1
|
WFDC12-overexpressing contributes to the development of atopic dermatitis via accelerating ALOX12/15 metabolism and PAF accumulation. Cell Death Dis 2023; 14:185. [PMID: 36882395 PMCID: PMC9992393 DOI: 10.1038/s41419-023-05686-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 03/09/2023]
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by eczema-like skin lesions, dry skin, severe itching, and recurrent recurrence. The whey acidic protein four-disulfide core domain gene WFDC12 is highly expressed in skin tissue and up-regulated in the skin lesions of AD patients, but its role and relevant mechanism in AD pathogenesis have not been studied yet. In this study, we found that the expression of WFDC12 was closely related to clinical symptoms of AD and the severity of AD-like lesions induced by DNFB in transgenic mice. WFDC12-overexpressing in the epidermis might promote the migration of skin-presenting cells to lymph nodes and increase Th cell infiltration. Meanwhile, the number and ratio of immune cells and mRNA levels of cytokines were significantly upregulated in transgenic mice. In addition, we found that ALOX12/15 gene expression was upregulated in the arachidonic acid metabolism pathway, and the corresponding metabolite accumulation was increased. The activity of epidermal serine hydrolase decreased and the accumulation of platelet-activating factor (PAF) increased in the epidermis of transgenic mice. Collectively, our data demonstrate that WFDC12 may contribute to the exacerbation of AD-like symptoms in DNFB-induced mouse model by enhancing arachidonic acid metabolism and PAF accumulation and that WFDC12 may be a potential therapeutic target for human atopic dermatitis.
Collapse
|
2
|
Li Z, Wang S, Zhao H, Yan P, Yuan H, Zhao M, Wan R, Yu G, Wang L. Artificial neural network identified the significant genes to distinguish Idiopathic pulmonary fibrosis. Sci Rep 2023; 13:1225. [PMID: 36681777 PMCID: PMC9867697 DOI: 10.1038/s41598-023-28536-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/19/2023] [Indexed: 01/22/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease that causes irreversible damage to lung tissue characterized by excessive deposition of extracellular matrix (ECM) and remodeling of lung parenchyma. The current diagnosis of IPF is complex and usually completed by a multidisciplinary team including clinicians, radiologists and pathologists they work together and make decision for an effective treatment, it is imperative to introduce novel practical methods for IPF diagnosis. This study provided a new diagnostic model of idiopathic pulmonary fibrosis based on machine learning. Six genes including CDH3, DIO2, ADAMTS14, HS6ST2, IL13RA2, and IGFL2 were identified based on the differentially expressed genes in IPF patients compare to healthy subjects through a random forest classifier with the existing gene expression databases. An artificial neural network model was constructed for IPF diagnosis based these genes, and this model was validated by the distinctive public datasets with a satisfactory diagnostic accuracy. These six genes identified were significant correlated with lung function, and among them, CDH3 and DIO2 were further determined to be significantly associated with the survival. Putting together, artificial neural network model identified the significant genes to distinguish idiopathic pulmonary fibrosis from healthy people and it is potential for molecular diagnosis of IPF.
Collapse
Affiliation(s)
- Zhongzheng Li
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Henan Normal University, 46 Jianshe Road, Xinxiang, 453007, Henan, China
| | - Shenghui Wang
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Henan Normal University, 46 Jianshe Road, Xinxiang, 453007, Henan, China
| | - Huabin Zhao
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Henan Normal University, 46 Jianshe Road, Xinxiang, 453007, Henan, China
| | - Peishuo Yan
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Henan Normal University, 46 Jianshe Road, Xinxiang, 453007, Henan, China
| | - Hongmei Yuan
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Henan Normal University, 46 Jianshe Road, Xinxiang, 453007, Henan, China
| | - Mengxia Zhao
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Henan Normal University, 46 Jianshe Road, Xinxiang, 453007, Henan, China
| | - Ruyan Wan
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Henan Normal University, 46 Jianshe Road, Xinxiang, 453007, Henan, China
| | - Guoying Yu
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Henan Normal University, 46 Jianshe Road, Xinxiang, 453007, Henan, China.
| | - Lan Wang
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Henan Normal University, 46 Jianshe Road, Xinxiang, 453007, Henan, China.
| |
Collapse
|
3
|
Kentistou KA, Luan J, Wittemans LBL, Hambly C, Klaric L, Kutalik Z, Speakman JR, Wareham NJ, Kendall TJ, Langenberg C, Wilson JF, Joshi PK, Morton NM. Large scale phenotype imputation and in vivo functional validation implicate ADAMTS14 as an adiposity gene. Nat Commun 2023; 14:307. [PMID: 36658113 PMCID: PMC9852585 DOI: 10.1038/s41467-022-35563-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 12/09/2022] [Indexed: 01/20/2023] Open
Abstract
Obesity remains an unmet global health burden. Detrimental anatomical distribution of body fat is a major driver of obesity-mediated mortality risk and is demonstrably heritable. However, our understanding of the full genetic contribution to human adiposity is incomplete, as few studies measure adiposity directly. To address this, we impute whole-body imaging adiposity phenotypes in UK Biobank from the 4,366 directly measured participants onto the rest of the cohort, greatly increasing our discovery power. Using these imputed phenotypes in 392,535 participants yielded hundreds of genome-wide significant associations, six of which replicate in independent cohorts. The leading causal gene candidate, ADAMTS14, is further investigated in a mouse knockout model. Concordant with the human association data, the Adamts14-/- mice exhibit reduced adiposity and weight-gain under obesogenic conditions, alongside an improved metabolic rate and health. Thus, we show that phenotypic imputation at scale offers deeper biological insights into the genetics of human adiposity that could lead to therapeutic targets.
Collapse
Affiliation(s)
- Katherine A Kentistou
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, EH8 9AG, UK
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Jian'an Luan
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Laura B L Wittemans
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Catherine Hambly
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| | - Lucija Klaric
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Zoltán Kutalik
- Centre for Primary Care and Public Health, University of Lausanne, Lausanne, 1010, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
| | - John R Speakman
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
- Centre for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen Key Laboratory of Metabolic Health, CAS Centre of Excellence in Animal Evolution and Genetics, Kunming, China
| | - Nicholas J Wareham
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Timothy J Kendall
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Claudia Langenberg
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
- Computational Medicine, Berlin Institute of Health (BIH) Charité University Medicine, Berlin, Germany
| | - James F Wilson
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, EH8 9AG, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Peter K Joshi
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, EH8 9AG, UK
| | - Nicholas M Morton
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK.
| |
Collapse
|
4
|
Makowska K, Nowaczyk J, Blicharz L, Waśkiel-Burnat A, Czuwara J, Olszewska M, Rudnicka L. Immunopathogenesis of Atopic Dermatitis: Focus on Interleukins as Disease Drivers and Therapeutic Targets for Novel Treatments. Int J Mol Sci 2023; 24:ijms24010781. [PMID: 36614224 PMCID: PMC9820829 DOI: 10.3390/ijms24010781] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 01/04/2023] Open
Abstract
Atopic dermatitis is a chronic, recurrent inflammatory skin disorder manifesting by eczematous lesions and intense pruritus. Atopic dermatitis develops primarily as a result of an epidermal barrier defect and immunological imbalance. Advances in understanding these pathogenetic hallmarks, and particularly the complex role of interleukins as atopic dermatitis drivers, resulted in achieving significant therapeutic breakthroughs. Novel medications involve monoclonal antibodies specifically blocking the function of selected interleukins and small molecules such as Janus kinase inhibitors limiting downstream signaling to reduce the expression of a wider array of proinflammatory factors. Nevertheless, a subset of patients remains refractory to those treatments, highlighting the complexity of atopic dermatitis immunopathogenesis in different populations. In this review, we address the immunological heterogeneity of atopic dermatitis endotypes and phenotypes and present novel interleukin-oriented therapies for this disease.
Collapse
|
5
|
Zhang Y, Li J, Ji Y, Cheng Y, Fu X. Mutations in the TBX15-ADAMTS2 pathway associate with a novel soft palate dysplasia. Hum Mutat 2022; 43:2102-2115. [PMID: 36124393 DOI: 10.1002/humu.24473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/29/2022] [Accepted: 09/15/2022] [Indexed: 01/25/2023]
Abstract
We reported de novo variants in specific exons of the TBX15 and ADAMTS2 genes in a hitherto undescribed class of patients with unique craniofacial developmental defects. The nine unrelated patients represent unilateral soft palate hypoplasia, lost part of the sphenoid bone in the pterygoid process, but the uvula developed completely. Interestingly, these clinical features are contrary to the palate's anterior-posterior (A-P) developmental direction. Based on developmental characteristics, we suggested that these cases correspond to a novel craniofacial birth defect different from cleft palate, and we named it soft palate dysplasia (SPD). However, little is known about the molecular mechanism of the ADAMTS2 and TBX15 genes in the regulation of soft palate development. Phylogenetic analysis showed that the sequences around these de novo mutation sites are conserved between species. Through cellular co-transfections and chromatin immunoprecipitation assays, we demonstrate that TBX15 binds to the promoter regions of the ADAMTS2 gene and activates the promoter activity. Furthermore, we show that TBX15 and ADAMTS2 are colocalization in the posterior palatal mesenchymal cells during soft palate development in E13.5 mice embryos. Based on these data, we propose that the disruption of the TBX15-ADAMTS2 signaling pathway during embryogenesis leads to a novel SPD.
Collapse
Affiliation(s)
- Yuying Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,The Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jian Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,The Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yaoting Ji
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yibin Cheng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Xiazhou Fu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
6
|
Chen Y, Ji H, Liu S, Xing Q, Zhu B, Wang Y. Survival Prognosis, Tumor Immune Landscape, and Immune Responses of ADAMTS14 in Clear Cell Renal Cell Carcinoma and Its Potential Mechanisms. Front Immunol 2022; 13:790608. [PMID: 35572505 PMCID: PMC9099013 DOI: 10.3389/fimmu.2022.790608] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
Background ADAMTS14 played a crucial role in the formation and development of various cancers. Currently, no associations had been revealed between ADAMTS14 and clear cell renal cell carcinoma (ccRCC). Hence, this study was designed to assess the prognostic values and immunological roles of ADAMTS14 in ccRCC and to reveal its potential mechanisms. Methods ADAMTS14-related expression profiles and related clinical data were downloaded from The Cancer Genome Atlas (TCGA) dataset, validated by the ICGC dataset, qRT-PCR, and immunohistochemistry. We utilized gene set enrichment analysis (GSEA) to find potentially ADAMTS14-related pathways and applied univariate/multivariate Cox regression analyses to identify independent factors significantly related to overall survival (OS) for ccRCC. A nomogram consisted of independent prognostic factors was also conducted. We further explored the associations between ADAMTS14 with immunity and revealed its potential mechanisms. Results ADAMTS14 displayed a higher expression in ccRCC tumor than in adjacent normal tissues, and further validated results of the ICGC dataset; qRT-PCR and immunohistochemistry remained consistent (all p < 0.05). Moreover, elevated ADAMTS14 expression was significantly associated with poor OS (p < 0.001). Through univariate/multivariate Cox regression analyses, ADAMTS14 was found to be an independent prognostic factor for ccRCC (both p < 0.05) and GSEA identified several signaling pathways including INSULIN, MTOR, and PPAR pathways. The nomogram based on independent prognostic factors was successfully established and well evaluated. Moreover, the expression of ADAMTS14 was remarkably associated with immune checkpoint molecules, tumor mutational burden (TMB), immune cells, and tumor immune microenvironment (all p < 0.05). Results from TIDE and TCIA showed that highly expressed ADAMTS14 could predict worse efficacy of immunotherapy (all p < 0.05). As for its potential mechanisms, we also revealed several LncRNA/RNA binding protein (RBP)/ADAMTS14 mRNA networks. Conclusions ADAMTS14 was found to play oncogenic roles in ccRCC and to be significantly associated with immunity. Several LncRNA/RBP/ADAMTS14 mRNA networks were also identified for its potential mechanisms.
Collapse
Affiliation(s)
- Yinhao Chen
- Department of Urology, Affiliated Hospital of Nantong University, Nantong, China
| | - Hao Ji
- Department of Urology, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Shouyong Liu
- Department of Urology, Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), Nantong, China
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qianwei Xing
- Department of Urology, Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Yi Wang, ; Bingye Zhu, ; Qianwei Xing,
| | - Bingye Zhu
- Department of Urology, Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), Nantong, China
- *Correspondence: Yi Wang, ; Bingye Zhu, ; Qianwei Xing,
| | - Yi Wang
- Department of Urology, Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Yi Wang, ; Bingye Zhu, ; Qianwei Xing,
| |
Collapse
|
7
|
Xie S, Yang J, Huang S, Fan Y, Xu T, He J, Guo J, Ji X, Wang Z, Li P, Chen J, Zhang Y. Disrupted myelination network in the cingulate cortex of Parkinson's disease. IET Syst Biol 2022; 16:98-119. [PMID: 35394697 PMCID: PMC9290774 DOI: 10.1049/syb2.12043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/31/2022] [Accepted: 03/21/2022] [Indexed: 12/13/2022] Open
Abstract
The cingulate cortex is part of the conserved limbic system, which is considered as a hub of emotional and cognitive control. Accumulating evidence suggested that involvement of the cingulate cortex is significant for cognitive impairment of Parkinson's disease (PD). However, mechanistic studies of the cingulate cortex in PD pathogenesis are limited. Here, transcriptomic and regulatory network analyses were conducted for the cingulate cortex in PD. Enrichment and clustering analyses showed that genes involved in regulation of membrane potential and glutamate receptor signalling pathway were upregulated. Importantly, myelin genes and the oligodendrocyte development pathways were markedly downregulated, indicating disrupted myelination in PD cingulate cortex. Cell‐type‐specific signatures revealed that myelinating oligodendrocytes were the major cell type damaged in the PD cingulate cortex. Furthermore, downregulation of myelination pathways in the cingulate cortex were shared and validated in another independent RNAseq cohort of dementia with Lewy bodies (DLB). In combination with ATACseq data, gene regulatory networks (GRNs) were further constructed for 32 transcription factors (TFs) and 466 target genes among differentially expressed genes (DEGs) using a tree‐based machine learning algorithm. Several transcription factors, including Olig2, Sox8, Sox10, E2F1, and NKX6‐2, were highlighted as key nodes in a sub‐network, which control many overlapping downstream targets associated with myelin formation and gliogenesis. In addition, the authors have validated a subset of DEGs by qPCRs in two PD mouse models. Notably, seven of these genes,TOX3, NECAB2 NOS1, CAPN3, NR4A2, E2F1 and FOXP2, have been implicated previously in PD or neurodegeneration and are worthy of further studies as novel candidate genes. Together, our findings provide new insights into the role of remyelination as a promising new approach to treat PD after demyelination.
Collapse
Affiliation(s)
- Song Xie
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jiajun Yang
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Shenghui Huang
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yuanlan Fan
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Tao Xu
- Molecular Neuropharmacology Lab, School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,The Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang Province, China
| | - Jiangshuang He
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jiahao Guo
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xiang Ji
- Department of Mathematics, School of Science & Engineering, Tulane University, New Orleans, Louisiana, USA
| | - Zhibo Wang
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Peijun Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jiangfan Chen
- Molecular Neuropharmacology Lab, School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,The Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang Province, China
| | - Yi Zhang
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,The Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang Province, China.,Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| |
Collapse
|
8
|
Pun FW, Leung GHD, Leung HW, Liu BHM, Long X, Ozerov IV, Wang J, Ren F, Aliper A, Izumchenko E, Moskalev A, de Magalhães JP, Zhavoronkov A. Hallmarks of aging-based dual-purpose disease and age-associated targets predicted using PandaOmics AI-powered discovery engine. Aging (Albany NY) 2022; 14:2475-2506. [PMID: 35347083 PMCID: PMC9004567 DOI: 10.18632/aging.203960] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/06/2022] [Indexed: 11/25/2022]
Abstract
Aging biology is a promising and burgeoning research area that can yield dual-purpose pathways and protein targets that may impact multiple diseases, while retarding or possibly even reversing age-associated processes. One widely used approach to classify a multiplicity of mechanisms driving the aging process is the hallmarks of aging. In addition to the classic nine hallmarks of aging, processes such as extracellular matrix stiffness, chronic inflammation and activation of retrotransposons are also often considered, given their strong association with aging. In this study, we used a variety of target identification and prioritization techniques offered by the AI-powered PandaOmics platform, to propose a list of promising novel aging-associated targets that may be used for drug discovery. We also propose a list of more classical targets that may be used for drug repurposing within each hallmark of aging. Most of the top targets generated by this comprehensive analysis play a role in inflammation and extracellular matrix stiffness, highlighting the relevance of these processes as therapeutic targets in aging and age-related diseases. Overall, our study reveals both high confidence and novel targets associated with multiple hallmarks of aging and demonstrates application of the PandaOmics platform to target discovery across multiple disease areas.
Collapse
Affiliation(s)
- Frank W. Pun
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Geoffrey Ho Duen Leung
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Hoi Wing Leung
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Bonnie Hei Man Liu
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Xi Long
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Ivan V. Ozerov
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Ju Wang
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Feng Ren
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Alexander Aliper
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Evgeny Izumchenko
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Alexey Moskalev
- School of Systems Biology, George Mason University (GMU), Fairfax, VA 22030, USA
| | - João Pedro de Magalhães
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK
| | - Alex Zhavoronkov
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| |
Collapse
|
9
|
Dupont L, Joannes L, Morfoisse F, Blacher S, Monseur C, Deroanne CF, Noël A, Colige AC. ADAMTS2 and ADAMTS14 substitute ADAMTS3 in adults for proVEGFC activation and lymphatic homeostasis. JCI Insight 2022; 7:151509. [PMID: 35316211 PMCID: PMC9089798 DOI: 10.1172/jci.insight.151509] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 03/16/2022] [Indexed: 11/17/2022] Open
Abstract
The capacity of ADAMTS3 to cleave pro-VEGFC into active VEGFC able to bind its receptors and to stimulate lymphangiogenesis has been clearly established during embryonic life. However, this function of ADAMTS3 is unlikely to persist in adulthood because of its restricted expression pattern after birth. Because ADAMTS2 and ADAMTS14 are closely related to ADAMTS3 and are mainly expressed in connective tissues where the lymphatic network extends, we hypothesized that they could substitute for ADAMTS3 during adulthood in mammals allowing proteolytic activation of pro-VEGFC. Here, we demonstrated that ADAMTS2 and ADAMTS14 are able to process pro-VEGFC into active VEGFC as efficiently as ADAMTS3. In vivo, adult mice lacking Adamts2 developed skin lymphedema due to a reduction of the density and diameter of lymphatic vessels, leading to a decrease of lymphatic functionality, while genetic ablation of Adamts14 had no impact. In a model of thermal cauterization of cornea, lymphangiogenesis was significantly reduced in Adamts2- and Adamts14-KO mice and further repressed in Adamts2/Adamts14 double-KO mice. In summary, we have demonstrated that ADAMTS2 and ADAMTS14 are as efficient as ADAMTS3 in activation of pro-VEGFC and are involved in the homeostasis of the lymphatic vasculature in adulthood, both in physiological and pathological processes.
Collapse
Affiliation(s)
- Laura Dupont
- Laboratory of Tumor and Developmental Biology, University of Liege, Liège, Belgium
| | - Loïc Joannes
- Laboratory of Connective Tissues Biology, University of Liege, Liège, Belgium
| | - Florent Morfoisse
- Laboratory of Tumor and Developmental Biology, University of Liege, Liège, Belgium
| | - Silvia Blacher
- Laboratory of Tumor and Development Biology, University of Liege, Liège, Belgium
| | - Christine Monseur
- Laboratory of Connective Tissues Biology, University of Liege, Liège, Belgium
| | | | - Agnès Noël
- Laboratory of Tumor and Development Biology, University of Liege, Liège, Belgium
| | - Alain Cma Colige
- Laboratory of Connective Tissues Biology, University of Liege, Liège, Belgium
| |
Collapse
|
10
|
Leduc C, Dupont L, Joannes L, Monseur C, Baiwir D, Mazzucchelli G, Deroanne C, Colige A, Bekhouche M. In vivo N-Terminomics Highlights Novel Functions of ADAMTS2 and ADAMTS14 in Skin Collagen Matrix Building. Front Mol Biosci 2021; 8:643178. [PMID: 33816558 PMCID: PMC8017238 DOI: 10.3389/fmolb.2021.643178] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/08/2021] [Indexed: 12/12/2022] Open
Abstract
A disintegrin and metalloproteinase with thrombospondin type I motif (ADAMTS)2 and ADAMTS14 were originally known for their ability to cleave the aminopropeptides of fibrillar collagens. Previous work using N-terminomic approach (N-TAILS) in vitro led to the identification of new substrates, including some molecules involved in TGF-β signaling. Here, N-TAILS was used to investigate the substrates of these two enzymes in vivo, by comparing the N-terminomes of the skin of wild type mice, mice deficient in ADAMTS2, in ADAMTS14 and in both ADAMTS2 and ADAMTS14. This study identified 68 potential extracellular and cell surface proteins, with the majority of them being cleaved by both enzymes. These analyses comfort their role in collagen matrix organization and suggest their implication in inflammatory processes. Regarding fibrillar collagen, this study demonstrates that both ADAMTS2 and ADAMTS14 are involved in the processing of the aminopropeptide of alpha1 and alpha2 type V collagen. It also revealed the existence of several cleavage sites in the Col1 domain and in the C-propeptide of type I collagens. In addition to collagens and other extracellular proteins, two major components of the cell cytoskeleton, actin and vimentin, were also identified as potential substrates. The latter data were confirmed in vitro using purified enzymes and could potentially indicate other functions for ADAMTS2 and 14. This original investigation of mouse skin degradomes by N-terminomic highlights the essential role of ADAMTS2 and ADAMTS14 in collagen matrix synthesis and turnover, and gives clues to better understand their functions in skin pathophysiology. Data are available via ProteomeXchange with identifier PXD022179.
Collapse
Affiliation(s)
- Cédric Leduc
- Laboratory of Connective Tissues Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Laura Dupont
- Laboratory of Connective Tissues Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Loïc Joannes
- Laboratory of Connective Tissues Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Christine Monseur
- Laboratory of Connective Tissues Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Dominique Baiwir
- GIGA Proteomic Facility, GIGA-Interdisciplinary Cluster for Applied Genoproteomics, University of Liège, Liège, Belgium
| | - Gabriel Mazzucchelli
- GIGA Proteomic Facility, GIGA-Interdisciplinary Cluster for Applied Genoproteomics, University of Liège, Liège, Belgium
| | - Christophe Deroanne
- Laboratory of Connective Tissues Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Alain Colige
- Laboratory of Connective Tissues Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Mourad Bekhouche
- Laboratory of Connective Tissues Biology, GIGA-Cancer, University of Liège, Liège, Belgium.,Tissue Biology and Therapeutic Engineering, Centre National de la Recherche Scientifique/University of Lyon Unité Mixte de Recherche 5305, Lyon, France.,Faculté d'Odontologie de Lyon, Université de Lyon, Université Lyon 1, Lyon, France
| |
Collapse
|
11
|
ADAMTS proteases and the tumor immune microenvironment: Lessons from substrates and pathologies. Matrix Biol Plus 2020; 9:100054. [PMID: 33718860 PMCID: PMC7930849 DOI: 10.1016/j.mbplus.2020.100054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/25/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023] Open
Abstract
The relationship of ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) proteases with inflammatory processes was anticipated since their discovery. Although knowledge of these extracellular proteases in different contexts continues to grow, many questions remain unanswered. In this review, we summarize the most important studies of ADAMTSs and their substrates in inflammation and in the immune system of non-oncological disorders. In addition, we update the findings on cancer and highlight their emerging role in the tumor immune microenvironment. Although the overall functions of extracellular molecules are known to be modulated by proteolysis, specific activities attributed to intact proteins and cleaved fragments in the context of inflammation are still subject to debate. A better understanding of ADAMTS activities will help to elucidate their contribution to the immune phenotype and to open up new therapeutic and diagnostic possibilities.
Collapse
|
12
|
Luigi-Sierra MG, Landi V, Guan D, Delgado JV, Castelló A, Cabrera B, Mármol-Sánchez E, Alvarez JF, Gómez-Carpio M, Martínez A, Such X, Jordana J, Amills M. A genome-wide association analysis for body, udder, and leg conformation traits recorded in Murciano-Granadina goats. J Dairy Sci 2020; 103:11605-11617. [PMID: 33069406 DOI: 10.3168/jds.2020-18461] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 08/03/2020] [Indexed: 02/02/2023]
Abstract
Morphological traits are of great importance to dairy goat production given their effect on phenotypes of economic interest. However, their underlying genomic architecture has not yet been extensively characterized. Herein, we aimed to identify genomic regions associated with body, udder, and leg conformation traits recorded in 825 Murciano-Granadina goats. We genotyped this resource population using the GoatSNP50 BeadChip (Illumina Inc., San Diego, CA) and performed genome-wide association analyses using the GEMMA software. We found 2 genome-wide significant associations between markers rs268273468 [Capra hircus (CHI) 16:69617700] and rs268249346 (CHI 28:18321523) and medial suspensory ligament. In contrast, we did not detect any genome-wide significant associations for body and leg traits. Moreover, we found 12, 19, and 7 chromosome-wide significant associations for udder, body, and leg traits, respectively. Comparison of our data with previous studies revealed a low level of positional concordance between regions associated with morphological traits. In addition to technical factors, this lack of concordance could be due to a substantial level of genetic heterogeneity among breeds or to the strong polygenic background of morphological traits, which makes it difficult to detect genetic factors that have small phenotypic effects.
Collapse
Affiliation(s)
- Maria Gracia Luigi-Sierra
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Vincenzo Landi
- Departamento de Genética, Universidad de Córdoba, Córdoba 14071, Spain; Department of Veterinary Medicine, University of Bari "Aldo Moro," SP. 62 per Casamassima km. 3, 70010 Valenzano (BA), Italy
| | - Dailu Guan
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | | | - Anna Castelló
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, Bellaterra 08193, Spain; Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Betlem Cabrera
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, Bellaterra 08193, Spain; Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Emilio Mármol-Sánchez
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Javier Fernández Alvarez
- Asociación Nacional de Criadores de Caprino de Raza Murciano-Granadina (CAPRIGRAN), 18340 Granada, Spain
| | | | - Amparo Martínez
- Departamento de Genética, Universidad de Córdoba, Córdoba 14071, Spain
| | - Xavier Such
- Group of Research in Ruminants (G2R), Department of Animal and Food Science, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona 08193, Spain
| | - Jordi Jordana
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Marcel Amills
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, Bellaterra 08193, Spain; Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain.
| |
Collapse
|
13
|
Lin YM, Lin CW, Lu JW, Yeh KT, Lin SH, Yang SF. Decreased Cytoplasmic Expression of ADAMTS14 Is Correlated with Reduced Survival Rates in Oral Squamous Cell Carcinoma Patients. Diagnostics (Basel) 2020; 10:diagnostics10020122. [PMID: 32102222 PMCID: PMC7168220 DOI: 10.3390/diagnostics10020122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/20/2022] Open
Abstract
A disintegrin and metalloproteinase with thrombospondin motif 14 (ADAMTS14) is a member of the zinc-dependent protease family that is implicated in the occurrence and progression of tumors. Oral cancer (OC) is a common cancer worldwide, but it is particularly prevalent in Taiwan. However, whether the expression of ADAMTS14 is correlated with the carcinogenesis and progression of oral squamous cell carcinoma (OSCC) has not yet been investigated. In this study, we used immunohistochemistry (IHC) to examine 250 OSCC specimens in order to identify correlations between the cytoplasmic expression of ADAMTS14 and (1) clinicopathological features of OSCC as well as (2) clinical outcomes of OSCC. Our results indicate that cytoplasmic expression of ADAMTS14 was lower in OSCC tissues than in normal tissues. In analyzing correlations between ADAMTS14 expression and clinicopathological features, we found that negative cytoplasmic expression of ADAMTS14 was significantly associated with higher frequencies of lymph node metastasis and more advanced AJCC stages (III/IV). Kaplan-Meier survival analysis revealed that negative cytoplasmic expression of ADAMTS14 was also associated with significantly worse OSCC survival. Univariate and multivariate analyses confirmed that cytoplasmic expression of ADAMTS14 was associated with lymph node metastasis, tumor stage, and tumor grade and also indicated that cytoplasmic ADAMTS14 expression may be an independent prognostic factor for OSCC. This is the first study to report that the cytoplasmic expression level of ADAMTS14 is associated with OSCC prognosis and tumor progression. Our data indicate that ADAMTS14 can serve as a prognostic marker and a potential therapeutic target for OSCC.
Collapse
Affiliation(s)
- Yueh-Min Lin
- Department of Pathology, Changhua Christian Hospital, Changhua 500, Taiwan; (Y.-M.L.); (K.-T.Y.)
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung 406, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 402, Taiwan;
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Jeng-Wei Lu
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore;
| | - Kun-Tu Yeh
- Department of Pathology, Changhua Christian Hospital, Changhua 500, Taiwan; (Y.-M.L.); (K.-T.Y.)
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Shu-Hui Lin
- Department of Pathology, Changhua Christian Hospital, Changhua 500, Taiwan; (Y.-M.L.); (K.-T.Y.)
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung 406, Taiwan
- Correspondence: (S.-H.L.); (S.-F.Y.)
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- Correspondence: (S.-H.L.); (S.-F.Y.)
| |
Collapse
|
14
|
Rosell-García T, Paradela A, Bravo G, Dupont L, Bekhouche M, Colige A, Rodriguez-Pascual F. Differential cleavage of lysyl oxidase by the metalloproteinases BMP1 and ADAMTS2/14 regulates collagen binding through a tyrosine sulfate domain. J Biol Chem 2019; 294:11087-11100. [PMID: 31152061 DOI: 10.1074/jbc.ra119.007806] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/24/2019] [Indexed: 12/18/2022] Open
Abstract
Collagens are the main structural component of the extracellular matrix and provide biomechanical properties to connective tissues. A critical step in collagen fibril formation is the proteolytic removal of N- and C-terminal propeptides from procollagens by metalloproteinases of the ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) and BMP1 (bone morphogenetic protein 1)/Tolloid-like families, respectively. BMP1 also cleaves and activates the lysyl oxidase (LOX) precursor, the enzyme catalyzing the initial step in the formation of covalent collagen cross-links, an essential process for fibril stabilization. In this study, using murine skin fibroblasts and HEK293 cells, along with immunoprecipitation, LOX enzymatic activity, solid-phase binding assays, and proteomics analyses, we report that the LOX precursor is proteolytically processed by the procollagen N-proteinases ADAMTS2 and ADAMTS14 between Asp-218 and Tyr-219, 50 amino acids downstream of the BMP1 cleavage site. We noted that the LOX sequence between the BMP1- and ADAMTS-processing sites contains several conserved tyrosine residues, of which some are post-translationally modified by tyrosine O-sulfation and contribute to binding to collagen. Taken together, these findings unravel an additional level of regulation in the formation of collagen fibrils. They point to a mechanism that controls the binding of LOX to collagen and is based on differential BMP1- and ADAMTS2/14-mediated cleavage of a tyrosine-sulfated domain.
Collapse
Affiliation(s)
- Tamara Rosell-García
- Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Científicas (C.S.I.C.), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Alberto Paradela
- Proteomics Facility, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (C.S.I.C.), 28049 Madrid, Spain
| | - Gema Bravo
- Proteomics Facility, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (C.S.I.C.), 28049 Madrid, Spain
| | - Laura Dupont
- Laboratory of Connective Tissues Biology, GIGA, University of Liège, 4000 Sart Tilman, Belgium
| | - Mourad Bekhouche
- Laboratory of Connective Tissues Biology, GIGA, University of Liège, 4000 Sart Tilman, Belgium
| | - Alain Colige
- Laboratory of Connective Tissues Biology, GIGA, University of Liège, 4000 Sart Tilman, Belgium
| | - Fernando Rodriguez-Pascual
- Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Científicas (C.S.I.C.), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|