1
|
Chang MY, Chan CK, Brune JE, Manicone AM, Bomsztyk K, Frevert CW, Altemeier WA. Regulation of versican expression in macrophages is mediated by canonical type I interferon signaling via ISGF3. Am J Physiol Cell Physiol 2024; 327:C1274-C1288. [PMID: 39400584 DOI: 10.1152/ajpcell.00174.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/09/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024]
Abstract
Growing evidence supports a role for versican as an important component of the inflammatory response, with both pro- and anti-inflammatory roles depending on the specific context of the system or disease under investigation. Our goal is to understand the regulation of macrophage-derived versican and the role it plays in innate immunity. In previous work, we showed that LPS triggers a signaling cascade involving Toll-like receptor (TLR)4, the Trif adaptor, type I interferons, and the type I interferon receptor, leading to increased versican expression by macrophages. In the present study, we used a combination of chromatin immunoprecipitation, siRNA, chemical inhibitors, and mouse model approaches to investigate the regulatory events downstream of the type I interferon receptor to better define the mechanism controlling versican expression. Results indicate that transcriptional regulation by canonical type I interferon signaling via interferon-stimulated gene factor 3 (ISGF3), the heterotrimeric transcription factor complex of Irf9, Stat1, and Stat2, controls versican expression in macrophages exposed to LPS. This pathway is not dependent on MAPK signaling, which has been shown to regulate versican expression in other cell types. The stability of versican mRNA may also contribute to prolonged versican expression in macrophages. These findings strongly support a role for macrophage-derived versican as a type I interferon-stimulated gene and further our understanding of versican's role in regulating inflammation.NEW & NOTEWORTHY We report the novel finding that versican expression is regulated by the interferon-stimulated gene factor 3 (ISGF3) arm of canonical type I Ifn signaling in LPS-stimulated macrophages. This pathway is distinct from mechanisms that control versican expression in other cell types. This suggests that macrophage-derived versican may play a role in limiting a potentially excessive inflammatory response. The detailed understanding of how versican expression is regulated in different cells could lead to unique approaches for enhancing its anti-inflammatory properties.
Collapse
Affiliation(s)
- Mary Y Chang
- Department of Comparative Medicine, University of Washington, Seattle, Washington, United States
- Center for Lung Biology, University of Washington at South Lake Union, Seattle, Washington, United States
| | - Christina K Chan
- Department of Comparative Medicine, University of Washington, Seattle, Washington, United States
- Center for Lung Biology, University of Washington at South Lake Union, Seattle, Washington, United States
| | - Jourdan E Brune
- Department of Comparative Medicine, University of Washington, Seattle, Washington, United States
- Center for Lung Biology, University of Washington at South Lake Union, Seattle, Washington, United States
| | - Anne M Manicone
- Center for Lung Biology, University of Washington at South Lake Union, Seattle, Washington, United States
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington, United States
| | - Karol Bomsztyk
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, United States
| | - Charles W Frevert
- Department of Comparative Medicine, University of Washington, Seattle, Washington, United States
- Center for Lung Biology, University of Washington at South Lake Union, Seattle, Washington, United States
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington, United States
| | - William A Altemeier
- Center for Lung Biology, University of Washington at South Lake Union, Seattle, Washington, United States
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington, United States
| |
Collapse
|
2
|
Yang J, Hawthorne L, Stack S, Blagg B, Ali A, Zorlutuna P. Engineered Age-Mimetic Breast Cancer Models Reveal Differential Drug Responses in Young and Aged Microenvironments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.06.616903. [PMID: 39416111 PMCID: PMC11482747 DOI: 10.1101/2024.10.06.616903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Aging is one of the most significant risk factors for breast cancer. With the growing interests in the alterations of the aging breast tissue microenvironment, it has been identified that aging is related to tumorigenesis, invasion, and drug resistance. However, current pre-clinical disease models often neglect the impact of aging and sometimes result in worse clinical outcomes. In this study, we utilized aged animal-generated materials to create and validate a novel age-mimetic breast cancer model that generates an aging microenvironment for cells and alters cells towards a phenotype found in the aged environment. Furthermore, we utilized the age-mimetic models for 3D breast cancer invasion assessment and high-throughput screening of over 700 drugs in the FDA-approved drug library. We identified 36 potential effective drug targets and 34 potential drug targets with different drug responses in different age groups, demonstrating the potential of this age-mimetic breast cancer model for further in-depth breast cancer studies and drug development.
Collapse
Affiliation(s)
- Jun Yang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Lauren Hawthorne
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Sharon Stack
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, 46556, USA
| | - Brian Blagg
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, 46556, USA
| | - Aktar Ali
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, 46556, USA
| | - Pinar Zorlutuna
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, 46556, USA
| |
Collapse
|
3
|
Radwan AM, Abosharaf HA, Sharaky M, Abdelmonem R, Effat H. Functional combination of resveratrol and tamoxifen to overcome tamoxifen-resistance in breast cancer cells. Arch Pharm (Weinheim) 2024; 357:e2400261. [PMID: 38943449 DOI: 10.1002/ardp.202400261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 07/01/2024]
Abstract
Researchers are encountering challenges in addressing the issue of cancer cells becoming unresponsive to various chemotherapy treatments due to drug resistance. This study was designed to study the influence of antioxidant resveratrol (RSV) to sensitize resistant breast cancer (BC) cells toward tamoxifen (TAM). The cytotoxic effects of RSV and TAM against TAM-resistant LCC2 cells and their parental michigan cancer foundation-7 BC cells were determined by sulphorhodamine B assay. Further, the expression levels of multidrug resistance (MDR) genes including ABCB1, ABCC2, ABCG2, and MRP1 using quantitative polymerase chain reaction, apoptosis induction, and reactive oxygen species (ROS) content using flow cytometry were evaluated in either LCC2 cells treated with RSV, TAM, or their combination. The obtained results showed that resistant cells have a magnificent level of MDR genes. This elevated expression dramatically lowered upon receiving the combined therapy of RSV and TAM. Additionally, our work assessed the possible role of RSV in modulating the expression of MDR genes by controlling the expression of certain microRNAs (miRNAs) that target ATP-binding cassette (ABC) transporters. According to the obtained data, the TAM and RSV combination increased the expression of tumor inhibitor miRNAs such miR-10b-3p, miR-195-3p, and miR-223-3p, which made LCC2 cells more sensitive to TAM. Furthermore, this combination showed an elevation in apoptotic levels and total ROS content. The combination between RSV and TAM could be a functional therapy in the fight against TAM-resistant BC cells via modulating miRNA and ABC transporters.
Collapse
Affiliation(s)
- Aliaa M Radwan
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Hamed A Abosharaf
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Marwa Sharaky
- Pharmacology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Rehab Abdelmonem
- Department of Industrial Pharmacy, Faculty of Pharmacy, Misr University for Science & Technology, 6th October City, Egypt
| | - Heba Effat
- Medical Biochemistry and Molecular Biology Unit, Department of Cancer Biology, National Cancer Institute, Cairo University, Cairo, Egypt
| |
Collapse
|
4
|
Qiu H, Fu Y, Guo Z, Zhang X, Wang X, Wu H. Dysregulated microRNAs and long non-coding RNAs associated with extracellular matrix stiffness. Exp Cell Res 2024; 437:114014. [PMID: 38547959 DOI: 10.1016/j.yexcr.2024.114014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/02/2024]
Abstract
Extracellular matrix (ECM) stiffness regulates development and homeostasis in vivo and affects both physiological and pathological processes. A variety of studies have demonstrated that mRNAs, such as Piezo1, integrin β1, and Yes-associated protein (YAP)/tafazzin (TAZ), can sense the mechanical signals induced by ECM stiffness and transmit them from the extracellular space into the cytoplasm. Non-coding RNAs (ncRNAs), such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), have been reported to play important roles in various cellular processes. Therefore, the interactions between ncRNAs and ECM stiffness, as well as the underlying molecular mechanisms, have become intriguing. In this review, we summarize recent findings on miRNAs and lncRNAs that interact with ECM stiffness. Several miRNAs and lncRNAs are involved in the progression of liver cancer, breast cancer, osteosarcoma, and cardiovascular diseases under the regulation of ECM stiffness. Through these ncRNAs, cellular behaviors including cell differentiation, proliferation, adhesion, migration, invasion, and epithelial-mesenchymal transition (EMT) are affected by ECM stiffness. We also integrate the ncRNA signaling pathways associated with ECM stiffness, in which typical signaling pathways like integrin β1/TGFβ1, phosphatidylinositol-3 kinase (PI3K)/AKT, and EMT are involved. Although our understanding of the relationships between ncRNAs and ECM stiffness is still limited, further investigations may provide new insights for disease treatment. ECM-associated ncRNAs may serve as disease biomarkers or be targeted by drugs.
Collapse
Affiliation(s)
- Huimin Qiu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Yangpu, 200093, Shanghai, China; Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine & Health Sciences, Pudong, 201318, Shanghai, China.
| | - Yi Fu
- Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine & Health Sciences, Pudong, 201318, Shanghai, China.
| | - Zhinan Guo
- Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine & Health Sciences, Pudong, 201318, Shanghai, China; School of Sports and Health, Shanghai University of Sport, Yangpu, 200438, Shanghai, China.
| | - Xinjia Zhang
- School of Medical Instruments, Shanghai University of Medicine & Health Sciences, Pudong, 201318, Shanghai, China.
| | - Xinyue Wang
- School of Medical Instruments, Shanghai University of Medicine & Health Sciences, Pudong, 201318, Shanghai, China.
| | - Hailong Wu
- Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine & Health Sciences, Pudong, 201318, Shanghai, China.
| |
Collapse
|
5
|
Yang J, Bahcecioglu G, Ronan G, Zorlutuna P. Aged breast matrix bound vesicles promote breast cancer invasiveness. Biomaterials 2024; 306:122493. [PMID: 38330741 PMCID: PMC11202350 DOI: 10.1016/j.biomaterials.2024.122493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024]
Abstract
Aging is one of the inherent risk factors for breast cancer. Although the influence of age-related cellular alterations on breast cancer development has been extensively explored, little is known about the alterations in the aging breast tissue microenvironment, specifically the extracellular matrix (ECM). Here, for the first time in literature, we have identified tissue resident matrix bound vesicles (MBVs) within the healthy mouse breast ECM, investigated and compared their characteristics in young and aged healthy breast tissues, and studied the effects of these MBVs on normal (KTB21) and cancerous (MDA-MB-231) human mammary epithelial cells with respect to the tissue age that they are extracted from. Using vesicle labeling technology, we were able to visualize cellular uptake of the MBVs directly from the native decellularized tissue sections, showing that these MBVs have regulatory roles in the tissue microenvironment. We mimicked the ECM by embedding the MBVs in collagen gels, and showed that MBVs could be taken up by the cells. The miRNA and cytokine profiling showed that MBVs shifted towards a more tumorigenic and invasive phenotype with age, as evidenced by the more pronounced presence of cancer-associated cytokines, and higher expression levels of oncomiRs miR-10b, miR-30e, and miR-210 in MBVs isolated from aged mice. When treated with MBVs or these upregulated factors, KTB21 and MDA-MB-231 cells showed significantly higher motility and invasion compared to untreated controls. Treatment of cells with a cocktail of miRNAs (miR-10b, miR-30e, and miR-210) or with the agonist of adiponectin (AdipoRon), which both were enriched in the aged MBVs, recapitulated the effect of aged MBVs on cells. This study shows for the first time that the MBVs have a regulatory role in the tissue microenvironment and that the MBV contents change towards cancer-promoting upon aging. Studying the effects of MBVs and their cargos on cellular behavior could lead to a better understanding of the critical roles of MBVs played in breast cancer progression and metastasis.
Collapse
Affiliation(s)
- Jun Yang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA.
| | - Gokhan Bahcecioglu
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA; Harper Cancer Research Institute, University of Notre Dame, Notre Dame, 46556, USA.
| | - George Ronan
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA; Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA.
| | - Pinar Zorlutuna
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA; Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA; Harper Cancer Research Institute, University of Notre Dame, Notre Dame, 46556, USA; Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
6
|
Wolfram L, Gimpel C, Schwämmle M, Clark SJ, Böhringer D, Schlunck G. The impact of substrate stiffness on morphological, transcriptional and functional aspects in RPE. Sci Rep 2024; 14:7488. [PMID: 38553490 PMCID: PMC11344127 DOI: 10.1038/s41598-024-56661-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 03/08/2024] [Indexed: 04/02/2024] Open
Abstract
Alterations in the structure and composition of Bruch's membrane (BrM) and loss of retinal pigment epithelial (RPE) cells are associated with various ocular diseases, notably age-related macular degeneration (AMD) as well as several inherited retinal diseases (IRDs). We explored the influence of stiffness as a major BrM characteristic on the RPE transcriptome and morphology. ARPE-19 cells were plated on soft ( E = 30 kPa ) or stiff ( E = 80 kPa ) polyacrylamide gels (PA gels) or standard tissue culture plastic (TCP). Next-generation sequencing (NGS) data on differentially expressed small RNAs (sRNAs) and messenger RNAs (mRNAs) were validated by qPCR, immunofluorescence or western blotting. The microRNA (miRNA) fraction of sRNAs grew with substrate stiffness and distinct miRNAs such as miR-204 or miR-222 were differentially expressed. mRNA targets of differentially expressed miRNAs were stably expressed, suggesting a homeostatic effect of miRNAs. mRNA transcription patterns were substrate stiffness-dependent, including components of Wnt/beta-catenin signaling, Microphthalmia-Associated Transcription Factor (MITF) and Dicer. These findings highlight the relevance of mechanical properties of the extracellular matrix (ECM) in cell culture experiments, especially those focusing on ECM-related diseases, such as AMD.
Collapse
Affiliation(s)
- Lasse Wolfram
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Department for Ophthalmology, Institute for Ophthalmic Research, Eberhard Karls University of Tübingen, Tübingen, Germany.
- Department for Ophthalmology, University Eye Clinic, Eberhard Karls University of Tübingen, Tübingen, Germany.
| | - Clara Gimpel
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Neurology, Schlosspark-Klinik Charlottenburg, Berlin, Germany
| | - Melanie Schwämmle
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Simon J Clark
- Department for Ophthalmology, Institute for Ophthalmic Research, Eberhard Karls University of Tübingen, Tübingen, Germany
- Department for Ophthalmology, University Eye Clinic, Eberhard Karls University of Tübingen, Tübingen, Germany
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Daniel Böhringer
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Günther Schlunck
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
7
|
Chang MY, Chan CK, Brune JE, Manicone AM, Bomsztyk K, Frevert CW, Altemeier WA. Regulation of Versican Expression in Macrophages is Mediated by Canonical Type I Interferon Signaling via ISGF3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.14.585097. [PMID: 38559011 PMCID: PMC10980001 DOI: 10.1101/2024.03.14.585097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Growing evidence supports a role for versican as an important component of the inflammatory response, with both pro- and anti-inflammatory roles depending on the specific context of the system or disease under investigation. Our goal is to understand the regulation of macrophage-derived versican and the role it plays in innate immunity. In previous work, we showed that LPS triggers a signaling cascade involving TLR4, the Trif adaptor, type I interferons, and the type I interferon receptor, leading to increased versican expression by macrophages. In the present study, we used a combination of chromatin immunoprecipitation, siRNA, chemical inhibitors, and mouse model approaches to investigate the regulatory events downstream of the type I interferon receptor to better define the mechanism controlling versican expression. Results indicate that transcriptional regulation by canonical type I interferon signaling via the heterotrimeric transcription factor, ISGF3, controls versican expression in macrophages exposed to LPS. This pathway is not dependent on MAPK signaling, which has been shown to regulate versican expression in other cell types. The stability of versican mRNA may also contribute to prolonged versican expression in macrophages. These findings strongly support a role for macrophage-derived versican as a type I interferon-stimulated gene and further our understanding of versican's role in regulating inflammation.
Collapse
Affiliation(s)
- Mary Y. Chang
- Department of Comparative Medicine, University of Washington, Seattle, WA
- Center for Lung Biology, University of Washington at South Lake Union, Seattle, WA
| | - Christina K. Chan
- Department of Comparative Medicine, University of Washington, Seattle, WA
- Center for Lung Biology, University of Washington at South Lake Union, Seattle, WA
| | - Jourdan E. Brune
- Department of Comparative Medicine, University of Washington, Seattle, WA
- Center for Lung Biology, University of Washington at South Lake Union, Seattle, WA
| | - Anne M. Manicone
- Center for Lung Biology, University of Washington at South Lake Union, Seattle, WA
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA
| | - Karol Bomsztyk
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA
| | - Charles W. Frevert
- Department of Comparative Medicine, University of Washington, Seattle, WA
- Center for Lung Biology, University of Washington at South Lake Union, Seattle, WA
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA
| | - William A. Altemeier
- Center for Lung Biology, University of Washington at South Lake Union, Seattle, WA
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA
| |
Collapse
|
8
|
Chen Y, Chen Y, Yu XQ, Feng Q, Wang X, Liu L. Expression profiles of lncRNAs, miRNAs, and mRNAs and interaction analysis indicate their potential involvement during testicular fusion in Spodoptera litura. Genomics 2024; 116:110758. [PMID: 38065236 DOI: 10.1016/j.ygeno.2023.110758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 01/22/2024]
Abstract
Testicular fusion of Spodoptera litura occures during metamorphosis, which benefits sperms development. Previous research identified involvement of ECM-integrin interaction pathways, MMPs in testicular fusion, but the regulatory mechanism remains unclear. RNA-seq was performed to analyze long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) in testes, aiming to uncover potential regulatory mechanisms of testicular fusion. 2150 lncRNAs, 2742 targeted mRNAs, and 347 miRNAs were identified in testes at three different developmental stages. Up-regulated DElncRNAs and DEmRNAs, as well as down-regulated DEmiRNAs, were observed during testicular fusion, while the opposite expression pattern was observed after fusion. Enrichment analysis of DEmRNAs revealed that cAMP signal pathway, ECM remodeling enzymes, ECM-integrin interaction pathways, and cell adhesion molecules were potentially associated with testicular fusion. The identified DElncRNA-DEmiRNA-DEmRNA regulatory network related to cAMP signal pathway, ECM remodeling enzymes suggests their roles during testicular fusion. Our research will provide new targets for studying the mechanism of testicular fusion.
Collapse
Affiliation(s)
- Yaqing Chen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Yu Chen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| | - Xiao-Qiang Yu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| | - Qili Feng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| | - Xiaoyun Wang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| | - Lin Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
9
|
Yang J, Bahcecioglu G, Ronan G, Zorlutuna P. Aged Breast Matrix Bound Vesicles Promote Breast Cancer Invasiveness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.535436. [PMID: 37066396 PMCID: PMC10103978 DOI: 10.1101/2023.04.03.535436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Aging is one of the inherent risk factors for breast cancer. Although the influence of age-related cellular alterations on breast cancer development has been extensively explored, little is known about the alterations in the aging breast tissue microenvironment, specifically the extracellular matrix (ECM). Here, for the first time in literature, we have identified tissue resident matrix bound vesicles (MBVs) within the healthy mouse breast ECM, investigated and compared their characteristics in young and aged healthy breast tissues, and studied the effects of these MBVs on normal (KTB21) and cancerous (MDA-MB-231) human mammary epithelial cells with respect to the tissue age that they are extracted from. Using vesicle labeling technology, we were able to visualize cellular uptake of the MBVs directly from the native decellularized tissue sections, showing that these MBVs have regulatory roles in the tissue microenvironment. We mimicked the ECM by embedding the MBVs in collagen gels, and showed that MBVs could be taken up by the cells. The miRNA and cytokine profiling showed that MBVs shifted towards a more tumorigenic and invasive phenotype with age, as evidenced by the more pronounced presence of cancer-associated cytokines, and higher expression levels of oncomiRs miR-10b, miR-30e, and miR-210 in MBVs isolated from aged mice. When treated with MBVs or these upregulated factors, KTB21 and MDA-MB-231 cells showed significantly higher motility and invasion compared to untreated controls. Treatment of cells with a cocktail of miRNAs (miR-10b, miR-30e, and miR-210) or with the agonist of adiponectin (AdipoRon), which both were enriched in the aged MBVs, recapitulated the effect of aged MBVs on cells. This study shows for the first time that the MBVs have a regulatory role in the tissue microenvironment and that the MBV contents change towards cancer-promoting upon aging. Studying the effects of MBVs and their cargos on cellular behavior could lead to a better understanding of the critical roles of MBVs played in breast cancer progression and metastasis.
Collapse
|
10
|
Zhu S, Xu H, Chen R, Shen Q, Yang D, Peng H, Tong J, Fu Q. DNA methylation and miR-92a-3p-mediated repression of HIP1R promotes pancreatic cancer progression by activating the PI3K/AKT pathway. J Cell Mol Med 2023; 27:788-802. [PMID: 36811277 PMCID: PMC10002968 DOI: 10.1111/jcmm.17612] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 08/27/2022] [Accepted: 10/15/2022] [Indexed: 02/24/2023] Open
Abstract
Pancreatic cancer (PAAD) is a highly malignant tumour characterized of high mortality and poor prognosis. Huntingtin-interacting protein 1-related (HIP1R) has been recognized as a tumour suppressor in gastric cancer, while its biological function in PAAD remains to be elucidated. In this study, we reported the downregulation of HIP1R in PAAD tissues and cell lines, and the overexpression of HIP1R suppressed the proliferation, migration and invasion of PAAD cells, while silencing HIP1R showed the opposite effects. DNA methylation analysis revealed that the promoter region of HIP1R was heavily methylated in PAAD cell lines when compared to the normal pancreatic duct epithelial cells. A DNA methylation inhibitor 5-AZA increased the expression of HIP1R in PAAD cells. 5-AZA treatment also inhibited the proliferation, migration and invasion, and induced apoptosis in PAAD cell lines, which could be attenuated by HIP1R silencing. We further demonstrated that HIP1R was negatively regulated by miR-92a-3p, which modulates the malignant phenotype of PAAD cells in vitro and the tumorigenesis in vivo. The miR-92a-3p/HIP1R axis could regulate PI3K/AKT pathway in PAAD cells. Taken together, our data suggest that targeting DNA methylation and miR-92a-3p-mediated repression of HIP1R could serve as novel therapeutic strategies for PAAD treatment.
Collapse
Affiliation(s)
- Sixian Zhu
- Department of Oncology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Huiting Xu
- Department of Abdominal Oncology, Hubei Cancer HospitalWuhanChina
| | - Runzhi Chen
- Department of Abdominal Oncology, Hubei Cancer HospitalWuhanChina
| | - Qian Shen
- Department of Oncology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Dongmei Yang
- Department of Abdominal Oncology, Hubei Cancer HospitalWuhanChina
| | - Hui Peng
- Department of Oncology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jin Tong
- Department of PICC, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Qiang Fu
- Department of Oncology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
11
|
Lyu K, Liu X, Liu T, Lu J, Jiang L, Chen Y, Long L, Wang X, Shi H, Wang F, Li S. miRNAs contributing to the repair of tendon injury. Cell Tissue Res 2023; 393:201-215. [PMID: 37249708 PMCID: PMC10406718 DOI: 10.1007/s00441-023-03780-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 05/02/2023] [Indexed: 05/31/2023]
Abstract
Tendon injury is one of the most common disorders of the musculoskeletal system, with a higher likelihood of occurrence in elderly individuals and athletes. In posthealing tendons, two undesirable consequences, tissue fibrosis and a reduction in mechanical properties, usually occur, resulting in an increased probability of rerupture or reinjury; thus, it is necessary to propose an appropriate treatment. Currently, most methods do not sufficiently modulate the tendon healing process and restore the function and structure of the injured tendon to those of a normal tendon, since there is still inadequate information about the effects of multiple cellular and other relevant signaling pathways on tendon healing and how the expression of their components is regulated. microRNAs are vital targets for promoting tendon repair and can modulate the expression of biological components in signaling pathways involved in various physiological and pathological responses. miRNAs are a type of noncoding ribonucleic acid essential for regulating processes such as cell proliferation, differentiation, migration and apoptosis; inflammatory responses; vascularization; fibrosis; and tissue repair. This article focuses on the biogenesis response of miRNAs while presenting their mechanisms in tendon healing with perspectives and suggestions.
Collapse
Affiliation(s)
- Kexin Lyu
- School of Physical Education, Southwest Medical University, Luzhou, China
| | - Xinyue Liu
- School of Physical Education, Southwest Medical University, Luzhou, China
| | - Tianzhu Liu
- Neurology Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Jingwei Lu
- School of Physical Education, Southwest Medical University, Luzhou, China
| | - Li Jiang
- School of Physical Education, Southwest Medical University, Luzhou, China
| | - Yixuan Chen
- School of Physical Education, Southwest Medical University, Luzhou, China
| | - Longhai Long
- Spinal Surgery Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Xiaoqiang Wang
- Spinal Surgery Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Houyin Shi
- Traumatology and Orthopedics Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Fan Wang
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Sen Li
- Spinal Surgery Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
12
|
Liu HD, Wang SW. Role of noncoding RNA in the pathophysiology and treatment of intrauterine adhesion. Front Genet 2022; 13:948628. [PMID: 36386826 PMCID: PMC9650223 DOI: 10.3389/fgene.2022.948628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/13/2022] [Indexed: 11/13/2022] Open
Abstract
Intrauterine adhesion (IUA) is one of the most common diseases of the reproductive system in women. It is often accompanied by serious clinical problems that damage reproductive function, such as menstrual disorder, infertility, or recurrent abortion. The clinical effect of routine treatment is not ideal, and the postoperative recurrence rate is still very high. Therefore, exploring the pathological mechanism of IUA and finding new strategies for the effective prevention and treatment of IUA are needed. The main pathological mechanism of IUA is endometrial fibrosis and scar formation. Noncoding RNA (ncRNA) plays an important role in the fibrosis process, which is one of the latest research advances in the pathophysiology of IUA. Moreover, the exosomal miRNAs derived from mesenchymal stem cells can be used to improve IUA. This paper reviewed the role of ncRNAs in IUA pathogenesis, summarized the core pathways of endometrial fibrosis regulated by ncRNAs, and finally introduced the potential of ncRNAs as a therapeutic target.
Collapse
Affiliation(s)
- Hui-Dong Liu
- Department of Gynecology and Obstetrics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China,Graduate School of Peking Union Medical College, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Shao-Wei Wang
- Department of Gynecology and Obstetrics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China,Graduate School of Peking Union Medical College, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China,*Correspondence: Shao-Wei Wang,
| |
Collapse
|
13
|
Li Y, Wen J, Liang D, Sun H. Extracellular Vesicles and Their Associated miRNAs as Potential Biomarkers in Intracranial Aneurysm. Front Mol Biosci 2022; 9:785314. [PMID: 35795823 PMCID: PMC9252459 DOI: 10.3389/fmolb.2022.785314] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 05/30/2022] [Indexed: 11/30/2022] Open
Abstract
Intracranial aneurysms (IA) are abnormal expansions of the intracranial arteries. Once it ruptures, the mortality and disability rate are high. The cost of imaging examinations is high, and rupture risk cannot be predicted, making it difficult for high-risk groups to be screened and prevented. Thus, clinically effective biomarkers are required to screen high-risk groups, estimate the risk of rupture, and determine the appropriate early intervention step. This article introduces the current research and application of exosome-derived microRNA (miRNA) as biomarkers of intracranial aneurysms and their limitations, which can give researchers a general overview of the research in this field. It can also serve as a reference point for selecting related research directions.
Collapse
Affiliation(s)
- Yuman Li
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital and the Second Clinical Medical College, Southern Medical University, Guangzhou, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jiahao Wen
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital and the Second Clinical Medical College, Southern Medical University, Guangzhou, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Dingyue Liang
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital and the Second Clinical Medical College, Southern Medical University, Guangzhou, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Haitao Sun
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital and the Second Clinical Medical College, Southern Medical University, Guangzhou, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong–Hong Kong–Macao Greater Bay Area Center for Brain Science and Brain–Inspired Intelligence, Southern Medical University, Guangzhou, China
- *Correspondence: Haitao Sun,
| |
Collapse
|
14
|
Peng T, He Y, Wang T, Yu J, Ma X, Zhou Z, Sheng Y, Li L, Peng H, Li S, Zou J, Yuan Y, Zhao Y, Shi H, Li F, Liu W, Hu K, Lu X, Zhang G, Wang F. Discovery of a Novel Small-Molecule Inhibitor Disrupting TRBP-Dicer Interaction against Hepatocellular Carcinoma via the Modulation of microRNA Biogenesis. J Med Chem 2022; 65:11010-11033. [PMID: 35695407 DOI: 10.1021/acs.jmedchem.2c00189] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are key players in human hepatocellular carcinoma (HCC) tumorigenesis. Therefore, small molecules targeting components of miRNA biogenesis may provide new therapeutic means for HCC treatment. By a high-throughput screening and structural simplification, we identified a small molecule, CIB-3b, which suppresses the growth and metastasis of HCC in vitro and in vivo by modulating expression profiles of miRNAome and proteome in HCC cells. Mechanistically, CIB-3b physically binds to transactivation response (TAR) RNA-binding protein 2 (TRBP) and disrupts the TRBP-Dicer interaction, thereby altering the activity of Dicer and mature miRNA production. Structure-activity relationship study via the synthesis of 45 CIB-3b derivatives showed that some compounds exhibited a similar inhibitory effect on miRNA biogenesis to CIB-3b. These results support TRBP as a potential therapeutic target in HCC and warrant further development of CIB-3b along with its analogues as a novel therapeutic strategy for the treatment of HCC.
Collapse
Affiliation(s)
- Ting Peng
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yujiao He
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, China
| | - Tao Wang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Jialing Yu
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaofang Ma
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zongyuan Zhou
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuwen Sheng
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingyu Li
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huipan Peng
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Sheng Li
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Jiawei Zou
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yi Yuan
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yongyun Zhao
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Hailong Shi
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fu Li
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Wanli Liu
- Ministry of Education Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Kaifeng Hu
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaoxia Lu
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Guolin Zhang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,Xiongan Institute of Innovation, Chinese Academy of Sciences, Hebei 071700, China
| | - Fei Wang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,Xiongan Institute of Innovation, Chinese Academy of Sciences, Hebei 071700, China
| |
Collapse
|
15
|
Gupta R. Epigenetic regulation and targeting of ECM for cancer therapy. Am J Physiol Cell Physiol 2022; 322:C762-C768. [PMID: 35235427 PMCID: PMC8993518 DOI: 10.1152/ajpcell.00022.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/11/2022] [Accepted: 02/25/2022] [Indexed: 11/22/2022]
Abstract
The tumor microenvironment (TME) composed of different types of cells embedded in extracellular matrix (ECM) has crucial effects on cancer growth and metastasis. ECM is made of a variety of proteins that provide structural support to the cells and regulate biological functions by modulating the cross talk among cells, thus effecting tumor growth and progression. In this mini-review, the author discusses epigenetic modifications that regulate the expression of fibrous ECM proteins and glycoproteins and the prospects of targeting them for cancer therapy.
Collapse
Affiliation(s)
- Romi Gupta
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, Alabama
- O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
16
|
Scuruchi M, D'Ascola A, Avenoso A, Zappone A, Mandraffino G, Campo S, Campo GM. miR9 inhibits 6-mer HA-induced cytokine production and apoptosis in human chondrocytes by reducing NF-kB activation. Arch Biochem Biophys 2022; 718:109139. [PMID: 35114139 DOI: 10.1016/j.abb.2022.109139] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 01/21/2022] [Accepted: 01/29/2022] [Indexed: 02/07/2023]
Abstract
The present study aimed to investigate the expression of miR9 and its correlation with cytokines, proteolytic enzymes and apoptosis in an experimental model of 6-mer HA induced inflammation in human chondrocytes. Human articular chondrocytes, transfected with a miR-9 mimic and miR-9 inhibitor, were stimulated with 6-mer HA in presence/absence of a specific NF-kB inhibitor. 6-mer HA induced a significant increase of TLR-4, CD44, IL-8, IL-18, MMP-9, ADAMTS-5, BAX and BCL-2 mRNAs expression and the related proteins, as well as NF-kB activation, associated with a significant up regulation of miR-9. In chondrocytes transfected with the miR-9 mimic before 6-mer HA treatment we found a decrease of such inflammatory cytokines, metalloproteases and pro-apoptotic molecules, while we found them increased in chondrocytes transfected with the miR9 inhibitor before 6-mer HA stimulation. The activities of TLR-4 and CD44, up regulated by 6-mer HA, were not modified by miR9 mimic/inhibitor, while the NF-kB activation was significantly affected. We suggested that the up regulation of miR9, induced by 6-mer HA, could be a cellular attempt to limit cell damage during inflammation.
Collapse
Affiliation(s)
- Michele Scuruchi
- Department of Clinical and Experimental Medicine, University of Messina, Policlinico Universitario, 98125, Messina, Italy.
| | - Angela D'Ascola
- Department of Clinical and Experimental Medicine, University of Messina, Policlinico Universitario, 98125, Messina, Italy
| | - Angela Avenoso
- Department of Biomedical and Dental Sciences and Morphofunctional Images, Policlinico Universitario, University of Messina, 98125, Messina, Italy
| | - Annie Zappone
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - Giuseppe Mandraffino
- Department of Clinical and Experimental Medicine, University of Messina, Policlinico Universitario, 98125, Messina, Italy
| | - Salvatore Campo
- Department of Biomedical and Dental Sciences and Morphofunctional Images, Policlinico Universitario, University of Messina, 98125, Messina, Italy
| | - Giuseppe M Campo
- Department of Clinical and Experimental Medicine, University of Messina, Policlinico Universitario, 98125, Messina, Italy
| |
Collapse
|
17
|
Comprehensive analysis of the differential cellular and EBV miRNA expression profiles in Mature T and NK cell lymphomas. Pathol Res Pract 2022; 233:153846. [DOI: 10.1016/j.prp.2022.153846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 03/03/2022] [Accepted: 03/17/2022] [Indexed: 11/19/2022]
|
18
|
miR-486-5p Restrains Extracellular Matrix Production and Oxidative Damage in Human Trabecular Meshwork Cells by Targeting TGF-β/SMAD2 Pathway. J Ophthalmol 2022; 2022:3584192. [PMID: 35251709 PMCID: PMC8890899 DOI: 10.1155/2022/3584192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/26/2022] [Indexed: 11/17/2022] Open
Abstract
Background Glaucoma is characterized by elevated intraocular pressure caused by aqueous outflow dysfunction. Trabecular meshwork plays a key role in controlling intraocular pressure by modulating aqueous outflow. This study investigated the protective effects of miR-486-5p in H2O2-stimulated human trabecular meshwork cells (TMCs). Methods TMCs were disposed with 300 μM H2O2 to establish oxidative damage models in vitro. miR-486-5p mimics and its controls were transfected into TMCs, and cell apoptosis and extracellular matrix production (ECM) genes were measured by flow cytometry, western blotting, and immunofluorescence staining. Activities of superoxide dismutase (SOD) and malondialdehyde (MDA) were also assayed. Online tools and luciferase reporter assays were used to uncover the relationship between miR-486-5p and the TGF-β/SMAD2 pathway. Results We found that H2O2-induced oxidative damage in TMCs and miR-486-5p was downregulated in H2O2-stimulated TMCs. Overexpression of miR-486-5p mitigated H2O2-induced oxidative damage by inhibiting apoptosis, reducing cleaved caspase-3/9 expression, reducing MDA levels, and increasing SOD levels as well as downregulating ECM genes. SMAD2 was demonstrated to be targeted by miR-486-5p, and miR-486-5p inhibited TGF-β/SMAD2 signaling in H2O2-stimulated TMCs. Additionally, SMAD2 was upregulated by H2O2, and SMAD2 upregulation abrogated the protective effects of miR-486-5p against H2O2-induced injury. Conclusion miR-486-5p restrains H2O2-induced oxidative damage in TMCs by targeting the TGF-β/SMAD2 pathway.
Collapse
|
19
|
Liang C, Huang M, Li T, Li L, Sussman H, Dai Y, Siemann DW, Xie M, Tang X. Towards an integrative understanding of cancer mechanobiology: calcium, YAP, and microRNA under biophysical forces. SOFT MATTER 2022; 18:1112-1148. [PMID: 35089300 DOI: 10.1039/d1sm01618k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
An increasing number of studies have demonstrated the significant roles of the interplay between microenvironmental mechanics in tissues and biochemical-genetic activities in resident tumor cells at different stages of tumor progression. Mediated by molecular mechano-sensors or -transducers, biomechanical cues in tissue microenvironments are transmitted into the tumor cells and regulate biochemical responses and gene expression through mechanotransduction processes. However, the molecular interplay between the mechanotransduction processes and intracellular biochemical signaling pathways remains elusive. This paper reviews the recent advances in understanding the crosstalk between biomechanical cues and three critical biochemical effectors during tumor progression: calcium ions (Ca2+), yes-associated protein (YAP), and microRNAs (miRNAs). We address the molecular mechanisms underpinning the interplay between the mechanotransduction pathways and each of the three effectors. Furthermore, we discuss the functional interactions among the three effectors in the context of soft matter and mechanobiology. We conclude by proposing future directions on studying the tumor mechanobiology that can employ Ca2+, YAP, and miRNAs as novel strategies for cancer mechanotheraputics. This framework has the potential to bring insights into the development of novel next-generation cancer therapies to suppress and treat tumors.
Collapse
Affiliation(s)
- Chenyu Liang
- Department of Mechanical & Aerospace Engineering, Herbert Wertheim College of Engineering (HWCOE), Gainesville, FL, 32611, USA.
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
| | - Miao Huang
- Department of Mechanical & Aerospace Engineering, Herbert Wertheim College of Engineering (HWCOE), Gainesville, FL, 32611, USA.
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
| | - Tianqi Li
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
- Department of Biochemistry and Molecular Biology, College of Medicine (COM), Gainesville, FL, 32611, USA.
| | - Lu Li
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
- Department of Biochemistry and Molecular Biology, College of Medicine (COM), Gainesville, FL, 32611, USA.
| | - Hayley Sussman
- Department of Radiation Oncology, COM, Gainesville, FL, 32611, USA
| | - Yao Dai
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
- UF Genetics Institute (UFGI), University of Florida (UF), Gainesville, FL, 32611, USA
| | - Dietmar W Siemann
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
- UF Genetics Institute (UFGI), University of Florida (UF), Gainesville, FL, 32611, USA
| | - Mingyi Xie
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
- Department of Biochemistry and Molecular Biology, College of Medicine (COM), Gainesville, FL, 32611, USA.
- Department of Biomedical Engineering, College of Engineering (COE), University of Delaware (UD), Newark, DE, 19716, USA
| | - Xin Tang
- Department of Mechanical & Aerospace Engineering, Herbert Wertheim College of Engineering (HWCOE), Gainesville, FL, 32611, USA.
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
| |
Collapse
|
20
|
A Tight Control of Non-Canonical TGF-β Pathways and MicroRNAs Downregulates Nephronectin in Podocytes. Cells 2022; 11:cells11010149. [PMID: 35011710 PMCID: PMC8750045 DOI: 10.3390/cells11010149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/22/2021] [Accepted: 01/01/2022] [Indexed: 02/01/2023] Open
Abstract
Nephronectin (NPNT) is an extracellular matrix protein in the glomerular basement membrane that is produced by podocytes and is important for the integrity of the glomerular filtration barrier. Upregulated transforming growth factor β (TGF-β) and altered NPNT are seen in different glomerular diseases. TGF-β downregulates NPNT and upregulates NPNT-targeting microRNAs (miRs). However, the pathways involved were previously unknown. By using selective inhibitors of the canonical, SMAD-dependent, and non-canonical TGF-β pathways, we investigated NPNT transcription, translation, secretion, and regulation through miRs in podocytes. TGF-β decreased NPNT mRNA and protein in cultured human podocytes. TGF-β-dependent regulation of NPNT was meditated through intracellular signaling pathways. Under baseline conditions, non-canonical pathways predominantly regulated NPNT post-transcriptionally. Podocyte NPNT secretion, however, was not dependent on canonical or non-canonical TGF-β pathways. The canonical TGF-β pathway was also dispensable for NPNT regulation after TGF-β stimulation, as TGF-β was still able to downregulate NPNT in the presence of SMAD inhibitors. In contrast, in the presence of different non-canonical pathway inhibitors, TGF-β stimulation did not further decrease NPNT expression. Moreover, distinct non-canonical TGF-β pathways mediated TGF-β-induced upregulation of NPNT-targeting miR-378a-3p. Thus, we conclude that post-transcriptional fine-tuning of NPNT expression in podocytes is mediated predominantly through non-canonical TGF-β pathways.
Collapse
|
21
|
Gao Q, Li Z, Rhee C, Xiang S, Maruyama M, Huang EE, Yao Z, Bunnell BA, Tuan RS, Lin H, Gold MS, Goodman SB. Macrophages Modulate the Function of MSC- and iPSC-Derived Fibroblasts in the Presence of Polyethylene Particles. Int J Mol Sci 2021; 22:12837. [PMID: 34884641 PMCID: PMC8657553 DOI: 10.3390/ijms222312837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/21/2021] [Accepted: 11/24/2021] [Indexed: 01/15/2023] Open
Abstract
Fibroblasts in the synovial membrane secrete molecules essential to forming the extracellular matrix (ECM) and supporting joint homeostasis. While evidence suggests that fibroblasts contribute to the response to joint injury, the outcomes appear to be patient-specific and dependent on interactions between resident immune cells, particularly macrophages (Mφs). On the other hand, the response of Mφs to injury depends on their functional phenotype. The goal of these studies was to further explore these issues in an in vitro 3D microtissue model that simulates a pathophysiological disease-specific microenvironment. Two sources of fibroblasts were used to assess patient-specific influences: mesenchymal stem cell (MSC)- and induced pluripotent stem cell (iPSC)-derived fibroblasts. These were co-cultured with either M1 or M2 Mφs, and the cultures were challenged with polyethylene particles coated with lipopolysaccharide (cPE) to model wear debris generated from total joint arthroplasties. Our results indicated that the fibroblast response to cPE was dependent on the source of the fibroblasts and the presence of M1 or M2 Mφs: the fibroblast response as measured by gene expression changes was amplified by the presence of M2 Mφs. These results demonstrate that the immune system modulates the function of fibroblasts; furthermore, different sources of differentiated fibroblasts may lead to divergent results. Overall, our research suggests that M2 Mφs may be a critical target for the clinical treatment of cPE induced fibrosis.
Collapse
Affiliation(s)
- Qi Gao
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA 94304, USA; (Q.G.); (C.R.); (M.M.); (E.E.H.); (Z.Y.)
| | - Zhong Li
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; (Z.L.); (S.X.); (R.S.T.); (H.L.)
| | - Claire Rhee
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA 94304, USA; (Q.G.); (C.R.); (M.M.); (E.E.H.); (Z.Y.)
| | - Shiqi Xiang
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; (Z.L.); (S.X.); (R.S.T.); (H.L.)
| | - Masahiro Maruyama
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA 94304, USA; (Q.G.); (C.R.); (M.M.); (E.E.H.); (Z.Y.)
| | - Elijah Ejun Huang
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA 94304, USA; (Q.G.); (C.R.); (M.M.); (E.E.H.); (Z.Y.)
| | - Zhenyu Yao
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA 94304, USA; (Q.G.); (C.R.); (M.M.); (E.E.H.); (Z.Y.)
| | - Bruce A. Bunnell
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA;
| | - Rocky S. Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; (Z.L.); (S.X.); (R.S.T.); (H.L.)
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Hang Lin
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; (Z.L.); (S.X.); (R.S.T.); (H.L.)
| | - Michael S. Gold
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA;
| | - Stuart B. Goodman
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA 94304, USA; (Q.G.); (C.R.); (M.M.); (E.E.H.); (Z.Y.)
| |
Collapse
|
22
|
Argote Camacho AX, González Ramírez AR, Pérez Alonso AJ, Rejón García JD, Olivares Urbano MA, Torné Poyatos P, Ríos Arrabal S, Núñez MI. Metalloproteinases 1 and 3 as Potential Biomarkers in Breast Cancer Development. Int J Mol Sci 2021; 22:ijms22169012. [PMID: 34445715 PMCID: PMC8396449 DOI: 10.3390/ijms22169012] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/15/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022] Open
Abstract
Breast cancer continues to be one of the main causes of morbidity and mortality globally and was the leading cause of cancer death in women in Spain in 2020. Early diagnosis is one of the most effective methods to lower the incidence and mortality rates of breast cancer. The human metalloproteinases (MMP) mainly function as proteolytic enzymes degrading the extracellular matrix and plays important roles in most steps of breast tumorigenesis. This retrospective cohort study shows the immunohistochemical expression levels of MMP-1, MMP-2, MMP-3, and MMP-9 in 154 women with breast cancer and 42 women without tumor disease. The samples of breast tissue are assessed using several tissue matrices (TMA). The percentages of staining (≤50%–>50%) and intensity levels of staining (weak, moderate, or intense) are considered. The immunohistochemical expression of the MMP-1-intensity (p = 0.043) and MMP-3 percentage (p = 0.018) and intensity, (p = 0.025) present statistically significant associations with the variable group (control–case); therefore, expression in the tumor tissue samples of these MMPs may be related to the development of breast cancer. The relationships between these MMPs and some clinicopathological factors in breast cancer are also evaluated but no correlation is found. These results suggest the use of MMP-1 and MMP-3 as potential biomarkers of breast cancer diagnosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Pablo Torné Poyatos
- Department of Surgery and Its Specialties, University of Granada, 18012 Granada, Spain;
| | - Sandra Ríos Arrabal
- Department of Radiology and Physical Medicine, University of Granada, 18012 Granada, Spain;
- Correspondence: (S.R.A.); (M.I.N.); Tel.: +34-958-242077 (S.R.A.); +34-958-242077 (M.I.N.)
| | - María Isabel Núñez
- Department of Radiology and Physical Medicine, University of Granada, 18012 Granada, Spain;
- Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, 18016 Granada, Spain
- Biosanitary Research Institute, ibs.Granada, 18012 Granada, Spain
- Correspondence: (S.R.A.); (M.I.N.); Tel.: +34-958-242077 (S.R.A.); +34-958-242077 (M.I.N.)
| |
Collapse
|
23
|
Figuerêdo SH, Neto RSC, Ferreira E, Cassali GD, Estrela-Lima A, Damasceno KA. Expression of VCAN and its receptors in canine mammary carcinomas with or without myoepithelial proliferation. Res Vet Sci 2021; 140:56-63. [PMID: 34399281 DOI: 10.1016/j.rvsc.2021.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 07/13/2021] [Accepted: 08/06/2021] [Indexed: 12/24/2022]
Abstract
The proteoglycan versican (VCAN) plays a complex role in cancer. The expression of this molecule has been related to invasion and progression in malignant mixed tumors, such as carcinoma in mixed tumors (CMT) of the canine mammary gland. In addition, its interaction with surface cell receptors EGFR, HER-2 and CD44 in malignant epithelial cells may be responsible for proliferation and cellular motility in early stages of cancer. We comparatively evaluated the expression of this proteoglycan and its receptors in in situ and invasive areas of simple carcinomas (SC) and CMT to investigate similarities and differences between these histological types. Immunohistochemistry was performed with anti-VCAN, anti-CD44, anti-EGFR and anti-HER-2 antibodies in 32 cases of SC or CMT. VCAN was highly expressed in stroma adjacent to invasive areas in SC and CMT. CMTs presented comparatively higher expression of VCAN in stroma adjacent to in situ and in invasive areas than in corresponding areas in SCs. In CMT, EGFR and HER-2 expressions were higher in situ compared to invasive areas. In contrast, increased CD44 and EGFR expression was found in invasive areas in SC compared to CMT. These results indicate that versican expression is similarly associated with invasiveness in SC and CMT, however higher levels were seen in CMT suggesting that the presence of myoepithelial proliferation in this tumor type participates in stromal composition and promoting an increase in the expression of versican.
Collapse
Affiliation(s)
- S H Figuerêdo
- Laboratory of Experimental Pathology, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, 121 Rua Waldemar Falcão., Salvador BA 40296-710, Brazil
| | - R S Carmo Neto
- Department of Pathology and Clinics, School of Veterinary Medicine and Zootechny, Federal University of Bahia, s/n° Adhemar de Barros., Salvador BA 40170-110, Brazil
| | - E Ferreira
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, 6627 Av. Pres. Antônio Carlos, Belo Horizonte MG 31270-901, Brazil
| | - G D Cassali
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, 6627 Av. Pres. Antônio Carlos, Belo Horizonte MG 31270-901, Brazil
| | - A Estrela-Lima
- Department of Pathology and Clinics, School of Veterinary Medicine and Zootechny, Federal University of Bahia, s/n° Adhemar de Barros., Salvador BA 40170-110, Brazil
| | - K A Damasceno
- Laboratory of Experimental Pathology, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, 121 Rua Waldemar Falcão., Salvador BA 40296-710, Brazil.
| |
Collapse
|
24
|
Natua S, Dhamdhere SG, Mutnuru SA, Shukla S. Interplay within tumor microenvironment orchestrates neoplastic RNA metabolism and transcriptome diversity. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1676. [PMID: 34109748 DOI: 10.1002/wrna.1676] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/03/2021] [Accepted: 05/25/2021] [Indexed: 12/11/2022]
Abstract
The heterogeneous population of cancer cells within a tumor mass interacts intricately with the multifaceted aspects of the surrounding microenvironment. The reciprocal crosstalk between cancer cells and the tumor microenvironment (TME) shapes the cancer pathophysiome in a way that renders it uniquely suited for immune tolerance, angiogenesis, metastasis, and therapy resistance. This dynamic interaction involves a dramatic reconstruction of the transcriptomic landscape of tumors by altering the synthesis, modifications, stability, and processing of gene readouts. In this review, we categorically evaluate the influence of TME components, encompassing a myriad of resident and infiltrating cells, signaling molecules, extracellular vesicles, extracellular matrix, and blood vessels, in orchestrating the cancer-specific metabolism and diversity of both mRNA and noncoding RNA, including micro RNA, long noncoding RNA, circular RNA among others. We also highlight the transcriptomic adaptations in response to the physicochemical idiosyncrasies of TME, which include tumor hypoxia, extracellular acidosis, and osmotic stress. Finally, we provide a nuanced analysis of existing and prospective therapeutics targeting TME to ameliorate cancer-associated RNA metabolism, consequently thwarting the cancer progression. This article is categorized under: RNA Processing > Splicing Regulation/Alternative Splicing RNA Turnover and Surveillance > Regulation of RNA Stability RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Subhashis Natua
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| | - Shruti Ganesh Dhamdhere
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| | - Srinivas Abhishek Mutnuru
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| | - Sanjeev Shukla
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| |
Collapse
|
25
|
Huang P, Xu M, He XY. Elevation of MicroRNA-126 Levels in Intracranial Aneurysm and Bioinformatic Analysis of Potential Molecular Mechanisms. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The study is to investigation of microRNA-126 levels in patients with intracranial aneurysm and bioinformatic analysis of the molecular mechanisms involved. A total of 166 patients with ICA who were hospitalized or examined in our hospital from September 2015 to December 2017 were used
as the experimental group (ICA group). This group included 120 patients with unruptured intracranial aneurysm (UICA; UICA group) and 46 patients with ruptured intracranial aneurysm (RICA); RICA group). The UICA group was further subdivided into 42 surgical groups (S group) and 78 nonsurgical
groups (NS group). Sixty-three normal people without intracranial aneurysms were selected as the control group. RT-PCR was used to quantitatively detect the relative expression of microRNA- 126 in peripheral blood mononuclear cells at the time of admission and immediately after surgery. The
UCSC database was used to analyze the gene locus and homology of microRNA-126. The TargetScan database and CoMeTa database were used to predict the potential target genes of microRNA-126. The DAVID database was used to enrich the function of potential target genes of microRNA-126 (GO enrichment)
and KEGG pathway enrichment for analysis. The expression level of microRNA-126 in peripheral blood was significantly higher in the ICA group than in the control group (P <0.01), significantly higher in the RICA group than in the UICA group (P <0.05). Expression was also
higher in the NS group than in the S group but the difference was nonsignificant (P >0.05). A total of 15 potential target genes including ITGA6, CRK, PCDH7, and ADAM9 were identified through the target gene prediction software and GO analysis and KEGG pathway analysis showed that
the function of the microRNA-126 target gene was mainly focused on protein binding and the FAS signaling pathway. In Conclusion the microRNA-126 is up-regulated in ICA patients and affects ICA by regulating multiple target genes in the FAS signaling pathway.
Collapse
Affiliation(s)
- Pan Huang
- Department of Neurology, People’s Hospital of Deyang City, 173 TaiShan North Road, Deyang, Sichuan, 618000, China
| | - Min Xu
- Department of Neurology, The Second People’s Hospital of Deyang City, 340 Minjiang West Road, Deyang, Sichuan, 618000, China
| | - Xiao-Ying He
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Jiangyang District, Luzhou City, Sichuan, 646000, China
| |
Collapse
|
26
|
Tabak S, Schreiber-Avissar S, Beit-Yannai E. Trabecular meshwork's collagen network formation is inhibited by non-pigmented ciliary epithelium-derived extracellular vesicles. J Cell Mol Med 2021; 25:3339-3347. [PMID: 33644975 PMCID: PMC8034463 DOI: 10.1111/jcmm.16408] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 12/22/2022] Open
Abstract
The present research aims to determine whether the application of non‐pigmented ciliary epithelium cells derived extracellular vesicles to human trabecular meshwork cells affects the formation and secretion of collagen type I to the extracellular matrix formation. Following the extraction of non‐pigmented ciliary epithelium derived extracellular vesicles by a precipitation method, their size and concentration were determined using tunable resistive pulse sensing technology. Extracellular vesicles were incubated with trabecular meshwork cells for 3 days. Morphological changes of collagen type I in the extracellular matrix of trabecular meshwork cells were visualized using confocal microscopy and scanning electron microscopy. A Sirius Red assay was used to determine the total amount of collagen. Finally, collagen type I expression levels in the extracellular matrix of trabecular meshwork cells were quantified by cell western analysis. We found that non‐pigmented ciliary epithelium extracellular vesicles were very effective at preventing collagen fibres formation by the trabecular meshwork cells, and their secretion to the extracellular matrix was significantly reduced (P < .001). Morphological changes in the extracellular matrix of trabecular meshwork cells were observed. Our study indicates that non‐pigmented ciliary epithelium extracellular vesicles can be used to control collagen type I fibrillogenesis in trabecular meshwork cells. These fibrils net‐like structure is responsible for remodelling the extracellular matrix. Moreover, we suggest that targeting collagen type I fibril assembly may be a viable treatment for primary open‐angle glaucoma abnormal matrix deposition of the extracellular matrix.
Collapse
Affiliation(s)
- Saray Tabak
- Clinical Biochemistry and Pharmacology Department, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Sofia Schreiber-Avissar
- Clinical Biochemistry and Pharmacology Department, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Elie Beit-Yannai
- Clinical Biochemistry and Pharmacology Department, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
27
|
Non-coding RNAs modulate function of extracellular matrix proteins. Biomed Pharmacother 2021; 136:111240. [PMID: 33454598 DOI: 10.1016/j.biopha.2021.111240] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/19/2020] [Accepted: 12/31/2020] [Indexed: 12/14/2022] Open
Abstract
The extracellular matrix (ECM) creates a multifaceted system for the interaction of diverse structural proteins, matricellular molecules, proteoglycans, hyaluronan, and various glycoproteins that collaborate and bind with each other to produce a bioactive polymer. Alterations in the composition and configuration of ECM elements influence the cellular phenotype, thus participating in the pathogenesis of several human disorders. Recent studies indicate the crucial roles of non-coding RNAs in the modulation of ECM. Several miRNAs such as miR-21, miR-26, miR-19, miR-140, miR-29, miR-30, miR-133 have been dysregulated in disorders that are associated with disruption or breakdown of the ECM. Moreover, expression of MALAT1, PVT1, SRA1, n379519, RMRP, PFL, TUG1, TM1P3, FAS-AS1, PART1, XIST, and expression of other lncRNAs is altered in disorders associated with the modification of ECM components. In the current review, we discuss the role of lncRNAs and miRNAs in the modification of ECM and their relevance with the pathophysiology of human disorders such as cardiac/ lung fibrosis, cardiomyopathy, heart failure, asthma, osteoarthritis, and cancers.
Collapse
|
28
|
Yang J, Bahcecioglu G, Zorlutuna P. The Extracellular Matrix and Vesicles Modulate the Breast Tumor Microenvironment. Bioengineering (Basel) 2020; 7:E124. [PMID: 33050609 PMCID: PMC7712041 DOI: 10.3390/bioengineering7040124] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 12/18/2022] Open
Abstract
Emerging evidence has shown multiple roles of the tumor microenvironment (TME) components, specifically the extracellular matrix (ECM), in breast cancer development, progression, and metastasis. Aside from the biophysical properties and biochemical composition of the breast ECM, the signaling molecules are extremely important in maintaining homeostasis, and in the breast TME, they serve as the key components that facilitate tumor progression and immune evasion. Extracellular vesicles (EVs), the mediators that convey messages between the cells and their microenvironment through signaling molecules, have just started to capture attention in breast cancer research. In this comprehensive review, we first provide an overview of the impact of ECM in breast cancer progression as well as the alterations occurring in the TME during this process. The critical importance of EVs and their biomolecular contents in breast cancer progression and metastasis are also discussed. Finally, we discuss the potential biomedical or clinical applications of these extracellular components, as well as how they impact treatment outcomes.
Collapse
Affiliation(s)
- Jun Yang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA;
| | - Gokhan Bahcecioglu
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA;
| | - Pinar Zorlutuna
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA;
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA;
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
29
|
Li S, Bai H, Chen X, Gong S, Xiao J, Li D, Li L, Jiang Y, Li T, Qin X, Yang H, Wu C, You F, Liu Y. Soft Substrate Promotes Osteosarcoma Cell Self-Renewal, Differentiation, and Drug Resistance Through miR-29b and Its Target Protein Spin 1. ACS Biomater Sci Eng 2020; 6:5588-5598. [DOI: 10.1021/acsbiomaterials.0c00816] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Shun Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China
| | - Hongxia Bai
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China
| | - Xiangyan Chen
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China
| | - Shengnan Gong
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China
| | - Jinman Xiao
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China
| | - Dan Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China
| | - Li Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China
| | - Ying Jiang
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China
| | - Tingting Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China
| | - Xiang Qin
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China
| | - Hong Yang
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China
| | - Chunhui Wu
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China
| | - Fengming You
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan, P. R. China
| | - Yiyao Liu
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan, P. R. China
| |
Collapse
|
30
|
Wen YC, Lin YW, Chu CY, Yang YC, Yang SF, Liu YF, Hsiao M, Lee WJ, Chien MH. Melatonin-triggered post-transcriptional and post-translational modifications of ADAMTS1 coordinately retard tumorigenesis and metastasis of renal cell carcinoma. J Pineal Res 2020; 69:e12668. [PMID: 32408377 DOI: 10.1111/jpi.12668] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/25/2020] [Accepted: 05/07/2020] [Indexed: 12/27/2022]
Abstract
A disintegrin and metalloprotease with thrombospondin motifs (ADAMTS) family are widely implicated in tissue remodeling events manifested in cancer development. ADAMTS1, the most fully characterized ADAMTS, plays conflicting roles in different cancer types; however, the role of ADAMTS1 in renal cell carcinoma (RCC) remains unclear. Herein, we found that ADAMTS1 is highly expressed in RCC tissues compared to normal renal tissues, and its expression was correlated with an advanced stage and a poor prognosis of RCC patients. In vitro, we observed higher expression of ADAMTS1 in metastatic (m)RCC cells compared to primary cells, and manipulation of ADAMTS1 expression affected cell invasion and clonogenicity. Results from protease array showed that ADAMTS1 is modulated by melatonin through mechanisms independent of the MT1 receptor in mRCC cells, and overexpression of ADAMTS1 relieved the invasion/clonogenicity and growth/metastasis inhibition imposed by melatonin treatment in vitro and in an orthotopic xenograft model. The human microRNA (miR) OneArray showed that miR-181d and miR-let-7f were induced by melatonin and, respectively, targeted the 3'-UTR and non-3'-UTR of ADAMTS1 to suppress its expression and mRCC invasive ability. Clinically, RCC patients with high levels of miR-181d or miR-let-7f and a low level of ADAMTS1 had the most favorable prognoses. In addition, ubiquitin/proteasome-mediated degradation of ADAMTS1 can also be triggered by melatonin. Together, our study indicates that ADAMTS1 may be a useful biomarker for predicting RCC progression. The novel convergence between melatonin and ADAMTS1 post-transcriptional and post-translational regulation provides new insights into the role of melatonin-induced molecular regulation in suppressing RCC progression.
Collapse
Affiliation(s)
- Yu-Ching Wen
- Department of Urology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Urology, School of Medicine, College of Medicine and TMU Research Center of Urology and Kidney (TMU-RCUK), Taipei Medical University, Taipei, Taiwan
| | - Yung-Wei Lin
- Department of Urology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Urology, School of Medicine, College of Medicine and TMU Research Center of Urology and Kidney (TMU-RCUK), Taipei Medical University, Taipei, Taiwan
| | - Chih-Ying Chu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Chieh Yang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Medical Research, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yu-Fan Liu
- Department of Biomedical Sciences, College of Medicine Sciences and Technology, Chung Shan Medical University, Taichung, Taiwan
- Division of Allergy, Department of Pediatrics, Chung-Shan Medical University Hospital, Taichung, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Wei-Jiunn Lee
- Department of Urology, School of Medicine, College of Medicine and TMU Research Center of Urology and Kidney (TMU-RCUK), Taipei Medical University, Taipei, Taiwan
- Department of Medical Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Ming-Hsien Chien
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital Taipei, Taiwan
| |
Collapse
|
31
|
Kong Y, Qiao Z, Ren Y, Genchev GZ, Ge M, Xiao H, Zhao H, Lu H. Integrative Analysis of Membrane Proteome and MicroRNA Reveals Novel Lung Cancer Metastasis Biomarkers. Front Genet 2020; 11:1023. [PMID: 33005184 PMCID: PMC7483668 DOI: 10.3389/fgene.2020.01023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is one of the most common human cancers both in incidence and mortality, with prognosis particularly poor in metastatic cases. Metastasis in lung cancer is a multifarious process driven by a complex regulatory landscape involving many mechanisms, genes, and proteins. Membrane proteins play a crucial role in the metastatic journey both inside tumor cells and the extra-cellular matrix and are a viable area of research focus with the potential to uncover biomarkers and drug targets. In this work we performed membrane proteome analysis of highly and poorly metastatic lung cells which integrated genomic, proteomic, and transcriptional data. A total of 1,762 membrane proteins were identified, and within this set, there were 163 proteins with significant changes between the two cell lines. We applied the Tied Diffusion through Interacting Events method to integrate the differentially expressed disease-related microRNAs and functionally dys-regulated membrane protein information to further explore the role of key membrane proteins and microRNAs in multi-omics context. Has-miR-137 was revealed as a key gene involved in the activity of membrane proteins by targeting MET and PXN, affecting membrane proteins through protein-protein interaction mechanism. Furthermore, we found that the membrane proteins CDH2, EGFR, ITGA3, ITGA5, ITGB1, and CALR may have significant effect on cancer prognosis and outcomes, which were further validated in vitro. Our study provides multi-omics-based network method of integrating microRNAs and membrane proteome information, and uncovers a differential molecular signatures of highly and poorly metastatic lung cancer cells; these molecules may serve as potential targets for giant-cell lung metastasis treatment and prognosis.
Collapse
Affiliation(s)
- Yan Kong
- SJTU-Yale Joint Center for Biostatistics and Data Science, Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhi Qiao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yongyong Ren
- SJTU-Yale Joint Center for Biostatistics and Data Science, Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Georgi Z Genchev
- SJTU-Yale Joint Center for Biostatistics and Data Science, Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,Center for Biomedical Informatics, Shanghai Engineering Research Center for Big Data in Pediatric Precision Medicine, Shanghai Children's Hospital, Shanghai, China.,Bulgarian Institute for Genomics and Precision Medicine, Sofia, Bulgaria
| | - Maolin Ge
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hua Xiao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hongyu Zhao
- Department of Biostatistics, Yale University, New Haven, CT, United States
| | - Hui Lu
- SJTU-Yale Joint Center for Biostatistics and Data Science, Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,Center for Biomedical Informatics, Shanghai Engineering Research Center for Big Data in Pediatric Precision Medicine, Shanghai Children's Hospital, Shanghai, China
| |
Collapse
|
32
|
The effect of Ganoderma lucidum spore oil in early skin wound healing: interactions of skin microbiota and inflammation. Aging (Albany NY) 2020; 12:14125-14140. [PMID: 32692722 PMCID: PMC7425473 DOI: 10.18632/aging.103412] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 05/01/2020] [Indexed: 12/27/2022]
Abstract
The mushroom Ganoderma lucidum (G. lucidum Leyss. ex Fr.) Karst has been a traditional Chinese medicine for millennia. In this study, we isolated the Ganoderma lucidum spore oil (GLSO) and evaluated the effect of GLSO on skin burn wound healing and the underlying mechanisms. Mice were used to perform skin wound healing assay. Wound analysis was performed by photography, hematoxylin/eosin staining, Masson’s Trichrome staining and immunohistochemical analysis. Microbiota on the wounds were analyzed using the 16s rRNA sequence and quantitative statistics. The lipopolysaccharide (LPS) content was examined in skin wounds and serum using an enzyme-linked immunosorbent assay (ELISA). The expression of Toll-like receptor 4 (TLR4) and the relative levels of inflammatory cytokines were determined by qPCR and immunofluorescence assay. A pseudo-germfree mouse model treated with antibiotics was used to investigate whether GLSO accelerated skin burn wound healing through the skin microbiota. We found that GLSO significantly accelerated the process of skin wound healing and regulated the levels of gram-negative and gram-positive bacteria. Furthermore, GLSO reduced LPS and TLR4, and levels of some other related inflammatory cytokines. The assay with the pseudo-germfree mice model showed that GLSO had a significant acceleration on skin wound healing in comparison with antibiotic treatment. Thus, GLSO downregulated the inflammation by regulating skin microbiota to accelerate skin wound healing. These findings provide a scientific rationale for the potential therapeutic use of GLSO in skin burn injury.
Collapse
|
33
|
Nabih HK. Crosstalk between NRF2 and Dicer through metastasis regulating MicroRNAs; mir-34a, mir-200 family and mir-103/107 family. Arch Biochem Biophys 2020; 686:108326. [DOI: 10.1016/j.abb.2020.108326] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/27/2020] [Accepted: 03/01/2020] [Indexed: 12/16/2022]
|
34
|
Functional analysis of miRNAs combined with TGF-β1/Smad3 inhibitor in an intrauterine rat adhesion cell model. Mol Cell Biochem 2020; 470:15-28. [PMID: 32447720 DOI: 10.1007/s11010-020-03741-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/02/2020] [Indexed: 02/06/2023]
Abstract
In this study, we aimed to study the role of miRNAs in intrauterine adhesion (IUA) disease. An IUA cell model was constructed by TGF-β1. Smad3 inhibitor (SIS3) can inhibit the Smad3 signaling pathway and affect the role of TGF-β1; thus, it was used to identify the role of Smad3 and related miRNAs in IUA. Cell number significantly increased in the TGF-β1 group after 72 h and 96 h, respectively, compared with that in the control group (P < 0.05). However, cell proliferation was significantly decreased in the TGF-β1 + SIS3 group (P < 0.0001). Cell apoptosis was increased in the TGF-β1 + SIS3 group compared with that in the TGF-β1 group. Western Blot (WB) analysis suggested that TGF-β1 treatment could effectively increase the expression of α-SMA, COL1, Smad3, and p-Smad3, which could be inhibited by SIS3 treatment. A total of 235 and 530 differentially expressed miRNAs in the TGF-β1 + SIS3 group were significantly up- and downregulated compared with those in the TGF-β1 group, respectively. These differentially expressed miRNAs were enriched in the MAPK and PI3K-AKT pathways. The ten most differentially expressed miRNAs were selected to verify their expressions using quantitative real-time polymerase chain reaction (qPCR). Furthermore, overexpression of rno-miR-3586-3p and rno-miR-455-5p can promote cell proliferation and exacerbate the IUA pathogenic process. However, overexpression of rno-miR-204-3p and rno-miR-3578 can inhibit cell behavior and IUA progression. The above results can provide detailed information for the understanding of IUA molecular mechanisms.
Collapse
|
35
|
Functional Link between miR-200a and ELK3 Regulates the Metastatic Nature of Breast Cancer. Cancers (Basel) 2020; 12:cancers12051225. [PMID: 32414208 PMCID: PMC7281469 DOI: 10.3390/cancers12051225] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 12/11/2022] Open
Abstract
Triple-negative breast cancer (TNBC) refers to breast cancer that does not have receptors for estrogen, progesterone, and HER2 protein. TNBC accounts for 10–20% of all cases of breast cancers and is characterized by its metastatic aggressiveness, poor prognosis, and limited treatment options. Here, we show that the metastatic nature of TNBC is critically regulated by a functional link between miR-200a and the transcription factor ELK3. We found that the expression levels of miR-200a and the ELK3 mRNA were negatively correlated in the luminal and TNBC subtypes of breast cancer cells. In vitro experiments revealed that miR-200a directly targets the 3’ untranslated region (UTR) of the ELK3 mRNA to destabilize the transcripts. Furthermore, ectopic expression of miR-200a impaired the migration and invasion of TNBC cells by reducing the expression level of the ELK3 mRNA. In in vivo studies, transfection of MDA-MB 231 cells (a claudin-low TNBC cell type) with exogenous miR-200a reduced their extravasation into the lung during 48 h after tail vein injection, and co-transfection of the cells with an expression plasmid harboring ELK3 that lacked an intact 3’UTR recovered their extravasation ability. Overall, our findings provide evidences that miR-200a and ELK3 is functionally linked to regulate invasive characteristics of breast cancers.
Collapse
|
36
|
Yin H, He H, Shen X, Tang S, Zhao J, Cao X, Han S, Cui C, Chen Y, Wei Y, Wang Y, Li D, Zhu Q. MicroRNA Profiling Reveals an Abundant miR-200a-3p Promotes Skeletal Muscle Satellite Cell Development by Targeting TGF-β2 and Regulating the TGF‑β2/SMAD Signaling Pathway. Int J Mol Sci 2020; 21:ijms21093274. [PMID: 32380777 PMCID: PMC7247338 DOI: 10.3390/ijms21093274] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/01/2020] [Accepted: 05/02/2020] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs (miRNAs) are evolutionarily conserved, small noncoding RNAs that play critical post-transcriptional regulatory roles in skeletal muscle development. Chicken is an optimal model to study skeletal muscle formation because its developmental anatomy is similar to that of mammals. In this study, we identified potential miRNAs in the breast muscle of broilers and layers at embryonic day 10 (E10), E13, E16, and E19. We detected 1836 miRNAs, 233 of which were differentially expressed between broilers and layers. In particular, miRNA-200a-3p was significantly more highly expressed in broilers than layers at three time points. In vitro experiments showed that miR-200a-3p accelerated differentiation and proliferation of chicken skeletal muscle satellite cells (SMSCs) and inhibited SMSCs apoptosis. The transforming growth factor 2 (TGF-β2) was identified as a target gene of miR-200a-3p, and which turned out to inhibit differentiation and proliferation, and promote apoptosis of SMSCs. Exogenous TGF-β2 increased the abundances of phosphorylated SMAD2 and SMAD3 proteins, and a miR-200a-3p mimic weakened this effect. The TGF-β2 inhibitor treatment reduced the promotional and inhibitory effects of miR-200a-3p on SMSC differentiation and apoptosis, respectively. Our results indicate that miRNAs are abundantly expressed during embryonic skeletal muscle development, and that miR-200a-3p promotes SMSC development by targeting TGF-β2 and regulating the TGF-β2/SMAD signaling pathway.
Collapse
|
37
|
Karamanou K, Franchi M, Onisto M, Passi A, Vynios DH, Brézillon S. Evaluation of lumican effects on morphology of invading breast cancer cells, expression of integrins and downstream signaling. FEBS J 2020; 287:4862-4880. [PMID: 32160387 DOI: 10.1111/febs.15289] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/11/2019] [Accepted: 03/09/2020] [Indexed: 12/19/2022]
Abstract
The small leucine-rich proteoglycan lumican regulates estrogen receptors (ERs)-associated functional properties of breast cancer cells, expression of matrix macromolecules, and epithelial-to-mesenchymal transition. However, it is not known whether the ER-dependent lumican effects on breast cancer cells are related to the expression of integrins and their intracellular signaling pathways. Here, we analyzed the effects of lumican in three breast cancer cell lines: the highly metastatic ERβ-positive MDA-MB-231, cells with the respective ERβ-suppressed (shERβMDA-MB-231), and lowly invasive ERα-positive MCF-7/c breast cancer cells. Scanning electron microscopy, confocal microscopy, real-time PCR, western blot, and cell adhesion assays were performed. Lumican effects on breast cancer cell morphology were also investigated in 3-dimensional collagen cultures. Lumican treatment induced cell-cell contacts and cell grouping and inhibited microvesicles and microvilli formation. The expression of the cell surface adhesion receptor CD44, its isoform and variants, hyaluronan (HA), and HA synthases was also investigated. Lumican inhibited the expression of CD44 and HA synthases, and its effect on cell adhesion revealed a major role of α1, α2, α3, αVβ3, and αVβ5 integrins in MDA-MB-231 cells, but not in MCF-7/c cells. Lumican upregulated the expression of α2 and β1 integrin subunits both in MDA-MB-231 and in shERβMDA-MB-231 as compared to MCF-7/c cells. Downstream signaling pathways for integrins, such as FAK, ERK 1/2 MAPK 42/44, and Akt, were found to be downregulated by lumican. Our data shed light to the molecular mechanisms responsible for the anticancer activity of lumican in invasive breast cancer.
Collapse
Affiliation(s)
- Konstantina Karamanou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece.,Laboratoire de Biochimie Médicale et Biologie Moléculaire, Université de Reims Champagne-Ardenne, Reims, France.,Matrice Extracellulaire et Dynamique Cellulaire, CNRS UMR 7369, Reims, France
| | - Marco Franchi
- Department for Life Quality Studies, University of Bologna, Rimini, Italy
| | - Maurizio Onisto
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Alberto Passi
- Department of Surgical and Morphological Sciences, University of Insubria, Varese, Italy
| | - Demitrios H Vynios
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Stéphane Brézillon
- Laboratoire de Biochimie Médicale et Biologie Moléculaire, Université de Reims Champagne-Ardenne, Reims, France.,Matrice Extracellulaire et Dynamique Cellulaire, CNRS UMR 7369, Reims, France
| |
Collapse
|
38
|
Wight TN, Kang I, Evanko SP, Harten IA, Chang MY, Pearce OMT, Allen CE, Frevert CW. Versican-A Critical Extracellular Matrix Regulator of Immunity and Inflammation. Front Immunol 2020; 11:512. [PMID: 32265939 PMCID: PMC7105702 DOI: 10.3389/fimmu.2020.00512] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/06/2020] [Indexed: 12/13/2022] Open
Abstract
The extracellular matrix (ECM) proteoglycan, versican increases along with other ECM versican binding molecules such as hyaluronan, tumor necrosis factor stimulated gene-6 (TSG-6), and inter alpha trypsin inhibitor (IαI) during inflammation in a number of different diseases such as cardiovascular and lung disease, autoimmune diseases, and several different cancers. These interactions form stable scaffolds which can act as "landing strips" for inflammatory cells as they invade tissue from the circulation. The increase in versican is often coincident with the invasion of leukocytes early in the inflammatory process. Versican interacts with inflammatory cells either indirectly via hyaluronan or directly via receptors such as CD44, P-selectin glycoprotein ligand-1 (PSGL-1), and toll-like receptors (TLRs) present on the surface of immune and non-immune cells. These interactions activate signaling pathways that promote the synthesis and secretion of inflammatory cytokines such as TNFα, IL-6, and NFκB. Versican also influences inflammation by interacting with a variety of growth factors and cytokines involved in regulating inflammation thereby influencing their bioavailability and bioactivity. Versican is produced by multiple cell types involved in the inflammatory process. Conditional total knockout of versican in a mouse model of lung inflammation demonstrated significant reduction in leukocyte invasion into the lung and reduced inflammatory cytokine expression. While versican produced by stromal cells tends to be pro-inflammatory, versican expressed by myeloid cells can create anti-inflammatory and immunosuppressive microenvironments. Inflammation in the tumor microenvironment often contains elevated levels of versican. Perturbing the accumulation of versican in tumors can inhibit inflammation and tumor progression in some cancers. Thus versican, as a component of the ECM impacts immunity and inflammation through regulating immune cell trafficking and activation. Versican is emerging as a potential target in the control of inflammation in a number of different diseases.
Collapse
Affiliation(s)
- Thomas N. Wight
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Inkyung Kang
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Stephen P. Evanko
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Ingrid A. Harten
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Mary Y. Chang
- Division of Pulmonary/Critical Care Medicine, Center for Lung Biology, University of Washington School of Medicine, Seattle, WA, United States
| | - Oliver M. T. Pearce
- Centre for the Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Carys E. Allen
- Centre for the Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Charles W. Frevert
- Division of Pulmonary/Critical Care Medicine, Center for Lung Biology, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
39
|
Farzaneh M, Alishahi M, Derakhshan Z, Sarani NH, Attari F, Khoshnam SE. The Expression and Functional Roles of miRNAs in Embryonic and Lineage-Specific Stem Cells. Curr Stem Cell Res Ther 2019; 14:278-289. [PMID: 30674265 DOI: 10.2174/1574888x14666190123162402] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/15/2018] [Accepted: 01/03/2019] [Indexed: 01/01/2023]
Abstract
The discovery of small non-coding RNAs began an interesting era in cellular and molecular biology. To date, miRNAs are the best recognized non-coding RNAs for maintenance and differentiation of pluripotent stem cells including embryonic stem cells (ES), induced pluripotent stem cells (iPSC), and cancer stem cells. ES cells are defined by their ability to self-renew, teratoma formation, and to produce numerous types of differentiated cells. Dual capacity of ES cells for self-renewal and differentiation is controlled by specific interaction with the neighboring cells and intrinsic signaling pathways from the level of transcription to translation. The ES cells have been the suitable model for evaluating the function of non-coding RNAs and in specific miRNAs. So far, the general function of the miRNAs in ES cells has been assessed in mammalian and non-mammalian stem cells. Nowadays, the evolution of sequencing technology led to the discovery of numerous miRNAs in human and mouse ES cells that their expression levels significantly changes during proliferation and differentiation. Several miRNAs have been identified in ectoderm, mesoderm, and endoderm cells, as well. This review would focus on recent knowledge about the expression and functional roles of miRNAs in embryonic and lineage-specific stem cells. It also describes that miRNAs might have essential roles in orchestrating the Waddington's landscape structure during development.
Collapse
Affiliation(s)
- Maryam Farzaneh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Masoumeh Alishahi
- Department of Biology, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Zahra Derakhshan
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Neda H Sarani
- Faculty of Paramedical, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farnoosh Attari
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Seyed E Khoshnam
- Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
40
|
Pang Q, Wang Y, Xu M, Xu J, Xu S, Shen Y, Xu J, Lei R. MicroRNA-152-5p inhibits proliferation and migration and promotes apoptosis by regulating expression of Smad3 in human keloid fibroblasts. BMB Rep 2019. [PMID: 30638178 PMCID: PMC6476487 DOI: 10.5483/bmbrep.2019.52.3.278] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Keloids are the most common pathological form of trauma healing, with features that seriously affect appearance and body function, are difficult to treat and have a high recurrence rate. Emerging evidence suggests that miRNAs are involved in a variety of pathological processes and play an important role in the process of fibrosis. In this study, we investigated the function and regulatory network of miR-152-5p in keloids. The miRNA miR-152-5p is frequently downregulated in keloid tissue and primary cells compared to normal skin tissue and fibroblasts. In addition, the downregulation of miR-152-5p is significantly associated with the proliferation, migration and apoptosis of keloid cells. Overexpression of miR-152-5p significantly inhibits the progression of fibrosis in keloids. Smad3 is a direct target of miR-152-5p, and knockdown of Smad3 also inhibits fibrosis progression, consistent with the overexpression of miR-152-5p. The interaction between miR-152-5p and Smad3 occurs through the Erk1/2 and Akt pathways and regulates collagen3 production. In summary, our study demonstrates that miR-152-5p/Smad3 regulatory pathways involved in fibrotic progression may be a potential therapeutic target of keloids.
Collapse
Affiliation(s)
- Qianqian Pang
- Department of Plastic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yuming Wang
- Department of Plastic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Mingyuan Xu
- Department of Plastic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jiachao Xu
- Department of Internal Medicine, Haiyan Hospital of Traditional Chinese Medicine, Jiaxin 314300, China
| | - Shengquan Xu
- Department of Hand Surgery and Microsurgery Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yichen Shen
- Department of Plastic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jinghong Xu
- Department of Plastic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Rui Lei
- Department of Plastic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
41
|
Pan-Cancer analysis of the expression and regulation of matrisome genes across 32 tumor types. Matrix Biol Plus 2019; 1:100004. [PMID: 33543003 PMCID: PMC7852311 DOI: 10.1016/j.mbplus.2019.04.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 04/02/2019] [Accepted: 04/02/2019] [Indexed: 12/28/2022] Open
Abstract
The microenvironment plays a central role in cancer, and neoplastic cells actively shape it to their needs by complex arrays of extracellular matrix (ECM) proteins, enzymes, cytokines and growth factors collectively referred to as the matrisome. Studies on the cancer matrisome have been performed for single or few neoplasms, but a more systematic analysis is still missing. Here we present a Pan-Cancer study of matrisome gene expression in 10,487 patients across 32 tumor types, supplemented with transcription factors (TFs) and driver genes/pathways regulating each tumor's matrisome. We report on 919 TF-target pairs, either used specifically or shared across tumor types, and their prognostic significance, 40 master regulators, 31 overarching regulatory pathways and the potential for druggability with FDA-approved cancer drugs. These results provide a comprehensive transcriptional architecture of the cancer matrisome and suggest the need for development of specific matrisome-targeting approaches for future therapies. In-depth characterization of matrisome gene expression and regulation in 10,487 patients across 32 human tumor types. Identification of transcription factor (TF) and “master regulators” governing each cancer’s matrisome. Analysis unveils therapeutic possibilities and suggests new treatments by repurposing of FDA-approved cancer drugs.
Collapse
|
42
|
The MicroRNA miR-155 Is Essential in Fibrosis. Noncoding RNA 2019; 5:ncrna5010023. [PMID: 30871125 PMCID: PMC6468348 DOI: 10.3390/ncrna5010023] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/04/2019] [Accepted: 03/07/2019] [Indexed: 02/07/2023] Open
Abstract
The function of microRNAs (miRNAs) during fibrosis and the downstream regulation of gene expression by these miRNAs have become of great biological interest. miR-155 is consistently upregulated in fibrotic disorders, and its ablation downregulates collagen synthesis. Studies demonstrate the integral role of miR-155 in fibrosis, as it mediates TGF-β1 signaling to drive collagen synthesis. In this review, we summarize recent findings on the association between miR-155 and fibrotic disorders. We discuss the cross-signaling between macrophages and fibroblasts that orchestrates the upregulation of collagen synthesis mediated by miR-155. As miR-155 is involved in the activation of the innate and adaptive immune systems, specific targeting of miR-155 in pathologic cells that make excessive collagen could be a viable option before the depletion of miR-155 becomes an attractive antifibrotic approach.
Collapse
|
43
|
The Fibrillin-1 RGD Integrin Binding Site Regulates Gene Expression and Cell Function through microRNAs. J Mol Biol 2019; 431:401-421. [DOI: 10.1016/j.jmb.2018.11.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/30/2018] [Accepted: 11/23/2018] [Indexed: 11/22/2022]
|
44
|
Wight TN. A role for proteoglycans in vascular disease. Matrix Biol 2018; 71-72:396-420. [PMID: 29499356 PMCID: PMC6110991 DOI: 10.1016/j.matbio.2018.02.019] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/22/2018] [Accepted: 02/23/2018] [Indexed: 12/15/2022]
Abstract
The content of proteoglycans (PGs) is low in the extracellular matrix (ECM) of vascular tissue, but increases dramatically in all phases of vascular disease. Early studies demonstrated that glycosaminoglycans (GAGs) including chondroitin sulfate (CS), dermatan sulfate (DS), keratan sulfate (KS) and heparan sulfate (HS) accumulate in vascular lesions in both humans and in animal models in areas of the vasculature that are susceptible to disease initiation (such as at branch points) and are frequently coincident with lipid deposits. Later studies showed the GAGs were covalently attached to specific types of core proteins that accumulate in vascular lesions. These molecules include versican (CSPG), biglycan and decorin (DS/CSPGs), lumican and fibromodulin (KSPGs) and perlecan (HSPG), although other types of PGs are present, but in lesser quantities. While the overall molecular design of these macromolecules is similar, there is tremendous structural diversity among the different PG families creating multiple forms that have selective roles in critical events that form the basis of vascular disease. PGs interact with a variety of different molecules involved in disease pathogenesis. For example, PGs bind and trap serum components that accumulate in vascular lesions such as lipoproteins, amyloid, calcium, and clotting factors. PGs interact with other ECM components and regulate, in part, ECM assembly and turnover. PGs interact with cells within the lesion and alter the phenotypes of both resident cells and cells that invade the lesion from the circulation. A number of therapeutic strategies have been developed to target specific PGs involved in key pathways that promote vascular disease. This review will provide a historical perspective of this field of research and then highlight some of the evidence that defines the involvement of PGs and their roles in the pathogenesis of vascular disease.
Collapse
Affiliation(s)
- Thomas N Wight
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA 98101, United States.
| |
Collapse
|
45
|
Kenagy RD, Kikuchi S, Evanko SP, Ruiter MS, Piola M, Longchamp A, Pesce M, Soncini M, Deglise S, Fiore GB, Haefliger JA, Schmidt TA, Majesky MW, Sobel M, Wight TN. Versican is differentially regulated in the adventitial and medial layers of human vein grafts. PLoS One 2018; 13:e0204045. [PMID: 30265729 PMCID: PMC6161854 DOI: 10.1371/journal.pone.0204045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/31/2018] [Indexed: 12/13/2022] Open
Abstract
Changes in extracellular matrix proteins may contribute significantly to the adaptation of vein grafts to the arterial circulation. We examined the production and distribution of versican and hyaluronan in intact human vein rings cultured ex vivo, veins perfused ex vivo, and cultured venous adventitial and smooth muscle cells. Immunohistochemistry revealed higher levels of versican in the intima/media compared to the adventitia, and no differences in hyaluronan. In the vasa vasorum, versican and hyaluronan associated with CD34+ progenitor cells. Culturing the vein rings for 14 days revealed increased versican immunostaining of 30–40% in all layers, with no changes in hyaluronan. Changes in versican accumulation appear to result from increased synthesis in the intima/media and decreased degradation in the adventitia as versican transcripts were increased in the intima/media, but unchanged in the adventitia, and versikine (the ADAMTS-mediated cleavage product of versican) was increased in the intima/media, but decreased in the adventitia. In perfused human veins, versican was specifically increased in the intima/media in the presence of venous pressure, but not with arterial pressure. Unexpectedly, cultured adventitial cells express and accumulate more versican and hyaluronan than smooth muscle cells. These data demonstrate a differential regulation of versican and hyaluronan in human venous adventitia vs. intima/media and suggest distinct functions for these extracellular matrix macromolecules in these venous wall compartments during the adaptive response of vein grafts to the arterial circulation.
Collapse
Affiliation(s)
- Richard D. Kenagy
- Center for Cardiovascular Biology, Institute for Stem Cells and Regenerative Medicine, and Department of Surgery, University of Washington, Seattle, WA, United States of America
- * E-mail:
| | - Shinsuke Kikuchi
- Department of Vascular Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Steve P. Evanko
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, United States of America
| | - Matthijs S. Ruiter
- Cardiovascular Tissue Engineering Unit—Centro Cardiologico Monzino, IRCCS, Via Parea, 4, Milan, Italy
| | - Marco Piola
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
| | - Alban Longchamp
- Department of Vascular Surgery, CHUV | Lausanne University Hospital, Lausanne, Switzerland
| | - Maurizio Pesce
- Cardiovascular Tissue Engineering Unit—Centro Cardiologico Monzino, IRCCS, Via Parea, 4, Milan, Italy
| | - Monica Soncini
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
| | - Sébastien Deglise
- Department of Vascular Surgery, CHUV | Lausanne University Hospital, Lausanne, Switzerland
| | - Gianfranco B. Fiore
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
| | | | - Tannin A. Schmidt
- Biomedical Engineering Department, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT, United States of America
| | - Mark W. Majesky
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, United States of America
| | - Michael Sobel
- Division of Vascular Surgery, VA Puget Sound Health Care System, University of Washington, Seattle, WA, United States of America
| | - Thomas N. Wight
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, United States of America
| |
Collapse
|
46
|
Maués JHDS, Moreira-Nunes CDFA, Pontes TB, Vieira PCM, Montenegro RC, Lamarão LM, Lima EM, Burbano RMR. Differential Expression Profile of MicroRNAs During Prolonged Storage of Platelet Concentrates As a Quality Measurement Tool in Blood Banks. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2018; 22:653-664. [PMID: 30260743 DOI: 10.1089/omi.2018.0126] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Platelet concentrate (PC) is a key blood component, which even in good storage conditions, susceptible to cellular damage over time. Hence, blood banks discard unused PC bags after 5 days of storage. Biomarkers of PC quality are therefore highly sought after in blood bank governance. We used the data (Gene Expression Omnibus: GSE61856) generated with next-generation sequencing to examine the expression profiles of microRNAs (miRNAs) from PCs that were stored for 6 days in a blood bank, that is, 1 day longer than is normally stored PC. We identified the 14 most differentially expressed miRNAs by comparing a control PC on the first day of storage with the PCs on each of the subsequent 5 days of storage from day 1 to 6. In all, we identified nine miRNAs with the downregulated profile (miR-145-5p, miR-150-5p, miR-183-5p, miR-26a-5p, miR-331-3p, miR-338-5p, miR-451a, miR-501-3p, and miR-99b-5p) and five upregulated miRNAs (miR-1304-3p, miR-411-5p, miR-432-5p, miR-668-3p, and miR-939-5p). These miRNAs were validated by real-time quantitative PCR in 100 PC units. As each PC unit is composed of platelets of five individuals, the validation was thus performed in 500 individuals (250 men and 250 women, comprised 18-40 years old adults). The data were analyzed with hierarchical clustering and principal component analysis, which revealed the variation of mean relative expression and the instability of miRNAs half-life on the fourth day of PC storage, which coincides with time of onset of platelet storage lesions. These new observations can usefully inform future decision-making and governance in blood banks concerning PC quality.
Collapse
Affiliation(s)
- Jersey Heitor da Silva Maués
- 1 Laboratory of Human Cytogenetics, Institute of Biological Sciences, Federal University of Pará , Belém, Brazil
| | - Caroline de Fátima Aquino Moreira-Nunes
- 1 Laboratory of Human Cytogenetics, Institute of Biological Sciences, Federal University of Pará , Belém, Brazil .,2 Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará , Fortaleza, Brazil
| | | | | | - Raquel Carvalho Montenegro
- 2 Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará , Fortaleza, Brazil
| | - Letícia Martins Lamarão
- 4 Laboratory of Genetics and Molecular Biology, Foundation Center of Hemotherapy and Hematology of Para (HEMOPA) , Belém, Brazil
| | - Eleonidas Moura Lima
- 5 Laboratory of Structural Molecular Biology and Oncogenetics-LBMEO, Department of Molecular Biology, Federal University of Paraíba , Joao Pessoa, Brazil
| | | |
Collapse
|
47
|
Dewanjee S, Bhattacharjee N. MicroRNA: A new generation therapeutic target in diabetic nephropathy. Biochem Pharmacol 2018; 155:32-47. [DOI: 10.1016/j.bcp.2018.06.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/20/2018] [Indexed: 12/11/2022]
|
48
|
Kabekkodu SP, Shukla V, Varghese VK, D' Souza J, Chakrabarty S, Satyamoorthy K. Clustered miRNAs and their role in biological functions and diseases. Biol Rev Camb Philos Soc 2018; 93:1955-1986. [PMID: 29797774 DOI: 10.1111/brv.12428] [Citation(s) in RCA: 228] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 04/20/2018] [Accepted: 04/26/2018] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are endogenous, small non-coding RNAs known to regulate expression of protein-coding genes. A large proportion of miRNAs are highly conserved, localized as clusters in the genome, transcribed together from physically adjacent miRNAs and show similar expression profiles. Since a single miRNA can target multiple genes and miRNA clusters contain multiple miRNAs, it is important to understand their regulation, effects and various biological functions. Like protein-coding genes, miRNA clusters are also regulated by genetic and epigenetic events. These clusters can potentially regulate every aspect of cellular function including growth, proliferation, differentiation, development, metabolism, infection, immunity, cell death, organellar biogenesis, messenger signalling, DNA repair and self-renewal, among others. Dysregulation of miRNA clusters leading to altered biological functions is key to the pathogenesis of many diseases including carcinogenesis. Here, we review recent advances in miRNA cluster research and discuss their regulation and biological functions in pathological conditions.
Collapse
Affiliation(s)
- Shama P Kabekkodu
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Vaibhav Shukla
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Vinay K Varghese
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Jeevitha D' Souza
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| |
Collapse
|
49
|
Zhang JJ, Yano H, Sasaki T, Matsuo N, Yoshioka H. The pro-α1(V) collagen gene (Col5a1) is coordinately regulated by miR-29b with core promoter in cultured cells. Connect Tissue Res 2018; 59:263-273. [PMID: 28829698 DOI: 10.1080/03008207.2017.1370465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
AIMS Col5a1 encodes the α1 chain of type V collagen, a quantitatively minor fibrillar collagen that is critical for the formation and function of the organs in the body. MicroRNAs (miRNAs) are small noncoding RNAs that posttranscriptionally regulate biological functions by binding to the 3'-untranslated region (3'UTR) of specific target mRNA. In this study, we investigated the posttranscriptional regulation of miRNAs on the Col5a1 gene expression. MATERIALS AND METHODS We cultured osteoblasts and fibroblasts of cell lines. To examine the 3'UTR activity of the Col5a1 gene, chimeric plasmids constructs containing the core promoter and 3'UTR of Col5a1 were generated and luciferase assays were performed. We also evaluated the role of miRNA using constructs that were mutated at the putative binding sites of miRNA. In addition, we evaluated the endogenous mRNA and protein, and luciferase activity of the Col5a1 gene after miRNA overexpression/knockdown or CRISPR/Cas9-induced knockout. RESULTS The luciferase assay showed a decreased activity of the 3'UTR of Col5a1 gene. However, the expression of the mutant constructs of miRNA-binding sites was restored. The overexpression of miRNA inhibited the Col5a1 gene not only with regard to the luciferase activity and endogenous mRNA but also at the protein level. In contrast, the RNAi-mediated knockdown or CRISPR/Cas9 system increased the expression of the Col5a1 gene. CONCLUSION These results provided evidence that miR-29b regulates the Col5a1 gene expression through binding to the 3'UTR, which might play an important role in the pathogenesis of disease related to bone metabolism and fibrogenic reactions.
Collapse
Affiliation(s)
- Juan Juan Zhang
- a Department of Matrix Medicine, Faculty of Medicine , Oita University , Oita , Japan
| | - Hiroyuki Yano
- b Research Promotion Institute , Oita University , Oita , Japan
| | - Takako Sasaki
- a Department of Matrix Medicine, Faculty of Medicine , Oita University , Oita , Japan
| | - Noritaka Matsuo
- a Department of Matrix Medicine, Faculty of Medicine , Oita University , Oita , Japan
| | - Hidekatsu Yoshioka
- a Department of Matrix Medicine, Faculty of Medicine , Oita University , Oita , Japan
| |
Collapse
|
50
|
Piperigkou Z, Götte M, Theocharis AD, Karamanos NK. Insights into the key roles of epigenetics in matrix macromolecules-associated wound healing. Adv Drug Deliv Rev 2018; 129:16-36. [PMID: 29079535 DOI: 10.1016/j.addr.2017.10.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/14/2017] [Accepted: 10/20/2017] [Indexed: 02/08/2023]
Abstract
Extracellular matrix (ECM) is a dynamic network of macromolecules, playing a regulatory role in cell functions, tissue regeneration and remodeling. Wound healing is a tissue repair process necessary for the maintenance of the functionality of tissues and organs. This highly orchestrated process is divided into four temporally overlapping phases, including hemostasis, inflammation, proliferation and tissue remodeling. The dynamic interplay between ECM and resident cells exerts its critical role in many aspects of wound healing, including cell proliferation, migration, differentiation, survival, matrix degradation and biosynthesis. Several epigenetic regulatory factors, such as the endogenous non-coding microRNAs (miRNAs), are the drivers of the wound healing response. microRNAs have pivotal roles in regulating ECM composition during wound healing and dermal regeneration. Their expression is associated with the distinct phases of wound healing and they serve as target biomarkers and targets for systematic regulation of wound repair. In this article we critically present the importance of epigenetics with particular emphasis on miRNAs regulating ECM components (i.e. glycoproteins, proteoglycans and matrix proteases) that are key players in wound healing. The clinical relevance of miRNA targeting as well as the delivery strategies designed for clinical applications are also presented and discussed.
Collapse
|