1
|
Noels H, Jankowski V, Schunk SJ, Vanholder R, Kalim S, Jankowski J. Post-translational modifications in kidney diseases and associated cardiovascular risk. Nat Rev Nephrol 2024; 20:495-512. [PMID: 38664592 DOI: 10.1038/s41581-024-00837-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2024] [Indexed: 07/21/2024]
Abstract
Patients with chronic kidney disease (CKD) are at an increased cardiovascular risk compared with the general population, which is driven, at least in part, by mechanisms that are uniquely associated with kidney disease. In CKD, increased levels of oxidative stress and uraemic retention solutes, including urea and advanced glycation end products, enhance non-enzymatic post-translational modification events, such as protein oxidation, glycation, carbamylation and guanidinylation. Alterations in enzymatic post-translational modifications such as glycosylation, ubiquitination, acetylation and methylation are also detected in CKD. Post-translational modifications can alter the structure and function of proteins and lipoprotein particles, thereby affecting cellular processes. In CKD, evidence suggests that post-translationally modified proteins can contribute to inflammation, oxidative stress and fibrosis, and induce vascular damage or prothrombotic effects, which might contribute to CKD progression and/or increase cardiovascular risk in patients with CKD. Consequently, post-translational protein modifications prevalent in CKD might be useful as diagnostic biomarkers and indicators of disease activity that could be used to guide and evaluate therapeutic interventions, in addition to providing potential novel therapeutic targets.
Collapse
Affiliation(s)
- Heidi Noels
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany.
- Aachen-Maastricht Institute for Cardiorenal Disease (AMICARE), University Hospital RWTH Aachen, Aachen, Germany.
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands.
| | - Vera Jankowski
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany
- Aachen-Maastricht Institute for Cardiorenal Disease (AMICARE), University Hospital RWTH Aachen, Aachen, Germany
| | - Stefan J Schunk
- Department of Internal Medicine IV, Nephrology and Hypertension, Saarland University, Homburg/Saar, Germany
| | - Raymond Vanholder
- Nephrology Section, Department of Internal Medicine and Paediatrics, University Hospital, Ghent, Belgium
- European Kidney Health Alliance (EKHA), Brussels, Belgium
| | - Sahir Kalim
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany.
- Aachen-Maastricht Institute for Cardiorenal Disease (AMICARE), University Hospital RWTH Aachen, Aachen, Germany.
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands.
| |
Collapse
|
2
|
Curaj A, Vanholder R, Loscalzo J, Quach K, Wu Z, Jankowski V, Jankowski J. Cardiovascular Consequences of Uremic Metabolites: an Overview of the Involved Signaling Pathways. Circ Res 2024; 134:592-613. [PMID: 38422175 DOI: 10.1161/circresaha.123.324001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The crosstalk of the heart with distant organs such as the lung, liver, gut, and kidney has been intensively approached lately. The kidney is involved in (1) the production of systemic relevant products, such as renin, as part of the most essential vasoregulatory system of the human body, and (2) in the clearance of metabolites with systemic and organ effects. Metabolic residue accumulation during kidney dysfunction is known to determine cardiovascular pathologies such as endothelial activation/dysfunction, atherosclerosis, cardiomyocyte apoptosis, cardiac fibrosis, and vascular and valvular calcification, leading to hypertension, arrhythmias, myocardial infarction, and cardiomyopathies. However, this review offers an overview of the uremic metabolites and details their signaling pathways involved in cardiorenal syndrome and the development of heart failure. A holistic view of the metabolites, but more importantly, an exhaustive crosstalk of their known signaling pathways, is important for depicting new therapeutic strategies in the cardiovascular field.
Collapse
Affiliation(s)
- Adelina Curaj
- Institute of Molecular Cardiovascular Research, RWTH Aachen University, Germany (A.C., K.Q., Z.W., V.J., J.J.)
| | - Raymond Vanholder
- Department of Internal Medicine and Pediatrics, Nephrology Section, University Hospital, Ghent, Belgium (R.V.)
| | - Joseph Loscalzo
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (J.L.)
| | - Kaiseng Quach
- Institute of Molecular Cardiovascular Research, RWTH Aachen University, Germany (A.C., K.Q., Z.W., V.J., J.J.)
| | - Zhuojun Wu
- Institute of Molecular Cardiovascular Research, RWTH Aachen University, Germany (A.C., K.Q., Z.W., V.J., J.J.)
| | - Vera Jankowski
- Institute of Molecular Cardiovascular Research, RWTH Aachen University, Germany (A.C., K.Q., Z.W., V.J., J.J.)
| | - Joachim Jankowski
- Institute of Molecular Cardiovascular Research, RWTH Aachen University, Germany (A.C., K.Q., Z.W., V.J., J.J.)
- Experimental Vascular Pathology, Cardiovascular Research Institute Maastricht, University of Maastricht, the Netherlands (J.J.)
- Aachen-Maastricht Institute for Cardiorenal Disease, RWTH Aachen University, Aachen, Germany (J.J.)
| |
Collapse
|
3
|
Batsalova T, Dzhambazov B. Significance of Type II Collagen Posttranslational Modifications: From Autoantigenesis to Improved Diagnosis and Treatment of Rheumatoid Arthritis. Int J Mol Sci 2023; 24:9884. [PMID: 37373030 PMCID: PMC10298457 DOI: 10.3390/ijms24129884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Collagen type II (COL2), the main structural protein of hyaline cartilage, is considerably affected by autoimmune responses associated with the pathogenesis of rheumatoid arthritis (RA). Posttranslational modifications (PTMs) play a significant role in the formation of the COL2 molecule and supramolecular fibril organization, and thus, support COL2 function, which is crucial for normal cartilage structure and physiology. Conversely, the specific PTMs of the protein (carbamylation, glycosylation, citrullination, oxidative modifications and others) have been implicated in RA autoimmunity. The discovery of the anti-citrullinated protein response in RA, which includes anti-citrullinated COL2 reactivity, has led to the development of improved diagnostic assays and classification criteria for the disease. The induction of immunological tolerance using modified COL2 peptides has been highlighted as a potentially effective strategy for RA therapy. Therefore, the aim of this review is to summarize the recent knowledge on COL2 posttranslational modifications with relevance to RA pathophysiology, diagnosis and treatment. The significance of COL2 PTMs as a source of neo-antigens that activate immunity leading to or sustaining RA autoimmunity is discussed.
Collapse
Affiliation(s)
| | - Balik Dzhambazov
- Faculty of Biology, Paisii Hilendarski University of Plovdiv, 24 Tsar Assen Str., 4000 Plovdiv, Bulgaria;
| |
Collapse
|
4
|
Laget J, Duranton F, Argilés À, Gayrard N. Renal insufficiency and chronic kidney disease – Promotor or consequence of pathological post-translational modifications. Mol Aspects Med 2022; 86:101082. [DOI: 10.1016/j.mam.2022.101082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/27/2022] [Accepted: 02/03/2022] [Indexed: 12/12/2022]
|
5
|
Gorisse L, Jaisson S, Piétrement C, Gillery P. Carbamylated Proteins in Renal Disease: Aggravating Factors or Just Biomarkers? Int J Mol Sci 2022; 23:574. [PMID: 35008998 PMCID: PMC8745352 DOI: 10.3390/ijms23010574] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 02/06/2023] Open
Abstract
Carbamylation is a nonenzymatic post-translational modification resulting from the reaction between cyanate, a urea by-product, and proteins. In vivo and in vitro studies have demonstrated that carbamylation modifies protein structures and functions, triggering unfavourable molecular and cellular responses. An enhanced formation of carbamylation-derived products (CDPs) is observed in pathological contexts, especially during chronic kidney disease (CKD), because of increased blood urea. Significantly, studies have reported a positive correlation between serum CDPs and the evolutive state of renal failure. Further, serum concentrations of carbamylated proteins are characterized as strong predictors of mortality in end-stage renal disease patients. Over time, it is likely that these modified compounds become aggravating factors and promote long-term complications, including cardiovascular disorders and inflammation or immune system dysfunctions. These poor clinical outcomes have led researchers to consider strategies to prevent or slow down CDP formation. Even if growing evidence suggests the involvement of carbamylation in the pathophysiology of CKD, the real relevance of carbamylation is still unclear: is it a causal phenomenon, a metabolic consequence or just a biological feature? In this review, we discuss how carbamylation, a consequence of renal function decline, may become a causal phenomenon of kidney disease progression and how CDPs may be used as biomarkers.
Collapse
Affiliation(s)
- Laëtitia Gorisse
- MEDyC Unit CNRS UMR n° 7369, Faculty of Medicine, University of Reims Champagne-Ardenne, 51092 Reims, France; (L.G.); (S.J.); (C.P.)
| | - Stéphane Jaisson
- MEDyC Unit CNRS UMR n° 7369, Faculty of Medicine, University of Reims Champagne-Ardenne, 51092 Reims, France; (L.G.); (S.J.); (C.P.)
- Biochemistry Department, University Hospital of Reims, 51092 Reims, France
| | - Christine Piétrement
- MEDyC Unit CNRS UMR n° 7369, Faculty of Medicine, University of Reims Champagne-Ardenne, 51092 Reims, France; (L.G.); (S.J.); (C.P.)
- Pediatrics Department, University Hospital of Reims, 51092 Reims, France
| | - Philippe Gillery
- MEDyC Unit CNRS UMR n° 7369, Faculty of Medicine, University of Reims Champagne-Ardenne, 51092 Reims, France; (L.G.); (S.J.); (C.P.)
- Biochemistry Department, University Hospital of Reims, 51092 Reims, France
| |
Collapse
|
6
|
Kalim S, Berg AH, Karumanchi SA, Thadhani R, Allegretti AS, Nigwekar S, Zhao S, Srivastava A, Raj D, Deo R, Frydrych A, Chen J, Sondheimer J, Shafi T, Weir M, Lash JP. Protein carbamylation and chronic kidney disease progression in the Chronic Renal Insufficiency Cohort Study. Nephrol Dial Transplant 2021; 37:139-147. [PMID: 33661286 PMCID: PMC8719615 DOI: 10.1093/ndt/gfaa347] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Protein carbamylation is a post-translational protein modification caused, in part, by exposure to urea's dissociation product cyanate. Carbamylation is linked to cardiovascular outcomes and mortality in dialysis-dependent end-stage kidney disease (ESKD), but its effects in earlier pre-dialysis stages of chronic kidney disease (CKD) are not established. METHODS We conducted two nested case-control studies within the Chronic Renal Insufficiency Cohort Study. First, we matched 75 cases demonstrating CKD progression [50% estimated glomerular filtration rate (eGFR) reduction or reaching ESKD] to 75 controls (matched on baseline eGFR, 24-h proteinuria, age, sex and race). In the second study, we similarly matched 75 subjects who died during follow-up (cases) to 75 surviving controls. Baseline carbamylated albumin levels (C-Alb, a validated carbamylation assay) were compared between cases and controls in each study. RESULTS At baseline, in the CKD progression study, other than blood urea nitrogen (BUN) and smoking status, there were no significant differences in any matched or other parameter. In the mortality group, the only baseline difference was smoking status. Adjusting for baseline differences, the top tertile of C-Alb was associated with an increased risk of CKD progression [odds ratio (OR) = 7.9; 95% confidence interval (CI) 1.9-32.8; P = 0.004] and mortality (OR = 3.4; 95% CI 1.0-11.4; P = 0.05) when compared with the bottom tertile. C-Alb correlated with eGFR but was more strongly correlated with BUN. CONCLUSIONS Our data suggest that protein carbamylation is a predictor of CKD progression, beyond traditional risks including eGFR and proteinuria. Carbamylation's association with mortality was smaller in this limited sample size.
Collapse
Affiliation(s)
- Sahir Kalim
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Anders H Berg
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - Ravi Thadhani
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Andrew S Allegretti
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sagar Nigwekar
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sophia Zhao
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Anand Srivastava
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Dominic Raj
- Department of Medicine, Division of Renal Diseases and Hypertension, George Washington University School of Medicine, Washington, DC, USA
| | - Rajat Deo
- Departments of Medicine and Epidemiology and Biostatistics, University of Pennsylvania Philadelphia, PA, USA
| | - Anne Frydrych
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Jing Chen
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - James Sondheimer
- Department of Medicine, Wayne State University, Detroit, MI, USA
| | - Tariq Shafi
- Department of Medicine, Johns Hopkins University Baltimore, MD, USA
| | - Matthew Weir
- Department of Medicine, Division of Nephrology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - James P Lash
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
7
|
Mikhailova NA. The value of a low-protein diet and ketoanalogues of essential amino acids in the сontrol of protein carbamylation and toxic effects of urea in chronic kidney disease. TERAPEVT ARKH 2021; 93:729-735. [DOI: 10.26442/00403660.2021.06.200915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 07/10/2021] [Indexed: 11/22/2022]
Abstract
Chronic kidney disease (CKD) is characterized by high mortality from cardiovascular diseases, the development of which is facilitated by traditional risk factors (typical for the general population) and by nontraditional ones (specific to patients with CKD) as well. These factors include also uremic toxins, for which a causal relationship has been established with specific pathological processes in patients with CKD, comprising the development of vascular dysfunction and accelerated progression of atherosclerosis. Urea has long been considered not as a uremic toxin, but as a marker of metabolic imbalance or dialysis efficiency (Kt/V) in CKD patients. In recent years, more and more publications have appeared on the study of the toxic effects of urea with the development of toxic-uremic complications and the phenotype of premature aging, common in CKD. It was found that an increase in urea levels in uremic syndrome causes damage to the intestinal epithelial barrier with translocation of bacterial toxins into the bloodstream and the development of systemic inflammation, provokes apoptosis of vascular smooth muscle cells, as well as endothelial dysfunction, which directly contributes to the development of cardiovascular complications. The indirect effects of increased urea levels are associated with carbamylation reactions, when isocyanic acid (a product of urea catabolism) changes the structure and function of proteins in the body. Carbamylation of proteins in CKD patients is associated with the development of renal fibrosis, atherosclerosis and anemia. Thus, urea is now regarded as an important negative agent in the pathogenesis of complications in CKD. Studies on a low-protein diet with using ketoanalogues of essential amino acids to minimize the accumulation of urea and other uremic toxins demonstrate the clinical benefit of such an intervention in slowing the progression of CKD and the development of cardiovascular complications.
Collapse
|
8
|
Abstract
Rheumatoid arthritis is a chronic, autoimmune connective tissue disease. In addition to joint involvement, extra-articular changes and organ complications also occur in the course of the disease. Untreated disease leads to disability and premature death. Therefore, it is important to recognise and begin treatment early. Based on the presence of rheumatoid factor and antibodies against citrullinated peptides, we can distinguish two forms of the disease: seropositive and seronegative. Research continues to elucidate the mechanisms of the onset of the disease, as well as to uncover factors that induce and influence the activity of the disease. The presence of markers that initially appear and affect the course of the disease can potentially aid in patient treatment. In this article, we have collected biomarkers of rheumatoid arthritis that are well understood as well as those that have been recently described.
Collapse
Affiliation(s)
- Bogdan Kolarz
- Department of Internal Medicine, Institute of Medical Sciences, Medical College of Rzeszow University, Rzeszow, Poland
| | - Dominika Podgorska
- Department of Internal Medicine, Institute of Medical Sciences, Medical College of Rzeszow University, Rzeszow, Poland
| | - Rafal Podgorski
- Department of Biochemistry, Institute of Medical Sciences, Medical College of Rzeszow University, Rzeszow, Poland.,Centre for Innovative Research in Medical and Natural Sciences, University of Rzeszow, Rzeszow, Poland
| |
Collapse
|
9
|
Fedintsev A, Moskalev A. Stochastic non-enzymatic modification of long-lived macromolecules - A missing hallmark of aging. Ageing Res Rev 2020; 62:101097. [PMID: 32540391 DOI: 10.1016/j.arr.2020.101097] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/05/2020] [Accepted: 06/04/2020] [Indexed: 12/12/2022]
Abstract
Damage accumulation in long-living macromolecules (especially extracellular matrix (ECM) proteins, nuclear pore complex (NPC) proteins, and histones) is a missing hallmark of aging. Stochastic non-enzymatic modifications of ECM trigger cellular senescence as well as many other hallmarks of aging affect organ barriers integrity and drive tissue fibrosis. The importance of it for aging makes it a key target for interventions. The most promising of them can be AGE inhibitors (chelators, O-acetyl group or transglycating activity compounds, amadorins and amadoriases), glucosepane breakers, stimulators of elastogenesis, and RAGE antagonists.
Collapse
Affiliation(s)
- Alexander Fedintsev
- Institute of Biology of FRC of Komi Scientific Center, Ural Branch of Russian Academy of Sciences, Syktyvkar, Russia
| | - Alexey Moskalev
- Institute of Biology of FRC of Komi Scientific Center, Ural Branch of Russian Academy of Sciences, Syktyvkar, Russia.
| |
Collapse
|
10
|
Lee YH, Baharuddin NA, Chan SW, Rahman MT, Bartold PM, Sockalingam S, Vaithilingam RD. Localisation of citrullinated and carbamylated proteins in inflamed gingival tissues from rheumatoid arthritis patients. Clin Oral Investig 2020; 25:1441-1450. [PMID: 32656595 DOI: 10.1007/s00784-020-03452-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/07/2020] [Indexed: 01/06/2023]
Abstract
OBJECTIVES It has been proposed that citrullination and carbamylation occur in the inflamed periodontium and could be the plausible mechanisms for the generation of antigens involved in the development and progression of RA. The purpose of this study was to determine the presence and location of citrullinated and carbamylated proteins in the gingival tissues and compare their abundance in periodontitis (PD) patients with or without RA. MATERIALS AND METHODS Gingival tissue samples of healthy (n = 5), PD with RA (n = 5) and PD without RA (n = 5) were collected. Specimens were formalin fixed, paraffin embedded and sectioned at 4 μm. The tissue sections were analysed for the presence of citrullinated and carbamylated proteins by immunohistochemistry. Semi-quantitative analysis was performed to quantify and compare the protein abundance between groups. RESULTS The number of cells containing citrullinated and carbamylated proteins with higher intensity was markedly increased in gingival tissues from PD with or without RA in comparison with healthy controls. CONCLUSION Inflamed gingival tissue is a potential source of citrullinated and carbamylated proteins other than synovial tissues. The extent to which the local accumulation of these proteins contributes to the pathogenesis of RA needs further elucidation. CLINICAL RELEVANCE If PD is a potential source of post-translationally modified proteins, untreated PD should not be taken lightly in the context of RA. Hence, addressing gingival inflammation should be viewed as an important preventive measure in the general population not only for the progression of periodontal disease but also reducing the risk of developing extra-oral comorbidities.
Collapse
Affiliation(s)
- Yin Hui Lee
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Nor Adinar Baharuddin
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Siew Wui Chan
- Department of Oral & Maxillofacial Clinical Sciences, Faculty of Dentistry, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | | | - P Mark Bartold
- Department of Dentistry, University of Adelaide, Adelaide, Australia
| | - Sargunan Sockalingam
- Department of Rheumatology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Rathna Devi Vaithilingam
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
11
|
Choi H, Simpson D, Wang D, Prescott M, Pitsillides AA, Dudhia J, Clegg PD, Ping P, Thorpe CT. Heterogeneity of proteome dynamics between connective tissue phases of adult tendon. eLife 2020; 9:e55262. [PMID: 32393437 PMCID: PMC7217697 DOI: 10.7554/elife.55262] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/16/2020] [Indexed: 12/29/2022] Open
Abstract
Maintenance of connective tissue integrity is fundamental to sustain function, requiring protein turnover to repair damaged tissue. However, connective tissue proteome dynamics remain largely undefined, as do differences in turnover rates of individual proteins in the collagen and glycoprotein phases of connective tissue extracellular matrix (ECM). Here, we investigate proteome dynamics in the collagen and glycoprotein phases of connective tissues by exploiting the spatially distinct fascicular (collagen-rich) and interfascicular (glycoprotein-rich) ECM phases of tendon. Using isotope labelling, mass spectrometry and bioinformatics, we calculate turnover rates of individual proteins within rat Achilles tendon and its ECM phases. Our results demonstrate complex proteome dynamics in tendon, with ~1000 fold differences in protein turnover rates, and overall faster protein turnover within the glycoprotein-rich interfascicular matrix compared to the collagen-rich fascicular matrix. These data provide insights into the complexity of proteome dynamics in tendon, likely required to maintain tissue homeostasis.
Collapse
Affiliation(s)
- Howard Choi
- Department of Physiology and Medicine, David Geffen School of Medicine, UCLALos AngelesUnited States
| | - Deborah Simpson
- Centre for Proteome Research, Biosciences Building, Institute of Integrative Biology, University of LiverpoolLiverpoolUnited Kingdom
| | - Ding Wang
- Department of Physiology and Medicine, David Geffen School of Medicine, UCLALos AngelesUnited States
| | - Mark Prescott
- Centre for Proteome Research, Biosciences Building, Institute of Integrative Biology, University of LiverpoolLiverpoolUnited Kingdom
| | - Andrew A Pitsillides
- Department of Comparative Biomedical Sciences, Royal Veterinary CollegeLondonUnited Kingdom
| | - Jayesh Dudhia
- Department of Clinical Sciences and Services, Royal Veterinary CollegeHatfieldUnited Kingdom
| | - Peter D Clegg
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of LiverpoolLiverpoolUnited Kingdom
| | - Peipei Ping
- Department of Physiology and Medicine, David Geffen School of Medicine, UCLALos AngelesUnited States
| | - Chavaunne T Thorpe
- Department of Comparative Biomedical Sciences, Royal Veterinary CollegeLondonUnited Kingdom
| |
Collapse
|
12
|
Adav SS, Sze SK. Hypoxia-Induced Degenerative Protein Modifications Associated with Aging and Age-Associated Disorders. Aging Dis 2020; 11:341-364. [PMID: 32257546 PMCID: PMC7069466 DOI: 10.14336/ad.2019.0604] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/04/2019] [Indexed: 12/18/2022] Open
Abstract
Aging is an inevitable time-dependent decline of various physiological functions that finally leads to death. Progressive protein damage and aggregation have been proposed as the root cause of imbalance in regulatory processes and risk factors for aging and neurodegenerative diseases. Oxygen is a modulator of aging. The oxygen-deprived conditions (hypoxia) leads to oxidative stress, cellular damage and protein modifications. Despite unambiguous evidence of the critical role of spontaneous non-enzymatic Degenerative Protein Modifications (DPMs) such as oxidation, glycation, carbonylation, carbamylation, and deamidation, that impart deleterious structural and functional protein alterations during aging and age-associated disorders, the mechanism that mediates these modifications is poorly understood. This review summarizes up-to-date information and recent developments that correlate DPMs, aging, hypoxia, and age-associated neurodegenerative diseases. Despite numerous advances in the study of the molecular hallmark of aging, hypoxia, and degenerative protein modifications during aging and age-associated pathologies, a major challenge remains there to dissect the relative contribution of different DPMs in aging (either natural or hypoxia-induced) and age-associated neurodegeneration.
Collapse
Affiliation(s)
- Sunil S Adav
- School of Biological Sciences, Nanyang Technological University, Singapore
- Singapore Phenome Centre, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, Singapore
| |
Collapse
|
13
|
Nicolas C, Jaisson S, Gorisse L, Tessier FJ, Niquet-Léridon C, Jacolot P, Pietrement C, Gillery P. Carbamylation and glycation compete for collagen molecular aging in vivo. Sci Rep 2019; 9:18291. [PMID: 31797985 PMCID: PMC6892850 DOI: 10.1038/s41598-019-54817-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 11/11/2019] [Indexed: 12/11/2022] Open
Abstract
Tissue aging is a complex phenomenon involving molecular aging of matrix proteins, which mainly results from their progressive alteration by nonenzymatic post-translational modifications (NEPTMs) such as glycation and carbamylation. These two reactions, which correspond to the binding of reactive metabolites (i.e. reducing sugars and urea-derived cyanate, respectively) on amino groups of proteins, occur during aging and are amplified in various chronic diseases such as diabetes mellitus or chronic renal disease (CKD). Since these reactions target the same functional groups, they can reciprocally compete for protein modification. Determining which NEPTM is predominant in tissues is necessary to better understand their role in the development of long-term complications of chronic diseases. For that purpose, two different murine models were used for reproducing such a competitive context: a CKD-diabetic mice model and a cyanate-consuming mice model. The competition has been evaluated by quantifying glycation and carbamylation products by LC-MS/MS in skin and aorta total extracts as well as in skin type I collagen. The results showed that the simultaneous enhancement of glycation and carbamylation reactions resulted in a decrease of the formation of glycation products (especially Amadori products) whereas the concentrations of homocitrulline, a carbamylation product, remained similar. These results, which have been obtained in both tissues and in purified skin type I collagen, suggest that carbamylation takes precedence over glycation for the modification of tissue proteins, but only in pathological conditions favouring these two NEPTMs. While glycation has been considered for a long time the predominant NEPTM of matrix proteins, carbamylation seems to also play an important role in tissue aging. The existence of competition between these NEPTMs must be taken into account to better understand the consequences of molecular aging of matrix proteins in tissue aging.
Collapse
Affiliation(s)
- Camille Nicolas
- University of Reims Champagne-Ardenne, Laboratory of Biochemistry and Molecular Biology, CNRS/URCA UMR N° 7369 MEDyC, Reims, France.,University Hospital of Reims, Department of Pediatrics (Nephrology unit), Reims, France
| | - Stéphane Jaisson
- University of Reims Champagne-Ardenne, Laboratory of Biochemistry and Molecular Biology, CNRS/URCA UMR N° 7369 MEDyC, Reims, France.,University Hospital of Reims, Laboratory of Pediatric Biology and Research, Reims, France
| | - Laëtitia Gorisse
- University of Reims Champagne-Ardenne, Laboratory of Biochemistry and Molecular Biology, CNRS/URCA UMR N° 7369 MEDyC, Reims, France
| | - Frédéric J Tessier
- University of Lille, CHU Lille, Inserm U995 - LIRIC - Lille Inflammation Research International Center, Lille, France
| | - Céline Niquet-Léridon
- Institut Polytechnique UniLaSalle, "Transformations & Agro-ressources" Unit, Beauvais, France
| | - Philippe Jacolot
- Institut Polytechnique UniLaSalle, "Transformations & Agro-ressources" Unit, Beauvais, France
| | - Christine Pietrement
- University of Reims Champagne-Ardenne, Laboratory of Biochemistry and Molecular Biology, CNRS/URCA UMR N° 7369 MEDyC, Reims, France.,University Hospital of Reims, Department of Pediatrics (Nephrology unit), Reims, France
| | - Philippe Gillery
- University of Reims Champagne-Ardenne, Laboratory of Biochemistry and Molecular Biology, CNRS/URCA UMR N° 7369 MEDyC, Reims, France. .,University Hospital of Reims, Laboratory of Pediatric Biology and Research, Reims, France.
| |
Collapse
|
14
|
Lim K, Kalim S. The Role of Nonenzymatic Post-translational Protein Modifications in Uremic Vascular Calcification. Adv Chronic Kidney Dis 2019; 26:427-436. [PMID: 31831121 DOI: 10.1053/j.ackd.2019.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/07/2019] [Accepted: 10/07/2019] [Indexed: 01/11/2023]
Abstract
Considerable technological advances have enabled the identification and linkage of nonenzymatic post-translationally modified proteins to the pathogenesis of cardiovascular disease (CVD) in patients with kidney failure. Through processes such as the nonenzymatic carbamylation reaction as well as the formation of advanced glycation end products, we now know that protein modifications are invariably associated with the development of CVD beyond a mere epiphenomenon and this has become an important focus of nephrology research in recent years. Although the specific mechanisms by which protein modifications occurring in kidney failure that may contribute to CVD are diverse and include pathways such as inflammation and fibrosis, vascular calcification has emerged as a distinct pathological sequelae of protein modifications. In this review, we consider the biological mechanisms and clinical relevance of protein carbamylation and advanced glycation end products in CVD development with a focus on vascular calcification.
Collapse
|
15
|
Protein carbamylation in end stage renal disease: is there a mortality effect? Curr Opin Nephrol Hypertens 2019; 27:454-462. [PMID: 30148723 DOI: 10.1097/mnh.0000000000000454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PURPOSE OF REVIEW Protein carbamylation is a posttranslational protein modification caused, in part, by exposure to urea's dissociation product cyanate. Additional modulators of protein carbamylation include circulating free amino acid levels, inflammation, diet, smoking, and environmental pollution exposures. Carbamylation reactions can modify protein charge, structure, and function, leading to adverse molecular and cellular responses. These changes have been linked to several pathologic biochemical pathways relevant to patients with end stage renal disease (ESRD) such as accelerated atherosclerosis and dysfunctional erythropoiesis, among others. This review examines the consequences of human protein carbamylation and the clinical impact this is thought to have in patients with ESRD. RECENT FINDINGS Recent well-conducted studies across diverse cohorts of patients have independently associated elevations in protein carbamylation to mortality and morbidity in patients with ESRD. Studies are now examining the best strategies to reduce carbamylation load, including interventions aimed at lowering urea levels and restoring amino acid balance. Whether such carbamylation lowering strategies yield clinical improvements remain to be determined. SUMMARY Numerous fundamental studies provide plausible mechanisms for the observed association between protein carbamylation burden and adverse clinical outcomes in ESRD. Studies employing nutritional and dialytic interventions to lower carbamylation may mitigate this risk but the net clinical benefit has not been established.
Collapse
|
16
|
Chimenti MS, Sunzini F, Fiorucci L, Botti E, Fonti GL, Conigliaro P, Triggianese P, Costa L, Caso F, Giunta A, Esposito M, Bianchi L, Santucci R, Perricone R. Potential Role of Cytochrome c and Tryptase in Psoriasis and Psoriatic Arthritis Pathogenesis: Focus on Resistance to Apoptosis and Oxidative Stress. Front Immunol 2018; 9:2363. [PMID: 30429845 PMCID: PMC6220124 DOI: 10.3389/fimmu.2018.02363] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 09/24/2018] [Indexed: 02/06/2023] Open
Abstract
Psoriasis (PsO) is an autoimmune disease characterized by keratinocyte proliferation, chronic inflammation and mast cell activation. Up to 42% of patients with PsO may present psoriatic arthritis (PsA). PsO and PsA share common pathophysiological mechanisms: keratinocytes and fibroblast-like synoviocytes are resistant to apoptosis: this is one of the mechanism facilitating their hyperplasic growth, and at joint level, the destruction of articular cartilage, and bone erosion and/or proliferation. Several clinical studies regarding diseases characterized by impairment of cell death, either due to apoptosis or necrosis, reported cytochrome c release from the mitochondria into the extracellular space and finally into the circulation. The presence of elevated cytochrome c levels in serum has been demonstrated in diseases as inflammatory arthritis, myocardial infarction and stroke, and liver diseases. Cytochrome c is a signaling molecule essential for apoptotic cell death released from mitochondria to the cytosol allowing the interaction with protease, as the apoptosis protease activation factor, which lead to the activation of factor-1 and procaspase 9. It has been demonstrated that this efflux from the mitochondria is crucial to start the intracellular signaling responsible for apoptosis, then to the activation of the inflammatory process. Another inflammatory marker, the tryptase, a trypsin-like serine protease produced by mast cells, is released during inflammation, leading to the activation of several immune cells through proteinase-activated receptor-2. In this review, we aimed at discussing the role played by cytochrome c and tryptase in PsO and PsA pathogenesis. To this purpose, we searched pathogenetic mechanisms in PUBMED database and review on oxidative stress, cytochrome c and tryptase and their potential role during inflammation in PsO and PsA. To this regard, the cytochrome c release into the extracellular space and tryptase may have a role in skin and joint inflammation.
Collapse
Affiliation(s)
- Maria Sole Chimenti
- Rheumatology, Allergology and Clinical Immunology, University of Rome Tor Vergata, Rome, Italy
| | - Flavia Sunzini
- Rheumatology, Allergology and Clinical Immunology, University of Rome Tor Vergata, Rome, Italy
| | - Laura Fiorucci
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | - Giulia Lavinia Fonti
- Rheumatology, Allergology and Clinical Immunology, University of Rome Tor Vergata, Rome, Italy
| | - Paola Conigliaro
- Rheumatology, Allergology and Clinical Immunology, University of Rome Tor Vergata, Rome, Italy
| | - Paola Triggianese
- Rheumatology, Allergology and Clinical Immunology, University of Rome Tor Vergata, Rome, Italy
| | - Luisa Costa
- Rheumatology Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Francesco Caso
- Rheumatology Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | | | - Maria Esposito
- Dermatology, University of Rome Tor Vergata, Rome, Italy
| | - Luca Bianchi
- Dermatology, University of Rome Tor Vergata, Rome, Italy
| | - Roberto Santucci
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Roberto Perricone
- Rheumatology, Allergology and Clinical Immunology, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
17
|
Innovative approaches in diabetes diagnosis and monitoring: less invasive, less expensive… but less, equally or more efficient? Clin Chem Lab Med 2018; 56:1397-1399. [DOI: 10.1515/cclm-2018-0549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
Abstract
Protein carbamylation is a nonenzymatic posttranslational protein modification that can be driven, in part, by exposure to urea's dissociation product, cyanate. In humans, when kidney function is impaired and urea accumulates, systemic protein carbamylation levels increase. Additional mediators of protein carbamylation have been identified including inflammation, diet, smoking, circulating free amino acid levels, and environmental exposures. Carbamylation reactions on proteins are capable of irreversibly changing protein charge, structure, and function, resulting in pathologic molecular and cellular responses. Carbamylation has been mechanistically linked to the biochemical pathways implicated in atherosclerosis, dysfunctional erythropoiesis, kidney fibrosis, autoimmunity, and other pathological domains highly relevant to patients with chronic kidney disease. In this review, we describe the biochemical impact of carbamylation on human proteins, the mechanistic role carbamylation can have on clinical outcomes in kidney disease, the clinical association studies of carbamylation in chronic kidney disease, including patients on dialysis, and the promise of therapies aimed at reducing carbamylation burden in this vulnerable patient population.
Collapse
Affiliation(s)
- Joshua Long
- Nephrology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Xavier Vela Parada
- Nephrology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Sahir Kalim
- Nephrology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
19
|
Jaisson S, Pietrement C, Gillery P. Protein Carbamylation: Chemistry, Pathophysiological Involvement, and Biomarkers. Adv Clin Chem 2018; 84:1-38. [PMID: 29478512 DOI: 10.1016/bs.acc.2017.12.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Protein carbamylation refers to a nonenzymatic modification, which consists in the binding of isocyanic acid on protein functional groups. This reaction is responsible for the alteration in structural and functional properties of proteins, which participate in their molecular aging. Protein molecular aging is now considered a molecular substratum for the development of chronic and inflammatory diseases, including atherosclerosis, chronic kidney disease, or rheumatoid arthritis. As a consequence, carbamylation-derived products have been proposed as interesting biomarkers in various pathological contexts and appropriate analytical methods have been developed for their quantification in biological fluids. The purpose of this review is (i) to describe the biochemical bases of the carbamylation reaction, (ii) to explain how it contributes to protein molecular aging, (iii) to provide evidence of its involvement in aging and chronic diseases, and (iv) to list the available biomarkers of carbamylation process and the related analytical methods.
Collapse
|
20
|
Taga Y, Tanaka K, Hamada C, Kusubata M, Ogawa-Goto K, Hattori S. Hydroxyhomocitrulline Is a Collagen-Specific Carbamylation Mark that Affects Cross-link Formation. Cell Chem Biol 2017; 24:1276-1284.e3. [DOI: 10.1016/j.chembiol.2017.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/19/2017] [Accepted: 08/07/2017] [Indexed: 10/18/2022]
|
21
|
Deltombe O, de Loor H, Glorieux G, Dhondt A, Van Biesen W, Meijers B, Eloot S. Exploring binding characteristics and the related competition of different protein-bound uremic toxins. Biochimie 2017; 139:20-26. [DOI: 10.1016/j.biochi.2017.05.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 05/16/2017] [Indexed: 11/25/2022]
|
22
|
Delanghe S, Delanghe JR, Speeckaert R, Van Biesen W, Speeckaert MM. Mechanisms and consequences of carbamoylation. Nat Rev Nephrol 2017; 13:580-593. [PMID: 28757635 DOI: 10.1038/nrneph.2017.103] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Protein carbamoylation is a non-enzymatic post-translational modification that binds isocyanic acid, which can be derived from the dissociation of urea or from the myeloperoxidase-mediated catabolism of thiocyanate, to the free amino groups of a multitude of proteins. Although the term 'carbamoylation' is usually replaced by the term "carbamylation" in the literature, carbamylation refers to a different chemical reaction (the reversible interaction of CO2 with α and ε-amino groups of proteins). Depending on the altered molecule (for example, collagen, erythropoietin, haemoglobin, low-density lipoprotein or high-density lipoprotein), carbamoylation can have different pathophysiological effects. Carbamoylated proteins have been linked to atherosclerosis, lipid metabolism, immune system dysfunction (such as inhibition of the classical complement pathway, inhibition of complement-dependent rituximab cytotoxicity, reduced oxidative neutrophil burst, and the formation of anti-carbamoylated protein antibodies) and renal fibrosis. In this Review, we discuss the carbamoylation process and evaluate the available biomarkers of carbamoylation (for example, homocitrulline, the percentage of carbamoylated albumin, carbamoylated haemoglobin, and carbamoylated low-density lipoprotein). We also discuss the relationship between carbamoylation and the occurrence of cardiovascular events and mortality in patients with chronic kidney disease and assess the effects of strategies to lower the carbamoylation load.
Collapse
Affiliation(s)
- Sigurd Delanghe
- Department of Nephrology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Joris R Delanghe
- Department of Clinical Chemistry, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Reinhart Speeckaert
- Department of Clinical Chemistry, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Wim Van Biesen
- Department of Nephrology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Marijn M Speeckaert
- Department of Nephrology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| |
Collapse
|
23
|
Binder V, Bergum B, Jaisson S, Gillery P, Scavenius C, Spriet E, Nyhaug AK, Roberts HM, Chapple ILC, Hellvard A, Delaleu N, Mydel P. Impact of fibrinogen carbamylation on fibrin clot formation and stability. Thromb Haemost 2017; 117:899-910. [PMID: 28382370 PMCID: PMC5442607 DOI: 10.1160/th16-09-0704] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 02/07/2016] [Indexed: 01/20/2023]
Abstract
Carbamylation is a non-enzymatic post-translational modification induced upon exposure of free amino groups to urea-derived cyanate leading to irreversible changes of protein charge, structure and function. Levels of carbamylated proteins increase significantly in chronic kidney disease and carbamylated albumin is considered as an important biomarker indicating mortality risk. High plasma concentrations and long half-life make fibrinogen a prime target for carbamylation. As aggregation and cross-linking of fibrin monomers rely on lysine residues, it is likely that carbamylation impacts fibrinogen processing. In this study we investigated carbamylation levels of fibrinogen from kidney disease patients as well as the impact of carbamylation on fibrinogen cleavage by thrombin, fibrin polymerisation and cross-linking in vitro. In conjunction, all these factors determine clot structure and stability and thus control biochemical and mechanical properties. LC-MS/MS analyses revealed significantly higher homocitrulline levels in patient fibrinogen than in fibrinogen isolated from control plasma. In our in vitro studies we found that although carbamylation does not affect thrombin cleavage per se, it alters fibrin polymerisation kinetics and impairs cross-linking and clot degradation. In addition, carbamylated fibrin clots had reduced fiber size and porosity associated with decreased mechanical stability. Using mass spectroscopy, we discovered that N-terminally carbamylated fibrinopeptide A was generated in this process and acted as a strong neutrophil chemoattractant potentially mediating recruitment of inflammatory cells to sites of fibrin(ogen) turnover. Taken together, carbamylation of fibrinogen seems to play a role in aberrant fibrin clot formation and might be involved in haemostatic disorders associated with chronic inflammatory diseases.
Collapse
Affiliation(s)
- Veronika Binder
- Veronika Binder, Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, The Laboratory Building, 5th floor, Bergen, Norway, Tel.: +47 55 97 46 48, Fax: +47 55 97 58 17, E-mail:
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Jaisson S, Desmons A, Gorisse L, Gillery P. [Protein molecular aging: which role in physiopathology?]. Med Sci (Paris) 2017; 33:176-182. [PMID: 28240209 DOI: 10.1051/medsci/20173302013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Protein molecular aging corresponds to all modifications affecting proteins during their biological life, which lead to the alteration of their structural and functional properties. This phenomenon participates in cell and tissue aging and is therefore involved in the aging of human organism. It is also amplified in various chronic diseases such as diabetes mellitus or chronic kidney disease, where it participates in the development of long-term complications. This review aims at describing the main reactions responsible for molecular aging, their impact on protein properties and the parameters which could influence this phenomenon. A general scheme explaining its role in physiopathology is also proposed.
Collapse
Affiliation(s)
- Stéphane Jaisson
- Université de Reims Champagne-Ardenne, CNRS UMR 7369, Laboratoire de Biochimie Médicale et Biologie Moléculaire, UFR de Médecine, 51, rue Cognacq-Jay, 51095 Reims Cedex, France - Centre Hospitalier Universitaire de Reims, Pôle de Biologie Médicale et Pathologie, Laboratoire de Biologie et de Recherche Pédiatriques, 45, rue Cognacq-Jay, 51092 Reims Cedex, France
| | - Aurore Desmons
- Université de Reims Champagne-Ardenne, CNRS UMR 7369, Laboratoire de Biochimie Médicale et Biologie Moléculaire, UFR de Médecine, 51, rue Cognacq-Jay, 51095 Reims Cedex, France - Centre Hospitalier Universitaire de Reims, Pôle de Biologie Médicale et Pathologie, Laboratoire de Biologie et de Recherche Pédiatriques, 45, rue Cognacq-Jay, 51092 Reims Cedex, France
| | - Laëtitia Gorisse
- Université de Reims Champagne-Ardenne, CNRS UMR 7369, Laboratoire de Biochimie Médicale et Biologie Moléculaire, UFR de Médecine, 51, rue Cognacq-Jay, 51095 Reims Cedex, France
| | - Philippe Gillery
- Université de Reims Champagne-Ardenne, CNRS UMR 7369, Laboratoire de Biochimie Médicale et Biologie Moléculaire, UFR de Médecine, 51, rue Cognacq-Jay, 51095 Reims Cedex, France - Centre Hospitalier Universitaire de Reims, Pôle de Biologie Médicale et Pathologie, Laboratoire de Biologie et de Recherche Pédiatriques, 45, rue Cognacq-Jay, 51092 Reims Cedex, France
| |
Collapse
|
25
|
Desmons A, Jaisson S, Pietrement C, Rieu P, Wynckel A, Gillery P. Homocitrulline: a new marker for differentiating acute from chronic renal failure. Clin Chem Lab Med 2016; 54:73-9. [PMID: 26124058 DOI: 10.1515/cclm-2015-0398] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 06/01/2015] [Indexed: 11/15/2022]
Abstract
BACKGROUND Carbamylation is a non-enzymatic post-translational modification of proteins characterized by the addition of isocyanic acid to amino groups. As isocyanic acid mainly originates from the spontaneous dissociation of urea, carbamylation rate is increased during renal failure. The aim of the study was to evaluate serum homocitrulline (HCit), which results from the carbamylation of ε-amino groups of lysine (Lys) residues, in acute renal failure (ARF) and to determine if it could be useful for differentiating acute from chronic renal failure (CRF). METHODS In total, 213 patients with renal failure referred to the nephrology department of the university hospital of Reims were included. Patients were classified into three groups: patients with ARF (ARF group, n=39), patients with CRF complicated with ARF (A/CRF group, n=29) and patients with CRF (CRF group, n=145). Serum HCit concentrations were measured by LC-MS/MS. Concentration kinetics of HCit and urea were studied in patients suffering from ARF. The HCit thresholds distinguishing ARF and CRF were investigated. RESULTS HCit concentrations increased in ARF patients reaching a peak delayed compared to urea concentration peak. HCit concentrations were positively correlated with urea concentrations (r=0.51) and with the time elapsed since the estimated onset of ARF (r=0.57). Serum HCit concentrations were higher (p<0.05) in CRF group compared to ARF group. The receiver operating characteristic curve analysis showed that HCit concentrations <289 μmol/mol Lys were predictive of ARF (Sensitivity: 83%, Specificity: 72%, AUC: 0.856). CONCLUSIONS Our results demonstrate that HCit is a promising biomarker for distinguishing between ARF and CRF patients.
Collapse
|
26
|
Conigliaro P, Chimenti M, Triggianese P, Sunzini F, Novelli L, Perricone C, Perricone R. Autoantibodies in inflammatory arthritis. Autoimmun Rev 2016; 15:673-83. [DOI: 10.1016/j.autrev.2016.03.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 02/28/2016] [Indexed: 02/07/2023]
|
27
|
Massy ZA, Pietrement C, Touré F. Reconsidering the Lack of Urea Toxicity in Dialysis Patients. Semin Dial 2016; 29:333-7. [DOI: 10.1111/sdi.12515] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ziad A. Massy
- Division of Nephrology; Ambroise Paré Hospital; APHP; Versailles Saint-Quentin-en-Yvelines University (Paris-Ile-de-France-Ouest University, UVSQ); Boulogne Billancourt/Paris France
- Inserm U-1018 Team 5; Paris-Saclay University and UVSQ; Villejuif France
| | - Christine Pietrement
- Department of Pediatrics; Nephrology Unit; University Hospital of Reims; Reims France
- Laboratoire de Biochimie et de biologie moléculaire; Faculté de médecine; Université de Reims Champagne-Ardenne; CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC); Reims France
| | - Fatouma Touré
- Laboratoire de néphrologie; Faculté de médecine; Université de Reims Champagne-Ardenne; CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC); Reims France
- Division of Nephrology; CHU Reims; Reims France
| |
Collapse
|
28
|
Abstract
Aging is a progressive process determined by genetic and acquired factors. Among the latter are the chemical reactions referred to as nonenzymatic posttranslational modifications (NEPTMs), such as glycoxidation, which are responsible for protein molecular aging. Carbamylation is a more recently described NEPTM that is caused by the nonenzymatic binding of isocyanate derived from urea dissociation or myeloperoxidase-mediated catabolism of thiocyanate to free amino groups of proteins. This modification is considered an adverse reaction, because it induces alterations of protein and cell properties. It has been shown that carbamylated proteins increase in plasma and tissues during chronic kidney disease and are associated with deleterious clinical outcomes, but nothing is known to date about tissue protein carbamylation during aging. To address this issue, we evaluated homocitrulline rate, the most characteristic carbamylation-derived product (CDP), over time in skin of mammalian species with different life expectancies. Our results show that carbamylation occurs throughout the whole lifespan and leads to tissue accumulation of carbamylated proteins. Because of their remarkably long half-life, matrix proteins, like type I collagen and elastin, are preferential targets. Interestingly, the accumulation rate of CDPs is inversely correlated with longevity, suggesting the occurrence of still unidentified protective mechanisms. In addition, homocitrulline accumulates more intensely than carboxymethyl-lysine, one of the major advanced glycation end products, suggesting the prominent role of carbamylation over glycoxidation reactions in age-related tissue alterations. Thus, protein carbamylation may be considered a hallmark of aging in mammalian species that may significantly contribute in the structural and functional tissue damages encountered during aging.
Collapse
|
29
|
Auto-reactions, autoimmunity and psoriatic arthritis. Autoimmun Rev 2015; 14:1142-6. [DOI: 10.1016/j.autrev.2015.08.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 08/03/2015] [Indexed: 12/28/2022]
|
30
|
Gajjala PR, Fliser D, Speer T, Jankowski V, Jankowski J. Emerging role of post-translational modifications in chronic kidney disease and cardiovascular disease. Nephrol Dial Transplant 2015; 30:1814-1824. [DOI: 10.1093/ndt/gfv048] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
31
|
Gillery P, Jaisson S, Gorisse L, Pietrement C. [Role of protein carbamylation in chronic kidney disease complications]. Nephrol Ther 2015; 11:129-34. [PMID: 25794932 DOI: 10.1016/j.nephro.2014.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 12/15/2014] [Accepted: 12/16/2014] [Indexed: 12/01/2022]
Abstract
Carbamylation corresponds to the non-enzymatic binding of isocyanic acid, mainly derived from urea decomposition, on amino groups of proteins, and participates in their molecular aging. This process is increased during chronic kidney disease (CKD) because of hyperuremia, and in other pathologies like atherosclerosis, where isocyanic may be formed from thiocyanate by myeloperoxidase in atheroma plates. Carbamylation triggers structural and functional modifications of proteins, thus impairing their biological roles and their interactions with cells. Much experimental evidence in vitro has shown the potential deleterious effects of carbamylated proteins on cell and tissue functions. Carbamylation-derived products (CDPs), and especially their major component homocitrulline, accumulate in organism in long half-life proteins, and may participate in the development of different complications of CKD, especially cardiovascular diseases, renal fibrosis, or nutritional and metabolic troubles. Recent clinical studies have confirmed the link between serum protein carbamylation and morbi-mortality in patients suffering from CKD or undergoing hemodialysis. Some CDPs could be used as biomarkers in these pathologies.
Collapse
Affiliation(s)
- Philippe Gillery
- Laboratoire de biologie et de recherche pédiatriques, hôpital Maison Blanche, CHU de Reims, 45, rue Cognacq-Jay, 51092 Reims cedex, France; Laboratoire de biochimie médicale et biologie moléculaire, UMR CNRS/URCA n(o) 7369, faculté de médecine, université de Reims Champagne-Ardenne, 51, rue Cognacq-Jay, 51095 Reims cedex, France.
| | - Stéphane Jaisson
- Laboratoire de biologie et de recherche pédiatriques, hôpital Maison Blanche, CHU de Reims, 45, rue Cognacq-Jay, 51092 Reims cedex, France; Laboratoire de biochimie médicale et biologie moléculaire, UMR CNRS/URCA n(o) 7369, faculté de médecine, université de Reims Champagne-Ardenne, 51, rue Cognacq-Jay, 51095 Reims cedex, France
| | - Laëtitia Gorisse
- Laboratoire de biochimie médicale et biologie moléculaire, UMR CNRS/URCA n(o) 7369, faculté de médecine, université de Reims Champagne-Ardenne, 51, rue Cognacq-Jay, 51095 Reims cedex, France
| | - Christine Pietrement
- Laboratoire de biochimie médicale et biologie moléculaire, UMR CNRS/URCA n(o) 7369, faculté de médecine, université de Reims Champagne-Ardenne, 51, rue Cognacq-Jay, 51095 Reims cedex, France; Service de néphrologie-rhumatologie pédiatriques, American Memorial Hospital, CHU de Reims, 47, rue Cognacq-Jay, 51092 Reims cedex, France
| |
Collapse
|
32
|
Häyrynen J, Kärkkäinen M, Kononoff A, Arstila L, Elfving P, Niinisalo H, Savolainen E, Kautiainen H, Risteli J, Kaipiainen-Seppänen O, Koivula MK. Automated immunoassays for the autoantibodies to carbamylated or citrullinated telopeptides of type I and II collagens. Clin Chem Lab Med 2014; 53:1375-80. [PMID: 25389994 DOI: 10.1515/cclm-2014-0683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 10/13/2014] [Indexed: 11/15/2022]
Abstract
BACKGROUND The aim of the study was to describe automated immunoassays for autoantibodies to homocitrulline or citrulline containing telopeptides of type I and II collagen in various disease categories in an early arthritis series. METHODS Serum samples were collected from 142 patients over 16 years of age with newly diagnosed inflammatory joint disease. All samples were analyzed with an automated inhibition chemiluminescence immunoassay (CLIA) using four different peptide pairs, each consisting of a biotinylated antigen and an inhibiting peptide. Assays were performed with an IDS-iSYS analyzer. Autoantibodies binding to homocitrulline and citrulline containing C-telopeptides of type I (HTELO-I, TELO-I) and type II collagens (HTELO-II, TELO-II) were analyzed. RESULTS The mean ratio of HTELO-I inhibition in seropositive and seronegative rheumatoid arthritis (RA) was 3.07 (95% CI 1.41-11.60), p=0.003, and in seropositive and seronegative undifferentiated arthritis (UA) 4.90 (1.85-14.49), p<0.001. The respective mean ratios in seropositive and seronegative RA and UA were in TELO-I 8.72 (3.68-58.01), p<0.001 and 3.13 (1.49-6.16), p=0.008, in HTELO-II 7.57 (3.18-56.60), p<0.001 and 2.97 (1.23-6.69), p=0.037, and in TELO-II 3.01 (1.30-9.51), p=0.002 and 3.64 (1.86-7.65), p=0.008. In reactive arthritis, ankylosing spondylitis, psoriatic arthritis and unspecified spondyloarthritis the inhibition levels were similar to those observed in seronegative RA or UA. CONCLUSIONS Autoantibodies binding to homocitrulline or citrulline containing telopeptides of type I and II collagen did not differ significantly. They were highest among patients with seropositive disease and they differentiated seropositive and seronegative arthritis.
Collapse
|
33
|
Kalim S, Karumanchi SA, Thadhani RI, Berg AH. Protein carbamylation in kidney disease: pathogenesis and clinical implications. Am J Kidney Dis 2014; 64:793-803. [PMID: 25037561 PMCID: PMC4209336 DOI: 10.1053/j.ajkd.2014.04.034] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 04/30/2014] [Indexed: 12/29/2022]
Abstract
Carbamylation describes a nonenzymatic posttranslational protein modification mediated by cyanate, a dissociation product of urea. When kidney function declines and urea accumulates, the burden of carbamylation naturally increases. Free amino acids may protect proteins from carbamylation, and protein carbamylation has been shown to increase in uremic patients with amino acid deficiencies. Carbamylation reactions are capable of altering the structure and functional properties of certain proteins and have been implicated directly in the underlying mechanisms of various disease conditions. A broad range of studies has demonstrated how the irreversible binding of urea-derived cyanate to proteins in the human body causes inappropriate cellular responses leading to adverse outcomes such as accelerated atherosclerosis and inflammation. Given carbamylation's relationship to urea and the evidence that it contributes to disease pathogenesis, measurements of carbamylated proteins may serve as useful quantitative biomarkers of time-averaged urea concentrations while also offering risk assessment in patients with kidney disease. Moreover, the link between carbamylated proteins and disease pathophysiology creates an enticing therapeutic target for reducing the rate of carbamylation. This article reviews the biochemistry of the carbamylation reaction, its role in specific diseases, and the potential diagnostic and therapeutic implications of these findings based on recent advances.
Collapse
Affiliation(s)
- Sahir Kalim
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital, Boston, MA; Harvard Medical School, Boston, MA
| | - S Ananth Karumanchi
- Harvard Medical School, Boston, MA; Division of Nephrology, Beth Israel Deaconess Medical Center, Boston, MA; Howard Hughes Medical Institute, Boston, MA
| | - Ravi I Thadhani
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital, Boston, MA; Harvard Medical School, Boston, MA
| | - Anders H Berg
- Harvard Medical School, Boston, MA; Department of Pathology, Division of Clinical Chemistry, Beth Israel Deaconess Medical Center, Boston, MA.
| |
Collapse
|
34
|
Zeltz C, Gullberg D. Post-translational modifications of integrin ligands as pathogenic mechanisms in disease. Matrix Biol 2014; 40:5-9. [PMID: 25116951 DOI: 10.1016/j.matbio.2014.08.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/01/2014] [Accepted: 08/01/2014] [Indexed: 12/24/2022]
Abstract
Protein post-translational modifications like glycation, carbamylation and citrullination increase the functional diversity of the proteome but in disease situations might do more harm than good. Post-translational modifications of ECM proteins are thus appearing as mechanisms, which contribute to tissue dysfunction in chronic kidney disease, in diabetes and in various inflammatory diseases. In chronic renal failure, carbamylation could lead to kidney fibrosis. In diabetes, high glucose levels lead to non-enzymatic glycation and cross-linking of collagens, which contribute to tissue stiffening with consequences for cardiovascular and renal functions. In inflammatory diseases, citrullination deiminates arginine residues with possible consequences for integrin-mediated cell adhesion to RGD- and GFOGER sequences in ECM proteins. Citrullination of fibronectin was in one study suggested to affect cell adhesion by modifying the heparin-binding site and not the RGD site. In a recent publication citrullination of GFOGER sequences in collagen II was demonstrated to selectively affect α10β1 and α11β1 integrin-mediated cell adhesion to collagen II, with consequences for synovial fibroblast and stem cell adhesion and migration. The implications of citrullination affecting integrin binding in disease open up a new area of study and might have implications for the pathogenesis of inflammatory diseases like rheumatoid arthritis and periodontitis.
Collapse
Affiliation(s)
- Cédric Zeltz
- Department of Biomedicine and Centre for Cancer Biomarkers, Norwegian Centre of Excellence, University of Bergen, Jonas Lies Vei 91, N-5009 Bergen, Norway
| | - Donald Gullberg
- Department of Biomedicine and Centre for Cancer Biomarkers, Norwegian Centre of Excellence, University of Bergen, Jonas Lies Vei 91, N-5009 Bergen, Norway.
| |
Collapse
|
35
|
Gillery P, Jaisson S. Post-translational modification derived products (PTMDPs): toxins in chronic diseases? Clin Chem Lab Med 2014; 52:33-8. [PMID: 23454717 DOI: 10.1515/cclm-2012-0880] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 02/04/2013] [Indexed: 11/15/2022]
Abstract
In living organisms, proteins are progressively modified by spontaneous non-enzymatic reactions generating many post-translational modification derived products (PTMDPs) which exert deleterious effects and may be considered endogenous toxins in diabetes mellitus and chronic renal failure. Non-enzymatic glycation, which refers to the spontaneous binding of reducing sugars to free amino groups, is increased in diabetes mellitus because of hyperglycemia and is amplified by oxidative processes ('glycoxidation'). Glycoxidation leads to the formation of 'advanced glycation end products' (AGEs), together with products of other oxidative pathways. AGEs alter tissue organization and cell-protein interactions, mainly in the case of long-lived extracellular matrix proteins, and interact with membrane receptors, among which RAGE (receptor of AGEs), a multiligand receptor which triggers intracellular signaling pathways stimulating inflammatory functions. Another major protein modification, carbamylation, is increased in chronic renal failure, which may occur during the course of diabetes mellitus. Carbamylation is due to the binding of isocyanic acid on the α-NH2 extremity of proteins or amino acids, or on ε-NH2 lysine groups, generating homocitrulline, a potential biomarker in atherosclerosis. Isocyanic acid is formed in vivo either by spontaneous dissociation of urea or by myeloperoxidase action on thiocyanate. Carbamylated proteins exhibit altered properties. For example, carbamylated collagen is unable to stimulate oxidative functions of polymorphonuclear neutrophils but increases matrix metalloproteinase-9 production by monocytes. Lipoprotein functions are altered by carbamylation and may contribute to atherogenesis. Thus, the numerous PTMDPs may be considered both hallmarks of protein damage in chronic diseases and endogenous toxins acting at the molecular and cellular levels.
Collapse
|
36
|
Autoantibodies to posttranslational modifications in rheumatoid arthritis. Mediators Inflamm 2014; 2014:492873. [PMID: 24782594 PMCID: PMC3981057 DOI: 10.1155/2014/492873] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 02/10/2014] [Indexed: 12/11/2022] Open
Abstract
Autoantibodies have been associated with human pathologies for a long time, particularly with autoimmune diseases (AIDs). Rheumatoid factor (RF) is known since the late 1930s to be associated with rheumatoid arthritis (RA). The discovery of anticitrullinated protein antibodies in the last century has changed this and other posttranslational modifications (PTM) relevant to RA have since been described. Such PTM introduce neoepitopes in proteins that can generate novel autoantibody specificities. The recent recognition of these novel specificities in RA provides a unique opportunity to understand human B-cell development in vivo. In this paper, we will review the three of the main classes of PTMs already associated with RA: citrullination, carbamylation, and oxidation. With the advancement of research methodologies it should be expected that other autoantibodies against PTM proteins could be discovered in patients with autoimmune diseases. Many of such autoantibodies may provide significant biomarker potential.
Collapse
|
37
|
Lauer JL, Bhowmick M, Tokmina-Roszyk D, Lin Y, Van Doren SR, Fields GB. The role of collagen charge clusters in the modulation of matrix metalloproteinase activity. J Biol Chem 2014; 289:1981-92. [PMID: 24297171 PMCID: PMC3900948 DOI: 10.1074/jbc.m113.513408] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 11/28/2013] [Indexed: 12/22/2022] Open
Abstract
Members of the matrix metalloproteinase (MMP) family selectively cleave collagens in vivo. Several substrate structural features that direct MMP collagenolysis have been identified. The present study evaluated the role of charged residue clusters in the regulation of MMP collagenolysis. A series of 10 triple-helical peptide (THP) substrates were constructed in which either Lys-Gly-Asp or Gly-Asp-Lys motifs replaced Gly-Pro-Hyp (where Hyp is 4-hydroxy-L-proline) repeats. The stabilities of THPs containing the two different motifs were analyzed, and kinetic parameters for substrate hydrolysis by six MMPs were determined. A general trend for virtually all enzymes was that, as Gly-Asp-Lys motifs were moved from the extreme N and C termini to the interior next to the cleavage site sequence, kcat/Km values increased. Additionally, all Gly-Asp-Lys THPs were as good or better substrates than the parent THP in which Gly-Asp-Lys was not present. In turn, the Lys-Gly-Asp THPs were also always better substrates than the parent THP, but the magnitude of the difference was considerably less compared with the Gly-Asp-Lys series. Of the MMPs tested, MMP-2 and MMP-9 most greatly favored the presence of charged residues with preference for the Gly-Asp-Lys series. Lys-Gly-(Asp/Glu) motifs are more commonly found near potential MMP cleavage sites than Gly-(Asp/Glu)-Lys motifs. As Lys-Gly-Asp is not as favored by MMPs as Gly-Asp-Lys, the Lys-Gly-Asp motif appears advantageous over the Gly-Asp-Lys motif by preventing unwanted MMP hydrolysis. More specifically, the lack of Gly-Asp-Lys clusters may diminish potential MMP-2 and MMP-9 collagenolytic activity. The present study indicates that MMPs have interactions spanning the P23-P23' subsites of collagenous substrates.
Collapse
Affiliation(s)
- Janelle L. Lauer
- From the Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Manishabrata Bhowmick
- From the Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida 34987 and
| | - Dorota Tokmina-Roszyk
- From the Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida 34987 and
| | - Yan Lin
- From the Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229
| | - Steven R. Van Doren
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211
| | - Gregg B. Fields
- From the Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida 34987 and
| |
Collapse
|
38
|
Chronic increase of urea leads to carbamylated proteins accumulation in tissues in a mouse model of CKD. PLoS One 2013; 8:e82506. [PMID: 24324801 PMCID: PMC3853192 DOI: 10.1371/journal.pone.0082506] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 10/24/2013] [Indexed: 11/27/2022] Open
Abstract
Carbamylation is a general process involved in protein molecular ageing due to the nonenzymatic binding of isocyanic acid, mainly generated by urea dissociation, to free amino groups. In vitro experiments and clinical studies have suggested the potential involvement of carbamylated proteins (CPs) in chronic kidney disease (CKD) complications like atherosclerosis, but their metabolic fate in vivo is still unknown. To address this issue, we evaluated protein carbamylation in the plasma and tissues of control and 75% nephrectomised C57BL/6J mice by LC-MS/MS assay of homocitrulline, the major carbamylation-derived product (CDP). A basal level of carbamylation was evidenced under all conditions, showing that carbamylation is a physiological process of protein modification in vivo. CP plasma concentrations increased in nephrectomized vs. control mice over the 20 weeks of the experiment (e.g. 335±43 vs. 167±19 μmol homocitrulline/mol lysine (p<0.001) 20 weeks after nephrectomy). Simultaneously, CP content increased roughly by two-fold in all tissues throughout the experiment. The progressive accumulation of CPs was specifically noted in long-lived extracellular matrix proteins, especially collagen (e.g. 1264±123 vs. 726±99 μmol homocitrulline/mol lysine (p<0.01) in the skin of nephrectomized vs. control mice after 20 weeks of evolution). These results show that chronic increase of urea, as seen in CKD, increases the carbamylation rate of plasma and tissue proteins. These results may be considered in the perspective of the deleterious effects of CPs demonstrated in vitro and of the correlation evidenced recently between plasma CPs and cardiovascular risk or mortality in CKD patients.
Collapse
|
39
|
Shi J, van Veelen PA, Mahler M, Janssen GMC, Drijfhout JW, Huizinga TWJ, Toes REM, Trouw LA. Carbamylation and antibodies against carbamylated proteins in autoimmunity and other pathologies. Autoimmun Rev 2013; 13:225-30. [PMID: 24176675 DOI: 10.1016/j.autrev.2013.10.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 10/15/2013] [Indexed: 10/26/2022]
Abstract
Carbamylation is a non-enzymatic post-translational modification in which cyanate binds to molecules containing primary amine or thiol groups and forms carbamyl groups. Cyanate is in equilibrium with urea in body fluid and increased carbamylation was first reported in patients with increased urea levels such as patients suffering renal diseases. Next, increased carbamylation related to inflammation has also been described in other conditions such as cardiovascular disease. Recently, a new consequence of carbamylation has been observed: induction of an autoantibody response. We identified anti-carbamylated protein (anti-CarP) antibodies in rheumatoid arthritis (RA) patients and in patients having 'pre-RA' symptoms, arthralgia. The presence of anti-CarP antibodies in arthralgia patients is associated with an increased risk of developing RA. The presence of anti-CarP antibodies in RA patients is associated with more severe joint damage in RA patients who do not have anti-citrullinated protein antibodies. It is currently unknown to what extent carbamylation and/or the formation of anti-CarP antibodies contributes to the disease processes of chronic diseases such as renal diseases, cardiovascular diseases and RA. This review summarizes the current knowledge on carbamylation and the formation of anti-CarP antibodies and discusses their possibly important implications.
Collapse
Affiliation(s)
- Jing Shi
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Peter A van Veelen
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands.
| | | | - George M C Janssen
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands.
| | - Jan W Drijfhout
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands.
| | - Tom W J Huizinga
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Rene E M Toes
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Leendert A Trouw
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
40
|
Jaisson S, Pietrement C, Gillery P. Carbamylation-derived products: bioactive compounds and potential biomarkers in chronic renal failure and atherosclerosis. Clin Chem 2011; 57:1499-505. [PMID: 21768218 DOI: 10.1373/clinchem.2011.163188] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Carbamylation is a posttranslational modification of proteins resulting from the nonenzymatic reaction between isocyanic acid and specific free functional groups. This reaction alters protein structural and functional properties and thus contributes to molecular ageing. Many studies have shown the involvement of carbamylated proteins in diseases, especially in chronic renal failure and atherosclerosis. CONTENT In this review we describe the biochemical basis of the carbamylation process and its role in protein molecular ageing. We summarize the current evidence of protein carbamylation involvement in disease, identify available biomarkers of the carbamylation process and their related analytical methods, and discuss the practical relevance of these biomarkers. SUMMARY Carbamylation-induced protein alterations are involved in the progression of various diseases, because carbamylation-derived products (CDPs) are bioactive compounds that trigger specific and inappropriate cellular responses. For instance, carbamylation may promote hormone and enzyme inactivation, and carbamylated proteins, as diverse as collagen or LDLs, induce characteristic biochemical events of atherosclerosis progression. CDPs are potential biomarkers to monitor diseases characterized by an increased rate of carbamylation (e.g., chronic renal failure and atherosclerosis). Different methods (e.g., liquid chromatography-tandem mass spectrometry and immunoassays) to measure specific carbamylated proteins or general markers of carbamylation, such as protein-bound homocitrulline, have been described. Their use in clinical practice must still be validated by appropriate clinical studies.
Collapse
Affiliation(s)
- Stéphane Jaisson
- Laboratory of Pediatric Biology and Research, American Memorial Hospital, University Hospital of Reims,France.
| | | | | |
Collapse
|
41
|
Xiong X, Ghosh R, Hiller E, Drepper F, Knapp B, Brunner H, Rupp S. A new procedure for rapid, high yield purification of Type I collagen for tissue engineering. Process Biochem 2009. [DOI: 10.1016/j.procbio.2009.06.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Jaisson S, Sartelet H, Perreau C, Blanchevoye C, Garnotel R, Gillery P. Involvement of lysine 1047 in type I collagen-mediated activation of polymorphonuclear neutrophils. FEBS J 2008; 275:3226-35. [DOI: 10.1111/j.1742-4658.2008.06474.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
43
|
Meijers BKI, Bammens B, Verbeke K, Evenepoel P. A review of albumin binding in CKD. Am J Kidney Dis 2008; 51:839-50. [PMID: 18436096 DOI: 10.1053/j.ajkd.2007.12.035] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Accepted: 12/05/2007] [Indexed: 01/11/2023]
Abstract
Hypoalbuminemia is associated with excess mortality in patients with kidney disease. Albumin is an important oxidant scavenger and an abundant carrier protein for numerous endogenous and exogenous compounds. Several specific binding sites for anionic, neutral, and cationic ligands were described. Overall, the extent of binding depends on the ligand and albumin concentration, albumin-binding affinity, and presence of competing ligands. Chronic kidney disease affects all these determinants. This may result in altered pharmacokinetics and increased risk of toxicity. Renal clearance of albumin-bound solutes mainly depends on tubular clearance. Dialytic clearance by means of conventional hemodialysis/hemofiltration and peritoneal dialysis is limited. Other epuration techniques combining hemodialysis with adsorption have been developed. However, the benefit of these techniques remains to be proved.
Collapse
Affiliation(s)
- Björn K I Meijers
- Department of Medicine, Division of Nephrology, University Hospitals Leuven, Leuven, Belgium
| | | | | | | |
Collapse
|
44
|
Jaisson S, Garnotel R, Gillery P. New evidence to support the clinical and biological relevance of the protein carbamylation process in human pathophysiology. Med Hypotheses 2008; 70:1070-1. [DOI: 10.1016/j.mehy.2007.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Accepted: 11/18/2007] [Indexed: 10/22/2022]
|