rates differed between ambient and thermally affected seeds over a variety of temperatures (16°C-28°C) to determine how seagrass systems might react in a warming climate. Germination for the experiment was low and totalled 5% of all seeds; however, similar numbers are typical in seed germination studies. Germination was highest at 16°C and was enhanced through the simulation of a 48-h freshwater pulse. Thermally affected sites germinated faster and had greater mean maximum germination when compared to control sites regardless of experimental temperature. These findings indicate that Z. muelleri in this system may be exhibiting transgenerational plasticity due to the thermal stress the parent experiences. This result provides an alternate viewpoint to the current literature by suggesting that unknown transgenerational effects may provide Z. muelleri with greater germination plasticity against temperatures expected under predicted climate change scenarios than previously expected.
Collapse
Affiliation(s)
- Tom Moir
- School of Environmental and Life SciencesUniversity of NewcastleOurimbahNew South WalesAustralia
| | - Megan J. Huggett
- School of Environmental and Life SciencesUniversity of NewcastleOurimbahNew South WalesAustralia
| | - Timothy M. Smith
- Centre for Tropical Water & Aquatic Ecosystem ResearchJames Cook UniversityCairnsQueenslandAustralia
| | - Troy F. Gaston
- School of Environmental and Life SciencesUniversity of NewcastleOurimbahNew South WalesAustralia
| |
Collapse
|
2
|
Graham OJ, Harvell D, Christiaen B, Gaeckle J, Aoki LR, Ratliff B, Vinton A, Rappazzo BH, Whitman T. Taking the Pulse of Resilience in Conserving Seagrass Meadows. Integr Comp Biol 2024; 64:816-826. [PMID: 39066484 DOI: 10.1093/icb/icae120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/09/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Foundational habitats such as seagrasses and coral reefs are at severe risk globally from climate warming. Infectious disease associated with warming events is both a cause of decline and an indicator of stress in both habitats. Since new approaches are needed to detect refugia and design climate-smart networks of marine protected areas, we test the hypothesis that the health of eelgrass (Zostera marina) in temperate ecosystems can serve as a proxy indicative of higher resilience and help pinpoint refugia. Eelgrass meadows worldwide are at risk from environmental stressors, including climate warming and disease. Disease outbreaks of Labyrinthula zosterae are associated with recent, widespread declines in eelgrass meadows throughout the San Juan Islands, Washington, USA. Machine language learning, drone surveys, and molecular diagnostics reveal climate impacts on seagrass wasting disease prevalence (proportion of infected individuals) and severity (proportion of infected leaf area) from San Diego, California, to Alaska. Given that warmer temperatures favor many pathogens such as L. zosterae, we hypothesize that absent or low disease severity in meadows could indicate eelgrass resilience to climate and pathogenic stressors. Regional surveys showed the San Juan Islands as a hotspot for both high disease prevalence and severity, and surveys throughout the Northeast Pacific indicated higher prevalence and severity in intertidal, rather than subtidal, meadows. Further, among sites with eelgrass declines, losses were more pronounced at sites with shallower eelgrass meadows. We suggest that deeper meadows with the lowest disease severity will be refuges from future warming and pathogenic stressors in the Northeast Pacific. Disease monitoring may be a useful conservation approach for marine foundation species, as low or absent disease severity can pinpoint resilient refugia that should be prioritized for future conservation efforts. Even in declining or at-risk habitats, disease surveys can help identify meadows that may contain especially resilient individuals for future restoration efforts. Our approach of using disease as a pulse point for eelgrass resilience to multiple stressors could be applied to other habitats such as coral reefs to inform conservation and management decisions.
Collapse
Affiliation(s)
- Olivia J Graham
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - Drew Harvell
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - Bart Christiaen
- Washington State Department of Natural Resources, Olympia, WA 47027, USA
| | - Jeff Gaeckle
- Washington State Department of Natural Resources, Olympia, WA 47027, USA
| | - Lillian R Aoki
- Department of Environmental Studies, University of Oregon, Eugene, OR 97403-1245, USA
| | - Baylen Ratliff
- College of the Environment, University of Washington, Seattle, WA 98105, USA
| | - Audrey Vinton
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - Brendan H Rappazzo
- Department of Computer Science, Cornell University, Ithaca, NY 14853, USA
| | - Tina Whitman
- Department of Computer Science, Cornell University, Ithaca, NY 14853, USA
- Friends of the San Juans, Friday Harbor, WA 98250, USA
| |
Collapse
|
3
|
Shelake RM, Wagh SG, Patil AM, Červený J, Waghunde RR, Kim JY. Heat Stress and Plant-Biotic Interactions: Advances and Perspectives. PLANTS (BASEL, SWITZERLAND) 2024; 13:2022. [PMID: 39124140 PMCID: PMC11313874 DOI: 10.3390/plants13152022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/11/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024]
Abstract
Climate change presents numerous challenges for agriculture, including frequent events of plant abiotic stresses such as elevated temperatures that lead to heat stress (HS). As the primary driving factor of climate change, HS threatens global food security and biodiversity. In recent years, HS events have negatively impacted plant physiology, reducing plant's ability to maintain disease resistance and resulting in lower crop yields. Plants must adapt their priorities toward defense mechanisms to tolerate stress in challenging environments. Furthermore, selective breeding and long-term domestication for higher yields have made crop varieties vulnerable to multiple stressors, making them more susceptible to frequent HS events. Studies on climate change predict that concurrent HS and biotic stresses will become more frequent and severe in the future, potentially occurring simultaneously or sequentially. While most studies have focused on singular stress effects on plant systems to examine how plants respond to specific stresses, the simultaneous occurrence of HS and biotic stresses pose a growing threat to agricultural productivity. Few studies have explored the interactions between HS and plant-biotic interactions. Here, we aim to shed light on the physiological and molecular effects of HS and biotic factor interactions (bacteria, fungi, oomycetes, nematodes, insect pests, pollinators, weedy species, and parasitic plants), as well as their combined impact on crop growth and yields. We also examine recent advances in designing and developing various strategies to address multi-stress scenarios related to HS and biotic factors.
Collapse
Affiliation(s)
- Rahul Mahadev Shelake
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Sopan Ganpatrao Wagh
- Global Change Research Institute, Czech Academy of Sciences, Brno 60300, Czech Republic;
| | - Akshay Milind Patil
- Cotton Improvement Project, Mahatma Phule Krishi Vidyapeeth (MPKV), Rahuri 413722, India;
| | - Jan Červený
- Global Change Research Institute, Czech Academy of Sciences, Brno 60300, Czech Republic;
| | - Rajesh Ramdas Waghunde
- Department of Plant Pathology, College of Agriculture, Navsari Agricultural University, Bharuch 392012, India;
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea
- Division of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
- Nulla Bio Inc., Jinju 52828, Republic of Korea
| |
Collapse
|
4
|
Stipcich P, Pansini A, Ceccherelli G. Resistance of Posidonia oceanica seedlings to warming: Investigating the importance of the lag-phase duration between two heat events to thermo-priming. MARINE POLLUTION BULLETIN 2024; 204:116515. [PMID: 38796990 DOI: 10.1016/j.marpolbul.2024.116515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/16/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024]
Abstract
The increase of marine heat waves (MHWs) occurrence is exacerbated in Mediterranean Sea and temperature resilience-enhancing strategies on key species, such as the seagrass Posidonia oceanica, need to be investigated. "Priming" describes a stimulus that prepares an organism for an improved response to upcoming environmental changes by triggering a memory that remains during a lag-phase. The aim of this study, conducted in Sardinia (Italy), was to investigate whether the development of thermo-primed P. oceanica seedlings is affected by a field simulated MHW depending on the duration of the lag-phase. After the thermo-priming stimulus, seedlings had a 0, 7 or 14 days lag-phase and after that, for each lag-phase group, half of the seedlings experienced a simulated MHW (the other half served as controls). Some other seedlings did not experience either the priming stimulus or the lag-phase. Results did not show any evidence of a memory triggered by the priming stimulus, but they highlighted the importance of an acclimation phase before the highest temperature: seedlings that experienced a gradual increase of temperature had a higher number of leaves and shorter leaf necrosis length compared to seedlings that had a lag-phase between two heat events. Regardless the priming stimulus, MHWs slowed down the development of the leaf and root length. Considering the increase of temperature fluctuations, testing different intensities of priming and different length of lag-phase is necessary to provide information about the adaptive success of the species.
Collapse
Affiliation(s)
- Patrizia Stipcich
- Department of Chemical Physical Mathematical and Natural Sciences, University of Sassari, Via Piandanna 4, 07100 Sassari, Italy; Department of Biology, University of Naples Federico II, Naples, Italy; National Biodiversity Future Centre, Palermo, Italy.
| | - Arianna Pansini
- Department of Chemical Physical Mathematical and Natural Sciences, University of Sassari, Via Piandanna 4, 07100 Sassari, Italy
| | - Giulia Ceccherelli
- Department of Chemical Physical Mathematical and Natural Sciences, University of Sassari, Via Piandanna 4, 07100 Sassari, Italy; National Biodiversity Future Centre, Palermo, Italy
| |
Collapse
|
5
|
Nguyen HM, Hong UVT, Ruocco M, Dattolo E, Marín-Guirao L, Pernice M, Procaccini G. Thermo-priming triggers species-specific physiological and transcriptome responses in Mediterranean seagrasses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108614. [PMID: 38626655 DOI: 10.1016/j.plaphy.2024.108614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/18/2024]
Abstract
Heat-priming improves plants' tolerance to a recurring heat stress event. The underlying molecular mechanisms of heat-priming are largely unknown in seagrasses. Here, ad hoc mesocosm experiments were conducted with two Mediterranean seagrass species, Posidonia oceanica and Cymodocea nodosa. Plants were first exposed to heat-priming, followed by a heat-triggering event. A comprehensive assessment of plant stress response across different levels of biological organization was performed at the end of the triggering event. Morphological and physiological results showed an improved response of heat-primed P. oceanica plants while in C. nodosa both heat- and non-primed plants enhanced their growth rates at the end of the triggering event. As resulting from whole transcriptome sequencing, molecular functions related to several cellular compartments and processes were involved in the response to warming of non-primed plants, while the response of heat-primed plants involved a limited group of processes. Our results suggest that seagrasses acquire a primed state during the priming event, that eventually gives plants the ability to induce a more energy-effective response when the thermal stress event recurs. Different species may differ in their ability to perform an improved heat stress response after priming. This study provides pioneer molecular insights into the emerging topic of seagrass stress priming and may benefit future studies in the field.
Collapse
Affiliation(s)
- Hung Manh Nguyen
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy
| | - Uyen V T Hong
- La Trobe University, AgriBio Building, Bundoora, 3086, VIC, Australia; Department of Plant Biotechnology & Biotransformation, University of Science, Vietnam National University, 700000, Ho Chi Minh City, Viet Nam
| | - Miriam Ruocco
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy
| | - Emanuela Dattolo
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy; NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133, Palermo, Italy
| | - Lázaro Marín-Guirao
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy; Oceanographic Center of Murcia, Seagrass Ecology Group, Spanish Institute of Oceanography (IEO-CSIC), C/Varadero, San Pedro del Pinatar, 30740, Murcia, Spain.
| | - Mathieu Pernice
- Faculty of Science, Climate Change Cluster (C3), University of Technology Sydney, Sydney, 2007, NSW, Australia
| | - Gabriele Procaccini
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy; NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133, Palermo, Italy
| |
Collapse
|
6
|
Provera I, Martinez M, Zenone A, Giacalone VM, D'Anna G, Badalamenti F, Marín-Guirao L, Procaccini G. Exploring priming strategies to improve stress resilience of Posidonia oceanica seedlings. MARINE POLLUTION BULLETIN 2024; 200:116057. [PMID: 38301434 DOI: 10.1016/j.marpolbul.2024.116057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/12/2024] [Accepted: 01/14/2024] [Indexed: 02/03/2024]
Abstract
Seagrasses' ability to store information after exposure to stress (i.e. stress memory) and to better respond to further stress (i.e. priming) have recently been observed, although the temporal persistence of the memory and the mechanisms for priming induction remain to be defined. Here, we explored three priming strategies in Posidonia oceanica seedlings, each inducing a different level of stress, for temperature and salinity. We investigated changes in morphometry, growth rate and biomass between primed and non-primed seedlings. The results showed similar behaviour of seedlings when exposed to an acute stress event, regardless of whether they had been primed or not and of the priming strategy received. This opens the debate on the level of stress necessary for inducing a priming status and the persistence of the stress memory in P. oceanica seedlings. Although no priming-induced stress resistance was observed, seedlings showed unexpectedly high resilience to extreme levels of both abiotic stressors.
Collapse
Affiliation(s)
- I Provera
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy.
| | - M Martinez
- Institute of Anthropic Impacts and Sustainability in Marine Environment, National Research Council (IAS-CNR), Lungomare Cristoforo Colombo n. 4521 (ex complesso Roosevelt), Località Addaura, 90149 Palermo, Italy
| | - A Zenone
- Stazione Zoologica Anton Dohrn, Lungomare Cristoforo Colombo 4521, 90149 Palermo, Italy; National Biodiversity Future Centre (NBFC), Palermo, Italy
| | - V M Giacalone
- Institute of Anthropic Impacts and Sustainability in Marine Environment, National Research Council (IAS-CNR), Via del Mare 3, 91021 Torretta Granitola, Italy; National Biodiversity Future Centre (NBFC), Palermo, Italy
| | - G D'Anna
- Institute of Anthropic Impacts and Sustainability in Marine Environment, National Research Council (IAS-CNR), via Giovanni da Verrazzano 17, 91014 Castellammare del Golfo, Italy; National Biodiversity Future Centre (NBFC), Palermo, Italy
| | - F Badalamenti
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy; Institute of Anthropic Impacts and Sustainability in Marine Environment, National Research Council (IAS-CNR), Lungomare Cristoforo Colombo n. 4521 (ex complesso Roosevelt), Località Addaura, 90149 Palermo, Italy; National Biodiversity Future Centre (NBFC), Palermo, Italy
| | - L Marín-Guirao
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy; Centro Oceanográfico de Murcia (IEO-CSIC), Varadero 1, 30740 San Pedro del Pinatar, Spain
| | - G Procaccini
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy; National Biodiversity Future Centre (NBFC), Palermo, Italy
| |
Collapse
|
7
|
Vivanco-Bercovich M, Sandoval-Gil JM, Bonet-Meliá P, Cabello-Pasini A, Muñiz-Salazar R, Montoya LR, Schubert N, Marín-Guirao L, Procaccini G, Ferreira-Arrieta A. Marine heatwaves recurrence aggravates thermal stress in the surfgrass Phyllospadix scouleri. MARINE POLLUTION BULLETIN 2024; 199:115943. [PMID: 38176159 DOI: 10.1016/j.marpolbul.2023.115943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/06/2024]
Abstract
The surfgrass Phyllospadix scouleri grows in highly productive meadows along the Pacific coast of North America. This region has experienced increasingly severe marine heatwaves (MHWs) in recent years. Our study evaluated the impact of consecutive MHWs, simulated in mesocosms, on essential ecophysiological features of P. scouleri. Overall, our findings show that the plants' overall physiological status has been progressively declining. Interestingly, the indicators of physiological stress in photosynthesis only showed up once the initial heat exposure stopped (i.e., during the recovery period). The warming caused increased oxidative damage and a decrease in nitrate uptake rates. However, the levels of non-structural carbohydrates and relative growth rates were not affected. Our findings emphasize the significance of incorporating recovery periods in this type of study as they expose delayed stress responses. Furthermore, experiencing consecutive intense MHWs can harm surfgrasses over time, compromising the health of their meadows and the services they offer to the ecosystem.
Collapse
Affiliation(s)
- Manuel Vivanco-Bercovich
- Universidad Autónoma de Baja California (UABC), Instituto de Investigaciones Oceanológicas (IIO), Marine Botany Research Group, Ensenada, Baja California, Mexico
| | - Jose Miguel Sandoval-Gil
- Universidad Autónoma de Baja California (UABC), Instituto de Investigaciones Oceanológicas (IIO), Marine Botany Research Group, Ensenada, Baja California, Mexico.
| | - Paula Bonet-Meliá
- Universidad Autónoma de Baja California (UABC), Instituto de Investigaciones Oceanológicas (IIO), Marine Botany Research Group, Ensenada, Baja California, Mexico
| | - Alejandro Cabello-Pasini
- Universidad Autónoma de Baja California (UABC), Instituto de Investigaciones Oceanológicas (IIO), Marine Botany Research Group, Ensenada, Baja California, Mexico
| | - Raquel Muñiz-Salazar
- Universidad Autónoma de Baja California (UABC), Instituto de Investigaciones Oceanológicas (IIO), Marine Botany Research Group, Ensenada, Baja California, Mexico; Universidad Autónoma de Baja California (UABC), Escuela de Ciencias de la Salud, Ensenada, Baja California, Mexico
| | - Leonardo Ruiz Montoya
- Universidad Autónoma de Baja California (UABC), Instituto de Investigaciones Oceanológicas (IIO), Marine Botany Research Group, Ensenada, Baja California, Mexico
| | - Nadine Schubert
- CCMAR - Center of Marine Sciences, University of Algarve, Faro, Portugal
| | - Lázaro Marín-Guirao
- Instituto Español de Oceanografía (IEO), Centro Oceanográfico de Murcia, Seagrass Ecology Group, C/Varadero s/n, 30740 San Pedro del Pinatar, Murcia, Spain
| | - Gabriele Procaccini
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology, Villa Comunale, Naples, Italy
| | - Alejandra Ferreira-Arrieta
- Universidad Autónoma de Baja California (UABC), Instituto de Investigaciones Oceanológicas (IIO), Marine Botany Research Group, Ensenada, Baja California, Mexico
| |
Collapse
|
8
|
Georgoulis I, Bock C, Lannig G, Pörtner HO, Sokolova IM, Feidantsis K, Giantsis IA, Michaelidis B. Heat hardening enhances metabolite-driven thermoprotection in the Mediterranean mussel Mytilus galloprovincialis. Front Physiol 2023; 14:1244314. [PMID: 37841313 PMCID: PMC10570847 DOI: 10.3389/fphys.2023.1244314] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction: Temperature affects organisms' metabolism and ecological performance. Owing to climate change, sea warming constituting a severe source of environmental stress for marine organisms, since it increases at alarming rates. Rapid warming can exceed resilience of marine organisms leading to fitness loss and mortality. However, organisms can improve their thermal tolerance when briefly exposed to sublethal thermal stress (heat hardening), thus generating heat tolerant phenotypes. Methods: We investigated the "stress memory" effect caused by heat hardening on M. galloprovincialis metabolite profile of in order to identify the underlying biochemical mechanisms, which enhance mussels' thermal tolerance. Results: The heat hardening led to accumulation of amino acids (e.g., leucine, isoleucine and valine), including osmolytes and cytoprotective agents with antioxidant and anti-inflammatory properties that can contribute to thermal protection of the mussels. Moreover, proteolysis was inhibited and protein turnover regulated by the heat hardening. Heat stress alters the metabolic profile of heat stressed mussels, benefiting the heat-hardened individuals in increasing their heat tolerance compared to the non-heat-hardened ones. Discussion: These findings provide new insights in the metabolic mechanisms that may reinforce mussels' tolerance against thermal stress providing both natural protection and potential manipulative tools (e.g., in aquaculture) against the devastating climate change effects on marine organisms.
Collapse
Affiliation(s)
- Ioannis Georgoulis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Environmental Control and Research Laboratory, Region of Central Macedonia, Thessaloniki, Greece
| | - Christian Bock
- Alfred Wegener Institute, Helmholtz-Centre for Polar and Marine Research, Integrative Ecophysiology, Bremerhaven, Germany
| | - Gisela Lannig
- Alfred Wegener Institute, Helmholtz-Centre for Polar and Marine Research, Integrative Ecophysiology, Bremerhaven, Germany
| | - Hans O. Pörtner
- Alfred Wegener Institute, Helmholtz-Centre for Polar and Marine Research, Integrative Ecophysiology, Bremerhaven, Germany
| | - Inna M. Sokolova
- Department of Marine Biology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Konstantinos Feidantsis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Environmental Control and Research Laboratory, Region of Central Macedonia, Thessaloniki, Greece
- Department of Fisheries and Aquaculture, University of Patras, Mesolonghi, Greece
| | - Ioannis A. Giantsis
- Environmental Control and Research Laboratory, Region of Central Macedonia, Thessaloniki, Greece
- Department of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, Kozani, Greece
| | - Basile Michaelidis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Environmental Control and Research Laboratory, Region of Central Macedonia, Thessaloniki, Greece
| |
Collapse
|
9
|
Wang JQ, Xiang RH, Li ZG. The Essential Role of H 2S-ABA Crosstalk in Maize Thermotolerance through the ROS-Scavenging System. Int J Mol Sci 2023; 24:12264. [PMID: 37569644 PMCID: PMC10418723 DOI: 10.3390/ijms241512264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/27/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Hydrogen sulfide (H2S) and abscisic acid (ABA), as a signaling molecule and stress hormone, their crosstalk-induced thermotolerance in maize seedlings and its underlying mechanism were elusive. In this paper, H2S and ABA crosstalk as well as the underlying mechanism of crosstalk-induced thermotolerance in maize seedlings were investigated. The data show that endogenous levels of H2S and ABA in maize seedlings could be mutually induced by regulating their metabolic enzyme activity and gene expression under non-heat stress (non-HS) and HS conditions. Furthermore, H2S and ABA alone or in combination significantly increase thermotolerance in maize seedlings by improving the survival rate (SR) and mitigating biomembrane damage. Similarly, the activity of the reactive oxygen species (ROS)-scavenging system, including enzymatic antioxidants catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (POD), glutathione reductase (GR), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), and superoxide dismutase (SOD), as well as the non-enzymatic antioxidants reduced ascorbic acid (AsA), carotenoids (CAR), flavone (FLA), and total phenols (TP), was enhanced by H2S and ABA alone or in combination in maize seedlings. Conversely, the ROS level (mainly hydrogen peroxide and superoxide radical) was weakened by H2S and ABA alone or in combination in maize seedlings under non-HS and HS conditions. These data imply that the ROS-scavenging system played an essential role in H2S-ABA crosstalk-induced thermotolerance in maize seedlings.
Collapse
Affiliation(s)
- Jia-Qi Wang
- School of Life Sciences, Yunnan Normal University, Kunming 650092, China; (J.-Q.W.)
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming 650092, China
- Key Laboratory of Biomass Energy and Environmental Biotechnology, Yunnan Province, Yunnan Normal University, Kunming 650092, China
| | - Ru-Hua Xiang
- School of Life Sciences, Yunnan Normal University, Kunming 650092, China; (J.-Q.W.)
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming 650092, China
- Key Laboratory of Biomass Energy and Environmental Biotechnology, Yunnan Province, Yunnan Normal University, Kunming 650092, China
| | - Zhong-Guang Li
- School of Life Sciences, Yunnan Normal University, Kunming 650092, China; (J.-Q.W.)
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming 650092, China
- Key Laboratory of Biomass Energy and Environmental Biotechnology, Yunnan Province, Yunnan Normal University, Kunming 650092, China
| |
Collapse
|
10
|
Pansini A, Beca-Carretero P, González MJ, La Manna G, Medina I, Ceccherelli G. Sources of variability in seagrass fatty acid profiles and the need of identifying reliable warming descriptors. Sci Rep 2023; 13:10000. [PMID: 37340008 DOI: 10.1038/s41598-023-36498-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 06/05/2023] [Indexed: 06/22/2023] Open
Abstract
Global warming is expected to have inexorable and profound effects on marine ecosystems, particularly in foundation species such as seagrasses. Identifying responses to warming and comparing populations across natural temperature gradients can inform how future warming will impact the structure and function of ecosystems. Here, we investigated how thermal environment, intra-shoot and spatial variability modulate biochemical responses of the Mediterranean seagrass Posidonia oceanica. Through a space-for-time substitution study, Fatty acid (FA) profiles on the second and fifth leaf of the shoots were quantified at eight sites in Sardinia along a natural sea surface temperature (SST) summer gradient (about 4 °C). Higher mean SST were related to a decrease in the leaf total fatty acid content (LTFA), a reduction in polyunsaturated fatty acids (PUFA), omega-3/omega-6 PUFA and PUFA/saturated fatty acids (SFA) ratios and an increase in SFA, monounsaturated fatty acids and carbon elongation index (CEI, C18:2 n-6/C16:2 n-6) ratio. Results also revealed that FA profiles were strongly influenced by leaf age, independently of SST and spatial variability within sites. Overall, this study evidenced that the sensitive response of P. oceanica FA profiles to intra-shoot and spatial variability must not be overlooked when considering their response to temperature changes.
Collapse
Affiliation(s)
- Arianna Pansini
- Dipartimento di Scienze Chimiche Fisiche Matematiche e Naturali, Università Degli Studi di Sassari, Via Piandanna 4, 07100, Sassari, Italy.
| | - Pedro Beca-Carretero
- Department of Oceanography, Instituto de Investigacións Mariñas (IIM-CSIC), 36208, Vigo, Spain
| | - Maria J González
- Department of Oceanography, Instituto de Investigacións Mariñas (IIM-CSIC), 36208, Vigo, Spain
| | - Gabriella La Manna
- Dipartimento di Scienze Chimiche Fisiche Matematiche e Naturali, Università Degli Studi di Sassari, Via Piandanna 4, 07100, Sassari, Italy
- MareTerra Onlus, Environmental Research and Conservation, 07041, Alghero, SS, Italy
| | - Isabel Medina
- Department of Oceanography, Instituto de Investigacións Mariñas (IIM-CSIC), 36208, Vigo, Spain
| | - Giulia Ceccherelli
- Dipartimento di Scienze Chimiche Fisiche Matematiche e Naturali, Università Degli Studi di Sassari, Via Piandanna 4, 07100, Sassari, Italy
| |
Collapse
|
11
|
Mancuso FP, Giommi C, Mangano MC, Airoldi L, Helmuth B, Sarà G. Evenness, biodiversity, and ecosystem function of intertidal communities along the Italian coasts: Experimental short-term response to ambient and extreme air temperatures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160037. [PMID: 36356730 DOI: 10.1016/j.scitotenv.2022.160037] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/03/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Biodiversity can promote ecosystem functioning in both terrestrial and marine environments, emphasizing the necessity of biodiversity conservation in order to preserve critical ecosystem functions and associated services. However, the role of biodiversity in buffering ecosystem functioning under extreme events caused by climate change remains a major scientific issue, especially for intertidal systems experiencing stressors from both terrestrial and marine drivers. We performed a regional-scale field experiment along the Italian coast to investigate the response of unmanipulated intertidal communities (by using a natural biodiversity gradient) to low tide aerial exposure to both ambient and short-term extreme temperatures. We specifically investigated the relationship between Biodiversity and Ecosystem Functioning (BEF) using different biodiversity indexes (species richness, functional diversity and evenness) and the response of the intertidal communities' ecosystem functioning (community respiration rates). Furthermore, we investigated which other environmental variables could influence the BEF relationship. We show that evenness explained a greater variation in intertidal community ecosystem functioning under both temperature conditions. Species richness (the most often used diversity metric in BEF research) was unrelated to ecosystem functioning, while functional diversity was significantly related to respiration under ambient but not extreme temperatures. We highlight the importance of the short-term thermal history of the communities (measured as body temperature) in the BEF relationship as it was consistently identified as the best predictor or response under both temperature conditions. However, Chlorophyll a in seawater and variation in sea surface temperature also contributed to the BEF relationship under ambient but not under extreme conditions, showing that short-duration climate-driven events can overcome local physiological adaptations. Our findings support the importance of the BEF relationship in intertidal communities, implying that systems with more diverse and homogeneous communities may be able to mitigate the effects of extreme temperatures.
Collapse
Affiliation(s)
- Francesco Paolo Mancuso
- Department of Earth and Marine Sciences (DiSTeM), University of Palermo, viale delle Scienze Ed. 16, 90128 Palermo, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, Italy.
| | - Chiara Giommi
- Department of Earth and Marine Sciences (DiSTeM), University of Palermo, viale delle Scienze Ed. 16, 90128 Palermo, Italy; Department of Integrative Marine Ecology (EMI), Stazione Zoologica Anton Dohrn, CRIMAC, Calabria Marine Centre, Amendolara, Italy
| | - Maria Cristina Mangano
- NBFC, National Biodiversity Future Center, Palermo 90133, Italy; Stazione Zoologica Anton Dohrn, Dipartimento Ecologia Marina Integrata, Sede Interdipartimentale della Sicilia, Lungomare Cristoforo Colombo (complesso Roosevelt), 90142 Palermo, Italy
| | - Laura Airoldi
- Department of Biology, Chioggia Hydrobiological Station Umberto D'Ancona, University of Padova, 30015 Chioggia, Italy; University of Bologna, Dipartimento di Beni Culturali & Centro Interdipartimentale di Ricerca per le Scienze Ambientali (CIRSA), UO CoNISMa, Via S. Alberto, 163, 48123 Ravenna, Italy
| | - Brian Helmuth
- Marine Science Center, Northeastern University, Nahant, MA 01908, USA
| | - Gianluca Sarà
- Department of Earth and Marine Sciences (DiSTeM), University of Palermo, viale delle Scienze Ed. 16, 90128 Palermo, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, Italy
| |
Collapse
|
12
|
Pazzaglia J, Dattolo E, Ruocco M, Santillán-Sarmiento A, Marin-Guirao L, Procaccini G. DNA methylation dynamics in a coastal foundation seagrass species under abiotic stressors. Proc Biol Sci 2023; 290:20222197. [PMID: 36651048 PMCID: PMC9845983 DOI: 10.1098/rspb.2022.2197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/19/2022] [Indexed: 01/19/2023] Open
Abstract
DNA methylation (DNAm) has been intensively studied in terrestrial plants in response to environmental changes, but its dynamic changes in a temporal scale remain unexplored in marine plants. The seagrass Posidonia oceanica ranks among the slowest-growing and longest-living plants on Earth, and is particularly vulnerable to sea warming and local anthropogenic pressures. Here, we analysed the dynamics of DNAm changes in plants collected from coastal areas differentially impacted by eutrophication (i.e. oligotrophic, Ol; eutrophic, Eu) and exposed to abiotic stressors (nutrients, temperature increase and their combination). Levels of global DNAm (% 5-mC) and the expression of key genes involved in DNAm were assessed after one, two and five weeks of exposure. Results revealed a clear differentiation between plants, depending on environmental stimuli, time of exposure and plants' origin. % 5-mC levels were higher during the initial stress exposure especially in Ol plants, which upregulated almost all genes involved in DNAm. Contrarily, Eu plants showed lower expression levels, which increased under chronic exposure to stressors, particularly to temperature. These findings show that DNAm is dynamic in P. oceanica during stress exposure and underlined that environmental epigenetic variations could be implicated in the regulation of acclimation and phenotypic differences depending on local conditions.
Collapse
Affiliation(s)
- Jessica Pazzaglia
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Emanuela Dattolo
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy
| | - Miriam Ruocco
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy
| | - Alex Santillán-Sarmiento
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy
- Faculty of Engineering, National University of Chimborazo, Riobamba, Ecuador
| | - Lazaro Marin-Guirao
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy
- Seagrass Ecology Group, Oceanographic Centre of Murcia, Spanish Institute of Oceanography, Murcia, Spain
| | - Gabriele Procaccini
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy
| |
Collapse
|
13
|
Sandoval-Gil JM, Ruiz JM, Marín-Guirao L. Advances in understanding multilevel responses of seagrasses to hypersalinity. MARINE ENVIRONMENTAL RESEARCH 2023; 183:105809. [PMID: 36435174 DOI: 10.1016/j.marenvres.2022.105809] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Human- and nature-induced hypersaline conditions in coastal systems can lead to profound alterations of the structure and vitality of seagrass meadows and their socio-ecological benefits. In the last two decades, recent research efforts (>50 publications) have contributed significantly to unravel the physiological basis underlying the seagrass-hypersalinity interactions, although most (∼70%) are limited to few species (e.g. Posidonia oceanica, Zostera marina, Thalassia testudinum, Cymodocea nodosa). Variables related to photosynthesis and carbon metabolism are among the most prevalent in the literature, although other key metabolic processes such as plant water relations and responses at molecular (i.e. gene expression) and ultrastructure level are attracting attention. This review emphasises all these latest insights, offering an integrative perspective on the interplay among biological responses across different functional levels (from molecular to clonal structure), and their interaction with biotic/abiotic factors including those related to climate change. Other issues such as the role of salinity in driving the evolutionary trajectory of seagrasses, their acclimation mechanisms to withstand salinity increases or even the adaptive properties of populations that have historically lived under hypersaline conditions are also included. The pivotal role of the costs and limits of phenotypic plasticity in the successful acclimation of marine plants to hypersalinity is also discussed. Finally, some lines of research are proposed to fill the remaining knowledge gaps.
Collapse
Affiliation(s)
- Jose Miguel Sandoval-Gil
- Universidad Autónoma de Baja California (UABC), Instituto de Investigaciones Oceanológicas (IIO), Marine Botany Research Group, Ensenada, Baja California, 22860, Mexico
| | - Juan M Ruiz
- Seagrass Ecology Group, Spanish Institute of Oceanography (IEO-CSIC), C/ Varadero s/n, 30740 San Pedro del Pinatar, Murcia, Spain
| | - Lázaro Marín-Guirao
- Seagrass Ecology Group, Spanish Institute of Oceanography (IEO-CSIC), C/ Varadero s/n, 30740 San Pedro del Pinatar, Murcia, Spain.
| |
Collapse
|
14
|
Stipcich P, Pansini A, Beca-Carretero P, Stengel DB, Ceccherelli G. Field thermo acclimation increases the resilience of Posidonia oceanica seedlings to marine heat waves. MARINE POLLUTION BULLETIN 2022; 184:114230. [PMID: 36307950 DOI: 10.1016/j.marpolbul.2022.114230] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Acclimation is a response that results from chronic exposure of an individual to a new environment. This study aimed to investigate whether the thermal environment affects the early development of the seagrass Posidonia oceanica, and whether the effects of a field-simulated Marine Heat Wave (MHW) on seedlings change depending on acclimation. The experiment was done in the field using a crossed design of Acclimation (acclimated vs unacclimated) and MHW (present vs absent) factors. Acclimation has initially constrained the development of P. oceanica seedlings, but then it increased their resilience to the MHW, under both a morphological and biochemical (fatty acid saturation) level. This treatment could be considered in P. oceanica restoration projects in a climate change-impaired sea, by purposely inducing an increased resistance to heat before transplants.
Collapse
Affiliation(s)
- Patrizia Stipcich
- Dipartimento di Architettura, Design e Urbanistica, Università degli Studi di Sassari, via Piandanna 4, 07100 Sassari, Italy.
| | - Arianna Pansini
- Dipartimento di Architettura, Design e Urbanistica, Università degli Studi di Sassari, via Piandanna 4, 07100 Sassari, Italy
| | - Pedro Beca-Carretero
- Department of Oceanography, Instituto de Investigacións Mariñas (IIM-CSIC), Vigo, Spain; Botany and Plant Science, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Dagmar B Stengel
- Botany and Plant Science, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Giulia Ceccherelli
- Dipartimento di Scienze Chimiche, Fisiche, Matematiche e Naturali, Università degli Studi di Sassari, via Piandanna 4, 07100 Sassari, Italy
| |
Collapse
|