1
|
Jeong S, Fuwad A, Yoon S, Jeon TJ, Kim SM. A Microphysiological Model to Mimic the Placental Remodeling during Early Stage of Pregnancy under Hypoxia-Induced Trophoblast Invasion. Biomimetics (Basel) 2024; 9:289. [PMID: 38786499 PMCID: PMC11118815 DOI: 10.3390/biomimetics9050289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/05/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Placental trophoblast invasion is critical for establishing the maternal-fetal interface, yet the mechanisms driving trophoblast-induced maternal arterial remodeling remain elusive. To address this gap, we developed a three-dimensional microfluidic placenta-on-chip model that mimics early pregnancy placentation in a hypoxic environment. By studying human umbilical vein endothelial cells (HUVECs) under oxygen-deprived conditions upon trophoblast invasion, we observed significant HUVEC artery remodeling, suggesting the critical role of hypoxia in placentation. In particular, we found that trophoblasts secrete matrix metalloproteinase (MMP) proteins under hypoxic conditions, which contribute to arterial remodeling by the degradation of extracellular matrix components. This MMP-mediated remodeling is critical for facilitating trophoblast invasion and proper establishment of the maternal-fetal interface. In addition, our platform allows real-time monitoring of HUVEC vessel contraction during trophoblast interaction, providing valuable insights into the dynamic interplay between trophoblasts and maternal vasculature. Collectively, our findings highlight the importance of MMP-mediated arterial remodeling in placental development and underscore the potential of our platform to study pregnancy-related complications and evaluate therapeutic interventions.
Collapse
Affiliation(s)
- Seorin Jeong
- Department of Mechanical Engineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; (S.J.); (A.F.)
| | - Ahmed Fuwad
- Department of Mechanical Engineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; (S.J.); (A.F.)
- Department of Biomedical Engineering, School of Mechanical & Manufacturing Engineering (SMME), National University of Science and Technology (NUST), Islamabad 44000, Pakistan
| | - Sunhee Yoon
- Department of Biological Sciences and Bioengineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea;
| | - Tae-Joon Jeon
- Department of Biological Sciences and Bioengineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea;
- Biohybrid Systems Research Center, Inha University, 100, Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
- Department of Biological Engineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Sun Min Kim
- Department of Mechanical Engineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; (S.J.); (A.F.)
- Department of Biological Sciences and Bioengineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea;
- Biohybrid Systems Research Center, Inha University, 100, Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| |
Collapse
|
2
|
Fathi P, Sundaresan V, Alfonso AL, Rama Varma A, Sadtler K. Factors Affecting the Evaluation of Collagen Deposition and Fibrosis In Vitro. Tissue Eng Part A 2024; 30:367-380. [PMID: 38511512 PMCID: PMC11250831 DOI: 10.1089/ten.tea.2023.0284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/30/2024] [Indexed: 03/22/2024] Open
Abstract
Immune responses to biomedical implants, wound healing, and diseased tissues often involve collagen deposition by fibroblasts and other stromal cells. Dysregulated collagen deposition can lead to complications, such as biomaterial fibrosis, cardiac fibrosis, desmoplasia, liver fibrosis, and pulmonary fibrosis, which can ultimately result in losses of organ function or failure of biomedical implants. Current in vitro methods to induce collagen deposition include growing the cells under macromolecular crowding conditions or on fibronectin-coated surfaces. However, the majority of these methods have been demonstrated with a single cell line, and the combined impacts of culture conditions and postculture processing on collagen deposition have not been explored in detail. In this work, the effects of macromolecular crowding versus fibronectin coating, fixation with methanol versus fixation with paraformaldehyde, and use of plastic substrates versus glass substrates were evaluated using the WI-38 human lung fibroblast cell line. Fibronectin coating was found to provide enhanced collagen deposition under macromolecular crowding conditions, while a higher plating density led to improved collagen I deposition compared with macromolecular crowding. Collagen deposition was found to be more apparent on plastic substrates than on glass substrates. The effects of primary cells versus cell lines, and mouse cells versus human cells, were evaluated using WI-38 cells, primary human lung fibroblasts, primary human dermal fibroblasts, primary mouse lung fibroblasts, primary mouse dermal fibroblasts, and the L929 mouse fibroblast cell line. Cell lines exhibited enhanced collagen I deposition compared with primary cells. Furthermore, collagen deposition was quantified with picrosirius red staining, and plate-based drug screening through picrosirius red staining of decellularized extracellular matrices was demonstrated. The results of this study provide detailed conditions under which collagen deposition can be induced in vitro in multiple cell types, with applications including material development, development of potential antifibrotic therapies, and mechanistic investigation of disease pathways. Impact Statement This study demonstrated the effects of cell type, biological conditions, fixative, culture substrate, and staining method on in vitro collagen deposition and visualization. Further the utility of plate-based picrosirius red staining of decellularized extracellular matrices for drug screening through collagen quantification was demonstrated. These results should provide clarity and a path forward for researchers who aim to conduct in vitro experiments on collagen deposition.
Collapse
Affiliation(s)
- Parinaz Fathi
- Section on Immunoengineering, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland, USA
- Unit for NanoEngineering and MicroPhysiological Systems (UNEMPS), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Vanathi Sundaresan
- Section on Immunoengineering, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Andrea Lucia Alfonso
- Section on Immunoengineering, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Anagha Rama Varma
- Section on Immunoengineering, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland, USA
- Unit for NanoEngineering and MicroPhysiological Systems (UNEMPS), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Kaitlyn Sadtler
- Section on Immunoengineering, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland, USA
| |
Collapse
|
3
|
Rodrigues DB, Moreira HR, Jarnalo M, Horta R, Marques AP, Reis RL, Pirraco RP. Generation of 3D melanoma models using an assembloid-based approach. Acta Biomater 2024; 178:93-110. [PMID: 38382833 DOI: 10.1016/j.actbio.2024.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/31/2024] [Accepted: 02/13/2024] [Indexed: 02/23/2024]
Abstract
While 3D tumor models have greatly evolved over the past years, there is still a strong requirement for more biosimilar models which are capable of recapitulating cellular crosstalk within the tumor microenvironment while equally displaying representative levels of tumor aggressiveness and invasion. Herein, we disclose an assembloid melanoma model based on the fusion of individual stromal multicellular spheroids (MCSs). In contrast to more traditional tumor models, we show that it is possible to develop self-organizing, heterotypic melanoma models where tumor cells present stem-cell like features like up-regulated pluripotency master regulators SOX2, POU5F1 and NANOG. Additionally, these assembloids display high levels of invasiveness while embedded in 3D matrices as evidenced by stromal cell promotion of melanoma cell invasion via metalloproteinase production. Furthermore, sensitivity to anticancer drug doxorubicin was demonstrated for the melanoma assembloid model. These findings suggest that melanoma assembloids may play a significant role in the field of 3D cancer models as they more closely mimic the tumor microenvironment when compared to more traditional MCSs, opening the doors to a better understanding of the role of tumor microenvironment in supporting tumor progression. STATEMENT OF SIGNIFICANCE: The development of complex 3D tumor models that better recapitulate the tumor microenvironment is crucial for both an improved comprehension of intercellular crosstalk and for more efficient drug screening. We have herein developed a self-organizing heterotypic assembloid-based melanoma model capable of closely mimicking the tumor microenvironment. Key features recapitulated were the preservation of cancer cell stemness, sensitivity to anti-cancer agents and tumor cell invasion promoted by stromal cells. The approach of pre-establishing distinct stromal domains for subsequent combination into more complex tumor constructs provides a route for developing superior tumor models with a higher degree of similarity to native cancer tissues.
Collapse
Affiliation(s)
- Daniel B Rodrigues
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães 4805-017, Portugal
| | - Helena R Moreira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães 4805-017, Portugal
| | - Mariana Jarnalo
- Department of Plastic and Reconstructive Surgery, and Burn Unity, Centro Hospitalar de São João, Porto, Portugal; Faculty of Medicine - University of Porto, Portugal
| | - Ricardo Horta
- Department of Plastic and Reconstructive Surgery, and Burn Unity, Centro Hospitalar de São João, Porto, Portugal; Faculty of Medicine - University of Porto, Portugal
| | - Alexandra P Marques
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães 4805-017, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães 4805-017, Portugal
| | - Rogério P Pirraco
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães 4805-017, Portugal.
| |
Collapse
|
4
|
Weng B, Li M, Zhu W, Peng J, Mao X, Zheng Y, Zhang C, Pan S, Mao H, Zhao J. Distinguished biomimetic dECM system facilitates early detection of metastatic breast cancer cells. Bioeng Transl Med 2024; 9:e10597. [PMID: 38193110 PMCID: PMC10771560 DOI: 10.1002/btm2.10597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/08/2023] [Accepted: 08/22/2023] [Indexed: 01/10/2024] Open
Abstract
Breast cancer is the most prevalent malignant tumor affecting women's health. Bone is the most common distant metastatic organ, worsening the quality of life and increasing the mortality of patients. Early detection of breast cancer bone metastasis is urgent for halting disease progression and improving tumor prognosis. Recently, extracellular matrix (ECM) with biomimetic tissue niches opened a new avenue for tumor models in vitro. Here, we developed a biomimetic decellularized ECM (dECM) system to recapitulate bone niches at different situations, bone mimetic dECM from osteoblasts (BM-ECM) and bone tumor mimetic dECM from osteosarcoma cells (OS-ECM). The two kinds of dECMs exhibited distinct morphology, protein composition, and distribution. Interestingly, highly metastatic breast cancer cells tended to adhere and migrate on BM-ECM, while lowly metastatic breast cancer cells preferred the OS-ECM niche. Epithelial-to-mesenchymal transition was a potential mechanism to initiate the breast cancer cell migration on different biomimetic dECMs. Importantly, in the nude mice model, the dECM system captured metastatic breast cancer cells as early as 10 days after orthotopic transplantation in mammary gland pads, with higher signal on BM-ECM than that on OS-ECM. Collectively, the biomimetic dECM system might be a promising tumor model to distinguish the metastatic ability of breast cancer cells in vitro and to facilitate early detection of metastatic breast cancer cells in vivo, contributing to the diagnosis of breast cancer bone metastasis.
Collapse
Affiliation(s)
- Bowen Weng
- Zhejiang Key Laboratory of PathophysiologySchool of Medicine, Ningbo UniversityNingboZhejiangChina
| | - Mei Li
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang ProvinceThe First Affiliated Hospital of Ningbo UniversityNingboZhejiangChina
| | - Weilai Zhu
- Zhejiang Key Laboratory of PathophysiologySchool of Medicine, Ningbo UniversityNingboZhejiangChina
| | - Jing Peng
- Zhejiang Key Laboratory of PathophysiologySchool of Medicine, Ningbo UniversityNingboZhejiangChina
| | - Xufeng Mao
- Zhejiang Key Laboratory of PathophysiologySchool of Medicine, Ningbo UniversityNingboZhejiangChina
- Department of Orthopaedic SurgeryThe First Affiliated Hospital of Ningbo UniversityNingboZhejiangChina
| | - Yanan Zheng
- Zhejiang Key Laboratory of PathophysiologySchool of Medicine, Ningbo UniversityNingboZhejiangChina
| | - Chi Zhang
- Department of Orthopaedic SurgeryThe First Affiliated Hospital of Ningbo UniversityNingboZhejiangChina
| | - Senhao Pan
- Zhejiang Key Laboratory of PathophysiologySchool of Medicine, Ningbo UniversityNingboZhejiangChina
| | - Haijiao Mao
- Department of Orthopaedic SurgeryThe First Affiliated Hospital of Ningbo UniversityNingboZhejiangChina
| | - Jiyuan Zhao
- Zhejiang Key Laboratory of PathophysiologySchool of Medicine, Ningbo UniversityNingboZhejiangChina
| |
Collapse
|
5
|
Genç H, Cianciosi A, Lohse R, Stahlhut P, Groll J, Alexiou C, Cicha I, Jüngst T. Adjusting Degree of Modification and Composition of gelAGE-Based Hydrogels Improves Long-Term Survival and Function of Primary Human Fibroblasts and Endothelial Cells in 3D Cultures. Biomacromolecules 2023; 24:1497-1510. [PMID: 36786807 DOI: 10.1021/acs.biomac.2c01536] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
This study aimed to develop a suitable hydrogel-based 3D platform to support long-term culture of primary endothelial cells (ECs) and fibroblasts. Two hydrogel systems based on allyl-modified gelatin (gelAGE), G1MM and G2LH, were cross-linked via thiol-ene click reaction with a four-arm thiolated polyethylene glycol (PEG-4-SH). Compared to G1MM, the G2LH hydrogel was characterized by the lower polymer content and cross-linking density with a softer matrix and homogeneous and open porosity. Cell viability in both hydrogels was comparable, although the G2LH-based platform supported better F-actin organization, cell-cell interactions, and collagen and fibronectin production. In co-cultures, early morphogenesis leading to tubular-like structures was observed within 2 weeks. Migration of fibroblasts out of spheroids embedded in the G2LH hydrogels started after 5 days of incubation. Taken together, the results demonstrated that the G2LH hydrogel fulfilled the demands of both ECs and fibroblasts to enable long-term culture and matrix remodeling.
Collapse
Affiliation(s)
- Hatice Genç
- Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Endowed Professorship for Nanomedicine, Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Alessandro Cianciosi
- Department of Functional Materials in Medicine and Dentistry at the Institute of Functional Materials and Biofabrication (IFB), University of Würzburg and KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI), Würzburg 97070, Germany
| | - Raphael Lohse
- Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Endowed Professorship for Nanomedicine, Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Philipp Stahlhut
- Department of Functional Materials in Medicine and Dentistry at the Institute of Functional Materials and Biofabrication (IFB), University of Würzburg and KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI), Würzburg 97070, Germany
| | - Jürgen Groll
- Department of Functional Materials in Medicine and Dentistry at the Institute of Functional Materials and Biofabrication (IFB), University of Würzburg and KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI), Würzburg 97070, Germany
| | - Christoph Alexiou
- Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Endowed Professorship for Nanomedicine, Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Iwona Cicha
- Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Endowed Professorship for Nanomedicine, Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Tomasz Jüngst
- Department of Functional Materials in Medicine and Dentistry at the Institute of Functional Materials and Biofabrication (IFB), University of Würzburg and KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI), Würzburg 97070, Germany
| |
Collapse
|
6
|
Jones CE, Sharick JT, Sizemore ST, Cukierman E, Strohecker AM, Leight JL. A miniaturized screening platform to identify novel regulators of extracellular matrix alignment. CANCER RESEARCH COMMUNICATIONS 2022; 2:1471-1486. [PMID: 36530465 PMCID: PMC9757767 DOI: 10.1158/2767-9764.crc-22-0157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/03/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
Extracellular matrix alignment contributes to metastasis in a number of cancers and is a known prognostic stromal factor; however, the mechanisms controlling matrix organization remain unclear. Cancer-associated fibroblasts (CAF) play a critical role in this process, particularly via matrix production and modulation of key signaling pathways controlling cell adhesion and contractility. Stroma normalization, as opposed to elimination, is a highly sought strategy, and screening for drugs that effectively alter extracellular matrix (ECM) alignment is a practical way to identify novel CAF-normalizing targets that modulate ECM organization. To meet this need, we developed a novel high-throughput screening platform in which fibroblast-derived matrices were produced in 384-well plates, imaged with automated confocal microscopy, and analyzed using a customized MATLAB script. This platform is a technical advance because it miniaturizes the assay, eliminates costly and time-consuming experimental steps, and streamlines data acquisition and analysis to enable high-throughput screening applications. As a proof of concept, this platform was used to screen a kinase inhibitor library to identify modulators of matrix alignment. A number of novel potential regulators were identified, including several receptor tyrosine kinases (c-MET, tropomyosin receptor kinase 1 (NTRK1), HER2/ERBB2) and the serine/threonine kinases protein kinase A, C, and G (PKA, PKC, and PKG). The expression of these regulators was analyzed in publicly available patient datasets to examine the association between stromal gene expression and patient outcomes.
Collapse
Affiliation(s)
- Caitlin E. Jones
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio
| | - Joe T. Sharick
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio
- The James Comprehensive Cancer Center, Program in Cancer Biology, The Ohio State University, Columbus, Ohio
| | - Steven T. Sizemore
- The James Comprehensive Cancer Center, Program in Cancer Biology, The Ohio State University, Columbus, Ohio
- Department of Radiation Oncology, The Ohio State University, Columbus, Ohio
| | - Edna Cukierman
- Cancer Signaling and Epigenetics, The Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Temple Health, Philadelphia, Pennsylvania
| | - Anne Marie Strohecker
- The James Comprehensive Cancer Center, Program in Cancer Biology, The Ohio State University, Columbus, Ohio
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio
| | - Jennifer L. Leight
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio
- The James Comprehensive Cancer Center, Program in Cancer Biology, The Ohio State University, Columbus, Ohio
| |
Collapse
|
7
|
Modification of the alginate hydrogel with fibroblast‐ and Schwann cell‐derived extracellular matrix potentiates differentiation of mesenchymal stem cells toward neuron‐like cells. J Appl Polym Sci 2022. [DOI: 10.1002/app.52501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Bi X, Li Y, Dong Z, Zhao J, Wu W, Zou J, Guo L, Lu F, Gao J. Recent Developments in Extracellular Matrix Remodeling for Fat Grafting. Front Cell Dev Biol 2021; 9:767362. [PMID: 34977018 PMCID: PMC8716396 DOI: 10.3389/fcell.2021.767362] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/16/2021] [Indexed: 12/17/2022] Open
Abstract
Remodeling of the extracellular matrix (ECM), which provides structural and biochemical support for surrounding cells, is vital for adipose tissue regeneration after autologous fat grafting. Rapid and high-quality ECM remodeling can improve the retention rate after fat grafting by promoting neovascularization, regulating stem cells differentiation, and suppressing chronic inflammation. The degradation and deposition of ECM are regulated by various factors, including hypoxia, blood supply, inflammation, and stem cells. By contrast, ECM remodeling alters these regulatory factors, resulting in a dynamic relationship between them. Although researchers have attempted to identify the cellular sources of factors associated with tissue regeneration and regulation of the microenvironment, the factors and mechanisms that affect adipose tissue ECM remodeling remain incompletely understood. This review describes the process of adipose ECM remodeling after grafting and summarizes the factors that affect ECM reconstruction. Also, this review provides an overview of the clinical methods to avoid poor ECM remodeling. These findings may provide new ideas for improving the retention of adipose tissue after fat transplantation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jianhua Gao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
9
|
The bright side of fibroblasts: molecular signature and regenerative cues in major organs. NPJ Regen Med 2021; 6:43. [PMID: 34376677 PMCID: PMC8355260 DOI: 10.1038/s41536-021-00153-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 07/22/2021] [Indexed: 02/07/2023] Open
Abstract
Fibrosis is a pathologic process characterized by the replacement of parenchymal tissue by large amounts of extracellular matrix, which may lead to organ dysfunction and even death. Fibroblasts are classically associated to fibrosis and tissue repair, and seldom to regeneration. However, accumulating evidence supports a pro-regenerative role of fibroblasts in different organs. While some organs rely on fibroblasts for maintaining stem cell niches, others depend on fibroblast activity, particularly on secreted molecules that promote cell adhesion, migration, and proliferation, to guide the regenerative process. Herein we provide an up-to-date overview of fibroblast-derived regenerative signaling across different organs and discuss how this capacity may become compromised with aging. We further introduce a new paradigm for regenerative therapies based on reverting adult fibroblasts to a fetal/neonatal-like phenotype.
Collapse
|
10
|
Onak Pulat G, Gökmen O, Çevik ZBY, Karaman O. Role of functionalized self-assembled peptide hydrogels in in vitro vasculogenesis. SOFT MATTER 2021; 17:6616-6626. [PMID: 34143171 DOI: 10.1039/d1sm00680k] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fabrication of vascularized tissue constructs plays an integral role in creating clinically relevant tissues. Scaffold materials should be sufficiently vascularized to mimic functional and complex native tissues. Herein, we report the development of bioactive and biomimetic self-assembled peptide (SAP) hydrogels that allow the rapid formation of a vascular structure in vitro. The KLDLKLDLKLDL (KLD peptide) SAP was functionalized with laminin derived peptides IKVAV (V1) and YIGSR (V2) through direct coupling to mimic the natural extracellular matrix (ECM) and human umbilical endothelial cells (HUVECs) and mesenchymal stem cells (MSCs) cultured in 0.5% and 1% SAP hydrogels organized into vascularized structures. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) images proved the molecular integration of the nanofibrous structure in SAP hydrogels. The stability of SAP hydrogels was confirmed by rheological and degradation measurements. Bioactive peptide scaffolds enhanced significantly HUVEC/hMSC proliferation depicted by MTT analysis compared to KLD. Furthermore, the real time quantitative polymerase chain reaction (rt-PCR) was performed to analyse vascular gene expressions such as platelet/endothelial cell adhesion molecule-1 (PECAM-1), von Willebrand factor (vWF), and vascular endothelial cadherin (VE-cadherin). The results indicated that the KLD-V2 hydrogel significantly induced vasculogenesis in hMSC/HUVEC co-culture compared to KLD-V1, Biogelx and KLD because YIGSR in KLD-V2 promoted cell population and ECM secretion by the interaction with cells and increased vasculogenesis. Overall, the designed SAP hydrogel represents an effective scaffold for vascularization of tissue constructs with useful tissue engineering applications.
Collapse
Affiliation(s)
- Günnur Onak Pulat
- Tissue Engineering and Regenerative Medicine Laboratory, Department of Biomedical Engineering, İzmir Katip Çelebi University, İzmir, 35620, Turkey.
| | - Oğuzhan Gökmen
- Tissue Engineering and Regenerative Medicine Laboratory, Department of Biomedical Engineering, İzmir Katip Çelebi University, İzmir, 35620, Turkey.
| | - Ziyşan Buse Yaralı Çevik
- Tissue Engineering and Regenerative Medicine Laboratory, Department of Biomedical Engineering, İzmir Katip Çelebi University, İzmir, 35620, Turkey.
| | - Ozan Karaman
- Tissue Engineering and Regenerative Medicine Laboratory, Department of Biomedical Engineering, İzmir Katip Çelebi University, İzmir, 35620, Turkey. and Bonegraft Biomaterials Co., Ege University Technopolis, 35100, Bornova, İzmir, Turkey
| |
Collapse
|
11
|
Zhang Y, Zhang H, Wang M, Schmid T, Xin Z, Kozhuharova L, Yu WK, Huang Y, Cai F, Biskup E. Hypoxia in Breast Cancer-Scientific Translation to Therapeutic and Diagnostic Clinical Applications. Front Oncol 2021; 11:652266. [PMID: 33777815 PMCID: PMC7991906 DOI: 10.3389/fonc.2021.652266] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/12/2021] [Indexed: 12/13/2022] Open
Abstract
Breast cancer has been the leading cause of female cancer deaths for decades. Intratumoral hypoxia, mainly caused by structural and functional abnormalities in microvasculature, is often associated with a more aggressive phenotype, increased risk of metastasis and resistance to anti-malignancy treatments. The response of cancer cells to hypoxia is ascribed to hypoxia-inducible factors (HIFs) that activate the transcription of a large battery of genes encoding proteins promoting primary tumor vascularization and growth, stromal cell recruitment, extracellular matrix remodeling, cell motility, local tissue invasion, metastasis, and maintenance of the cancer stem cell properties. In this review, we summarized the role of hypoxia specifically in breast cancer, discuss the prognostic and predictive value of hypoxia factors, potential links of hypoxia and endocrine resistance, cancer hypoxia measurements, further involved mechanisms, clinical application of hypoxia-related treatments and open questions.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hongyi Zhang
- Department of Breast Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Minghong Wang
- Department of Health Management, Shanghai Public Health Clinical Center, Shanghai, China
| | - Thomas Schmid
- Department of Medical Oncology, St. Claraspital, Basel, Switzerland
| | - Zhaochen Xin
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | | | - Wai-Kin Yu
- Cellomics International Limited, Hong Kong, China
| | - Yuan Huang
- Cellomics International Limited, Hong Kong, China
| | - Fengfeng Cai
- Department of Breast Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ewelina Biskup
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Division of Internal Medicine, University Hospital of Basel, University of Basel, Basel, Switzerland.,Department of Advanced Biomedical Sciences, Federico II University of Naples, Naples, Italy
| |
Collapse
|
12
|
Shiwarski DJ, Tashman JW, Tsamis A, Bliley JM, Blundon MA, Aranda-Michel E, Jallerat Q, Szymanski JM, McCartney BM, Feinberg AW. Fibronectin-based nanomechanical biosensors to map 3D surface strains in live cells and tissue. Nat Commun 2020; 11:5883. [PMID: 33208732 PMCID: PMC7675982 DOI: 10.1038/s41467-020-19659-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 10/19/2020] [Indexed: 01/07/2023] Open
Abstract
Mechanical forces are integral to cellular migration, differentiation and tissue morphogenesis; however, it has proved challenging to directly measure strain at high spatial resolution with minimal perturbation in living sytems. Here, we fabricate, calibrate, and test a fibronectin (FN)-based nanomechanical biosensor (NMBS) that can be applied to the surface of cells and tissues to measure the magnitude, direction, and strain dynamics from subcellular to tissue length-scales. The NMBS is a fluorescently-labeled, ultra-thin FN lattice-mesh with spatial resolution tailored by adjusting the width and spacing of the lattice from 2-100 µm. Time-lapse 3D confocal imaging of the NMBS demonstrates 2D and 3D surface strain tracking during mechanical deformation of known materials and is validated with finite element modeling. Analysis of the NMBS applied to single cells, cell monolayers, and Drosophila ovarioles highlights the NMBS's ability to dynamically track microscopic tensile and compressive strains across diverse biological systems where forces guide structure and function.
Collapse
Affiliation(s)
- Daniel J Shiwarski
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Joshua W Tashman
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Alkiviadis Tsamis
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Jaci M Bliley
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Malachi A Blundon
- Department of Biology, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Edgar Aranda-Michel
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Quentin Jallerat
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - John M Szymanski
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Brooke M McCartney
- Department of Biology, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Adam W Feinberg
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
- Department of Materials Science & Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
13
|
Junka R, Quevada K, Yu X. Acellular polycaprolactone scaffolds laden with fibroblast/endothelial cell-derived extracellular matrix for bone regeneration. J Biomed Mater Res A 2019; 108:351-364. [PMID: 31618528 DOI: 10.1002/jbm.a.36821] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 10/03/2019] [Accepted: 10/10/2019] [Indexed: 12/19/2022]
Abstract
Inconsistencies in graft osteoconduction and osteoinduction present a clinical challenge in regeneration of large bone defects. Deposition of decellularized extracellular matrix (dECM) on tissue engineered scaffolds offers an alternative approach that can enhance these properties by mimicking bone's molecular complexity and direct infiltrating cells to repair damaged bone. However, dECMs derived from homogenous cell populations do not adequately simulate the heterogeneous and vascularized microenvironment of the bone. In this study, successive culture and decellularization of fibroblasts and endothelial cells (ECs) grown on polycaprolactone microfibers was used to develop a bioactive scaffold with heterogeneous dECM mimicking endothelial basement membrane. These scaffolds had greater amount of protein and minimally increased nucleic acid content than scaffolds with homogenous culture dECM. Coomassie Blue and antibody staining revealed extensive tube formation by ECs on fibroblast dECM. Fibroblast/endothelial dECM significantly enhanced osteoblast attachment, alkaline phosphatase activity, and osteocalcin- and osteopontin-positive extracellular mineral deposits. We demonstrated that the osteoconduction of dECMs can be tailored with the appropriate combination of cells to accelerate osteoblast mineral secretion. The overall concept can be expanded to generate increasingly more complex tissue constructs for regeneration of bone defects and other vascularized tissues.
Collapse
Affiliation(s)
- Radoslaw Junka
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey
| | - Kristian Quevada
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey
| | - Xiaojun Yu
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey
| |
Collapse
|
14
|
Wei Z, Volkova E, Blatchley MR, Gerecht S. Hydrogel vehicles for sequential delivery of protein drugs to promote vascular regeneration. Adv Drug Deliv Rev 2019; 149-150:95-106. [PMID: 31421149 PMCID: PMC6889011 DOI: 10.1016/j.addr.2019.08.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 07/04/2019] [Accepted: 08/12/2019] [Indexed: 12/12/2022]
Abstract
In recent years, as the mechanisms of vasculogenesis and angiogenesis have been uncovered, the functions of various pro-angiogenic growth factors (GFs) and cytokines have been identified. Therefore, therapeutic angiogenesis, by delivery of GFs, has been sought as a treatment for many vascular diseases. However, direct injection of these protein drugs has proven to have limited clinical success due to their short half-lives and systemic off-target effects. To overcome this, hydrogel carriers have been developed to conjugate single or multiple GFs with controllable, sustained, and localized delivery. However, these attempts have failed to account for the temporal complexity of natural angiogenic pathways, resulting in limited therapeutic effects. Recently, the emerging ideas of optimal sequential delivery of multiple GFs have been suggested to better mimic the biological processes and to enhance therapeutic angiogenesis. Incorporating sequential release into drug delivery platforms will likely promote the formation of neovasculature and generate vast therapeutic potential.
Collapse
Affiliation(s)
- Zhao Wei
- Department of Chemical and Biomolecular Engineering, The Institute for NanoBioTechnology Physical-Sciences Oncology Center, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Eugenia Volkova
- Department of Chemical and Biomolecular Engineering, The Institute for NanoBioTechnology Physical-Sciences Oncology Center, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Michael R Blatchley
- Department of Chemical and Biomolecular Engineering, The Institute for NanoBioTechnology Physical-Sciences Oncology Center, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sharon Gerecht
- Department of Chemical and Biomolecular Engineering, The Institute for NanoBioTechnology Physical-Sciences Oncology Center, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
15
|
Du P, Casavitri C, Suhaeri M, Wang PY, Lee JH, Koh WG, Park K. A Fibrous Hybrid Patch Couples Cell-Derived Matrix and Poly(l-lactide-co-caprolactone) for Endothelial Cells Delivery and Skin Wound Repair. ACS Biomater Sci Eng 2018; 5:900-910. [DOI: 10.1021/acsbiomaterials.8b01118] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ping Du
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Center for Human Tissues & Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Cininta Casavitri
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Muhammad Suhaeri
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Peng-Yuan Wang
- Center for Human Tissues & Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Jong Ho Lee
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Won-Gun Koh
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Kwideok Park
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
| |
Collapse
|
16
|
Kaessmeyer S, Sehl J, Khiao In M, Merle R, Richardson K, Plendl J. Subcellular Interactions during Vascular Morphogenesis in 3D Cocultures between Endothelial Cells and Fibroblasts. Int J Mol Sci 2017; 18:ijms18122590. [PMID: 29194374 PMCID: PMC5751193 DOI: 10.3390/ijms18122590] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/23/2017] [Accepted: 11/28/2017] [Indexed: 12/28/2022] Open
Abstract
Background: Increasing the complexity of in vitro systems to mimic three-dimensional tissues and the cellular interactions within them will increase the reliability of data that were previously collected with in vitro systems. In vivo vascularization is based on complex and clearly defined cell–matrix and cell–cell interactions, where the extracellular matrix (ECM) seems to play a very important role. The aim of this study was to monitor and visualize the subcellular and molecular interactions between endothelial cells (ECs), fibroblasts, and their surrounding microenvironment during vascular morphogenesis in a three-dimensional coculture model. Methods: Quantitative and qualitative analyses during the generation of a coculture tissue construct consisting of endothelial cells and fibroblasts were done using transmission electron microscopy and immunohistochemistry. Results: Dynamic interactions were found in cocultures between ECs, between fibroblasts (FBs), between ECs and FBs, and between the cells and the ECM. Microvesicles were involved in intercellular information transfer. FBs took an active and physical part in the angiogenesis process. The ECM deposited by the cells triggered endothelial angiogenic activity. Capillary-like tubular structures developed and matured. Moreover, some ECM assembled into a basement membrane (BM) having three different layers equivalent to those seen in vivo. Finally, the three-dimensional in vitro construct mirrored the topography of histological tissue sections. Conclusion: Our results visualize the importance of the physical contact between all cellular and acellular components of the cocultures.
Collapse
Affiliation(s)
- Sabine Kaessmeyer
- Department of Veterinary Medicine, Institute of Veterinary Anatomy, Freie Universitaet Berlin, Koserstraße 20, 14195 Berlin, Germany.
| | - Julia Sehl
- Department of Veterinary Medicine, Institute of Veterinary Anatomy, Freie Universitaet Berlin, Koserstraße 20, 14195 Berlin, Germany.
| | - Maneenooch Khiao In
- Department of Veterinary Medicine, Institute of Veterinary Anatomy, Freie Universitaet Berlin, Koserstraße 20, 14195 Berlin, Germany.
| | - Roswitha Merle
- Department of Veterinary Medicine, Institute of Veterinary Epidemiology and Biostatistics, Freie Universitaet Berlin, Koenigsweg 67, 14163 Berlin, Germany.
| | - Ken Richardson
- College of Veterinary Medicine, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia.
| | - Johanna Plendl
- Department of Veterinary Medicine, Institute of Veterinary Anatomy, Freie Universitaet Berlin, Koserstraße 20, 14195 Berlin, Germany.
| |
Collapse
|
17
|
Du P, Suhaeri M, Ha SS, Oh SJ, Kim SH, Park K. Human lung fibroblast-derived matrix facilitates vascular morphogenesis in 3D environment and enhances skin wound healing. Acta Biomater 2017; 54:333-344. [PMID: 28351680 DOI: 10.1016/j.actbio.2017.03.035] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 10/19/2022]
Abstract
Extracellular matrix (ECM) is crucial to many aspects of vascular morphogenesis and maintenance of vasculature function. Currently the recapitulation of angiogenic ECM microenvironment is still challenging, due mainly to its diverse components and complex organization. Here we investigate the angiogenic potential of human lung fibroblast-derived matrix (hFDM) in creating a three-dimensional (3D) vascular construct. hFDM was obtained via decellularization of in vitro cultured human lung fibroblasts and analyzed via immunofluorescence staining and ELISA, which detect multiple ECM macromolecules and angiogenic growth factors (GFs). Human umbilical vein endothelial cells (HUVECs) morphology was more elongated and better proliferative on hFDM than on gelatin-coated substrate. To prepare 3D construct, hFDM is collected, quantitatively analyzed, and incorporated in collagen hydrogel (Col) with HUVECs. Capillary-like structure (CLS) formation at 7day was significantly better with the groups containing higher doses of hFDM compared to the Col group (control). Moreover, the group (Col/hFDM/GFs) with both hFDM and angiogenic GFs (VEGF, bFGF, SDF-1) showed the synergistic activity on CLS formation and found much larger capillary lumen diameters with time. Further analysis of hFDM via angiogenesis antibody array kit reveals abundant biochemical cues, such as angiogenesis-related cytokines, GFs, and proteolytic enzymes. Significantly up-regulated expression of VE-cadherin and ECM-specific integrin subunits was also noticed in Col/hFDM/GFs. In addition, transplantation of Col/hFMD/GFs with HUVECs in skin wound model presents more effective re-epithelialization, many regenerated hair follicles, better transplanted cells viability, and advanced neovascularization. We believe that current system is a very promising platform for 3D vasculature construction in vitro and for cell delivery toward therapeutic applications in vivo. STATEMENT OF SIGNIFICANCE Functional 3D vasculature construction in vitro is still challenging due to the difficulty of recapitulating the complex angiogenic extracellular matrix (ECM) environment. Herein, we present a simple and practical method to create an angiogenic 3D environment via incorporation of human lung fibroblast-derived matrix (hFDM) into collagen hydrogel. We found that hFDM offers a significantly improved angiogenic microenvironment for HUVECs on 2D substrates and in 3D construct. A synergistic effect of hFDM and angiogenic growth factors has been well confirmed in 3D condition. The prevascularized 3D collagen constructs also facilitate skin wound healing. We believe that current system should be a convenient and powerful platform in engineering 3D vasculature in vitro, and in delivering cells for therapeutic purposes in vivo.
Collapse
|
18
|
Thompson C, Rahim S, Arnold J, Hielscher A. Loss of caveolin-1 alters extracellular matrix protein expression and ductal architecture in murine mammary glands. PLoS One 2017; 12:e0172067. [PMID: 28187162 PMCID: PMC5302825 DOI: 10.1371/journal.pone.0172067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 01/30/2017] [Indexed: 12/13/2022] Open
Abstract
The extracellular matrix (ECM) is abnormal in breast tumors and has been reported to contribute to breast tumor progression. One factor, which may drive ongoing matrix synthesis in breast tumors, is the loss of stromal caveolin-1 (cav-1), a scaffolding protein of caveolae, which has been linked to breast tumor aggressiveness. To determine whether loss of cav-1 results in the abnormal expression of matrix proteins, mammary glands from cav- 1-/- and cav- 1 +/+ mice were investigated for differences in expression of several ECM proteins. In addition, the presence of myofibroblasts, changes in the vessel density, and differences in duct number and size were assessed in the mammary glands of both animal models. Using immunohistochemistry, expression of fibronectin, tenascin-C, collagens and αSMA were significantly increased in the mammary glands of cav-1-/- mice. Second harmonic generation revealed more organized collagen fibers in cav-1 -/- glands and supported immunohistochemical analyses of increased collagen abundance in the glands of cav-1 -/- mice. Analysis of the ductal structure demonstrated a significant increase in the number of proliferating ducts in addition to significant increases in the duct circumference and area in cav-1 -/- glands compared to cav- 1 +/+ glands. Differences in microvessel density weren't apparent between the animal models. In summary, we found that the loss of cav-1 resulted in increased ECM and α-SMA protein expression in murine mammary glands. Furthermore, we found that an abnormal ductal architecture accompanied the loss of cav-1. These data support a role for cav-1 in maintaining mammary gland structure.
Collapse
Affiliation(s)
- Christopher Thompson
- Department of Biomedical Sciences, Georgia-Philadelphia College of Osteopathic Medicine, Suwanee, Georgia, United States of America
| | - Sahar Rahim
- Department of Biomedical Sciences, Georgia-Philadelphia College of Osteopathic Medicine, Suwanee, Georgia, United States of America
| | - Jeremiah Arnold
- Department of Biomedical Sciences, Georgia-Philadelphia College of Osteopathic Medicine, Suwanee, Georgia, United States of America
| | - Abigail Hielscher
- Department of Biomedical Sciences, Georgia-Philadelphia College of Osteopathic Medicine, Suwanee, Georgia, United States of America
- * E-mail:
| |
Collapse
|
19
|
Gong T, Heng BC, Xu J, Zhu S, Yuan C, Lo ECM, Zhang C. Decellularized extracellular matrix of human umbilical vein endothelial cells promotes endothelial differentiation of stem cells from exfoliated deciduous teeth. J Biomed Mater Res A 2017; 105:1083-1093. [PMID: 28076902 DOI: 10.1002/jbm.a.36003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 01/03/2017] [Accepted: 01/06/2017] [Indexed: 12/22/2022]
Abstract
Dental stem cells can serve as a potential source of functional endothelial cells for tissue engineering applications, but the endothelial-lineage differentiation efficiency is rather low even with growth factors and mechanical stimuli, which greatly limits their clinical applications. This is partly due to the deficiency of standard two-dimensional (2-D) culture systems, which is unable to recapitulate the three-dimensional (3-D) in vivo milieu that is rich in extracellular matrix. Hence, we extracted decellularized extracellular matrix from human umbilical vein endothelial cells (HUVECs-DECM) to provide a bioactive substratum conducive to the endothelial differentiation of dental stem cells. Compared to cells plated on tissue culture polystyrene (TCP), stem cells from exfoliated deciduous teeth (SHED) cultured on the HUVECs-DECM demonstrated more regular arrangement and elongated morphology. HUVECs-DECM significantly enhanced the rapid adhesion and proliferation rates of SHED, as demonstrated by WST-8 assay and immunocytochemistry indicating higher expression levels of vinculin by newly adherent SHED on HUVECs-DECM versus TCP. In addition, there was twofold to fivefold higher mRNA expression levels of endothelial-specific markers CD31 and VEGFR-2 in SHED after seven days of culture on DECM versus TCP. Functional testing with in vitro matrigel angiogenesis assay identified more capillary-like structure formation with significantly higher tubule length in SHED induced by DECM versus TCP. Hence, the results of this study provide a better understanding of the unique characteristics of cell-specific ECM and demonstrated the potential use of HUVECs-DECM as a culture substratum conducive for stimulating the endothelial differentiation of SHED for therapeutic angiogenic applications. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1083-1093, 2017.
Collapse
Affiliation(s)
- Ting Gong
- Department of Endodontology, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Boon Chin Heng
- Department of Endodontology, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China.,Department of Biological Sciences, Sunway University, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Jianguang Xu
- Department of Endodontology, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Shaoyue Zhu
- Department of Endodontology, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Changyong Yuan
- Department of Endodontology, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Edward Chin Man Lo
- Department of Dental Public Health, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Chengfei Zhang
- Department of Endodontology, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China.,HKU Shenzhen Institute of Research and Innovation, Hong Kong, China
| |
Collapse
|
20
|
Liew AWL, Zhang AY. In vitro pre-vascularization strategies for tissue engineered constructs-Bioprinting and others. Int J Bioprint 2017; 3:008. [PMID: 33094183 PMCID: PMC7575626 DOI: 10.18063/iib.2017.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 12/14/2016] [Indexed: 11/23/2022] Open
Abstract
Tissue-engineered products commercially available today have been limited to thin avascular tissue such as skin and cartilage. The fabrication of thicker, more complex tissue still eludes scientists today. One reason for this is the lack of effective techniques to incorporate functional vascular networks within thick tissue constructs. Vascular networks provide cells throughout the tissue with adequate oxygen and nutrients; cells located within thick un-vascularized tissue implants eventually die due to oxygen and nutrient deficiency. Vascularization has been identified as one of the key components in the field of tissue engineering. In order to fabricate biomimetic tissue which accurately recapitulates our native tissue environment, in vitro pre-vascularization strategies need to be developed. In this review, we describe various in vitro vascularization techniques developed recently which employ different technologies such as bioprinting, microfluidics, micropatterning, wire molding, and cell sheet engineering. We describe the fabrication process and unique characteristics of each technique, as well as provide our perspective on the future of the field.
Collapse
Affiliation(s)
- Andy Wen Loong Liew
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - And Yilei Zhang
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
21
|
Chen J, Zhang D, Li Q, Yang D, Fan Z, Ma D, Ren L. Effect of different cell sheet ECM microenvironment on the formation of vascular network. Tissue Cell 2016; 48:442-51. [PMID: 27561623 DOI: 10.1016/j.tice.2016.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 08/08/2016] [Accepted: 08/08/2016] [Indexed: 11/29/2022]
Abstract
The repair and reconstruction of large bone defects remains as a significant clinical challenge mainly due to the insufficient vascularization. The prefabrication of vascular network based on cell sheet technique brings a promising potential for sufficient vascularization due to rich extracellular matrix (ECM) of cell sheets. However, the effect of different cell sheet ECM micro-environment on the formation of a vascular network has not been well understood. Here our goal is to study the effect of different cell sheets on the formation of a vascular network. First we cultured human bone marrow mesenchymal stem cells (hBMSCs) under two culture conditions to obtain osteogenic differentiated cell sheet (ODCS) and undifferentiated cell sheet (UDCS), respectively. Then the human umbilical vein endothelial cells (HUVECs) were seeded onto the surface of the two sheets at different seeding densities to fabricate pre-vascularized cell sheets. Our results indicated that the two sheets facilitated the alignment of HUVECs and promoted the formation of vascular networks. Quantitative analysis showed that the number of networks in ODCS was higher than that in the UDCS. The ECM of the two sheets was remodeled and rearranged during the tubulogenesis process. Furthermore, results showed that the optimal seeding density of HUVECs was 5×10(4)cell/cm(2). In summary, these results suggest that the vascularized ODCS has a promising potential to construct pre-vascularized tissue for bone repair.
Collapse
Affiliation(s)
- Jia Chen
- School of Stomatology, Lanzhou University, Lanzhou, Gansu, 730000, China; Hospital of Stomatology, General Hospital of Ningxia Medical University, Yingchuan, Ningxia, 750004, China
| | - Dan Zhang
- School of Stomatology, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Qin Li
- School of Stomatology, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Dan Yang
- Department of Stomatology, The First people's Hospital of Jiayuguan, Jiayuguan, Gansu, 735100, China
| | - Zengjie Fan
- School of Stomatology, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Dongyang Ma
- Department of Oral and Maxillofacial Surgery, Lanzhou General Hospital, Lanzhou Command of PLA, Gansu 730050, China
| | - Liling Ren
- School of Stomatology, Lanzhou University, Lanzhou, Gansu, 730000, China.
| |
Collapse
|
22
|
Chen L, Xie Z, Gan T, Wang Y, Zhang G, Mirkin CA, Zheng Z. Biomimicking Nano-Micro Binary Polymer Brushes for Smart Cell Orientation and Adhesion Control. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:3400-6. [PMID: 27184011 DOI: 10.1002/smll.201600634] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/09/2016] [Indexed: 05/04/2023]
Abstract
A new biomimetic surface named nano-micro binary polymer brushes is fabricated by large-area bench-top dip-pen nanodisplacement lithography technique. It is composed of gelatin-modified poly(glycidyl methacrylate) nanolines which are spaced by microstripes of poly(N-isopropylacrylamide). Cells are not only adhered and oriented well on the re-used surface, but also detachable from the surface with well-preserved extracellular matrix and aligned morphology.
Collapse
Affiliation(s)
- Lina Chen
- Nanotechnology Centre, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, SAR, China
| | - Zhuang Xie
- Nanotechnology Centre, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, SAR, China
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Tiansheng Gan
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yi Wang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, SAR, China
| | - Guangzhao Zhang
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Chad A Mirkin
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Zijian Zheng
- Nanotechnology Centre, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, SAR, China
| |
Collapse
|
23
|
Zhou Y. The Application of Ultrasound in 3D Bio-Printing. Molecules 2016; 21:E590. [PMID: 27164066 PMCID: PMC6274238 DOI: 10.3390/molecules21050590] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 04/20/2016] [Accepted: 04/25/2016] [Indexed: 12/21/2022] Open
Abstract
Three-dimensional (3D) bioprinting is an emerging and promising technology in tissue engineering to construct tissues and organs for implantation. Alignment of self-assembly cell spheroids that are used as bioink could be very accurate after droplet ejection from bioprinter. Complex and heterogeneous tissue structures could be built using rapid additive manufacture technology and multiple cell lines. Effective vascularization in the engineered tissue samples is critical in any clinical application. In this review paper, the current technologies and processing steps (such as printing, preparation of bioink, cross-linking, tissue fusion and maturation) in 3D bio-printing are introduced, and their specifications are compared with each other. In addition, the application of ultrasound in this novel field is also introduced. Cells experience acoustic radiation force in ultrasound standing wave field (USWF) and then accumulate at the pressure node at low acoustic pressure. Formation of cell spheroids by this method is within minutes with uniform size and homogeneous cell distribution. Neovessel formation from USWF-induced endothelial cell spheroids is significant. Low-intensity ultrasound could enhance the proliferation and differentiation of stem cells. Its use is at low cost and compatible with current bioreactor. In summary, ultrasound application in 3D bio-printing may solve some challenges and enhance the outcomes.
Collapse
Affiliation(s)
- Yufeng Zhou
- Singapore Centre for 3D Printing (SC3DP), School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| |
Collapse
|
24
|
Helal-Neto E, Brandão-Costa RM, Saldanha-Gama R, Ribeiro-Pereira C, Midlej V, Benchimol M, Morandi V, Barja-Fidalgo C. Priming Endothelial Cells With a Melanoma-Derived Extracellular Matrix Triggers the Activation of αvβ3/VEGFR2 Axis. J Cell Physiol 2016; 231:2464-73. [DOI: 10.1002/jcp.25358] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/22/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Edward Helal-Neto
- Laboratório de Farmacologia Celular e Molecular, IBRAG; Universidade do Estado do Rio de Janeiro; Rio de Janeiro Brazil
- Laboratório de Biologia da Célula Endotelial e da Angiogênese, IBRAG; Universidade do Estado do Rio de Janeiro; Rio de Janeiro Brazil
| | - Renata M. Brandão-Costa
- Laboratório de Farmacologia Celular e Molecular, IBRAG; Universidade do Estado do Rio de Janeiro; Rio de Janeiro Brazil
| | - Roberta Saldanha-Gama
- Laboratório de Farmacologia Celular e Molecular, IBRAG; Universidade do Estado do Rio de Janeiro; Rio de Janeiro Brazil
| | - Cristiane Ribeiro-Pereira
- Laboratório de Farmacologia Celular e Molecular, IBRAG; Universidade do Estado do Rio de Janeiro; Rio de Janeiro Brazil
| | - Victor Midlej
- Instituto de Biofísica Carlos Chagas Filho; Universidade Federal do Rio de Janeiro; Rio de Janeiro Brazil
| | - Marlene Benchimol
- Instituto de Biofísica Carlos Chagas Filho; Universidade Federal do Rio de Janeiro; Rio de Janeiro Brazil
- Unigranrio; Universidade do Grande Rio; Rio de Janeiro Brazil
| | - Verônica Morandi
- Laboratório de Biologia da Célula Endotelial e da Angiogênese, IBRAG; Universidade do Estado do Rio de Janeiro; Rio de Janeiro Brazil
| | - Christina Barja-Fidalgo
- Laboratório de Farmacologia Celular e Molecular, IBRAG; Universidade do Estado do Rio de Janeiro; Rio de Janeiro Brazil
| |
Collapse
|
25
|
Hielscher A, Ellis K, Qiu C, Porterfield J, Gerecht S. Fibronectin Deposition Participates in Extracellular Matrix Assembly and Vascular Morphogenesis. PLoS One 2016; 11:e0147600. [PMID: 26811931 PMCID: PMC4728102 DOI: 10.1371/journal.pone.0147600] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 01/06/2016] [Indexed: 11/21/2022] Open
Abstract
The extracellular matrix (ECM) has been demonstrated to facilitate angiogenesis. In particular, fibronectin has been documented to activate endothelial cells, resulting in their transition from a quiescent state to an active state in which the cells exhibit enhanced migration and proliferation. The goal of this study is to examine the role of polymerized fibronectin during vascular tubulogenesis using a 3 dimensional (3D) cell-derived de-cellularized matrix. A fibronectin-rich 3D de-cellularized ECM was used as a scaffold to study vascular morphogenesis of endothelial cells (ECs). Confocal analyses of several matrix proteins reveal high intra- and extra-cellular deposition of fibronectin in formed vascular structures. Using a small peptide inhibitor of fibronectin polymerization, we demonstrate that inhibition of fibronectin fibrillogenesis in ECs cultured atop de-cellularized ECM resulted in decreased vascular morphogenesis. Further, immunofluorescence and ultrastructural analyses reveal decreased expression of stromal matrix proteins in the absence of polymerized fibronectin with high co-localization of matrix proteins found in association with polymerized fibronectin. Evaluating vascular kinetics, live cell imaging showed that migration, migration velocity, and mean square displacement, are disrupted in structures grown in the absence of polymerized fibronectin. Additionally, vascular organization failed to occur in the absence of a polymerized fibronectin matrix. Consistent with these observations, we tested vascular morphogenesis following the disruption of EC adhesion to polymerized fibronectin, demonstrating that block of integrins α5β1 and αvβ3, abrogated vascular morphogenesis. Overall, fibronectin deposition in a 3D cell-derived de-cellularized ECM appears to be imperative for matrix assembly and vascular morphogenesis.
Collapse
Affiliation(s)
- Abigail Hielscher
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, 21218, United States of America
- Johns Hopkins Physical Sciences-Oncology Center, Johns Hopkins University, Baltimore, Maryland, 21218, United States of America
- Department of Biomedical Sciences, Georgia Philadelphia College of Osteopathic Medicine, Suwanee, Georgia, 30024, United States of America
| | - Kim Ellis
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, 21218, United States of America
| | - Connie Qiu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, 21218, United States of America
| | - Josh Porterfield
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, 21218, United States of America
| | - Sharon Gerecht
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, 21218, United States of America
- Johns Hopkins Physical Sciences-Oncology Center, Johns Hopkins University, Baltimore, Maryland, 21218, United States of America
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, 21218, United States of America
- * E-mail:
| |
Collapse
|
26
|
Du P, Suhaeri M, Subbiah R, Van SY, Park J, Kim SH, Park K, Lee K. Elasticity Modulation of Fibroblast-Derived Matrix for Endothelial Cell Vascular Morphogenesis and Mesenchymal Stem Cell Differentiation. Tissue Eng Part A 2016; 22:415-26. [PMID: 26786806 DOI: 10.1089/ten.tea.2015.0503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Biophysical properties of the microenvironment, including matrix elasticity and topography, are known to affect various cell behaviors; however, the specific role of each factor is unclear. In this study, fibroblast-derived matrix (FDM) was used as cell culture substrate and physically modified to investigate the influence of its biophysical property changes on human umbilical vein endothelial cells (HUVECs) and human mesenchymal stem cells (hMSCs) behavior in vitro. These FDMs were physically modified by simply storing them at different temperatures: the one stored at 4°C, maintained its original properties, was considered natural FDM, whereas the ones stored at -20°C or -80°C, exhibited a distinct surface morphology, were considered physically modified FDM. Physical modification induced matrix fiber rearrangement in FDM, forming different microstructures on the surface as characterized by focused ion beam (FIB)-cryoSEM. A significant increase of matrix elasticity was found with physically modified FDMs as determined by atomic force microscopy. HUVEC and hMSC behaviors on these natural and physically modified FDMs were observed and compared with each other and with gelatin-coated coverslips. HUVECs showed a similar adhesion level on these substrates at 3 h, but exhibited different proliferation rates and morphologies at 24 h; HUVECs on natural FDM proliferated relatively slower and assembled to capillary-like structures (CLSs). It is observed that HUVECs assembled to CLSs on natural FDMs are independent on the exogenous growth factors and yet dependent on nonmuscle myosin II activity. This result indicates the important role of matrix mechanical properties in regulating HUVECs vascular morphogenesis. As for hMSCs multilineage differentiation, adipogenesis is improved on natural FDM that with lower matrix elasticity, while osteogenesis is accelerated on physically modified FDMs that with higher matrix elasticity, these results further confirm the crucial role of matrix elasticity on cell fate determination.
Collapse
Affiliation(s)
- Ping Du
- 1 Center for Biomaterials, Korea Institute of Science and Technology , Seoul, Republic of Korea.,2 Department of Biomedical Engineering, Korea University of Science and Technology , Daejeon, Republic of Korea
| | - Muhammad Suhaeri
- 1 Center for Biomaterials, Korea Institute of Science and Technology , Seoul, Republic of Korea.,2 Department of Biomedical Engineering, Korea University of Science and Technology , Daejeon, Republic of Korea
| | - Ramesh Subbiah
- 1 Center for Biomaterials, Korea Institute of Science and Technology , Seoul, Republic of Korea.,2 Department of Biomedical Engineering, Korea University of Science and Technology , Daejeon, Republic of Korea
| | - Se Young Van
- 1 Center for Biomaterials, Korea Institute of Science and Technology , Seoul, Republic of Korea.,2 Department of Biomedical Engineering, Korea University of Science and Technology , Daejeon, Republic of Korea
| | - Jimin Park
- 1 Center for Biomaterials, Korea Institute of Science and Technology , Seoul, Republic of Korea
| | - Sang Heon Kim
- 1 Center for Biomaterials, Korea Institute of Science and Technology , Seoul, Republic of Korea.,2 Department of Biomedical Engineering, Korea University of Science and Technology , Daejeon, Republic of Korea
| | - Kwideok Park
- 1 Center for Biomaterials, Korea Institute of Science and Technology , Seoul, Republic of Korea.,2 Department of Biomedical Engineering, Korea University of Science and Technology , Daejeon, Republic of Korea
| | - Kangwon Lee
- 3 Program in Nanoscience and Technology, Graduate School of Convergence Science and Technology, Seoul National University , Seoul, Republic of Korea.,4 Advanced Institutes of Convergence Technology , Gyeonggi-do, Republic of Korea
| |
Collapse
|
27
|
Serbo JV, Kuo S, Lewis S, Lehmann M, Li J, Gracias DH, Romer LH. Patterning of Fibroblast and Matrix Anisotropy within 3D Confinement is Driven by the Cytoskeleton. Adv Healthc Mater 2016; 5:146-58. [PMID: 26033825 PMCID: PMC5817161 DOI: 10.1002/adhm.201500030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 05/12/2015] [Indexed: 12/16/2022]
Abstract
Effects of 3D confinement on cellular growth and matrix assembly are important in tissue engineering, developmental biology, and regenerative medicine. Polydimethylsiloxane wells with varying anisotropy are microfabicated using soft-lithography. Microcontact printing of bovine serum albumin is used to block cell adhesion to surfaces between wells. The orientations of fibroblast stress fibers, microtubules, and fibronectin fibrils are examined 1 day after cell seeding using laser scanning confocal microscopy, and anisotropy is quantified using a custom autocorrelation analysis. Actin, microtubules, and fibronectin exhibit higher anisotropy coefficients for cells grown in rectangular wells with aspect ratios of 1:4 and 1:8, as compared to those in wells with lower aspect ratios or in square wells. The effects of disabling individual cytoskeletal components on fibroblast responses to anisotropy are then tested by applying actin or microtubule polymerization inhibitors, Rho kinase inhibitor, or by siRNA-mediated knockdown of AXL or cofilin-1. Latrunculin A decreases cytoskeletal and matrix anisotropy, nocodazole ablates both, and Y27632 mutes cellular polarity while decreasing matrix anisotropy. AXL siRNA knockdown has little effect, as does siRNA knockdown of cofilin-1. These data identify several specific cytoskeletal strategies as targets for the manipulation of anisotropy in 3D tissue constructs.
Collapse
Affiliation(s)
- Janna V. Serbo
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Scot Kuo
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shawna Lewis
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Matthew Lehmann
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jiuru Li
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - David H. Gracias
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Lewis H. Romer
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
28
|
Baldo C, Lopes DS, Faquim-Mauro EL, Jacysyn JF, Niland S, Eble JA, Clissa PB, Moura-da-Silva AM. Jararhagin disruption of endothelial cell anchorage is enhanced in collagen enriched matrices. Toxicon 2015; 108:240-8. [PMID: 26528579 DOI: 10.1016/j.toxicon.2015.10.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 10/19/2015] [Accepted: 10/27/2015] [Indexed: 01/13/2023]
Abstract
Hemorrhage is one of the most striking effects of bites by viper snakes resulting in fast bleeding and ischemia in affected tissues. Snake venom metalloproteinases (SVMPs) are responsible for hemorrhagic activity, but the mechanisms involved in SVMP-induced hemorrhage are not entirely understood and the study of such mechanisms greatly depends on in vivo experiments. In vivo, hemorrhagic SVMPs accumulate on basement membrane (BM) of venules and capillary vessels allowing the hydrolysis of collagen IV with consequent weakness and rupture of capillary walls. These effects are not reproducible in vitro with conventional endothelial cell cultures. In this study we used two-dimension (2D) or three-dimension (3D) cultures of HUVECs on matrigel and observed the same characteristics as in ex vivo experiments: only the hemorrhagic toxin was able to localize on surfaces or internalize endothelial cells in 2D cultures or in the surface of tubules formed on 3D cultures. The contribution of matrigel, fibronectin and collagen matrices in jararhagin-induced endothelial cell damage was then analyzed. Collagen and matrigel substrates enhanced the endothelial cell damage induced by jararhagin allowing toxin binding to focal adhesions, disruption of stress fibers, detachment and apoptosis. The higher affinity of jararhagin to collagen than to fibronectin explains the localization of the toxin within BM. Moreover, once located in BM, interactions of jararhagin with α2β1 integrin would favor its localization on focal adhesions, as observed in our study. The accumulation of toxin in focal adhesions, observed only in cells grown in collagen matrices, would explain the enhancement of cell damage in these matrices and reflects the actual interaction among toxin, endothelial cells and BM components that occurs in vivo and results in the hemorrhagic lesions induced by viper venoms.
Collapse
Affiliation(s)
- C Baldo
- Laboratório de Imunopatologia, Instituto Butantan, Av. Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil
| | - D S Lopes
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - E L Faquim-Mauro
- Laboratório de Imunopatologia, Instituto Butantan, Av. Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil
| | - J F Jacysyn
- LIM62, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - S Niland
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149, Münster, Germany
| | - J A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149, Münster, Germany
| | - P B Clissa
- Laboratório de Imunopatologia, Instituto Butantan, Av. Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil
| | - A M Moura-da-Silva
- Laboratório de Imunopatologia, Instituto Butantan, Av. Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil.
| |
Collapse
|
29
|
Yasuda N, Sekine H, Bise R, Okano T, Shimizu T. Tracing behavior of endothelial cells promotes vascular network formation. Microvasc Res 2015; 105:125-31. [PMID: 26687561 DOI: 10.1016/j.mvr.2015.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 12/08/2015] [Accepted: 12/08/2015] [Indexed: 12/12/2022]
Abstract
The in vitro formation of network structures derived from endothelial cells in grafts before transplantation contributes to earlier engraftment. In a previous study, endothelial cells migrated to form a net-shaped structure in co-culture. However, the specific network formation behavior of endothelial cells during migration remains unclear. In this study, we demonstrated the tracing behavior and cell cycle of endothelial cells using Fucci-labeled (Fluorescent Ubiquitination-based Cell Cycle Indicator) endothelial cells. Here, we observed the co-culture of Fucci-labeled human umbilical vein endothelial cells (HUVECs) together with normal human dermal fibroblasts (NHDFs) using time-lapse imaging and analyzed by multicellular concurrent tracking. In the G0/G1 period, HUVECs migrate faster than in the S/G2/M period, because G0/G1 is the mobile phase and S/G2/M is the proliferation phase in the cell cycle. When HUVECs are co-cultured, they tend to move randomly until they find existing tracks that they then follow to form clusters. Extracellular matrix (ECM) staining showed that collagen IV, laminin and thrombospondin deposited in accordance with endothelial cell networks. Therefore the HUVECs may migrate on the secreted ECM and exhibit tracing behavior, where the HUVECs migrate toward each other. These results suggested that ECM and a cell phase contributed to form a network by accelerating cell migration.
Collapse
Affiliation(s)
- Noriko Yasuda
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University (TWIns), Tokyo, Japan
| | - Hidekazu Sekine
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University (TWIns), Tokyo, Japan
| | - Ryoma Bise
- Advanced Business Center, Dai Nippon Printing Co., Ltd., Tokyo, Japan
| | - Teruo Okano
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University (TWIns), Tokyo, Japan
| | - Tatsuya Shimizu
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University (TWIns), Tokyo, Japan.
| |
Collapse
|
30
|
Generating and characterizing the mechanical properties of cell-derived matrices using atomic force microscopy. Methods 2015; 94:85-100. [PMID: 26439175 DOI: 10.1016/j.ymeth.2015.09.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 08/26/2015] [Accepted: 09/14/2015] [Indexed: 12/22/2022] Open
Abstract
Mechanical interaction between cells and their surrounding extracellular matrix (ECM) controls key processes such as proliferation, differentiation and motility. For many years, two-dimensional (2D) models were used to better understand the interactions between cells and their surrounding ECM. More recently, variation of the mechanical properties of tissues has been reported to play a major role in physiological and pathological scenarios such as cancer progression. The 3D architecture of the ECM finely tunes cellular behavior to perform physiologically relevant tasks. Technical limitations prevented scientists from obtaining accurate assessment of the mechanical properties of physiologically realistic matrices. There is therefore a need for combining the production of high-quality cell-derived 3D matrices (CDMs) and the characterization of their topographical and mechanical properties. Here, we describe methods that allow to accurately measure the young modulus of matrices produced by various cellular types. In the first part, we will describe and review several protocols for generating CDMs matrices from endothelial, epithelial, fibroblastic, muscle and mesenchymal stem cells. We will discuss tools allowing the characterization of the topographical details as well as of the protein content of such CDMs. In a second part, we will report the methodologies that can be used, based on atomic force microscopy, to accurately evaluate the stiffness properties of the CDMs through the quantification of their young modulus. Altogether, such methodologies allow characterizing the stiffness and topography of matrices deposited by the cells, which is key for the understanding of cellular behavior in physiological conditions.
Collapse
|
31
|
Scherzer MT, Waigel S, Donninger H, Arumugam V, Zacharias W, Clark G, Siskind LJ, Soucy P, Beverly L. Fibroblast-Derived Extracellular Matrices: An Alternative Cell Culture System That Increases Metastatic Cellular Properties. PLoS One 2015; 10:e0138065. [PMID: 26371754 PMCID: PMC4570771 DOI: 10.1371/journal.pone.0138065] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 08/26/2015] [Indexed: 12/31/2022] Open
Abstract
Poor survival rates from lung cancer can largely be attributed to metastatic cells that invade and spread throughout the body. The tumor microenvironment (TME) is composed of multiple cell types, as well as non-cellular components. The TME plays a critical role in the development of metastatic cancers by providing migratory cues and changing the properties of the tumor cells. The Extracellular Matrix (ECM), a main component of the TME, has been shown to change composition during tumor progression, contributing to cancer cell invasion and survival away from the primary cancer site. Although the ECM is well-known to influence the fate of tumor progression, little is known about the molecular mechanisms that are affected by the cancer cell-ECM interactions. It is imperative that these mechanisms are elucidated in order to properly understand and prevent lung cancer dissemination. However, common in vitro studies do not incorporate these interactions into everyday cell culture assays. We have adopted a model that examines decellularized human fibroblast-derived ECM as a 3-dimensional substrate for growth of lung adenocarcinoma cell lines. Here, we have characterized the effect of fibroblast-derived matrices on the properties of various lung-derived epithelial cell lines, including cancerous and non-transformed cells. This work highlights the significance of the cell-ECM interaction and its requirement for incorporation into in vitro experiments. Implementation of a fibroblast-derived ECM as an in vitro technique will provide researchers with an important factor to manipulate to better recreate and study the TME.
Collapse
Affiliation(s)
- Michael T. Scherzer
- J. G. Brown Cancer Center, University of Louisville, Louisville, Kentucky, 40202, United States of America
- Department of Bioengineering, University of Louisville, Louisville, Kentucky, 40202, United States of America
| | - Sabine Waigel
- J. G. Brown Cancer Center, University of Louisville, Louisville, Kentucky, 40202, United States of America
| | - Howard Donninger
- J. G. Brown Cancer Center, University of Louisville, Louisville, Kentucky, 40202, United States of America
- Department of Medicine, University of Louisville, Louisville, Kentucky, 40202, United States of America
| | - Vennila Arumugam
- J. G. Brown Cancer Center, University of Louisville, Louisville, Kentucky, 40202, United States of America
| | - Wolfgang Zacharias
- J. G. Brown Cancer Center, University of Louisville, Louisville, Kentucky, 40202, United States of America
- Department of Medicine, University of Louisville, Louisville, Kentucky, 40202, United States of America
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, 40202, United States of America
| | - Geoffrey Clark
- J. G. Brown Cancer Center, University of Louisville, Louisville, Kentucky, 40202, United States of America
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, 40202, United States of America
| | - Leah J. Siskind
- J. G. Brown Cancer Center, University of Louisville, Louisville, Kentucky, 40202, United States of America
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, 40202, United States of America
| | - Patricia Soucy
- Department of Bioengineering, University of Louisville, Louisville, Kentucky, 40202, United States of America
| | - Levi Beverly
- J. G. Brown Cancer Center, University of Louisville, Louisville, Kentucky, 40202, United States of America
- Department of Bioengineering, University of Louisville, Louisville, Kentucky, 40202, United States of America
- Department of Medicine, University of Louisville, Louisville, Kentucky, 40202, United States of America
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, 40202, United States of America
- * E-mail:
| |
Collapse
|
32
|
Horzum U, Ozdil B, Pesen-Okvur D. Differentiation of Normal and Cancer Cell Adhesion on Custom Designed Protein Nanopatterns. NANO LETTERS 2015; 15:5393-5403. [PMID: 26132305 DOI: 10.1021/acs.nanolett.5b01785] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Cell adhesion to the extracellular matrix is deregulated in metastasis. However, traditional surfaces used to study cell adhesion do not faithfully mimic the in vivo microenvironment. Electron beam lithography (EBL) is able to generate customized protein nanopatterns. Here, we used an EBL-based green lithography approach to fabricate homogeneous and gradient, single (fibronectin, K-casein) and double (fibronectin, laminin) active component protein nanopatterns with micrometer scale spacing to investigate differences in adhesion of breast cancer cells (BCC) and normal mammary epithelial cells (NMEC). Our results showed that as expected, in contrast to NMEC, BCC were plastic: they tolerated nonadhesion promoting regions, adapted to flow and exploited gradients better. In addition, the number of focal adhesions but not their area appeared to be the dominant parameter for regulation of cell adhesion. Our findings also demonstrated that custom designed protein nanopatterns, which can properly mimic the in vivo microenvironment, enable realistic distinction of normal and cancerous cell adhesion.
Collapse
Affiliation(s)
- Utku Horzum
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, 35430 Urla/Izmir, Turkey
| | - Berrin Ozdil
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, 35430 Urla/Izmir, Turkey
| | - Devrim Pesen-Okvur
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, 35430 Urla/Izmir, Turkey
| |
Collapse
|
33
|
Xiao X, Wang W, Liu D, Zhang H, Gao P, Geng L, Yuan Y, Lu J, Wang Z. The promotion of angiogenesis induced by three-dimensional porous beta-tricalcium phosphate scaffold with different interconnection sizes via activation of PI3K/Akt pathways. Sci Rep 2015; 5:9409. [PMID: 25797242 PMCID: PMC4369742 DOI: 10.1038/srep09409] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 03/02/2015] [Indexed: 11/15/2022] Open
Abstract
The porous architectural characteristics of biomaterials play an important role in scaffold revascularization. However, no consensus exists regarding optimal interconnection sizes for vascularization and its scaffold bioperformance with different interconnection sizes. Therefore, a series of disk-type beta-tricalcium phosphates with the same pore sizes and variable interconnections were produced to evaluate how the interconnection size influenced biomaterial vascularization in vitro and in vivo. We incubated human umbilical vein endothelial cells on scaffolds with interconnections of various sizes. Results showed that scaffolds with a 150 μm interconnection size ameliorated endothelial cell function evidenced by promoting cell adhesion and migration, increasing cell proliferation and enhancing expression of platelet-endothelial cell adhesion molecules and vascular endothelial growth factor. In vivo study was performed on rabbit implanted with scaffolds into the bone defect on femoral condyles. Implantation with scaffolds with 150 μm interconnection size significantly improved neovascularization as shown by micro-CT as compared to scaffolds with 100 and 120 μm interconnection sizes. Moreover, the aforementioned positive effects were abolished by blocking PI3K/Akt/eNOS pathway with LY-294002. Our study explicitly demonstrates that the scaffold with 150 μm interconnection size improves neovascularization via the PI3K/Akt pathway and provides a target for biomaterial inner structure modification to attain improved clinical performance in implant vascularization.
Collapse
Affiliation(s)
- Xin Xiao
- Department of Orthopedics, Xijing Hospital, Forth Military Medical University, Xi'an, Shaanxi, PR China
| | - Wei Wang
- The State Key Laboratory of Cancer Biology, Department of Immunology, Forth Military Medical University, Xi'an, Shaanxi, PR China
| | - Dong Liu
- Department of Orthopedics, Xijing Hospital, Forth Military Medical University, Xi'an, Shaanxi, PR China
| | - Haoqiang Zhang
- Department of Orthopedics, Xijing Hospital, Forth Military Medical University, Xi'an, Shaanxi, PR China
| | - Peng Gao
- Department of Orthopedics, Xijing Hospital, Forth Military Medical University, Xi'an, Shaanxi, PR China
| | - Lei Geng
- Department of Orthopedics, Xijing Hospital, Forth Military Medical University, Xi'an, Shaanxi, PR China
| | - Yulin Yuan
- Department of Orthopedics, Xijing Hospital, Forth Military Medical University, Xi'an, Shaanxi, PR China
| | - Jianxi Lu
- Shanghai Bio-lu Biomaterials Co., Ltd., Shanghai, P.R. China
| | - Zhen Wang
- Department of Orthopedics, Xijing Hospital, Forth Military Medical University, Xi'an, Shaanxi, PR China
| |
Collapse
|
34
|
Planska D, Burocziova M, Strnadel J, Horak V. Immunohistochemical Analysis of Collagen IV and Laminin Expression in Spontaneous Melanoma Regression in the Melanoma-Bearing Libechov Minipig. Acta Histochem Cytochem 2015; 48:15-26. [PMID: 25861134 PMCID: PMC4387259 DOI: 10.1267/ahc.14020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 01/05/2015] [Indexed: 01/24/2023] Open
Abstract
Spontaneous regression (SR) of human melanoma is a rare, well-documented phenomenon that is not still fully understood. Its detailed study cannot be performed in patients due to ethical reasons. Using the Melanoma-bearing Libechov Minipig (MeLiM) animals of various ages (from 3 weeks to 8 months) we implemented a long-term monitoring of melanoma growth and SR. We focused on immunohistochemical detection of two important extracellular matrix proteins, collagen IV and laminin, which are associated with cancer. We showed that SR of melanoma is a highly dynamic process. The expression of collagen IV and laminin correlated with changes in population of melanoma cells. Tumours of 3-week-old animals consisted primarily of melanoma cells with a granular expression of collagen IV and laminin around them. Thereafter, melanoma cells were gradually destroyed and tumour tissue was rebuilt into the connective tissue. Collagen IV expression slightly increased in tumours of 10-week-old pigs showing extracellular fibrous appearance. In tumours of older animals, areas lacking melanoma cells demonstrated a low expression and areas still containing melanoma cells a high expression of both proteins. We considered the age of 10 weeks as a turning point in the transition between tumour growth and SR of the MeLiM melanoma.
Collapse
Affiliation(s)
- Daniela Planska
- Laboratory of Tumor Biology, Institute of Animal Physiology and Genetics AS CR, v.v.i
- Faculty of Science, Charles University
- Department of Immunology, Third Faculty of Medicine, Charles University
| | - Monika Burocziova
- Laboratory of Natural Immunity, Institute of Microbiology AS CR, v.v.i
| | - Jan Strnadel
- Laboratory of Tumor Biology, Institute of Animal Physiology and Genetics AS CR, v.v.i
| | - Vratislav Horak
- Laboratory of Tumor Biology, Institute of Animal Physiology and Genetics AS CR, v.v.i
| |
Collapse
|
35
|
Fitzpatrick LE, McDevitt TC. Cell-derived matrices for tissue engineering and regenerative medicine applications. Biomater Sci 2015; 3:12-24. [PMID: 25530850 PMCID: PMC4270054 DOI: 10.1039/c4bm00246f] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The development and application of decellularized extracellular matrices (ECM) has grown rapidly in the fields of cell biology, tissue engineering and regenerative medicine in recent years. Similar to decellularized tissues and whole organs, cell-derived matrices (CDMs) represent bioactive, biocompatible materials consisting of a complex assembly of fibrillar proteins, matrix macromolecules and associated growth factors that often recapitulate, at least to some extent, the composition and organization of native ECM microenvironments. The unique ability to engineer CDMs de novo based on cell source and culture methods makes them an attractive alternative to conventional allogeneic and xenogeneic tissue-derived matrices that are currently harvested from cadaveric sources, suffer from inherent heterogeneity, and have limited ability for customization. Although CDMs have been investigated for a number of biomedical applications, including adhesive cell culture substrates, synthetic scaffold coatings, and tissue engineered products, such as heart valves and vascular grafts, the state of the field is still at a relatively nascent stage of development. In this review, we provide an overview of the various applications of CDM and discuss successes to date, current limitations and future directions.
Collapse
Affiliation(s)
| | - Todd C. McDevitt
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, Georgia, USA
- The Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
36
|
Soucy PA, Hoh M, Heinz W, Hoh J, Romer L. Oriented matrix promotes directional tubulogenesis. Acta Biomater 2015; 11:264-73. [PMID: 25219769 PMCID: PMC4256113 DOI: 10.1016/j.actbio.2014.08.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 07/02/2014] [Accepted: 08/28/2014] [Indexed: 12/22/2022]
Abstract
Detailed control over the structural organization of scaffolds and engineered tissue constructs is a critical need in the quest to engineer functional tissues using biomaterials. This work presents a new approach to spatially direct endothelial tubulogenesis. Micropatterned fibronectin substrates were used to control lung fibroblast adhesion and growth and the subsequent deposition of fibroblast-derived matrix during culture. The fibroblast-derived matrix produced on the micropatterned substrates was tightly oriented by these patterns, with an average variation of only 8.5°. Further, regions of this oriented extracellular matrix provided directional control of developing endothelial tubes to within 10° of the original micropatterned substrate design. Endothelial cells seeded directly onto the micropatterned substrate did not form tubes. A metric for matrix anisotropy showed a relationship between the fibroblast-derived matrix and the endothelial tubes that were subsequently developed on the same micropatterns with a resulting aspect ratio over 1.5 for endothelial tubulogenesis. Micropatterns in "L" and "Y" shapes were used to direct endothelial tubes to turn and branch with the same level of precision. These data demonstrate that anisotropic fibroblast-derived matrices instruct the alignment and shape of endothelial tube networks, thereby introducing an approach that could be adapted for future design of microvascular implants featuring organ-specific natural matrix that patterns microvascular growth.
Collapse
Affiliation(s)
- Patricia A Soucy
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Bioengineering, University of Louisville, Louisville, KY 40292, USA
| | - Maria Hoh
- Intelligent Substrates, Inc., Sykesville, MD, USA
| | - Will Heinz
- Intelligent Substrates, Inc., Sykesville, MD, USA; Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jan Hoh
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lewis Romer
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Anesthesiology and Critical Care Medicine, Cell Biology, and Pediatrics, and the Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
37
|
Chang F, Lemmon CA, Nilaratanakul V, Rotter V, Romer L. Endothelial matrix assembly during capillary morphogenesis: insights from chimeric TagRFP-fibronectin matrix. J Histochem Cytochem 2014; 62:774-90. [PMID: 25063001 PMCID: PMC4209295 DOI: 10.1369/0022155414547419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 07/13/2014] [Indexed: 11/22/2022] Open
Abstract
Biologically relevant, three-dimensional extracellular matrix is an essential component of in vitro vasculogenesis models. WI-38 fibroblasts assemble a 3D matrix that induces endothelial tubulogenesis, but this model is challenged by fibroblast senescence and the inability to distinguish endothelial cell-derived matrix from matrix made by WI-38 fibroblasts. Matrices produced by hTERT-immortalized WI-38 recapitulated those produced by wild type fibroblasts. ECM fibrils were heavily populated by tenascin-C, fibronectin, and type VI collagen. Nearly half of the total type I collagen, but only a small fraction of the type IV collagen, were incorporated into ECM. Stable hTERT-WI-38 transfectants expressing TagRFP-fibronectin incorporated TagRFP into ~90% of the fibronectin in 3D matrices. TagRFP-fibronectin colocalized with tenascin-C and with type I collagen in a pattern that was similar to that seen in matrices from wild type WI-38. Human Umbilical Vein Endothelial Cells (HUVEC) formed 3D adhesions and tubes on WI38-hTERT-TagRFP-FN-derived matrices, and the TagRFP-fibronectin component of this new 3D human fibroblast matrix model facilitated the demonstration of concentrated membrane type 1 metalloprotease and new HUVEC FN and collagen type IV fibrils during EC tubulogenesis. These findings indicate that WI-38-hTERT- and WI-38-hTERT-TagRFP-FN-derived matrices provide platforms for the definition of new matrix assembly and remodeling events during vasculogenesis.
Collapse
Affiliation(s)
- Fumin Chang
- Anesthesiology and Critical Care Medicine (FC, LR), Johns Hopkins Medical Institutions, Baltimore, MDDepartment of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA (CAL)Cell Biology (LR), Johns Hopkins Medical Institutions, Baltimore, MDBiomedical Engineering (LR), Johns Hopkins Medical Institutions, Baltimore, MDPediatrics (LR), Johns Hopkins Medical Institutions, Baltimore, MDCenter for Cell Dynamics (LR), Johns Hopkins Medical Institutions, Baltimore, MDGraduate Program in Cellular and Molecular Medicine (VN), Johns Hopkins Medical Institutions, Baltimore, MDDepartment of Molecular and Cell Biology, The Weizmann Institute of Science, Rehovot, Israel (VR)
| | - Christopher A Lemmon
- Anesthesiology and Critical Care Medicine (FC, LR), Johns Hopkins Medical Institutions, Baltimore, MDDepartment of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA (CAL)Cell Biology (LR), Johns Hopkins Medical Institutions, Baltimore, MDBiomedical Engineering (LR), Johns Hopkins Medical Institutions, Baltimore, MDPediatrics (LR), Johns Hopkins Medical Institutions, Baltimore, MDCenter for Cell Dynamics (LR), Johns Hopkins Medical Institutions, Baltimore, MDGraduate Program in Cellular and Molecular Medicine (VN), Johns Hopkins Medical Institutions, Baltimore, MDDepartment of Molecular and Cell Biology, The Weizmann Institute of Science, Rehovot, Israel (VR)
| | - Voraphoj Nilaratanakul
- Anesthesiology and Critical Care Medicine (FC, LR), Johns Hopkins Medical Institutions, Baltimore, MDDepartment of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA (CAL)Cell Biology (LR), Johns Hopkins Medical Institutions, Baltimore, MDBiomedical Engineering (LR), Johns Hopkins Medical Institutions, Baltimore, MDPediatrics (LR), Johns Hopkins Medical Institutions, Baltimore, MDCenter for Cell Dynamics (LR), Johns Hopkins Medical Institutions, Baltimore, MDGraduate Program in Cellular and Molecular Medicine (VN), Johns Hopkins Medical Institutions, Baltimore, MDDepartment of Molecular and Cell Biology, The Weizmann Institute of Science, Rehovot, Israel (VR)
| | - Varda Rotter
- Anesthesiology and Critical Care Medicine (FC, LR), Johns Hopkins Medical Institutions, Baltimore, MDDepartment of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA (CAL)Cell Biology (LR), Johns Hopkins Medical Institutions, Baltimore, MDBiomedical Engineering (LR), Johns Hopkins Medical Institutions, Baltimore, MDPediatrics (LR), Johns Hopkins Medical Institutions, Baltimore, MDCenter for Cell Dynamics (LR), Johns Hopkins Medical Institutions, Baltimore, MDGraduate Program in Cellular and Molecular Medicine (VN), Johns Hopkins Medical Institutions, Baltimore, MDDepartment of Molecular and Cell Biology, The Weizmann Institute of Science, Rehovot, Israel (VR)
| | - Lewis Romer
- Anesthesiology and Critical Care Medicine (FC, LR), Johns Hopkins Medical Institutions, Baltimore, MDDepartment of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA (CAL)Cell Biology (LR), Johns Hopkins Medical Institutions, Baltimore, MDBiomedical Engineering (LR), Johns Hopkins Medical Institutions, Baltimore, MDPediatrics (LR), Johns Hopkins Medical Institutions, Baltimore, MDCenter for Cell Dynamics (LR), Johns Hopkins Medical Institutions, Baltimore, MDGraduate Program in Cellular and Molecular Medicine (VN), Johns Hopkins Medical Institutions, Baltimore, MDDepartment of Molecular and Cell Biology, The Weizmann Institute of Science, Rehovot, Israel (VR)
| |
Collapse
|
38
|
Extracellular matrix as a driver for lung regeneration. Ann Biomed Eng 2014; 43:568-76. [PMID: 25344351 DOI: 10.1007/s10439-014-1167-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 10/15/2014] [Indexed: 12/20/2022]
Abstract
Extracellular matrix has manifold roles in tissue mechanics, guidance of cellular behavior, developmental biology, and regenerative medicine. Over the past several decades, various pre-clinical and clinical studies have shown that many connective tissues may be replaced and/or regenerated using suitable extracellular matrix scaffolds. More recently, decellularization of lung tissue has shown that gentle removal of cells can leave behind a "footprint" within the matrix that may guide cellular adhesion, differentiation and homing following cellular repopulation. Fundamental issues like understanding matrix composition and micro-mechanics remain difficult to tackle, largely because of a lack of available assays and tools for systematically characterizing intact matrix from tissues and organs. This review will critically examine the role of engineered and native extracellular matrix in tissue and lung regeneration, and provide insights into directions for future research and translation.
Collapse
|
39
|
Zhang Y, Lin Z, Foolen J, Schoen I, Santoro A, Zenobi-Wong M, Vogel V. Disentangling the multifactorial contributions of fibronectin, collagen and cyclic strain on MMP expression and extracellular matrix remodeling by fibroblasts. Matrix Biol 2014; 40:62-72. [PMID: 25217861 DOI: 10.1016/j.matbio.2014.09.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 09/03/2014] [Accepted: 09/04/2014] [Indexed: 01/06/2023]
Abstract
Early wound healing is associated with fibroblasts assembling a provisional fibronectin-rich extracellular matrix (ECM), which is subsequently remodeled and interlaced by type I collagen. This exposes fibroblasts to time-variant sets of matrices during different stages of wound healing. Our goal was thus to gain insight into the ECM-driven functional regulation of human foreskin fibroblasts (HFFs) being either anchored to a fibronectin (Fn) or to a collagen-decorated matrix, in the absence or presence of cyclic mechanical strain. While the cells reoriented in response to the onset of uniaxial cyclic strain, cells assembled exogenously added Fn with a preferential Fn-fiber alignment along their new orientation. Exposure of HFFs to exogenous Fn resulted in an increase in matrix metalloproteinase (MMP) expression levels, i.e. MMP-15 (RT-qPCR), and MMP-9 activity (zymography), while subsequent exposure to collagen slightly reduced MMP-15 expression and MMP-9 activity compared to Fn-exposure alone. Cyclic strain upregulated Fn fibrillogenesis and actin stress fiber formation, but had comparatively little effect on MMP activity. We thus propose that the appearance of collagen might start to steer HFFs towards homeostasis, as it decreased both MMP secretion and the tension of Fn matrix fibrils as assessed by Fluorescence Resonance Energy Transfer. These results suggest that HFFs might have a high ECM remodeling or repair capacity in contact with Fn alone (early event), which is reduced in the presence of Col1 (later event), thereby down-tuning HFF activity, a processes which would be required in a tissue repair process to finally reach tissue homeostasis.
Collapse
Affiliation(s)
- Yang Zhang
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| | - Zhe Lin
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| | - Jasper Foolen
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| | - Ingmar Schoen
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| | - Alberto Santoro
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| | - Marcy Zenobi-Wong
- Cartilage Engineering+Regeneration, Department of Health Sciences and Technology, ETH Zurich, Otto-Stern-Weg 7, CH-8093 Zurich, Switzerland
| | - Viola Vogel
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland.
| |
Collapse
|
40
|
Preparation of three-dimensional vascularized MSC cell sheet constructs for tissue regeneration. BIOMED RESEARCH INTERNATIONAL 2014; 2014:301279. [PMID: 25110670 PMCID: PMC4119697 DOI: 10.1155/2014/301279] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 04/03/2014] [Accepted: 04/18/2014] [Indexed: 01/27/2023]
Abstract
Engineering three-dimensional (3D) vascularized constructs remains a challenge due to the inability to form rich microvessel networks. In this study we engineered a prevascularized 3D cell sheet construct for tissue regeneration using human bone marrow-derived mesenchymal stem cells (hMSCs) and human umbilical vein endothelial cells as cell sources. hMSCs were cultured to form a thick cell sheet, and human umbilical vein endothelial cells (HUVECs) were then seeded on the hMSCs sheet to form networks. The single prevascularized HUVEC/hMSC cell sheet was folded to form a 3D construct by a modified cell sheet engineering technique. In vitro results indicated that the hMSCs cell sheet promoted the HUVECs cell migration to form networks in horizontal and vertical directions. In vivo results showed that many blood vessels grew into the 3D HUVEC/hMSC cell sheet constructs after implanted in the subcutaneous pocket of immunodeficient mice. The density of blood vessels in the prevascularized constructs was higher than that in the nonprevascularized constructs. Immunohistochemistry staining further showed that in vitro preformed human capillaries in the prevascularized constructs anastomosed with the host vasculature to form functional blood vessels. These results suggest the promising potential of this 3D prevascularized construct using hMSCs cell sheet as a platform for wide applications in engineering vascularized tissues.
Collapse
|
41
|
Ren L, Kang Y, Browne C, Bishop J, Yang Y. Fabrication, vascularization and osteogenic properties of a novel synthetic biomimetic induced membrane for the treatment of large bone defects. Bone 2014; 64:173-182. [PMID: 24747351 PMCID: PMC4180017 DOI: 10.1016/j.bone.2014.04.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 04/07/2014] [Accepted: 04/08/2014] [Indexed: 01/19/2023]
Abstract
The induced membrane has been widely used in the treatment of large bone defects but continues to be limited by a relatively lengthy healing process and a requisite two stage surgical procedure. Here we report the development and characterization of a synthetic biomimetic induced membrane (BIM) consisting of an inner highly pre-vascularized cell sheet and an outer osteogenic layer using cell sheet engineering. The pre-vascularized inner layer was formed by seeding human umbilical vein endothelial cells (HUVECs) on a cell sheet comprised of a layer of undifferentiated human bone marrow-derived mesenchymal stem cells (hMSCs). The outer osteogenic layer was formed by inducing osteogenic differentiation of hMSCs. In vitro results indicated that the undifferentiated hMSC cell sheet facilitated the alignment of HUVECs and significantly promoted the formation of vascular-like networks. Furthermore, seeded HUVECs rearranged the extracellular matrix produced by hMSC sheet. After subcutaneous implantation, the composite constructs showed rapid vascularization and anastomosis with the host vascular system, forming functional blood vessels in vivo. Osteogenic potential of the BIM was evidenced by immunohistochemistry staining of osteocalcin, tartrate-resistant acid phosphatase (TRAP) staining, and alizarin red staining. In summary, the synthetic BIM showed rapid vascularization, significant anastomoses, and osteogenic potential in vivo. This synthetic BIM has the potential for treatment of large bone defects in the absence of infection.
Collapse
Affiliation(s)
- Liling Ren
- Department of Orthopaedic Surgery, Stanford University, 300 Pasteur Drive, Stanford, CA 94305,USA
- School of Stomatology, Lanzhou University, 199 Donggang West Road, Lanzhou, Gansu 730000, China
| | - Yunqing Kang
- Department of Orthopaedic Surgery, Stanford University, 300 Pasteur Drive, Stanford, CA 94305,USA
| | - Christopher Browne
- Department of Orthopaedic Surgery, Stanford University, 300 Pasteur Drive, Stanford, CA 94305,USA
| | - Julius Bishop
- Department of Orthopaedic Surgery, Stanford University, 300 Pasteur Drive, Stanford, CA 94305,USA
| | - Yunzhi Yang
- Department of Orthopaedic Surgery, Stanford University, 300 Pasteur Drive, Stanford, CA 94305,USA
- Department of Materials Science and Engineering, Stanford University, 300 Pasteur Drive, Stanford, CA 94305,USA
- Corresponding author: Department of Orthopaedic Surgery Stanford University 300 Pasteur Drive Edwards R155 Stanford, CA 94305 Tel: 650-723-0772 Fax: 650-724-5401
| |
Collapse
|
42
|
Kang Y, Ren L, Yang Y. Engineering vascularized bone grafts by integrating a biomimetic periosteum and β-TCP scaffold. ACS APPLIED MATERIALS & INTERFACES 2014; 6:9622-9633. [PMID: 24858072 PMCID: PMC4075998 DOI: 10.1021/am502056q] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 05/23/2014] [Indexed: 05/29/2023]
Abstract
Treatment of large bone defects using synthetic scaffolds remain a challenge mainly due to insufficient vascularization. This study is to engineer a vascularized bone graft by integrating a vascularized biomimetic cell-sheet-engineered periosteum (CSEP) and a biodegradable macroporous beta-tricalcium phosphate (β-TCP) scaffold. We first cultured human mesenchymal stem cells (hMSCs) to form cell sheet and human umbilical vascular endothelial cells (HUVECs) were then seeded on the undifferentiated hMSCs sheet to form vascularized cell sheet for mimicking the fibrous layer of native periosteum. A mineralized hMSCs sheet was cultured to mimic the cambium layer of native periosteum. This mineralized hMSCs sheet was first wrapped onto a cylindrical β-TCP scaffold followed by wrapping the vascularized HUVEC/hMSC sheet, thus generating a biomimetic CSEP on the β-TCP scaffold. A nonperiosteum structural cell sheets-covered β-TCP and plain β-TCP were used as controls. In vitro studies indicate that the undifferentiated hMSCs sheet facilitated HUVECs to form rich capillary-like networks. In vivo studies indicate that the biomimetic CSEP enhanced angiogenesis and functional anastomosis between the in vitro preformed human capillary networks and the mouse host vasculature. MicroCT analysis and osteocalcin staining show that the biomimetic CSEP/β-TCP graft formed more bone matrix compared to the other groups. These results suggest that the CSEP that mimics the cellular components and spatial configuration of periosteum plays a critical role in vascularization and osteogenesis. Our studies suggest that a biomimetic periosteum-covered β-TCP graft is a promising approach for bone regeneration.
Collapse
Affiliation(s)
- Yunqing Kang
- Department
of Orthopedic Surgery, Stanford University 300 Pasteur Drive, Stanford, California 94305, United States
| | - Liling Ren
- Department
of Orthopedic Surgery, Stanford University 300 Pasteur Drive, Stanford, California 94305, United States
- School
of Stomatology, Lanzhou University 199 Donggang West Road, Lanzhou, Gansu 730000, China
| | - Yunzhi Yang
- Department
of Orthopedic Surgery, Stanford University 300 Pasteur Drive, Stanford, California 94305, United States
- Department
of Materials Science and Engineering, Stanford
University, 300 Pasteur
Drive, Stanford, California 94305, United States
| |
Collapse
|
43
|
Choi DH, Suhaeri M, Hwang MP, Kim IH, Han DK, Park K. Multi-lineage differentiation of human mesenchymal stromal cells on the biophysical microenvironment of cell-derived matrix. Cell Tissue Res 2014; 357:781-92. [PMID: 24853672 DOI: 10.1007/s00441-014-1898-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Accepted: 04/15/2014] [Indexed: 01/20/2023]
Abstract
We obtained fibroblast- (FDM) and preosteoblast- (PDM) derived matrices in vitro from their respective cells. Our hypothesis was that these naturally occurring cell-derived matrices (CDMs) would provide a better microenvironment for the multi-lineage differentiation of human mesenchymal stromal cells (hMSCs) than those based on traditional single-protein-based platforms. Cells cultured for 5-6 days were decellularized with detergents and enzymes. The resulting matrices showed a fibrillar surface texture. Under osteogenic conditions, human bone-marrow-derived stromal cells (HS-5) exhibited higher amounts of both mineralized nodule formation and alkaline phosphatase (ALP) expression than those cultured on plastic or gelatin. Osteogenic markers (Col I, osteopontin, and cbfa1) and ALP activity from cells cultured on PDM were notably upregulated at 4 weeks. The use of FDM significantly improved the cellular expression of chondrogenic markers (Sox 9 and Col II), while downregulating that of Col I at 4 weeks. Both CDMs were more effective in inducing cellular synthesis of glycosaminoglycan content than control substrates. We also investigated the effect of matrix surface texture on hMSC (PT-2501) differentiation; soluble matrix (S-matrix)-coated substrates exhibited a localized fibronectin (FN) alignment, whereas natural matrix (N-matrix)-coated substrates preserved the naturally formed FN fibrillar alignment. hMSCs cultured for 4 weeks on N-matrices under osteogenic or chondrogenic conditions deposited a greater amount of calcium and proteoglycan than those cultured on S-matrices as assessed by von Kossa and Safranin O staining. In contrast to the expression levels of lineage-specific markers for cells cultured on gelatin, FN, or S-matrices, those cultured on N-matrices yielded highly upregulated levels. This study demonstrates not only the capacity of CDM for being an effective inductive template for the multi-lineage differentiation of hMSCs, but also the critical biophysical role that the matrix fibrillar texture itself plays on the induction of stem cell differentiation.
Collapse
Affiliation(s)
- Dong Hoon Choi
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, 136-791, Korea
| | | | | | | | | | | |
Collapse
|
44
|
Du P, Subbiah R, Park JH, Park K. Vascular morphogenesis of human umbilical vein endothelial cells on cell-derived macromolecular matrix microenvironment. Tissue Eng Part A 2014; 20:2365-77. [PMID: 24517112 DOI: 10.1089/ten.tea.2013.0693] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Extracellular matrix (ECM) is a highly organized network of proteins and other macromolecules that plays a critical role in cell adhesion, migration, and differentiation. In this study, we hypothesize that ECM derived from in-vitro-cultured cells possesses unique surface texture, topography, and mechanical property, and consequently carries some distinct cues for vascular morphogenesis of human umbilical vein endothelial cells (ECs). Cell-derived matrix (CDM) was obtained by culturing fibroblasts, preosteoblasts, and chondrocytes, respectively, on coverslips and then by decellularizing them using detergents and enzymes. These matrices were named fibroblast-derived matrix (FDM), preosteoblast-derived matrix (PDM), and chondrocyte-derived matrix (CHDM). Immunofluorescence of each CDM shows that some of the matrix components are fibronectin (FN), type I collagen, and laminin. Atomic force microscopy analysis presented that average fiber diameter ranged from 2 to 7 μm and FDM holds much larger fibers. The matrix elasticity measurements revealed that average Young's modulus of CHDM (17.7 ± 4.2 kPa) was much greater than that of PDM (10.5 ± 1.1 kPa) or FDM (5.7 ± 0.5 kPa). During 5-day culture, EC morphologies were dramatically changed on PDM and FDM, but those on CHDM and gelatin were rather stable, regardless of time lapse. Cell migration assay discovered quicker repopulation of the scratched areas on PDM and FDM than on gelatin and CHDM. A capillary-like structure (CLS) assembly was also notable only in the PDM and FDM, as compared with CHDM, gelatin, or FN that were very poor in CLS formation. Quantitative analysis of mean CLS branch points and branch lengths demonstrated much better angiogenic activity of ECs on PDM and FDM. Interestingly, CLS formation was closely associated with matrix remodeling by ECs and the matrix clearance on PDM with time was sharply contrasted with that on CHDM that majority of the matrix FN was reserved. It was notable that membrane type 1-matrix metalloprotease was deeply involved in the process of matrix remodeling. This study indicates that specific matrix microenvironments are very critical for vascular morphogenesis of ECs, and thus, provide a nice platform for angiogenesis study as well as vascular tissue engineering.
Collapse
Affiliation(s)
- Ping Du
- 1 Center for Biomaterials, Korea Institute of Science and Technology , Seoul, Republic of Korea
| | | | | | | |
Collapse
|
45
|
Veréb Z, Albert R, Póliska S, Olstad OK, Akhtar S, Moe MC, Petrovski G. Comparison of upstream regulators in human ex vivo cultured cornea limbal epithelial stem cells and differentiated corneal epithelial cells. BMC Genomics 2013; 14:900. [PMID: 24344983 PMCID: PMC3880589 DOI: 10.1186/1471-2164-14-900] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 12/11/2013] [Indexed: 12/13/2022] Open
Abstract
Background The surface of the human eye is covered by corneal epithelial cells (CECs) which regenerate from a small population of limbal epithelial stem cells (LESCs). Cell therapy with LESCs is a non-penetrating treatment for preventing blindness due to LESC deficiency or dysfunction. Our aim was to identify new putative molecular markers and upstream regulators in the LESCs and associated molecular pathways. Results Genome-wide microarray transcriptional profiling was used to compare LESCs to differentiated human CECs. Ingenuity-based pathway analysis was applied to identify upstream regulators and pathways specific to LESCs. ELISA and flow cytometry were used to measure secreted and surface expressed proteins, respectively. More than 2 fold increase and decrease in expression could be found in 1830 genes between the two cell types. A number of molecules functioning in cellular movement (381), proliferation (567), development (552), death and survival (520), and cell-to-cell signaling (290) were detected having top biological functions in LESCs and several of these were confirmed by flow cytometric surface protein analysis. Custom-selected gene groups related to stemness, differentiation, cell adhesion, cytokines and growth factors as well as angiogenesis could be analyzed. The results show that LESCs play a key role not only in epithelial differentiation and tissue repair, but also in controlling angiogenesis and extracellular matrix integrity. Some pro-inflammatory cytokines were found to be important in stemness-, differentiation- and angiogenesis-related biological functions: IL-6 and IL-8 participated in most of these biological pathways as validated by their secretion from LESC cultures. Conclusions The gene and molecular pathways may provide a more specific understanding of the signaling molecules associated with LESCs, therefore, help better identify and use these cells in the treatment of ocular surface diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Goran Petrovski
- Stem Cells and Eye Research Laboratory, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
46
|
Barreto-Ortiz SF, Zhang S, Davenport M, Fradkin J, Ginn B, Mao HQ, Gerecht S. A novel in vitro model for microvasculature reveals regulation of circumferential ECM organization by curvature. PLoS One 2013; 8:e81061. [PMID: 24278378 PMCID: PMC3836741 DOI: 10.1371/journal.pone.0081061] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 10/09/2013] [Indexed: 12/25/2022] Open
Abstract
In microvascular vessels, endothelial cells are aligned longitudinally whereas several components of the extracellular matrix (ECM) are organized circumferentially. While current three-dimensional (3D) in vitro models for microvasculature have allowed the study of ECM-regulated tubulogenesis, they have limited control over topographical cues presented by the ECM and impart a barrier for the high-resolution and dynamic study of multicellular and extracellular organization. Here we exploit a 3D fibrin microfiber scaffold to develop a novel in vitro model of the microvasculature that recapitulates endothelial alignment and ECM deposition in a setting that also allows the sequential co-culture of mural cells. We show that the microfibers' nanotopography induces longitudinal adhesion and alignment of endothelial colony-forming cells (ECFCs), and that these deposit circumferentially organized ECM. We found that ECM wrapping on the microfibers is independent of ECFCs' actin and microtubule organization, but it is dependent on the curvature of the microfiber. Microfibers with smaller diameters (100–400 µm) guided circumferential ECM deposition, whereas microfibers with larger diameters (450 µm) failed to support wrapping ECM. Finally, we demonstrate that vascular smooth muscle cells attached on ECFC-seeded microfibers, depositing collagen I and elastin. Collectively, we establish a novel in vitro model for the sequential control and study of microvasculature development and reveal the unprecedented role of the endothelium in organized ECM deposition regulated by the microfiber curvature.
Collapse
Affiliation(s)
- Sebastian F. Barreto-Ortiz
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Shuming Zhang
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Matthew Davenport
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Jamie Fradkin
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Brian Ginn
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Hai-Quan Mao
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Sharon Gerecht
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
47
|
Li Z, Cui Z. Three-dimensional perfused cell culture. Biotechnol Adv 2013; 32:243-54. [PMID: 24184152 DOI: 10.1016/j.biotechadv.2013.10.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 02/14/2013] [Accepted: 10/07/2013] [Indexed: 12/17/2022]
Abstract
Compelling evidence suggests the limitation and shortcomings of the current and well established cell culture method using multi-well plates, flasks and Petri dishes. These are particularly important when cell functions are sensitive to the local microenvironment, cell-cell and cell-extracellular matrix interactions. There is a clear need for advanced cell culture systems which mimic in vivo and more physiological conditions. This review summarises and analyses recent progress in three dimensional (3D) cell culture with perfusion as the next generation cell culture tools, while excluding engineered tissue culture where three dimensional scaffold has to be used for structural support and perfusion for overcoming mass transfer control. Apart from research activities in academic community, product development in industry is also included in this review.
Collapse
Affiliation(s)
- Zhaohui Li
- Institute of Biomedical Engineering, Department of Engineering Science, Oxford University, Oxford, UK
| | - Zhanfeng Cui
- Institute of Biomedical Engineering, Department of Engineering Science, Oxford University, Oxford, UK.
| |
Collapse
|
48
|
Cellular behavior in micropatterned hydrogels by bioprinting system depended on the cell types and cellular interaction. J Biosci Bioeng 2013; 116:224-30. [DOI: 10.1016/j.jbiosc.2013.02.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 01/11/2013] [Accepted: 02/20/2013] [Indexed: 01/10/2023]
|
49
|
Kutys ML, Doyle AD, Yamada KM. Regulation of cell adhesion and migration by cell-derived matrices. Exp Cell Res 2013; 319:2434-9. [PMID: 23751565 DOI: 10.1016/j.yexcr.2013.05.030] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/30/2013] [Accepted: 05/31/2013] [Indexed: 01/16/2023]
Abstract
Three-dimensional in vitro extracellular matrix models provide a physiological alternative to regular two-dimensional cell culture, though they lack the full diversity of molecular composition and physical properties of whole-animal systems. Cell-derived matrices are extracellular matrices that are the product of matrix secretion and assembly by cells cultured at high density in vitro. After the removal of the cells that produced the matrix, an assembled matrix scaffold is left that closely mimics native stromal fiber organization and molecular content. Cell-derived matrices have been shown to impart in vivo-like responses to cells cultured in these matrices. In this review, we focus on mechanisms through which the distinct molecular and topographical composition of cell-derived matrices directs cellular behavior, specifically through regulation of cell-matrix adhesions and subsequent contributions to the process of cell migration.
Collapse
Affiliation(s)
- Matthew L Kutys
- Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, United States.
| | | | | |
Collapse
|
50
|
Guo W, He Y, Tang X, Chen G, Shi H, Gong K, Zhou J, Wen L, Jin Y. Scaffold-free cell pellet transplantations can be applied to periodontal regeneration. Cell Transplant 2013; 23:181-94. [PMID: 23363564 DOI: 10.3727/096368912x662426] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Cell transplantation has emerged as a novel therapeutic strategy for periodontitis, and the adoption of cell pellet offers advantages by secreting abundant extracellular matrix (ECM) and eliminating the adverse effect of cell carriers. This study aimed to fabricate scaffold-free periodontal ligament stem cell (PDLSC) pellets (MUCPs) and to evaluate their regeneration potential. We constructed monolayer cell pellets (MCPs) by fabricating and culturing multilayered cell sheets (MUCS) and constructed MUCPs from the MUCS. Immunochemistry, scanning electron microscope, real-time PCR, and Western blot analysis showed higher levels of COL-I, COL-III, fibronectin, and laminin in the MUCPs. Furthermore, the massive increase in ECM secretion improved cell adhesion, migration, and proliferation. Finally, upon transplantation into the omentum sac and periodontal defects, all the transplants formed regular aligned cementum/PDL-like complex, but the mineral deposit and fiber alignment were more obvious in the MUCPs than in the MCPs. Altogether, our results suggest that MUCPs may be a promising alternative to periodontal repair for future clinical application.
Collapse
Affiliation(s)
- Weihua Guo
- Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | | | |
Collapse
|