1
|
Zheng H, Bian M, Zhou Z, Shi Y, Shen M, Wang M, Jiang W, Shao C, Tang R, Pan H, He J, Fu B, Wu Z. Small Charged Molecule-Mediated Fibrillar Mineralization: Implications for Ectopic Calcification. ACS NANO 2024; 18:23537-23552. [PMID: 39133543 DOI: 10.1021/acsnano.4c07378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Numerous small biomolecules exist in the human body and play roles in various biological and pathological processes. Small molecules are believed not to induce intrafibrillar mineralization alone. They are required to work in synergy with noncollagenous proteins (NCPs) and their analogs, e.g. polyelectrolytes, for inducing intrafibrillar mineralization, as the polymer-induced liquid-like precursor (PILP) process has been well-documented. In this study, we demonstrate that small charged molecules alone, such as sodium tripolyphosphate, sodium citrate, and (3-aminopropyl) triethoxysilane, could directly mediate fibrillar mineralization. We propose that small charged molecules might be immobilized in collagen fibrils to form the polyelectrolyte-like collagen complex (PLCC) via hydrogen bonds. The PLCC could attract CaP precursors along with calcium and phosphate ions for inducing mineralization without any polyelectrolyte additives. The small charged molecule-mediated mineralization process was evidenced by Cryo-TEM, AFM, SEM, FTIR, ICP-OES, etc., as the PLCC exhibited both characteristic features of collagen fibrils and polyelectrolyte with increased charges, hydrophilicity, and density. This might hint at one mechanism of pathological biomineralization, especially for understanding the ectopic calcification process.
Collapse
Affiliation(s)
- Haiyan Zheng
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang 310000, China
| | - Mengyao Bian
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang 310000, China
| | - Zihuai Zhou
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang 310000, China
| | - Ying Shi
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang 310000, China
| | - Minjian Shen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang 310000, China
| | - Manting Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang 310000, China
| | - Wenxiang Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang 310000, China
| | - Changyu Shao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang 310000, China
| | - Ruikang Tang
- Center for Biomaterials and Biopathways, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Haihua Pan
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Jianxiang He
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang 310000, China
| | - Baiping Fu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang 310000, China
| | - Zhifang Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang 310000, China
| |
Collapse
|
2
|
Chen J, Birchall M, MacRobert AJ, Song W. Liquid Crystalline Hydroxyapatite Nanorods Orchestrate Hierarchical Bone-Like Mineralization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2310024. [PMID: 39177175 DOI: 10.1002/smll.202310024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 08/03/2024] [Indexed: 08/24/2024]
Abstract
Bone matrix exhibits exceptional mechanical properties due to its unique nanocomposite structure of type I collagen fibrils and hydroxyapatite (HAp) nanoparticles in hierarchical liquid crystalline (LC) order. However, the regeneration mechanism of this LC structure is elusive. This study investigates the role of the LC structure of HAp nanorods in guiding aligned mineralization and its underlying molecular mechanism. A unidirectionally oriented LC phase of HAp nanorods is developed through engineering-assisted self-assembling. This is used to study the growth direction of long-range aligned extracellular matrix (ECM) and calcium deposit formation during the osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. It is found that 2 key regulatory genes, COL1A1 and COL4A6, lead to the formation of aligned ECM. Activation of the PI3K-Akt pathway enhances osteogenesis and promotes ordered calcium deposits. This study provides evidence for elucidating the mechanism of LC-induced ordered calcium deposition at hierarchical levels spanning from the molecular to macro-scale, as well as the switch from ordered to disordered mineralization. These findings illuminate bone regeneration, contribute to the development of biomimetic artificial bone with long-range ordered structures, and suggest a basis for therapeutic targeting of microstructure-affected bone disorders and the broader field of cell-ECM interactions.
Collapse
Affiliation(s)
- Jishizhan Chen
- UCL Centre for Biomaterials in Surgical Reconstruction and Regeneration, Department of Surgical Biotechnology, Division of Surgery & Interventional Science, University College London, Rowland Hill Street, London, NW3 2PF, UK
| | - Martin Birchall
- UCL Ear Institute, University College London, 332 Grays Inn Road, London, WC1X 8EE, UK
- Royal National Ear Nose and Throat and Eastman Dental Hospitals, University College London Hospitals, 47-49 Huntley Street, London, WC1E 6DG, UK
| | - Alexander J MacRobert
- UCL Centre for Biomaterials in Surgical Reconstruction and Regeneration, Department of Surgical Biotechnology, Division of Surgery & Interventional Science, University College London, Rowland Hill Street, London, NW3 2PF, UK
| | - Wenhui Song
- UCL Centre for Biomaterials in Surgical Reconstruction and Regeneration, Department of Surgical Biotechnology, Division of Surgery & Interventional Science, University College London, Rowland Hill Street, London, NW3 2PF, UK
| |
Collapse
|
3
|
Patoine K, Ta K, Gilbert A, Percuoco M, Gerdon AE. Equilibrium interactions of biomimetic DNA aptamers produce intrafibrillar calcium phosphate mineralization of collagen. Acta Biomater 2024; 179:234-242. [PMID: 38554888 DOI: 10.1016/j.actbio.2024.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 04/02/2024]
Abstract
Native and biomimetic DNA structures have been demonstrated to impact materials synthesis under a variety of conditions but have only just begun to be explored in this role compared to other biopolymers such as peptides, proteins, polysaccharides, and glycopolymers. One selected DNA aptamer has been explored in calcium phosphate and calcium carbonate mineralization, demonstrating sequence-dependent control of kinetics, morphology, and crystallinity. This aptamer is here applied to a biologically-relevant bone model system that uses collagen hydrogels. In the presence of the aptamer, intrafibrillar collagen mineralization is observed compared to negative controls and a positive control using well-studied poly-aspartic acid. The mechanism of interaction is explored through affinity measurements, kinetics of calcium uptake, and kinetics of aptamer uptake into the forming mineral. There is a marked difference observed between the selected aptamer containing a G-quadruplex secondary structure compared to a control sequence with no G-quadruplex. It is hypothesized that the equilibrium interaction of the aptamer with calcium-phosphate precursors and with the collagen itself leads to slow kinetic mineral formation and a morphology appropriate to bone. This points to new uses for DNA aptamers in biologically-relevant mineralization systems and the possibility of future biomedical applications. STATEMENT OF SIGNIFICANCE: Collagen is the protein structural component that mineralizes with calcium phosphate to form durable bone. Crystalline calcium phosphate must be infused throughout the collagen fiber structure to produce a strong material. This process is assisted by soluble proteins that interact with both calcium phosphate precursors and the collagen protein and has been proposed to follow a polymer-induce liquid precursor (PILP) model. Further understanding of this model and control of the process through synthetic, biomimetic molecules could have significant advantages in biomedical, restorative procedures. For the first time, synthetic DNA aptamers with specific secondary structures are here shown to influence and direct collagen mineralization. The mechanism of this process has been studied to demonstrate an important equilibrium between the DNA aptamer, calcium phosphate precursors, and collagen.
Collapse
Affiliation(s)
- Kassidy Patoine
- Department of Chemistry & Physics, Emmanuel College, 400 Fenway, Boston, MA 02115, United States
| | - Kristy Ta
- Department of Chemistry & Physics, Emmanuel College, 400 Fenway, Boston, MA 02115, United States
| | - Amanda Gilbert
- Department of Chemistry & Physics, Emmanuel College, 400 Fenway, Boston, MA 02115, United States
| | - Marielle Percuoco
- Department of Chemistry & Physics, Emmanuel College, 400 Fenway, Boston, MA 02115, United States
| | - Aren E Gerdon
- Department of Chemistry & Physics, Emmanuel College, 400 Fenway, Boston, MA 02115, United States.
| |
Collapse
|
4
|
Chen J. Current advances in anisotropic structures for enhanced osteogenesis. Colloids Surf B Biointerfaces 2023; 231:113566. [PMID: 37797464 DOI: 10.1016/j.colsurfb.2023.113566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023]
Abstract
Bone defects are a challenge to healthcare systems, as the aging population experiences an increase in bone defects. Despite the development of biomaterials for bone fillers and scaffolds, there is still an unmet need for a bone-mimetic material. Cortical bone is highly anisotropic and displays a biological liquid crystalline (LC) arrangement, giving it exceptional mechanical properties and a distinctive microenvironment. However, the biofunctions, cell-tissue interactions, and molecular mechanisms of cortical bone anisotropic structure are not well understood. Incorporating anisotropic structures in bone-facilitated scaffolds has been recognised as essential for better outcomes. Various approaches have been used to create anisotropic micro/nanostructures, but biomimetic bone anisotropic structures are still in the early stages of development. Most scaffolds lack features at the nanoscale, and there is no comprehensive evaluation of molecular mechanisms or characterisation of calcium secretion. This manuscript provides a review of the latest development of anisotropic designs for osteogenesis and discusses current findings on cell-anisotropic structure interactions. It also emphasises the need for further research. Filling knowledge gaps will enable the fabrication of scaffolds for improved and more controllable bone regeneration.
Collapse
Affiliation(s)
- Jishizhan Chen
- UCL Mechanical Engineering, University College London, WC1E 7JE, UK.
| |
Collapse
|
5
|
Yang T, Hao Z, Wu Z, Xu B, Liu J, Fan L, Wang Q, Li Y, Li D, Tang S, Liu C, Li W, Teng W. An engineered lamellar bone mimicking full-scale hierarchical architecture for bone regeneration. Bioact Mater 2023; 27:181-199. [PMID: 37091064 PMCID: PMC10120318 DOI: 10.1016/j.bioactmat.2023.03.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/20/2023] [Accepted: 03/30/2023] [Indexed: 04/25/2023] Open
Abstract
Lamellar bone, compactly and ingeniously organized in the hierarchical pattern with 6 ordered scales, is the structural motif of mature bone. Each hierarchical scale exerts an essential role in determining physiological behavior and osteogenic bioactivity of bone. Engineering lamellar bone with full-scale hierarchy remains a longstanding challenge. Herein, using bioskiving and mineralization, we attempt to engineer compact constructs resembling full-scale hierarchy of lamellar bone. Through systematically investigating the effect of mineralization on physicochemical properties and bioactivities of multi-sheeted collagen matrix fabricated by bioskiving, the hierarchical mimicry and hierarchy-property relationship are elucidated. With prolongation of mineralization, hierarchical mimicry and osteogenic bioactivity of constructs are performed in a bidirectional manner, i.e. first rising and then descending, which is supposed to be related with transformation of mineralization mechanism from nonclassical to classical crystallization. Construct mineralized 9 days can accurately mimic each hierarchical scale and efficiently promote osteogenesis. Bioinformatic analysis further reveals that this construct potently activates integrin α5-PI3K/AKT signaling pathway through mechanical and biophysical cues, and thereby repairing critical-sized bone defect. The present study provides a bioinspired strategy for completely resembling complex hierarchy of compact mineralized tissue, and offers a critical research model for in-depth studying the structure-function relationship of bone.
Collapse
Affiliation(s)
- Tao Yang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, No.56, Lingyuan West Road, Yuexiu District, Guangzhou, 510055, China
| | - Zhichao Hao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, No.56, Lingyuan West Road, Yuexiu District, Guangzhou, 510055, China
| | - Zhenzhen Wu
- Department of Periodontology and Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Binxin Xu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, No.56, Lingyuan West Road, Yuexiu District, Guangzhou, 510055, China
| | - Jiangchen Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, No.56, Lingyuan West Road, Yuexiu District, Guangzhou, 510055, China
| | - Le Fan
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, No.56, Lingyuan West Road, Yuexiu District, Guangzhou, 510055, China
| | - Qinmei Wang
- Laboratory of Biomaterials, Key Laboratory on Assisted Circulation, Ministry of Health, Cardiovascular Division, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanshan Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, No.56, Lingyuan West Road, Yuexiu District, Guangzhou, 510055, China
| | - Dongying Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, No.56, Lingyuan West Road, Yuexiu District, Guangzhou, 510055, China
| | - Sangzhu Tang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, No.56, Lingyuan West Road, Yuexiu District, Guangzhou, 510055, China
| | - Chuanzi Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, No.56, Lingyuan West Road, Yuexiu District, Guangzhou, 510055, China
| | - Weichang Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, No.56, Lingyuan West Road, Yuexiu District, Guangzhou, 510055, China
- Corresponding author.
| | - Wei Teng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, No.56, Lingyuan West Road, Yuexiu District, Guangzhou, 510055, China
- Corresponding author.
| |
Collapse
|
6
|
Elias J, Matheson BA, Gower L. Influence of Crosslinking Methods on Biomimetically Mineralized Collagen Matrices for Bone-like Biomaterials. Polymers (Basel) 2023; 15:polym15091981. [PMID: 37177129 PMCID: PMC10180878 DOI: 10.3390/polym15091981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/11/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
To assist in bone defect repair, ideal bone regeneration scaffolds should exhibit good osteoconductivity and osteoinductivity, but for load-bearing applications, they should also have mechanical properties that emulate those of native bone. The use of biomimetic processing methods for the mineralization of collagen fibrils has resulted in interpenetrating composites that mimic the nanostructure of native bone; however, closely matching the mechanical properties of bone on a larger scale is something that is still yet to be achieved. In this study, four different collagen crosslinking methods (EDC-NHS, quercetin, methacrylated collagen, and riboflavin) are compared and combined with biomimetic mineralization via the polymer-induced liquid-precursor (PILP) process, to obtain bone-like collagen-hydroxyapatite composites. Densified fibrillar collagen scaffolds were fabricated, crosslinked, and biomimetically mineralized using the PILP process, and the effect of each crosslinking method on the degree of mineralization, tensile strength, and modulus of the mineralized scaffolds were analyzed and compared. Improved modulus and tensile strength values were obtained using EDC-NHS and riboflavin crosslinking methods, while quercetin and methacrylated collagen resulted in little to no increase in mechanical properties. Decreased mineral contents appear to be necessary for retaining tensile strength, suggesting that mineral content should be kept below a percolation threshold to optimize properties of these interpenetrating nanocomposites. This work supports the premise that a combination of collagen crosslinking and biomimetic mineralization methods may provide solutions for fabricating robust bone-like composites on a larger scale.
Collapse
Affiliation(s)
- Jeremy Elias
- Department of Materials Science & Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Bobbi-Ann Matheson
- Department of Materials Science & Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Laurie Gower
- Department of Materials Science & Engineering, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
7
|
Niu Y, Du T, Liu Y. Biomechanical Characteristics and Analysis Approaches of Bone and Bone Substitute Materials. J Funct Biomater 2023; 14:jfb14040212. [PMID: 37103302 PMCID: PMC10146666 DOI: 10.3390/jfb14040212] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/24/2023] [Accepted: 04/04/2023] [Indexed: 04/28/2023] Open
Abstract
Bone has a special structure that is both stiff and elastic, and the composition of bone confers it with an exceptional mechanical property. However, bone substitute materials that are made of the same hydroxyapatite (HA) and collagen do not offer the same mechanical properties. It is important for bionic bone preparation to understand the structure of bone and the mineralization process and factors. In this paper, the research on the mineralization of collagen is reviewed in terms of the mechanical properties in recent years. Firstly, the structure and mechanical properties of bone are analyzed, and the differences of bone in different parts are described. Then, different scaffolds for bone repair are suggested considering bone repair sites. Mineralized collagen seems to be a better option for new composite scaffolds. Last, the paper introduces the most common method to prepare mineralized collagen and summarizes the factors influencing collagen mineralization and methods to analyze its mechanical properties. In conclusion, mineralized collagen is thought to be an ideal bone substitute material because it promotes faster development. Among the factors that promote collagen mineralization, more attention should be given to the mechanical loading factors of bone.
Collapse
Affiliation(s)
- Yumiao Niu
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Tianming Du
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Youjun Liu
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
8
|
Griffanti G, McKee MD, Nazhat SN. Mineralization of Bone Extracellular Matrix-like Scaffolds Fabricated as Silk Sericin-Functionalized Dense Collagen–Fibrin Hybrid Hydrogels. Pharmaceutics 2023; 15:pharmaceutics15041087. [PMID: 37111573 PMCID: PMC10142947 DOI: 10.3390/pharmaceutics15041087] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/31/2023] Open
Abstract
The design of hydrogels that combine both the biochemical cues needed to direct seeded cellular functions and mineralization to provide the structural and mechanical properties approaching those of mineralized native bone extracellular matrix (ECM) represents a significant challenge in bone tissue engineering. While fibrous hydrogels constituting of collagen or fibrin (and their hybrids) can be considered as scaffolds that mimic to some degree native bone ECM, their insufficient mechanical properties limit their application. In the present study, an automated gel aspiration–ejection (automated GAE) method was used to generate collagen–fibrin hybrid gel scaffolds with micro-architectures and mechanical properties approaching those of native bone ECM. Moreover, the functionalization of these hybrid scaffolds with negatively charged silk sericin accelerated their mineralization under acellular conditions in simulated body fluid and modulated the proliferation and osteoblastic differentiation of seeded MC3T3-E1 pre-osteoblastic cells. In the latter case, alkaline phosphatase activity measurements indicated that the hybrid gel scaffolds with seeded cells showed accelerated osteoblastic differentiation, which in turn led to increased matrix mineralization. In summary, the design of dense collagen–fibrin hybrid gels through an automated GAE process can provide a route to tailoring specific biochemical and mechanical properties to different types of bone ECM-like scaffolds, and can provide a model to better understand cell–matrix interactions in vitro for bioengineering purposes.
Collapse
Affiliation(s)
- Gabriele Griffanti
- Department of Mining and Materials Engineering, McGill University, Montréal, QC H3A 0C5, Canada;
| | - Marc D. McKee
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montréal, QC H3A 0C7, Canada;
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC H3A 0C7, Canada
| | - Showan N. Nazhat
- Department of Mining and Materials Engineering, McGill University, Montréal, QC H3A 0C5, Canada;
- Correspondence: ; Tel.: +514-398-5524; Fax: 514-398-4492
| |
Collapse
|
9
|
Ye Z, Qi Y, Zhang A, Karels BJ, Aparicio C. Biomimetic Mineralization of Fibrillar Collagen with Strontium-doped Hydroxyapatite. ACS Macro Lett 2023; 12:408-414. [PMID: 36897173 DOI: 10.1021/acsmacrolett.3c00039] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Fibrillar collagen structures mineralized with hydroxyapatite using the polymer-induced liquid precursor (PILP) process have been explored as synthetic models for studying biomineralization of human hard tissues and have also been applied in the fabrication of scaffolds for hard tissue regeneration. Strontium has important biological functions in bone and has been used as a therapeutic agent for treating diseases that result in bone defects, such as osteoporosis. Here, we developed a strategy to mineralize collagen with Sr-doped hydroxyapatite (HA) using the PILP process. Doping with Sr altered the crystal lattice of HA and inhibited the degree of mineralization in a concentration-dependent manner, but did not affect the unique formation of intrafibrillar minerals using the PILP. The Sr-doped HA nanocrystals were aligned in the [001] direction but did not recapitulate the parallel alignment of the c-axis of pure Ca HA in relation to the collagen fiber long axis. The mimicry of doping Sr in PILP-mineralized collagen can help understand the doping of Sr in natural hard tissues and during treatment. The fibrillary mineralized collagen with Sr-doped HA will be explored in future work as biomimetic and bioactive scaffolds for regeneration of bone and tooth dentin.
Collapse
Affiliation(s)
- Zhou Ye
- MDRCBB, Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, S.A.R., China
| | - Yipin Qi
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510000, China
| | - Anqi Zhang
- MDRCBB, Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Brandon J Karels
- MDRCBB, Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Conrado Aparicio
- MDRCBB, Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Division of Basic and Translational Research, Faculty of Odontology, UIC Barcelona - Universitat Internacional de Catalunya, Sant Cugat del Vallès, 08195, Spain
- Institute for Bioengineering of Catalonia (IBEC), Barcelona, 08028, Spain
| |
Collapse
|
10
|
Mao LB, Meng YF, Meng XS, Yang B, Yang YL, Lu YJ, Yang ZY, Shang LM, Yu SH. Matrix-Directed Mineralization for Bulk Structural Materials. J Am Chem Soc 2022; 144:18175-18194. [PMID: 36162119 DOI: 10.1021/jacs.2c07296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mineral-based bulk structural materials (MBSMs) are known for their long history and extensive range of usage. The inherent brittleness of minerals poses a major problem to the performance of MBSMs. To overcome this problem, design principles have been extracted from natural biominerals, in which the extraordinary mechanical performance is achieved via the hierarchical organization of minerals and organics. Nevertheless, precise and efficient fabrication of MBSMs with bioinspired hierarchical structures under mild conditions has long been a big challenge. This Perspective provides a panoramic view of an emerging fabrication strategy, matrix-directed mineralization, which imitates the in vivo growth of some biominerals. The advantages of the strategy are revealed by comparatively analyzing the conventional fabrication techniques of artificial hierarchically structured MBSMs and the biomineral growth processes. By introducing recent advances, we demonstrate that this strategy can be used to fabricate artificial MBSMs with hierarchical structures. Particular attention is paid to the mass transport and the precursors that are involved in the mineralization process. We hope this Perspective can provide some inspiring viewpoints on the importance of biomimetic mineralization in material fabrication and thereby spur the biomimetic fabrication of high-performance MBSMs.
Collapse
Affiliation(s)
- Li-Bo Mao
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale; Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China.,Institute of Advanced Technology, University of Science and Technology of China, Hefei 230026, China.,Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei 230026, China
| | - Yu-Feng Meng
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale; Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Xiang-Sen Meng
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale; Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Bo Yang
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale; Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Yu-Lu Yang
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale; Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Yu-Jie Lu
- Institute of Advanced Technology, University of Science and Technology of China, Hefei 230026, China
| | - Zhong-Yuan Yang
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale; Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Li-Mei Shang
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale; Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Shu-Hong Yu
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale; Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China.,Institute of Advanced Technology, University of Science and Technology of China, Hefei 230026, China.,Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
11
|
Luo H, Basabrain MS, Zhong J, Liu J, Zhang Y, Qi Y, Zou T, Zhang C. Neuroregenerative potential of SCAP-derived neuronal cell spheroids regulated by SCAPs under various microenvironments in a pulp-on-chip system. J Endod 2022. [DOI: 10.1016/j.joen.2022.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
12
|
Zhang S, Luo X, Guo C, Huang K, Ding S, Li L, Zhou C, Li H. Tissue engineered bone via templated hBMSCs mineralization and its application for bone repairing. BIOMATERIALS ADVANCES 2022; 139:212937. [PMID: 35882130 DOI: 10.1016/j.bioadv.2022.212937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/28/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
To develop bone implants, a novel tissue-engineered bone was constructed via templated human bone mesenchymal stem cells (hBMSCs) mineralization. Firstly, an osteoid-like template (Os-template) with aligned collagen fibers was prepared and followed by seeding hBMSCs to mimic the process of bone formation. After being cultured over weeks, the cells produced collagen fibers in an orderly aligned osteomorphic fashion. Further, a novel tissue-engineered bone with mineralized collagen fiber (mOs-ECM) was subsequently achieved after cell mineralization, showing a high degree of osteomimicry in terms of both composition and structure. When applied to the rat cranial bone defect model, the mOs-ECM significantly promoted the new bone formation and fused with the host bone. The study indicated that microscopic cell mineralization could be guided by artificially designed templates and successfully fabricated a macroscopic implant with a pronounced effect on bone repairing.
Collapse
Affiliation(s)
- Shuyun Zhang
- College of Chemistry and Materials Science, Jinan University, No. 601, West Huangpu Avenue, Guangzhou, Guangdong 510632, PR China; College of Life Science and Technology, Jinan University, No. 601, West Huangpu Avenue, Guangzhou, Guangdong 510632, PR China
| | - Xueshi Luo
- College of Chemistry and Materials Science, Jinan University, No. 601, West Huangpu Avenue, Guangzhou, Guangdong 510632, PR China; The First Affiliated Hospital of Jinan University, No. 613, West Huangpu Avenue, Guangzhou, Guangdong 510632, PR China
| | - Chuang Guo
- College of Chemistry and Materials Science, Jinan University, No. 601, West Huangpu Avenue, Guangzhou, Guangdong 510632, PR China
| | - Ke Huang
- College of Chemistry and Materials Science, Jinan University, No. 601, West Huangpu Avenue, Guangzhou, Guangdong 510632, PR China
| | - Shan Ding
- College of Chemistry and Materials Science, Jinan University, No. 601, West Huangpu Avenue, Guangzhou, Guangdong 510632, PR China; Engineering Research Center of Artificial Organs and Materials, Jinan University, Guangzhou 510632, PR China
| | - Lihua Li
- College of Chemistry and Materials Science, Jinan University, No. 601, West Huangpu Avenue, Guangzhou, Guangdong 510632, PR China; Engineering Research Center of Artificial Organs and Materials, Jinan University, Guangzhou 510632, PR China.
| | - Changren Zhou
- College of Chemistry and Materials Science, Jinan University, No. 601, West Huangpu Avenue, Guangzhou, Guangdong 510632, PR China; Engineering Research Center of Artificial Organs and Materials, Jinan University, Guangzhou 510632, PR China
| | - Hong Li
- College of Chemistry and Materials Science, Jinan University, No. 601, West Huangpu Avenue, Guangzhou, Guangdong 510632, PR China; Engineering Research Center of Artificial Organs and Materials, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
13
|
Saxena N, Mizels J, Cremer MA, Guarnizo V, Rodriguez DE, Gower LB. Comparison of Synthetic vs. Biogenic Polymeric Process-Directing Agents for Intrafibrillar Mineralization of Collagen. Polymers (Basel) 2022; 14:polym14040775. [PMID: 35215688 PMCID: PMC8879695 DOI: 10.3390/polym14040775] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 12/10/2022] Open
Abstract
With the aging population, there is a growing need for mineralized tissue restoration and synthetic bone substitutes. Previous studies have shown that a polymer-induced liquid-precursor (PILP) process can successfully mineralize collagen substrates to achieve compositions found in native bone and dentin. This process also leads to intrafibrillar apatitic crystals with their [001] axes aligned roughly parallel to the long axis of the collagen fibril, emulating the nanostructural organization found in native bone and dentin. When demineralized bovine bone was remineralized via the PILP process using osteopontin (OPN), the samples were able to activate mouse marrow-derived osteoclasts to similar levels to those of native bone, suggesting a means for fabricating bioactive bone substitutes that could trigger remodeling through the native bone multicellular unit (BMU). In order to determine if OPN derived from bovine milk could be a cost-effective process-directing agent, the mineralization of type I collagen scaffolds using this protein was compared to the benchmark polypeptide of polyaspartic acid (sodium salt; pAsp). In this set of experiments, we found that OPN led to much faster and more uniform mineralization when compared with pAsp, making it a cheaper and commercially attractive alternative for mineralized tissue restorations.
Collapse
Affiliation(s)
- Neha Saxena
- Department of Materials Science & Engineering, University of Florida, Gainesville, FL 32611, USA; (N.S.); (J.M.); (M.A.C.); (V.G.); (D.E.R.)
- Bio-Therapeutics Drug Product Development, Janssen Pharmaceuticals, Inc., Malvern, PA 19355, USA
| | - Joshua Mizels
- Department of Materials Science & Engineering, University of Florida, Gainesville, FL 32611, USA; (N.S.); (J.M.); (M.A.C.); (V.G.); (D.E.R.)
- Department of Orthopaedic Surgery, University of Utah, Salt Lake City, UT 84112, USA
| | - Maegan A. Cremer
- Department of Materials Science & Engineering, University of Florida, Gainesville, FL 32611, USA; (N.S.); (J.M.); (M.A.C.); (V.G.); (D.E.R.)
- College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Vanessa Guarnizo
- Department of Materials Science & Engineering, University of Florida, Gainesville, FL 32611, USA; (N.S.); (J.M.); (M.A.C.); (V.G.); (D.E.R.)
- Quality Engineering, Medtronic ENT, Jacksonville, FL 32611, USA
| | - Douglas E. Rodriguez
- Department of Materials Science & Engineering, University of Florida, Gainesville, FL 32611, USA; (N.S.); (J.M.); (M.A.C.); (V.G.); (D.E.R.)
- R&D, Novabone Products LLC, Alachua, FL 32611, USA
| | - Laurie B. Gower
- Department of Materials Science & Engineering, University of Florida, Gainesville, FL 32611, USA; (N.S.); (J.M.); (M.A.C.); (V.G.); (D.E.R.)
- Correspondence:
| |
Collapse
|
14
|
Qin D, He Z, Li P, Zhang S. Liquid-Liquid Phase Separation in Nucleation Process of Biomineralization. Front Chem 2022; 10:834503. [PMID: 35186885 PMCID: PMC8854647 DOI: 10.3389/fchem.2022.834503] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/14/2022] [Indexed: 12/21/2022] Open
Abstract
Biomineralization is a typical interdisciplinary subject attracting biologists, chemists, and geologists to figure out its potential mechanism. A mounting number of studies have revealed that the classical nucleation theory is not suitable for all nucleation process of biominerals, and phase-separated structures such as polymer-induced liquid precursors (PILPs) play essential roles in the non-classical nucleation processes. These structures are able to play diverse roles biologically or pathologically, and could also give inspiring clues to bionic applications. However, a lot of confusion and dispute occurred due to the intricacy and interdisciplinary nature of liquid precursors. Researchers in different fields may have different opinions because the terminology and current state of understanding is not common knowledge. As a result, our team reviewed the most recent articles focusing on the nucleation processes of various biominerals to clarify the state-of-the-art understanding of some essential concepts and guide the newcomers to enter this intricate but charming field.
Collapse
Affiliation(s)
| | | | - Peng Li
- *Correspondence: Peng Li, ; Shutian Zhang,
| | | |
Collapse
|
15
|
Gower L, Elias J. Colloid assembly and transformation (CAT): The relationship of PILP to biomineralization. J Struct Biol X 2022; 6:100059. [PMID: 35036905 PMCID: PMC8749173 DOI: 10.1016/j.yjsbx.2021.100059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/16/2021] [Accepted: 12/18/2021] [Indexed: 11/16/2022] Open
Abstract
Comparative analysis of biominerals to PILP minerals. Role of intrinsically disordered proteins in modulating biomineralization. Discussion on the viscoelastic nature of the PILP phase and biominerals. New pathway terminology proposed- Colloid Assembly & Transformation (CAT).
The field of biomineralization has undergone a revolution in the past 25 years, which paralleled the discovery by Gower of a polymer-induced liquid-precursor (PILP) mineralization process. She proposed this in vitro model system might be useful for studying the role biopolymers play in biomineralization; however, the ramifications of this pivotal discovery were slow to be recognized. This was presumably because it utilized simple polypeptide additives, and at that time it was not recognized that the charged proteins intimately associated with biominerals are often intrinsically disordered proteins (IDPs). Over the years, many enigmatic biomineral features have been emulated with this model system, too many to be mere coincidence. Yet the PILP system continues to be underacknowledged, probably because of its namesake, which indicates a “liquid precursor”, while we now know the phase appears to have viscoelastic character. Another factor is the confusing semantics that arose from the discovery of multiple “non-classical crystallization” pathways. This review suggests a more relevant terminology for the polymer-modulated reactions is “colloid assembly and transformation (CAT)”, which we believe more accurately captures the key stages involved in both biomineralization and the PILP process. The PILP model system has helped to decipher the key role that biopolymers, namely the IDPs, play in modulating biomineralization processes, which was not readily accomplished in living biological systems. Some remaining challenges in understanding the organic–inorganic interactions involved in biomineralization are discussed, which further highlight how the PILP model system may prove invaluable for studying the simple, yet complex, CAT crystallization pathway.
Collapse
Affiliation(s)
- Laurie Gower
- Department of Materials Science & Engineering, University of Florida, Gainesville, FL, USA
| | - Jeremy Elias
- Department of Materials Science & Engineering, University of Florida, Gainesville, FL, USA
| |
Collapse
|
16
|
Sun M, Huang K, Luo X, Li H. Templated Three-Dimensional Engineered Bone Matrix as a Model for Breast Cancer Osteolytic Bone Metastasis Process. Int J Nanomedicine 2022; 16:8391-8403. [PMID: 35002234 PMCID: PMC8727640 DOI: 10.2147/ijn.s338609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/13/2021] [Indexed: 11/30/2022] Open
Abstract
Purpose Bone metastasis is one of the common causes of death relative to breast cancer. However, the evolvement of bone niche in cancer progression remains poorly understood. A three-dimensional (3D) engineered bone matrix was developed as an effective biomimetic model to explore the mechanism relative to bone cancer metastasis. Methods In the study, a 3D engineered bone matrix was developed via cell biomineralization templated by a biomimetic collagen template. The process of bone metastasis relative to breast cancer was investigated by co-culturing breast cancer MDA-MB-231-GFP cells with pre-osteogenic MC3T3-E1 cells on the 3D bone matrix. Results A typical bone matrix was obtained, where mineralized collagen fibers were packed into the bundle to form a 3D engineered bone matrix. As the cancer cells were invading along the way vertical to the alignment of mineralized collagen fiber, the bone matrix gradually became thinner, accompanied with the erosion of Col I and the loss of calcium and phosphorus. As a result, the disassembled structure of mineralized collagen fiber was observed, which may be attributed to osteolytic bone metastasis. Conclusion An engineered 3D bone-like matrix was successfully prepared via cell mineralization, which can act as a model for bone metastasis process. The study revealed mineralized collagen fiber disassembled at nanoscale relative to breast cancer cells.
Collapse
Affiliation(s)
- Manman Sun
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou, Guangdong, People's Republic of China
| | - Ke Huang
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou, Guangdong, People's Republic of China
| | - Xueshi Luo
- The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangdong, People's Republic of China.,Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, Guangdong, People's Republic of China
| | - Hong Li
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
17
|
Shaping collagen for engineering hard tissues: Towards a printomics approach. Acta Biomater 2021; 131:41-61. [PMID: 34192571 DOI: 10.1016/j.actbio.2021.06.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/21/2022]
Abstract
Hard tissue engineering has evolved over the past decades, with multiple approaches being explored and developed. Despite the rapid development and success of advanced 3D cell culture, 3D printing technologies and material developments, a gold standard approach to engineering and regenerating hard tissue substitutes such as bone, dentin and cementum, has not yet been realised. One such strategy that differs from conventional regenerative medicine approach of other tissues, is the in vitro mineralisation of collagen templates in the absence of cells. Collagen is the most abundant protein within the human body and forms the basis of all hard tissues. Once mineralised, collagen provides important support and protection to humans, for example in the case of bone tissue. Multiple in vitro fabrication strategies and mineralisation approaches have been developed and their success in facilitating mineral deposition on collagen to achieve bone-like scaffolds evaluated. Critical to the success of such fabrication and biomineralisation approaches is the collagen template, and its chemical composition, organisation, and density. The key factors that influence such properties are the collagen processing and fabrication techniques utilised to create the template, and the mineralisation strategy employed to deposit mineral on and throughout the templates. However, despite its importance, relatively little attention has been placed on these two critical factors. Here, we critically examine the processing, fabrication and mineralisation strategies that have been used to mineralise collagen templates, and offer insights and perspectives on the most promising strategies for creating mineralised collagen scaffolds. STATEMENT OF SIGNIFICANCE: In this review, we highlight the critical need to fabricate collagen templates with advanced processing techniques, in a manner that achieves biomimicry of the hierarchical collagen structure, prior to utilising in vitro mineralisation strategies. To this end, we focus on the initial collagen that is selected, the extraction techniques used and the native fibril forming potential retained to create reconstituted collagen scaffolds. This review synthesises current best practises in material sourcing, processing, mineralisation strategies and fabrication techniques, and offers insights into how these can best be exploited in future studies to successfully mineralise collagen templates.
Collapse
|
18
|
Wu L, Wang Q, Li Y, Yang M, Dong M, He X, Zheng S, Cao CY, Zhou Z, Zhao Y, Li QL. A Dopamine Acrylamide Molecule for Promoting Collagen Biomimetic Mineralization and Regulating Crystal Growth Direction. ACS APPLIED MATERIALS & INTERFACES 2021; 13:39142-39156. [PMID: 34433244 DOI: 10.1021/acsami.1c12412] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The reconstruction of the intra/interfibrillar mineralized collagen microstructure is extremely important in biomaterial science and regeneration medicine. However, certain problems, such as low efficiency and long period of mineralization, are apparent, and the mechanism of interfibrillar mineralization is often neglected in the present literature. Thus, we propose a novel model of biomimetic collagen mineralization that uses molecules with the dual function of cross-linking collagen and regulating collagen mineralization to construct the intrafibrillar and interfibrillar collagen mineralization of the structure of mineralized collagen hard tissues. In the present study completed in vitro, N-2-(3,4-dihydroxyphenyl) acrylamide (DAA) is used to bind and cross-link collagen molecules and further stabilize the self-assembled collagen fibers. The DAA-collagen complex provides more affinity with calcium and phosphate ions, which can reduce the calcium phosphate/collagen interfacial energy to promote hydroxyapatite (HA) nucleation and accelerate the rate of collagen fiber mineralization. Besides inducing intrafibrillar mineralization, the DAA-collagen complex mineralization template can realize interfibrillar mineralization with the c-axis of the HA crystal on the surface of collagen fibers and between fibers that are parallel to the long axis of collagen fibers. The DAA-collagen complex, as a new type of mineralization template, may provide a new collagen mineralization strategy to produce a mineralized scaffold material for tissue engineering or develop bone-like materials.
Collapse
Affiliation(s)
- Leping Wu
- Department of Plastic Surgery, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, China
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Qingqing Wang
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Yuzhu Li
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Mengmeng Yang
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Menglu Dong
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Xiaoxue He
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Shunli Zheng
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Chris Ying Cao
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Zheng Zhou
- School of Dentistry, University of Detroit Mercy, Detroit, Michigan 48208-2576, United States
| | - Yuancong Zhao
- Key Lab. of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Quan-Li Li
- Department of Plastic Surgery, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, China
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
19
|
Alvarez Echazú M, Renou S, Alvarez G, Desimone M, Olmedo D. A collagen-silica-based biocomposite for potential application in bone tissue engineering. J Biomed Mater Res A 2021; 110:331-340. [PMID: 34374221 DOI: 10.1002/jbm.a.37291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/08/2021] [Accepted: 07/29/2021] [Indexed: 12/23/2022]
Abstract
Bone is a hierarchical material that has inspired the design of biopolymer-derived biocomposites for tissue engineering purposes. The present study sought to synthesize and perform the physicochemical characterization and biocompatibility of a collagen-silica-based biocomposite for potential application in bone tissue engineering. Ultrastructure, biodegradability, swelling behavior, and biocompatibility properties were analyzed to gain insight into the advantages and limitations to the use of this biomaterial as a bone substitute. Scanning electron microscopy analysis showed a packed-collagen fibril matrix and silica particles in the biocomposite three-dimensional structure. As shown by analysis of in vitro swelling behavior and biodegradability, it would seem that the material swelled soon after implantation and then suffered degradation. Biocompatibility properties were analyzed in vivo 14-days postimplantation using an experimental model in Wistar rats. The biocomposite was placed inside the hematopoietic bone marrow compartment of both tibiae (n = 16). Newly formed woven bone was observed in response to both materials. Unlike the pure-collagen-tissue interface, extensive areas of osseointegration were observed at the biocomposite-tissue interface, which would indicate that silica particles stimulated new bone formation. Agglomerates of finely particulate material with no inflammatory infiltrate or multinucleated giant cells were observed in the bone marrow implanted with the biocomposite. The biocomposite showed good biocompatibility properties. Further studies are necessary to evaluate their biological behavior over time.
Collapse
Affiliation(s)
- María Alvarez Echazú
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica. Cátedra de Química Analítica Instrumental, Buenos Aires, Argentina.,Universidad de Buenos Aires, Facultad de Odontología, Cátedra de Anatomía Patológica, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Sandra Renou
- Universidad de Buenos Aires, Facultad de Odontología, Cátedra de Anatomía Patológica, Buenos Aires, Argentina
| | - Gisela Alvarez
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica. Cátedra de Química Analítica Instrumental, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Martin Desimone
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica. Cátedra de Química Analítica Instrumental, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Daniel Olmedo
- Universidad de Buenos Aires, Facultad de Odontología, Cátedra de Anatomía Patológica, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
20
|
Du T, Niu X, Hou S, Xu M, Li Z, Li P, Fan Y. Highly aligned hierarchical intrafibrillar mineralization of collagen induced by periodic fluid shear stress. J Mater Chem B 2021; 8:2562-2572. [PMID: 32101230 DOI: 10.1039/c9tb02643f] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Periodic fluid shear stress (FSS) is one of the main mechanical microenvironments in mineralization of bone matrix. To elucidate the mechanism of periodic FSS in collagen mineralization, a mechanical loading induced mineralization system is developed and compared with traditional polyacrylic acid (PAA) induced mineralization. Fourier transform infrared (FTIR) spectroscopy, calcium-to-phosphorus molar ratio and transmission electron microscopy (TEM) demonstrate that both periodic FSS and PAA can control the size of amorphous calcium phosphate (ACP) to avoid aggregation and help the formation of intrafibrillar mineralization. Differently, periodic FSS under a proper cycle and range can accelerate the conversion of ACP to apatite crystals and alleviate the reduced transformation caused by PAA. Under the action of template analogues, periodic FSS can also promote the formation of highly oriented hierarchical intrafibrillar mineralized (HIM) collagen. These findings are helpful for understanding the mechanism of collagen mineralization in natural bone matrix and contribute to the design of novel bone substitute materials with hierarchical structures.
Collapse
Affiliation(s)
- Tianming Du
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| | - Xufeng Niu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China. and Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China and Research Institute of Beihang University in Shenzhen, Shenzhen 518057, China
| | - Sen Hou
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China. and Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| | - Menghan Xu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| | - Zhengwei Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| | - Ping Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China. and Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China. and Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China and Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing 100176, China
| |
Collapse
|
21
|
Structural Biology of Calcium Phosphate Nanoclusters Sequestered by Phosphoproteins. CRYSTALS 2020. [DOI: 10.3390/cryst10090755] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Biofluids that contain stable calcium phosphate nanoclusters sequestered by phosphopeptides make it possible for soft and hard tissues to co-exist in the same organism with relative ease. The stability diagram of a solution of nanocluster complexes shows how the minimum concentration of phosphopeptide needed for stability increases with pH. In the stable region, amorphous calcium phosphate cannot precipitate. Nevertheless, if the solution is brought into contact with hydroxyapatite, the crystalline phase will grow at the expense of the nanocluster complexes. The physico-chemical principles governing the formation, composition, size, structure, and stability of the complexes are described. Examples are given of complexes formed by casein, osteopontin, and recombinant phosphopeptides. Application of these principles and properties to blood serum, milk, urine, and resting saliva is described to show that under physiological conditions they are in the stable region of their stability diagram and so cannot cause soft tissue calcification. Stimulated saliva, however, is in the metastable region, consistent with its role in tooth remineralization. Destabilization of biofluids, with consequential ill-effects, can occur when there is a failure of homeostasis, such as an increase in pH without a balancing increase in the concentration of sequestering phosphopeptides.
Collapse
|
22
|
Von Euw S, Azaïs T, Manichev V, Laurent G, Pehau-Arnaudet G, Rivers M, Murali N, Kelly DJ, Falkowski PG. Solid-State Phase Transformation and Self-Assembly of Amorphous Nanoparticles into Higher-Order Mineral Structures. J Am Chem Soc 2020; 142:12811-12825. [PMID: 32568532 DOI: 10.1021/jacs.0c05591] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Materials science has been informed by nonclassical pathways to crystallization, based on biological processes, about the fabrication of damage-tolerant composite materials. Various biomineralizing taxa, such as stony corals, deposit metastable, magnesium-rich, amorphous calcium carbonate nanoparticles that further assemble and transform into higher-order mineral structures. Here, we examine a similar process in abiogenic conditions using synthetic, amorphous calcium magnesium carbonate nanoparticles. Applying a combination of high-resolution imaging and in situ solid-state nuclear magnetic resonance spectroscopy, we reveal the underlying mechanism of the solid-state phase transformation of these amorphous nanoparticles into crystals under aqueous conditions. These amorphous nanoparticles are covered by a hydration shell of bound water molecules. Fast chemical exchanges occur: the hydrogens present within the nanoparticles exchange with the hydrogens from the surface-bound H2O molecules which, in turn, exchange with the hydrogens of the free H2O molecule of the surrounding aqueous medium. This cascade of chemical exchanges is associated with an enhanced mobility of the ions/molecules that compose the nanoparticles which, in turn, allow for their rearrangement into crystalline domains via solid-state transformation. Concurrently, the starting amorphous nanoparticles aggregate and form ordered mineral structures through crystal growth by particle attachment. Sphere-like aggregates and spindle-shaped structures were, respectively, formed from relatively high or low weights per volume of the same starting amorphous nanoparticles. These results offer promising prospects for exerting control over such a nonclassical pathway to crystallization to design mineral structures that could not be achieved through classical ion-by-ion growth.
Collapse
Affiliation(s)
- Stanislas Von Euw
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, Rutgers University, 71 Dudley Road, New Brunswick, New Jersey 08901, United States.,Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, D02 R590, Ireland
| | - Thierry Azaïs
- Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Université, CNRS, 4 place Jussieu, F-75005, Paris, France
| | - Viacheslav Manichev
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Road, Piscataway, New Jersey 08854, United States.,Institute of Advanced Materials, Devices, and Nanotechnology, Rutgers University, 607 Taylor Road, Piscataway, New Jersey 08854, United States
| | - Guillaume Laurent
- Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Université, CNRS, 4 place Jussieu, F-75005, Paris, France
| | - Gérard Pehau-Arnaudet
- UMR 3528 and UTech UBI, Institut Pasteur, 28 rue du Docteur Roux, F-75015 Paris, France
| | - Margarita Rivers
- Institute of Advanced Materials, Devices, and Nanotechnology, Rutgers University, 607 Taylor Road, Piscataway, New Jersey 08854, United States.,Department of Physics, Wellesley College, 106 Central Street, Wellesley, Massachusetts 02481, United States
| | - Nagarajan Murali
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Daniel J Kelly
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, D02 R590, Ireland
| | - Paul G Falkowski
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, Rutgers University, 71 Dudley Road, New Brunswick, New Jersey 08901, United States.,Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| |
Collapse
|
23
|
Su W, Ma L, Ran Y, Ma X, Yi Z, Chen G, Chen X, Li X. Alginate-Assisted Mineralization of Collagen by Collagen Reconstitution and Calcium Phosphate Formation. ACS Biomater Sci Eng 2020; 6:3275-3286. [PMID: 33463172 DOI: 10.1021/acsbiomaterials.9b01841] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The understanding of the mineralization of collagen for bone formation is a current key theme in bone tissue engineering and is of great relevance to the fabrication of novel biomimetic bone grafting materials. The noncollagenous proteins (NCPs) play a vital role in bone formation and are considered to be responsible for regulating intrafibrillar penetration of minerals into collagen fibrils by means of their abundant polyanionic domains. In this study, alginate, as a NCPs analogue, was introduced in the mineralization of collagen to mediate the collagen self-assembly with simultaneous hydroxyapatite (HA) synthesis. The biomimetic systems were based upon the self-assembly of collagen (Col) or collagen-alginate (CA) in the absence or presence of a varying content of HA. The alginate-mediated effects were found to include the lateral aggregation of small fibrils into the extremely large bundles and the assisted deposition of HA for a larger mineralized fibril. This alginate-assisted mineralization of collagen gave rise to an exquisite 3D mineralized architecture with enhanced mechanical property. The cell viability experiments showed the excellent proliferation and spreading morphologies of rat bone mesenchymal stem cells (MSCs) on the assembled products, and a higher expression of osteogenic differentiation related transcription factor was obtained in the alginate-assisted mineralization of collagen. This study indicated that the selection of an appropriate substance, e.g., alginate as an anionic polyelectrolyte with Ca-capturing property, could be a convenient, simple solution to achieve a mineralized collagen scaffold with the reinforced mechanical property for potential applications in bone regeneration.
Collapse
Affiliation(s)
- Wen Su
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China.,Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, PR China
| | - Lei Ma
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China.,Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, PR China
| | - Yaqin Ran
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China.,Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, PR China
| | - Xiaomin Ma
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China.,Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, PR China
| | - Zeng Yi
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China.,Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, PR China
| | - Guangcan Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China.,Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, PR China
| | - Xiangyu Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China.,Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, PR China
| | - Xudong Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China.,Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, PR China
| |
Collapse
|
24
|
Jiang Y, Zhang M, Yin T, Du H, Xiong S, Cao L, Liu R. Small‐size effect on physicochemical properties of micronized fish bone during heating. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yang Jiang
- College of Food Science and Technology Huazhong Agricultural University National R & D Branch Center for Conventional Freshwater Fish Processing Wuhan P.R. China
| | - Mengling Zhang
- College of Food Science and Technology Huazhong Agricultural University National R & D Branch Center for Conventional Freshwater Fish Processing Wuhan P.R. China
| | - Tao Yin
- College of Food Science and Technology Huazhong Agricultural University National R & D Branch Center for Conventional Freshwater Fish Processing Wuhan P.R. China
| | - Hongying Du
- College of Food Science and Technology Huazhong Agricultural University National R & D Branch Center for Conventional Freshwater Fish Processing Wuhan P.R. China
| | - Shanbai Xiong
- College of Food Science and Technology Huazhong Agricultural University National R & D Branch Center for Conventional Freshwater Fish Processing Wuhan P.R. China
- Key Laboratory of Environment Correlative Dietology Huazhong Agricultural University Ministry of Education Wuhan P.R. China
| | - Liwei Cao
- College of Food Science and Technology Huazhong Agricultural University National R & D Branch Center for Conventional Freshwater Fish Processing Wuhan P.R. China
| | - Ru Liu
- College of Food Science and Technology Huazhong Agricultural University National R & D Branch Center for Conventional Freshwater Fish Processing Wuhan P.R. China
- Key Laboratory of Environment Correlative Dietology Huazhong Agricultural University Ministry of Education Wuhan P.R. China
| |
Collapse
|
25
|
Yang T, Li Y, Hong Y, Chi L, Liu C, Lan Y, Wang Q, Yu Y, Xu Q, Teng W. The Construction of Biomimetic Cementum Through a Combination of Bioskiving and Fluorine-Containing Biomineralization. Front Bioeng Biotechnol 2020; 8:341. [PMID: 32391345 PMCID: PMC7193115 DOI: 10.3389/fbioe.2020.00341] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/27/2020] [Indexed: 12/12/2022] Open
Abstract
Despite tremendous attention is given to the construction of biomimetic cementum for regeneration of tooth cementum, the lack of recapitulating the composition and hierarchical structure of cementum often leads to the poor performance of constructed materials. How to highly mimic the sophisticated composition and hierarchy of cementum remains a longstanding challenge in constructing the biomimetic cementum. Inspired by cementum formation process, a novel construction approach via a combination of bioskiving and fluorine-containing biomineralization is developed in this study. The alternative collagen lamellae (ACL) that can highly mimic the rotated plywood structure of cementum collagen matrix is fabricated via bioskiving. Followed by biomineralization in the amorphous calcium phosphate (ACP) solution with different concentration of fluorine, a series of biomimetic cementum is constructed. Screened by physicochemical characterization, the biomimetic cementum with the composition and hierarchical structure highly similar to human cementum is selected. Through in vitro biological assay, this biomimetic cementum is proven to significantly promote the adhesion, proliferation, and cementogenic differentiation of periodontal ligament cells (PDLCs). Furthermore, in vivo study demonstrates that biomimetic cementum could induce cementogenesis. This biomimetic cementum constructed via combinatory application of bioskiving and fluorine-containing biomineralization stands as a promising candidate for achieving cementum regeneration.
Collapse
Affiliation(s)
- Tao Yang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yanshan Li
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yubing Hong
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Li Chi
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Chuanzi Liu
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yu Lan
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Qinmei Wang
- Laboratory of Biomaterials, Key Laboratory on Assisted Circulation, Ministry of Health, Cardiovascular Division, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yingjie Yu
- Institute of Translational Medicine, The First Affiliated Hospital, Shenzhen University, Health Science Center, Shenzhen, China
| | - Qiaobing Xu
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Wei Teng
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
26
|
Selected DNA aptamers as hydroxyapatite affinity reagents. Anal Chim Acta 2020; 1110:115-121. [PMID: 32278386 DOI: 10.1016/j.aca.2020.03.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 03/12/2020] [Accepted: 03/14/2020] [Indexed: 11/22/2022]
Abstract
DNA aptamers were selected for their ability to bind specifically and quickly to crystalline hydroxyapatite (Ca10(PO4)6(OH)2; HAP), the primary mineral component of enamel and bone. Aptamers were found to have an enhanced percent of G-nucleotides and a propensity for forming a G-quadruplex secondary structure. One aptamer was studied in comparison to control sequences and was found to bind with high affinity and at high loading capacity, with enhanced binding kinetics, and with specificity for crystalline HAP material over amorphous calcium phosphate (ACP) and β-tricalcium phosphate (TCP). The fluorescently-functionalized aptamer was demonstrated to specifically label HAP in a surface binding experiment and suggests the usefulness of this selected aptamer in biomedical or biotechnology fields where the labeling of specific calcium phosphate materials is required.
Collapse
|
27
|
Biomineralization Precursor Carrier System Based on Carboxyl-Functionalized Large Pore Mesoporous Silica Nanoparticles. Curr Med Sci 2020; 40:155-167. [PMID: 32166678 DOI: 10.1007/s11596-020-2159-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 11/20/2019] [Indexed: 12/15/2022]
Abstract
Bone and teeth are derived from intrafibrillarly mineralized collagen fibrils as the second level of hierarchy. According to polymer-induced liquid-precursor process, using amorphous calcium phosphate precursor (ACP) is able to achieve intrafibrillar mineralization in the case of bone biomineral in vitro. Therefore, ACP precursors might be blended with any osteoconductive scaffold as a promising bone formation supplement for in-situ remineralization of collagens in bone. In this study, mesoporous silica nanoparticles with carboxyl-functionalized groups and ultra large-pores have been synthesized and used for the delivery of liquid like biomimetic precursors (ACP). The precursor delivery capacity of the nanoparticles was verified by the precursor release profile and successful mineralization of 2D and 3D collagen models. The nanoparticles could be completely degraded in 60 days and exhibited good biocompatibility as well. The successful translational strategy for biomineralization precursors showed that biomineralization precursor laden ultra large pore mesoporous silica possessed the potential as a versatile supplement in demineralized bone formation through the induction of intrafibrillar collagen mineralization.
Collapse
|
28
|
Surface Treatment of Acetabular Cups with a Direct Deposition of a Composite Nanostructured Layer Using a High Electrostatic Field. Molecules 2020; 25:molecules25051173. [PMID: 32150982 PMCID: PMC7179214 DOI: 10.3390/molecules25051173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/03/2020] [Accepted: 03/03/2020] [Indexed: 11/17/2022] Open
Abstract
A composite nanofibrous layer containing collagen and hydroxyapatite was deposited on selected surface areas of titanium acetabular cups. The layer was deposited on the irregular surface of these 3D objects using a specially developed electrospinning system designed to ensure the stability of the spinning process and to produce a layer approximately 100 micrometers thick with an adequate thickness uniformity. It was verified that the layer had the intended nanostructured morphology throughout its entire thickness and that the prepared layer sufficiently adhered to the smooth surface of the model titanium implants even after all the post-deposition sterilization and stabilization treatments were performed. The resulting layers had an average thickness of (110 ± 30) micrometers and an average fiber diameter of (170 ± 49) nanometers. They were produced using a relatively simple and cost-effective technology and yet they were verifiably biocompatible and structurally stable. Collagen- and hydroxyapatite-based composite nanostructured surface modifications represent promising surface treatment options for metal implants.
Collapse
|
29
|
Yang T, Xie P, Wu Z, Liao Y, Chen W, Hao Z, Wang Y, Zhu Z, Teng W. The Injectable Woven Bone-Like Hydrogel to Perform Alveolar Ridge Preservation With Adapted Remodeling Performance After Tooth Extraction. Front Bioeng Biotechnol 2020; 8:119. [PMID: 32154241 PMCID: PMC7047753 DOI: 10.3389/fbioe.2020.00119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/06/2020] [Indexed: 02/05/2023] Open
Abstract
Grafting bone substitute is paramount to prevent the alveolar ridge resorption after tooth extraction and facilitate the subsequent implant treatment. An ideal bone substitute should acquire the excellent osteogenic property, more importantly, possess the suitable remodeling rate in balance with bone formation and desirable clinical manageability. However, none of bone substitute is simultaneously characterized by these features, and currently, the limited remodeling property leads to the excessive waiting time before implantation. Enlightened by woven bone, the transitional tissue that is able to induce osteogenesis during bone healing could be easily remodeled within a short period and depend on the favorable injectability of hydrogel, an injectable woven bone-like hydrogel (IWBLH) was constructed in this study to address the above problems. To mimic the component and hierarchical structure of woven bone, amorphous calcium phosphate (ACP) and mineralized collagen fibril were synthesized and compounded with alginate to form IWBLHs with various ratio. Screened by physiochemical characterization and in vitro biological assays, an optimal IWBLH was selected and further explored in rat model of tooth extraction. Compared with the most widely used bone substitute, we showed that IWBLH could be easily handled to fully fill the tooth socket, perform a comparable function to prevent the alveolar bone resorption, and completely remodeled within 4 weeks. This IWBLH stands as a promising candidate for alveolar ridge preservation (ARP) in future.
Collapse
Affiliation(s)
- Tao Yang
- Department of Prosthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Peng Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhenzhen Wu
- Department of Periodontology and Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Yunmao Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wenchuan Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhichao Hao
- Department of Prosthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yushu Wang
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Zhimin Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wei Teng
- Department of Prosthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
30
|
Šupová M. The Significance and Utilisation of Biomimetic and Bioinspired Strategies in the Field of Biomedical Material Engineering: The Case of Calcium Phosphat-Protein Template Constructs. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E327. [PMID: 31936830 PMCID: PMC7013803 DOI: 10.3390/ma13020327] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/03/2020] [Accepted: 01/07/2020] [Indexed: 02/07/2023]
Abstract
This review provides a summary of recent research on biomimetic and bioinspired strategies applied in the field of biomedical material engineering and focusing particularly on calcium phosphate-protein template constructs inspired by biomineralisation. A description of and discussion on the biomineralisation process is followed by a general summary of the application of the biomimetic and bioinspired strategies in the fields of biomedical material engineering and regenerative medicine. Particular attention is devoted to the description of individual peptides and proteins that serve as templates for the biomimetic mineralisation of calcium phosphate. Moreover, the review also presents a description of smart devices including delivery systems and constructs with specific functions. The paper concludes with a summary of and discussion on potential future developments in this field.
Collapse
Affiliation(s)
- Monika Šupová
- Department of Composites and Carbon Materials, Institute of Rock Structure and Mechanics, The Czech Academy of Sciences, V Holešovičkách 41, 182 09 Prague, Czech Republic
| |
Collapse
|
31
|
França CM, Thrivikraman G, Athirasala A, Tahayeri A, Gower LB, Bertassoni LE. The influence of osteopontin-guided collagen intrafibrillar mineralization on pericyte differentiation and vascularization of engineered bone scaffolds. J Biomed Mater Res B Appl Biomater 2019; 107:1522-1532. [PMID: 30267638 PMCID: PMC6440878 DOI: 10.1002/jbm.b.34244] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/25/2018] [Accepted: 08/25/2018] [Indexed: 12/17/2022]
Abstract
Biomimetically mineralized collagen scaffolds are promising for bone regeneration, but vascularization of these materials remains to be addressed. Here, we engineered mineralized scaffolds using an osteopontin-guided polymer-induced liquid-precursor mineralization method to recapitulate bone's mineralized nanostructure. SEM images of mineralized samples confirmed the presence of collagen with intrafibrillar mineral, also EDS spectra and FTIR showed high peaks of calcium and phosphate, with a similar mineral/matrix ratio to native bone. Mineralization increased collagen compressive modulus up to 15-fold. To evaluate vasculature formation and pericyte-like differentiation, HUVECs and hMSCs were seeded in a 4:1 ratio in the scaffolds for 7 days. Moreover, we used RT-PCR to investigate the gene expression of pericyte markers ACTA2, desmin, CD13, NG2, and PDGFRβ. Confocal images showed that both nonmineralized and mineralized scaffolds enabled endothelial capillary network formation. However, vessels in the nonmineralized samples had longer vessel length, a larger number of junctions, and a higher presence of αSMA+ mural cells. RT-PCR analysis confirmed the downregulation of pericytic markers in mineralized samples. In conclusion, although both scaffolds enabled endothelial capillary network formation, mineralized scaffolds presented less pericyte-supported vessels. These observations suggest that specific scaffold characteristics may be required for efficient scaffold vascularization in future bone tissue engineering strategies. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1522-1532, 2019.
Collapse
Affiliation(s)
- Cristiane M. França
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, USA
- Nove de Julho University, São Paulo, SP, Brazil
| | - Greeshma Thrivikraman
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, USA
| | - Avathamsa Athirasala
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, USA
| | - Anthony Tahayeri
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, USA
| | - Laurie B. Gower
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL, USA
| | - Luiz E. Bertassoni
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, USA
- Center for Regenerative Medicine, School of Medicine, Oregon Health and Science University, Portland, OR, USA
- Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
32
|
Shlaferman J, Paige A, Meserve K, Miech JA, Gerdon AE. Selected DNA Aptamers Influence Kinetics and Morphology in Calcium Phosphate Mineralization. ACS Biomater Sci Eng 2019; 5:3228-3236. [DOI: 10.1021/acsbiomaterials.9b00308] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jacob Shlaferman
- Department of Chemistry and Physics, Emmanuel College, 400 The Fenway, Boston, Massachusetts 02115, United States
| | - Alexander Paige
- Department of Chemistry and Physics, Emmanuel College, 400 The Fenway, Boston, Massachusetts 02115, United States
| | - Krista Meserve
- Department of Chemistry and Physics, Emmanuel College, 400 The Fenway, Boston, Massachusetts 02115, United States
| | - Jason A. Miech
- Department of Chemistry and Physics, Emmanuel College, 400 The Fenway, Boston, Massachusetts 02115, United States
| | - Aren E. Gerdon
- Department of Chemistry and Physics, Emmanuel College, 400 The Fenway, Boston, Massachusetts 02115, United States
| |
Collapse
|
33
|
de Wildt BW, Ansari S, Sommerdijk NA, Ito K, Akiva A, Hofmann S. From bone regeneration to three-dimensional in vitro models: tissue engineering of organized bone extracellular matrix. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2019. [DOI: 10.1016/j.cobme.2019.05.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
34
|
Hata Y, Sawada T, Serizawa T. Macromolecular crowding for materials-directed controlled self-assembly. J Mater Chem B 2018; 6:6344-6359. [PMID: 32254643 DOI: 10.1039/c8tb02201a] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Macromolecular crowding refers to intracellular environments where various macromolecules, including proteins and nucleic acids, are present at high total concentrations. Its influence on biological processes has been investigated using a highly concentrated in vitro solution of water-soluble polymers as a model. Studies have revealed significant effects of macromolecular crowding on the thermodynamic equilibria and dynamics of biomolecular self-assembly in vivo. Recently, macromolecular crowding has attracted materials scientists, especially those in bio-related areas, as a tool to control molecular/colloidal self-assembly. Macromolecular crowding has been exploited to control the structure of supramolecular materials, assemble nanomaterials, and improve the performance of polymeric materials. Furthermore, nanostructured materials have been shown to be an interesting alternative to water-soluble polymers for creating crowded environments for controlled self-assembly. In this review article, we summarize recent progress in research on macromolecular crowding for controlled self-assembly in bio-related materials chemistry.
Collapse
Affiliation(s)
- Yuuki Hata
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-H121 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| | | | | |
Collapse
|
35
|
Ahmed S, Annu, Ali A, Sheikh J. A review on chitosan centred scaffolds and their applications in tissue engineering. Int J Biol Macromol 2018; 116:849-862. [DOI: 10.1016/j.ijbiomac.2018.04.176] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 03/29/2018] [Accepted: 04/30/2018] [Indexed: 10/17/2022]
|
36
|
Wingender B, Ni Y, Zhang Y, Taylor C, Gower L. Hierarchical Characterization and Nanomechanical Assessment of Biomimetic Scaffolds Mimicking Lamellar Bone via Atomic Force Microscopy Cantilever-Based Nanoindentation. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E1257. [PMID: 30037132 PMCID: PMC6073810 DOI: 10.3390/ma11071257] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 07/18/2018] [Accepted: 07/19/2018] [Indexed: 12/21/2022]
Abstract
The hierarchical structure of bone and intrinsic material properties of its two primary constituents, carbonated apatite and fibrillar collagen, when being synergistically organized into an interpenetrating hard-soft composite, contribute to its excellent mechanical properties. Lamellar bone is the predominant structural motif in mammalian hard tissues; therefore, we believe the fabrication of a collagen/apatite composite with a hierarchical structure that emulates bone, consisting of a dense lamellar microstructure and a mineralized collagen fibril nanostructure, is an important first step toward the goal of regenerative bone tissue engineering. In this work, we exploit the liquid crystalline properties of collagen to fabricate dense matrices that assemble with cholesteric organization. The matrices were crosslinked via carbodiimide chemistry to improve mechanical properties, and are subsequently mineralized via the polymer-induced liquid-precursor (PILP) process to promote intrafibrillar mineralization. Neither the crosslinking procedure nor the mineralization affected the cholesteric collagen microstructures; notably, there was a positive trend toward higher stiffness with increasing crosslink density when measured by cantilever-based atomic force microscopy (AFM) nanoindentation. In the dry state, the average moduli of moderately (X51; 4.8 ± 4.3 GPa) and highly (X76; 7.8 ± 6.7 GPa) crosslinked PILP-mineralized liquid crystalline collagen (LCC) scaffolds were higher than the average modulus of bovine bone (5.5 ± 5.6 GPa).
Collapse
Affiliation(s)
- Brian Wingender
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06030-165, USA.
| | - Yongliang Ni
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA.
| | - Yifan Zhang
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA.
| | - Curtis Taylor
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA.
| | - Laurie Gower
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
37
|
Rao A, Cölfen H. From Solute, Fluidic and Particulate Precursors to Complex Organizations of Matter. CHEM REC 2018; 18:1203-1221. [PMID: 29573321 DOI: 10.1002/tcr.201800003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/12/2018] [Indexed: 01/24/2023]
Abstract
The organization of matter from its constitutive units recruits intermediate states with distinctive degrees of self-association and molecular order. Existing as clusters, droplets, gels as well as amorphous and crystalline nanoparticles, these precursor forms have fundamental contributions towards the composition and structure of inorganic and organic architectures. In this personal account, we show that the transitions from atoms, molecules or ionic species to superstructures of higher order are intertwined with the interfaces and interactions of precursor and intermediate states. Structural organizations distributed across different length scales are explained by the multistep nature of nucleation and crystallization, which can be guided towards functional hybrid materials by the strategic application of additives, templates and reaction environments. Thus, the non-classical pathways for material formation and growth offer conceptual frameworks for elucidating, inducing and directing fascinating material organizations of biogenic and synthetic origins.
Collapse
Affiliation(s)
- Ashit Rao
- Freiburg Institute for Advanced Studies, Albert-Ludwigs-Universität Freiburg, Freiburg, 79104, Germany
| | - Helmut Cölfen
- Physical Chemistry, Department of Chemistry, University of Konstanz, Konstanz, 78464, Germany
| |
Collapse
|
38
|
Qi Y, Ye Z, Fok A, Holmes BN, Espanol M, Ginebra MP, Aparicio C. Effects of Molecular Weight and Concentration of Poly(Acrylic Acid) on Biomimetic Mineralization of Collagen. ACS Biomater Sci Eng 2018; 4:2758-2766. [PMID: 30581990 DOI: 10.1021/acsbiomaterials.8b00512] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Inspired by nature, poly(acrylic acid) (PAA) and other polyelectrolytes have been used as noncollagenous proteins (NCPs) surrogates for biomimetic intrafibrillar mineralization of collagen fibrils and thus, to model the ultrastructure of bone, to study the mechanism of bone mineralization and, more scarcely to fabricate scaffolds for hard tissue engineering. The objective of this study was to systematically investigate the effect of the molecular weight (MW) and the concentration of PAA on the rate and pattern of biomineralization of collagen matrices. Densified type I collagen films were mineralized in supersaturated PAA-stabilized amorphous calcium-phosphate (PAA-ACP) solutions containing increasing MW (2 kDa, 50 kDA, 450 kDa) and concentrations (10, 25, 50 mg/L) of PAA up to 7 days. The stability and physical properties of collagen-free PAA-ACP solutions were also investigated. In our system, lowering PAA MW and increasing PAA concentration resulted in solutions with increasing stability. Over stable PAA-ACP solutions that fully inhibited mineralization of the collagen matrices were achieved using PAA 2k-50. Conversely, unstable solutions were obtained using high PAA MW at low concentrations. Nucleation and growth of significant amount of extrafibrillar minerals on the collagen fibrils was obtained using these solutions. In a wide range of combined MW and concentration of PAA we obtained intrafibrillar mineralization of collagen with hydroxyapatite crystals aligned parallel to the collagen fibril as in natural tissues. Intrafibrillar mineralization was correlated with PAA-ACP stability and growth of the PAA-ACP particles in solution. Our results support using PAA to surrogate NCPs function as selective inhibitors or promoters of biological mineralization and provide parameters to manufacture new biomimetic scaffolds and constructs for bone and dentin tissue engineering.
Collapse
Affiliation(s)
- Yipin Qi
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510000, China
| | - Zhou Ye
- MDRCBB, Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, MN, USA
| | - Alex Fok
- MDRCBB, Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, MN, USA
| | - Brian N Holmes
- MDRCBB, Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, MN, USA
| | - Monsterrat Espanol
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering, Universitat Politècnica de Catalunya (UPC), Av. Eduard Maristany 10-14, 08019 Barcelona, Spain.,Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Av. Eduard Maristany 10-14, 08019 Barcelona, Spain
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering, Universitat Politècnica de Catalunya (UPC), Av. Eduard Maristany 10-14, 08019 Barcelona, Spain.,Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Av. Eduard Maristany 10-14, 08019 Barcelona, Spain.,Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology, C/Baldiri Reixac 10-12, 08028, Barcelona, Spain
| | - Conrado Aparicio
- MDRCBB, Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, MN, USA
| |
Collapse
|
39
|
Fazelinia H, Balog ERM, Desireddy A, Chakraborty S, Sheehan CJ, Strauss CE, Martinez JS. Genetically Engineered Elastomeric Polymer Network through Protein Zipper Assembly. ChemistrySelect 2017. [DOI: 10.1002/slct.201700456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Hossein Fazelinia
- Bioscience Division, MS 888 Los Alamos National Laboratory NM 87545 USA
| | - Eva Rose M. Balog
- Center for Intergrated Nanotechnologies Los Alamos National Laboratory, MS K771 Los Alamos NM 87545 USA
| | - Anil Desireddy
- Center for Intergrated Nanotechnologies Los Alamos National Laboratory, MS K771 Los Alamos NM 87545 USA
| | - Saumen Chakraborty
- Center for Intergrated Nanotechnologies Los Alamos National Laboratory, MS K771 Los Alamos NM 87545 USA
| | - Chris J. Sheehan
- Center for Intergrated Nanotechnologies Los Alamos National Laboratory, MS K771 Los Alamos NM 87545 USA
| | | | - Jennifer S. Martinez
- Center for Intergrated Nanotechnologies Los Alamos National Laboratory, MS K771 Los Alamos NM 87545 USA
- Institute for Material Science Los Alamos National Laboratory NM 87545 USA
| |
Collapse
|
40
|
Abstract
Liquid crystals play an important role in biology because the combination of order and mobility is a basic requirement for self-organisation and structure formation in living systems. Cholesteric liquid crystals are omnipresent in living matter under both in vivo and in vitro conditions and address the major types of molecules essential to life. In the animal and plant kingdoms, the cholesteric structure is a recurring design, suggesting a convergent evolution to an optimised left-handed helix. Herein, we review the recent advances in the cholesteric organisation of DNA, chromatin, chitin, cellulose, collagen, viruses, silk and cholesterol ester deposition in atherosclerosis. Cholesteric structures can be found in bacteriophages, archaea, eukaryotes, bacterial nucleoids, chromosomes of unicellular algae, sperm nuclei of many vertebrates, cuticles of crustaceans and insects, bone, tendon, cornea, fish scales and scutes, cuttlebone and squid pens, plant cell walls, virus suspensions, silk produced by spiders and silkworms, and arterial wall lesions. This article specifically aims at describing the consequences of the cholesteric geometry in living matter, which are far from being fully defined and understood, and discusses various perspectives. The roles and functions of biological cholesteric liquid crystals include maximisation of packing efficiency, morphogenesis, mechanical stability, optical information, radiation protection and evolution pressure.
Collapse
Affiliation(s)
- Michel Mitov
- Centre d'Elaboration de Matériaux et d'Etudes Structurales (CEMES), CNRS, BP 94347, 29 rue Jeanne-Marvig, F-31055 Toulouse Cedex 4, France.
| |
Collapse
|
41
|
Romero-Sánchez LB, Borrego-González S, Díaz-Cuenca A. High surface area biopolymeric-ceramic scaffolds for hard tissue engineering. Biomed Phys Eng Express 2017. [DOI: 10.1088/2057-1976/aa7001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
42
|
Rao A, Cölfen H. Mineralization and non-ideality: on nature's foundry. Biophys Rev 2016; 8:309-329. [PMID: 28510024 DOI: 10.1007/s12551-016-0228-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 09/30/2016] [Indexed: 10/20/2022] Open
Abstract
Understanding how ions, ion-clusters and particles behave in non-ideal environments is a fundamental question concerning planetary to atomic scales. For biomineralization phenomena wherein diverse inorganic and organic ingredients are present in biological media, attributing biomaterial composition and structure to the chemistry of singular additives may not provide a holistic view of the underlying mechanisms. Therefore, in this review, we specifically address the consequences of physico-chemical non-ideality on mineral formation. Influences of different forms of non-ideality such as macromolecular crowding, confinement and liquid-like organic phases on mineral nucleation and crystallization in biological environments are presented. Novel prospects for the additive-controlled nucleation and crystallization are accessible from this biophysical view. In this manner, we show that non-ideal conditions significantly affect the form, structure and composition of biogenic and biomimetic minerals.
Collapse
Affiliation(s)
- Ashit Rao
- Freiburg Institute for Advanced Studies, Albert Ludwigs University of Freiburg, 79104, Freiburg im Breisgau, Germany.
| | - Helmut Cölfen
- Physical Chemistry, Department of Chemistry, University of Konstanz, D-78457, Konstanz, Germany.
| |
Collapse
|
43
|
Liu Y, Luo D, Wang T. Hierarchical Structures of Bone and Bioinspired Bone Tissue Engineering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:4611-4632. [PMID: 27322951 DOI: 10.1002/smll.201600626] [Citation(s) in RCA: 227] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/04/2016] [Indexed: 06/06/2023]
Abstract
Bone, as a mineralized composite of inorganic (mostly carbonated hydroxyapatite) and organic (mainly type I collagen) phases, possesses a unique combination of remarkable strength and toughness. Its excellent mechanical properties are related to its hierarchical structures and precise organization of the inorganic and organic phases at the nanoscale: Nanometer-sized hydroxyapatite crystals periodically deposit within the gap zones of collagen fibrils during bone biomineralization process. This hierarchical arrangement produces nanomechanical heterogeneities, which enable a mechanism for high energy dissipation and resistance to fracture. The excellent mechanical properties integrated with the hierarchical nanostructure of bone have inspired chemists and material scientists to develop biomimetic strategies for artificial bone grafts in tissue engineering (TE). This critical review provides a broad overview of the current mechanisms involved in bone biomineralization, and the relationship between bone hierarchical structures and the deformation mechanism. Our goal in this review is to inspire the application of these principles toward bone TE.
Collapse
Affiliation(s)
- Yan Liu
- Center for Craniofacial Stem Cell Research and Regeneration, Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Dan Luo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing, 100190, P. R. China
- State Key Laboratory of Heavy Oil Processing, Institute of New Energy, China University of Petroleum (Beijing), Beijing, 102249, P. R. China
| | - Tie Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing, 100190, P. R. China.
| |
Collapse
|