1
|
Guo Y, Gu D, Okeke ES, Feng W, Chen Y, Mao G, Yang L, Wu X, Zhao T. Fenitrothion induces glucose metabolism disorders in rat liver BRL cells by inhibiting AMPKα and IRS1/PI3K/AKT signaling pathway. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106098. [PMID: 39277407 DOI: 10.1016/j.pestbp.2024.106098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/22/2024] [Accepted: 08/20/2024] [Indexed: 09/17/2024]
Abstract
Fenitrothion (FNT) is a common organophosphorus pesticide that is widely used in both agricultural and domestic pest control. FNT has been frequently detected in various environmental media, including the human body, and is a notable contaminant. Epidemiological investigations have recently shown the implications of exposure to FNT in the incidence of various metabolic diseases, such as diabetes mellitus in humans, indicating that FNT may be a potential endocrine disruptor. However, the effects of FNT exposure on glucose homeostasis and their underlying mechanisms in model organisms remain largely unknown, which may limit our understanding of the health risks of FNT. In this study, FNT (4 5, 90, 180, and 4 50 μM) exposure model of rat hepatocytes (Buffalo Rat Liver, BRL cells) was established to investigate the effects and potential mechanisms of its toxicity on glucose metabolism. Several key processes of glucose metabolism were detected in this study. The results showed significantly increased glucose levels in the culture medium and decreased glycogen content in the FNT-exposed BRL cells. The results of quantitative real-time PCR and enzymology showed the abnormal expression of genes and activity/content of glucose metabolic enzymes involved in glucose metabolism, which might promote gluconeogenesis and inhibit glucose uptake, glycolysis, and glycogenesis. Furthermore, gluconeogenesis and glycolytic were carried out in the mitochondrial membrane. The abnormal of mitochondrial membrane potential may be a potential mechanism underlying FNT-induced glucose metabolism disorder. In addition, the mRNA and protein expression implicated that FNT may disrupt glucose metabolism by inhibiting the AMPKα and IRS1/PI3K/AKT signaling pathways. In conclusion, results provide in vitro evidence that FNT can cause glucose metabolism disorder, which emphasizes the potential health risks of exposure to FNT in inducing diabetes mellitus.
Collapse
Affiliation(s)
- Yuchao Guo
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China
| | - Dandan Gu
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China
| | - Emmanuel Sunday Okeke
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China; Department of Biochemistry, Faculty of Biological Science & Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria
| | - Weiwei Feng
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China
| | - Yao Chen
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China
| | - Guanghua Mao
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China
| | - Liuqing Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China
| | - Xiangyang Wu
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China.
| | - Ting Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China.
| |
Collapse
|
2
|
Fath EM, Bakery HH, El-Shawarby RM, Abosalem MES, Ibrahim SS, Ebrahim N, Hegazy AM. Silymarin ameliorates diazinon-induced subacute nephrotoxicity in rats via the Keap1-Nrf2/heme oxygenase-1 signaling pathway. Forensic Toxicol 2024:10.1007/s11419-024-00697-x. [PMID: 39117988 DOI: 10.1007/s11419-024-00697-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 07/20/2024] [Indexed: 08/10/2024]
Abstract
PURPOSE The goal of the current study was to clarify the potential molecular mechanism underlying the protective effects of silymarin (SIL) administration against diazinon-induced subacute nephrotoxicity, with a special emphasis on the role of the Kelch-like-associated protein-1 (Keap1)-nuclear factor erythroid 2-related factor 2 (Nrf2)-heme oxygenase-1 (HO-1) signaling pathway in minimizing the oxidative stress induced by diazinon (DZN). METHODS Five equal groups of thirty adult male Wistar rats were created at random. Group 1 (G1) was maintained under typical control conditions and administered saline intragastrically (I/G) once daily for 4 weeks; G2 was administered olive oil I/G for 4 weeks; G3 was I/G administered silymarin daily for 4 weeks; G4 was I/G administered diazinon daily for 4 weeks. G5 was I/G administered silymarin daily 1 h before the I/G administration of the diazinon for 4 weeks. Blood samples were collected at the end of the experiment for the determination of complete blood cell count, and kidney function tests. Kidney specimens were collected for the evaluation of the oxidative markers, mRNA gene expression, protein markers, and histopathological examination. RESULTS SIL reduced the renal dysfunction caused by DZN by restoring urea and creatinine levels, as well as oxidative indicators. Although the expression of Keap-1 was also elevated, overexpression of Nrf2 also enhanced the expression of HO-1, a crucial target enzyme of Nrf2. CONCLUSIONS SIL is hypothesized to potentially aid in the prevention and management of nephrotoxicity caused by DZN.
Collapse
Affiliation(s)
- Eman Mohamed Fath
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, 13736, Qalyubia, Egypt
| | - Hatem H Bakery
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, 13736, Qalyubia, Egypt
| | - Ragab M El-Shawarby
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, 13736, Qalyubia, Egypt
| | - Mohamed E S Abosalem
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, 13736, Qalyubia, Egypt
| | - Samar S Ibrahim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, 13736, Qalyubia, Egypt
| | - Nesrine Ebrahim
- Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Benha, 13511, Egypt
- Stem Cell Unit, Faculty of Medicine, Benha University, Benha, 13511, Egypt
- Faculty of Medicine, Benha National University, Obour City, Egypt
| | - Ahmed Medhat Hegazy
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, 13736, Qalyubia, Egypt.
| |
Collapse
|
3
|
Maldonado JB, Page LM, Williman C, Fernández CA, Resnik SL, Medina MB, Munitz MS. Pesticides in fish from the Uruguay River and markets in Argentina and health risk assessment. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2024:1-9. [PMID: 39105309 DOI: 10.1080/19393210.2024.2380706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/12/2024] [Indexed: 08/07/2024]
Abstract
Organochlorine, organophosphate, triazole, and strobilurin pesticides were determined in fish samples. Relative standard deviations lower than 9.3% were obtained for organochlorine pesticides and 10.8% for other pesticides. Accuracy ranged from 73% to 119% for organochlorine pesticides and 80.4% to 116% for organophosphate, triazole, and strobilurin pesticides. A total of 28 pesticides were analysed and 7 of them were detected (exceeding 10 µg/kg) in some samples, with the highest concentration recorded at 68.5 µg/kg, corresponding to heptachlor epoxide A. The pesticide most frequently detected was β HCH, found in 30 of the 100 analysed samples. Hazard Quotient values were estimated for men, women, and children. These values exceeded 1 for heptachlor epoxide in women and children, as well as for endrin in children. These findings emphasise the need for stricter controls to reduce fish contamination and mitigate health risks.
Collapse
Affiliation(s)
- Julieta Belén Maldonado
- Instituto de Ciencia y Tecnología de los Alimentos de Entre Ríos (ICTAER/CONICET - UNER), Concordia, Argentina
- Facultad de Ciencias de la Alimentación, Universidad Nacional de Entre Ríos, Concordia, Argentina
| | - Lucas Matías Page
- Instituto de Ciencia y Tecnología de los Alimentos de Entre Ríos (ICTAER/CONICET - UNER), Concordia, Argentina
- Facultad de Ciencias de la Alimentación, Universidad Nacional de Entre Ríos, Concordia, Argentina
| | - Celia Williman
- Facultad de Ciencias de la Alimentación, Universidad Nacional de Entre Ríos, Concordia, Argentina
| | - Carlos Andrés Fernández
- Facultad de Ciencias de la Alimentación, Universidad Nacional de Entre Ríos, Concordia, Argentina
| | - Silvia Liliana Resnik
- Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC), La Plata, Argentina
- Fundación de Investigaciones Científicas Teresa Benedicta de la Cruz, Luján, Argentina
| | - María Belén Medina
- Instituto de Ciencia y Tecnología de los Alimentos de Entre Ríos (ICTAER/CONICET - UNER), Concordia, Argentina
- Facultad de Ciencias de la Alimentación, Universidad Nacional de Entre Ríos, Concordia, Argentina
| | - Martín Sebastián Munitz
- Instituto de Ciencia y Tecnología de los Alimentos de Entre Ríos (ICTAER/CONICET - UNER), Concordia, Argentina
- Facultad de Ciencias de la Alimentación, Universidad Nacional de Entre Ríos, Concordia, Argentina
| |
Collapse
|
4
|
Huang J, Fu Z, Yu W, Bai Z, Ma Z. Toxic Effects of Carbaryl Exposure on Juvenile Asian Seabass ( Lates calcarifer). J Xenobiot 2024; 14:923-938. [PMID: 39051347 PMCID: PMC11270272 DOI: 10.3390/jox14030051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/27/2024] Open
Abstract
This study examines the physiological and immunological effects of 0.5 ppm carbaryl exposure on juvenile Asian seabass (Lates calcarifer) over 12 h to 72 h. Notable results include decreased activities of liver enzymes catalase (CAT), lactate dehydrogenase (LDH), and glutathione peroxidase (GSH-PX), while superoxide dismutase (SOD) levels remained stable, with the lowest activities of CAT and GSH-PX observed at 72 h. Serum biochemistry revealed increased alkaline phosphatase (AKP) and acid phosphatase (ACP) at 24 h, with declining aspartate aminotransferase (AST) and a peak in creatinine at 48 h. Histopathological analysis showed carbaryl-induced necrosis in liver and spleen cells, and increased melanomacrophage centers in both organs. Additionally, immune gene expression analysis indicated an upregulation of heat shock proteins and consistent elevation of complement component C3 and interleukin-8 (IL-8). These findings suggest that carbaryl exposure significantly impairs organ function and modulates immune responses in L. calcarifer, underlining the need for further research on protective strategies against pesticide impacts in aquaculture.
Collapse
Affiliation(s)
- Junhua Huang
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya 572018, China
- Hainan Engineering Research Center for Deep-Sea Aquaculture and Processing, Sanya 572018, China
- International Joint Research Center for Conservation and Application of Fishery Resources in the South China Sea, Sanya 572018, China
| | - Zhengyi Fu
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya 572018, China
- Hainan Engineering Research Center for Deep-Sea Aquaculture and Processing, Sanya 572018, China
- International Joint Research Center for Conservation and Application of Fishery Resources in the South China Sea, Sanya 572018, China
- College of Science and Engineering, Flinders University, Adelaide 5001, Australia
| | - Wei Yu
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya 572018, China
- Hainan Engineering Research Center for Deep-Sea Aquaculture and Processing, Sanya 572018, China
- International Joint Research Center for Conservation and Application of Fishery Resources in the South China Sea, Sanya 572018, China
| | - Zemin Bai
- Yazhou Bay Agriculture and Aquaculture Co., Ltd., Sanya 572025, China
| | - Zhenhua Ma
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya 572018, China
- Hainan Engineering Research Center for Deep-Sea Aquaculture and Processing, Sanya 572018, China
- International Joint Research Center for Conservation and Application of Fishery Resources in the South China Sea, Sanya 572018, China
- College of Science and Engineering, Flinders University, Adelaide 5001, Australia
| |
Collapse
|
5
|
Kalinski JCJ, Noundou XS, Petras D, Matcher GF, Polyzois A, Aron AT, Gentry EC, Bornman TG, Adams JB, Dorrington RA. Urban and agricultural influences on the coastal dissolved organic matter pool in the Algoa Bay estuaries. CHEMOSPHERE 2024; 355:141782. [PMID: 38548083 DOI: 10.1016/j.chemosphere.2024.141782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/28/2024] [Accepted: 03/22/2024] [Indexed: 04/08/2024]
Abstract
While anthropogenic pollution is a major threat to aquatic ecosystem health, our knowledge of the presence of xenobiotics in coastal Dissolved Organic Matter (DOM) is still relatively poor. This is especially true for water bodies in the Global South with limited information gained mostly from targeted studies that rely on comparison with authentic standards. In recent years, non-targeted tandem mass spectrometry has emerged as a powerful tool to collectively detect and identify pollutants and biogenic DOM components in the environment, but this approach has yet to be widely utilized for monitoring ecologically important aquatic systems. In this study we compared the DOM composition of Algoa Bay, Eastern Cape, South Africa, and its two estuaries. The Swartkops Estuary is highly urbanized and severely impacted by anthropogenic pollution, while the Sundays Estuary is impacted by commercial agriculture in its catchment. We employed solid-phase extraction followed by liquid chromatography tandem mass spectrometry to annotate more than 200 pharmaceuticals, pesticides, urban xenobiotics, and natural products based on spectral matching. The identification with authentic standards confirmed the presence of methamphetamine, carbamazepine, sulfamethoxazole, N-acetylsulfamethoxazole, imazapyr, caffeine and hexa(methoxymethyl)melamine, and allowed semi-quantitative estimations for annotated xenobiotics. The Swartkops Estuary DOM composition was strongly impacted by features annotated as urban pollutants including pharmaceuticals such as melamines and antiretrovirals. By contrast, the Sundays Estuary exhibited significant enrichment of molecules annotated as agrochemicals widely used in the citrus farming industry, with predicted concentrations for some of them exceeding predicted no-effect concentrations. This study provides new insight into anthropogenic impact on the Algoa Bay system and demonstrates the utility of non-targeted tandem mass spectrometry as a sensitive tool for assessing the health of ecologically important coastal ecosystems and will serve as a valuable foundation for strategizing long-term monitoring efforts.
Collapse
Affiliation(s)
| | - Xavier Siwe Noundou
- Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa; Department of Pharmaceutical Sciences, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Daniel Petras
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, USA; Department of Biochemistry, University of California Riverside, Riverside, USA; CMFI Cluster of Excellence, Interfaculty Institute of Microbiology and Medicine, University of Tuebingen, Tuebingen, Germany
| | - Gwynneth F Matcher
- Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa; South African Institute for Aquatic Biodiversity, 6139, Makhanda, South Africa
| | - Alexandros Polyzois
- Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa; Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, United States
| | - Allegra T Aron
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, USA; Department of Chemistry and Biochemistry, University of Denver, Denver, CO, 80210, United States
| | - Emily C Gentry
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, USA; Department of Chemistry, Virginia Tech, Blacksburg, VA, 24061, United States
| | - Thomas G Bornman
- Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa; South African Environmental Observation Network SAEON, Elwandle Coastal Node, Gqeberha, South Africa; Institute for Coastal and Marine Research, Nelson Mandela University, Gqeberha, South Africa
| | - Janine B Adams
- DSI/NRF Research Chair, Shallow Water Ecosystems, Department of Botany and Institute for Coastal and Marine Research, Nelson Mandela University, Gqeberha, South Africa; Department of Botany, Institute for Coastal and Marine Research CMR, Nelson Mandela University, Gqeberha, South Africa
| | - Rosemary A Dorrington
- Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa; South African Institute for Aquatic Biodiversity, 6139, Makhanda, South Africa.
| |
Collapse
|
6
|
Wahyuni WT, Putra BR, Rahman HA, Anindya W, Hardi J, Rustami E, Ahmad SN. Electrochemical Sensors based on Gold-Silver Core-Shell Nanoparticles Combined with a Graphene/PEDOT:PSS Composite Modified Glassy Carbon Electrode for Paraoxon-ethyl Detection. ACS OMEGA 2024; 9:2896-2910. [PMID: 38250352 PMCID: PMC10795144 DOI: 10.1021/acsomega.3c08349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024]
Abstract
Herein, a nonenzymatic detection of paraoxon-ethyl was developed by modifying a glassy carbon electrode (GCE) with gold-silver core-shell (Au-Ag) nanoparticles combined with the composite of graphene with poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS). These core-shell nanoparticles (Au-Ag) were synthesized using a seed-growth method and characterized using UV-vis spectroscopy and high-resolution transmission electron microscopy (HR-TEM) techniques. Meanwhile, the structural properties, surface morphology and topography, and electrochemical characterization of the composite of Au-Ag core-shell/graphene/PEDOT:PSS were analyzed using infrared spectroscopy, field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), and electrochemical impedance spectroscopy (EIS) techniques. Moreover, the proposed sensor for paraoxon-ethyl detection based on Au-Ag core-shell/graphene/PEDOT:PSS modified GCE demonstrates good electrochemical and electroanalytical performance when investigated with cyclic voltammetry (CV), differential pulse voltammetry (DPV), and chronoamperometry techniques. It was found that the synergistic effect between Au-Ag core-shell nanoparticles and the composite of graphene/PEDOT:PSS provides a higher conductivity and enhanced electrocatalytic activity for paraoxon-ethyl detection at an optimum pH of 7. At pH 7, the proposed sensor for paraoxon-ethyl detection shows a linear range of concentrations from 0.2 to 100 μM with a limit of detection of 10 nM and high sensitivity of 3.24 μA μM-1 cm-2. In addition, the proposed sensor for paraoxon-ethyl confirmed good reproducibility, with the possibility of being further developed as a disposable electrode. This sensor also displayed good selectivity in the presence of several interfering species such as diazinon, carbaryl, ascorbic acid, glucose, nitrite, sodium bicarbonate, and magnesium sulfate. For practical applications, this proposed sensor was employed for the determination of paraoxon-ethyl in real samples (fruits and vegetables) and showed no significant difference from the standard spectrophotometric technique. In conclusion, this proposed sensor might have a potential to be developed as a platform of electrochemical sensors for pesticide detection.
Collapse
Affiliation(s)
- Wulan Tri Wahyuni
- Department
of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, 16680Bogor,Indonesia
- Tropical
Biopharma Research Center, Institute of Research and Community Empowerment, IPB University, 16680 Bogor,Indonesia
| | - Budi Riza Putra
- Research
Center for Metallurgy, National Research and Innovation Agency, South Tangerang 15315, Banten, Indonesia
| | - Hemas Arif Rahman
- Department
of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, 16680Bogor,Indonesia
| | - Weni Anindya
- Department
of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, 16680Bogor,Indonesia
| | - Jaya Hardi
- Department
of Chemistry, Faculty of Mathematics and Natural Sciences, Tadulako University, 94148 Kota Palu,Indonesia
| | - Erus Rustami
- Department
of Physics, Faculty of Mathematics and Natural Sciences, IPB University, 16680 Bogor,Indonesia
| | - Shahrul Nizam Ahmad
- School
of
Chemistry and Environment, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Malaysia
| |
Collapse
|
7
|
Fernandes IDAA, Maciel GM, Bortolini DG, Pedro AC, Rubio FTV, de Carvalho KQ, Haminiuk CWI. The bitter side of teas: Pesticide residues and their impact on human health. Food Chem Toxicol 2023; 179:113955. [PMID: 37482194 DOI: 10.1016/j.fct.2023.113955] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/10/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
Tea (Camellia sinensis) is one of the most widely consumed non-alcoholic beverages globally, known for its rich composition of bioactive compounds that offer various health benefits to humans. However, the cultivation of tea plants often faces challenges due to their high vulnerability to pests and diseases, resulting in the heavy use of pesticides. Consequently, pesticide residues can be transferred to tea leaves, compromising their quality and safety and potentially posing risks to human health, including hormonal and reproductive disorders and cancer development. In light of these concerns, this review aims to: (I) present the maximum limits of pesticide residues established by different international regulatory agencies; (II) explore the characteristics of pesticides commonly employed in tea cultivation, encompassing aspects such as digestion, bioaccessibility, and the behavior of pesticide transfer; and (III) discuss the effectiveness of detection and removal methods for pesticides, the impacts of pesticides on both tea plants and human health and investigate emerging alternatives to replace these substances. By addressing these critical aspects, this review provides valuable insights into the management of pesticide residues in tea production, with the goal of ensuring the production of safe, high-quality tea while minimizing adverse effects on human health.
Collapse
Affiliation(s)
- Isabela de Andrade Arruda Fernandes
- Programa de Pós-Graduação em Engenharia de Alimentos (PPGEAL), Universidade Federal do Paraná (UFPR), CEP (81531-980), Curitiba, Paraná, Brazil
| | - Giselle Maria Maciel
- Programa de Pós-Graduação em Ciência e Tecnologia Ambiental (PPGCTA), Universidade Tecnológica Federal do Paraná (UTFPR), CEP (81280-340), Curitiba, Paraná, Brazil; Laboratório de Biotecnologia, Universidade Tecnológica Federal do Paraná (UTFPR), CEP (81280-340), Curitiba, Paraná, Brazil
| | - Débora Gonçalves Bortolini
- Programa de Pós-Graduação em Engenharia de Alimentos (PPGEAL), Universidade Federal do Paraná (UFPR), CEP (81531-980), Curitiba, Paraná, Brazil; Programa de Pós-Graduação em Ciência e Tecnologia Ambiental (PPGCTA), Universidade Tecnológica Federal do Paraná (UTFPR), CEP (81280-340), Curitiba, Paraná, Brazil
| | - Alessandra Cristina Pedro
- Programa de Pós-Graduação em Engenharia de Alimentos (PPGEAL), Universidade Federal do Paraná (UFPR), CEP (81531-980), Curitiba, Paraná, Brazil
| | - Fernanda Thaís Vieira Rubio
- Departamento de Engenharia Química, Universidade de São Paulo, Escola Politécnica, CEP (05508-080), São Paulo, São Paulo, Brazil
| | - Karina Querne de Carvalho
- Programa de Pós-Graduação em Ciência e Tecnologia Ambiental (PPGCTA), Universidade Tecnológica Federal do Paraná (UTFPR), CEP (81280-340), Curitiba, Paraná, Brazil
| | - Charles Windson Isidoro Haminiuk
- Programa de Pós-Graduação em Ciência e Tecnologia Ambiental (PPGCTA), Universidade Tecnológica Federal do Paraná (UTFPR), CEP (81280-340), Curitiba, Paraná, Brazil; Laboratório de Biotecnologia, Universidade Tecnológica Federal do Paraná (UTFPR), CEP (81280-340), Curitiba, Paraná, Brazil.
| |
Collapse
|
8
|
Wang Z, Pu Q, Li Y. Bidirectional selection of the functional properties and environmental friendliness of organophosphorus (OP) pesticide derivatives: Design, screening, and mechanism analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163043. [PMID: 36963678 DOI: 10.1016/j.scitotenv.2023.163043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 05/17/2023]
Abstract
Organophosphorus pesticides (OPs) are widely used in agricultural production, but the resulting pollution and drug resistance have sparked widespread concern. Therefore, this paper built a model to design OP substitute molecules with high functionality and environmental friendliness, as well as conducted various human health and ecological environment evaluations, synthetic accessibility screening, and easy detection screening. The functionality of the two OP substitute molecules, DIM-100 and DIM-164, increased by 22.79 % and 22.18 %, respectively, and the environmental friendliness increased by 18.07 % and 24.02 %, respectively. The human health risk and ecological, environmental risks were significantly reduced. Both molecules are easy to synthesize, and their detection sensitivity is 9.85 % and 11.24 % higher than that of the target molecule, respectively. Furthermore, significant changes in the distribution of electrons and holes near the C8 and S1 atoms of the OP substitute molecule resulted in easier breakage of the C8-S1 bond, enhancing its photodegradation ability. The charge transfer ability between the atoms of the molecule (as increasing the electron-withdrawing group led to an increase in charge of the P atom) and the volume of the cholinesterase active pocket both affect the functionality of the DIM substitute molecule. That is, the volume of the cholinesterase active pocket of the bee is smaller than that of the brown planthopper and is more affected by the volume of the OP molecule. Furthermore, the mutual verification analysis of the bidirectional selectivity effect of OP substitute molecules between the BayesianRidge model and the 3D-QS(A2 + ∀3)R model reveals that the overall charge transfer degree of DIM substitute molecules is the main reason for the increase in the bidirectional selectivity effect.
Collapse
Affiliation(s)
- Zhonghe Wang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing 102206, China
| | - Qikun Pu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing 102206, China
| | - Yu Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
9
|
Sahoo MM, Swain JB. Investigation and comparative analysis of ecological risk for heavy metals in sediment and surface water in east coast estuaries of India. MARINE POLLUTION BULLETIN 2023; 190:114894. [PMID: 37018906 DOI: 10.1016/j.marpolbul.2023.114894] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/09/2023] [Accepted: 03/25/2023] [Indexed: 06/19/2023]
Abstract
The sediments and surface water from 8 stations each from Dhamara and Paradeep estuarine areas were sampled for investigation of heavy metals, Cd, Cu, Pb, Mn, Ni, Zn, Fe, and Cr contamination. The objective of the sediment and surface water characterization is to find the existing spatial and temporal intercorrelation. The sediment accumulation index (Ised), enrichment index (IEn), ecological risk index (IEcR) and probability heavy metals (p-HMI) reveal the contamination status with Mn, Ni, Zn, Cr, and Cu showing permissible (0 ≤ Ised ≤ 1, IEn ˂ 2, IEcR ≤ 150) to moderate (1 ≤ Ised ≤ 2, 40 ≤ Rf ≤ 80) contamination. The p-HMI reflects the range from excellent (p-HMI = 14.89-14.54) to fair (p-HMI = 22.31-26.56) in off shore stations of the estuary. The spatial patterns of the heavy metals load index (IHMc) along the coast lines indicate that the pollution hotspots are progressively divulged to trace metals pollution over time. Heavy metal source analysis coupled with correlation analysis and principal component analysis (PCA) was used as a data reduction technique, which reveals that the heavy metal pollution in marine coastline might originate from redox reactions (FeMn coupling) and anthropogenic sources.
Collapse
|