1
|
Fan C, Yang Y, You M, Chen Z, Jiang J. Mefunidone Inhibits Inflammation, Oxidative Stress, and Epithelial-Mesenchymal Transition in Lens Epithelial Cells. Invest Ophthalmol Vis Sci 2024; 65:17. [PMID: 39652067 PMCID: PMC11629908 DOI: 10.1167/iovs.65.14.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 11/12/2024] [Indexed: 12/12/2024] Open
Abstract
Purpose Inflammation, oxidative stress, and epithelial-mesenchymal transition (EMT) play crucial roles in forming posterior capsular opacification (PCO), particularly in fibrotic PCO. Here we investigated the protective effects of mefunidone (MFD), a novel compound with potent antifibrotic properties, which could be useful in preventing PCO. Methods We utilized an extracapsular lens extraction (ECLE) surgery in mice to simulate the development of PCO in vivo. Treatment was performed immediately postsurgery through the intracameral injection of MFD solution. Expression levels of EMT and inflammatory markers were analyzed using Western blot, qRT-PCR, immunofluorescence, and hematoxylin and eosin staining. Additionally, the oxidative stress indicator malondialdehyde and glutathione expression were monitored to assess the oxidative stress response. In vitro experiments, TGF-β2, and H2O2 were used to treat lens epithelial cells to induce EMT and oxidative stress models, respectively. These models were employed to explore the effects of MFD and investigate its underlying mechanisms. Results Compared to the model group, the group treated with anterior chamber MFD injection effectively suppressed inflammation, oxidative stress, and fibrotic responses within the capsular bag after ECLE and partially inhibited the downregulation of the epithelial marker E-cadherin. To further elucidate the underlying mechanisms, we discovered that MFD treatment in vitro remarkably reduced inflammation, decreased the production of reactive oxygen species, and suppressed the phosphorylation of TGF-β/SMAD as well as MAPK/ERK, thereby inhibiting the occurrence of EMT. Conclusions Our findings substantiate the efficacy of MFD in treating PCO and provide insights into its potential mechanisms of action.
Collapse
Affiliation(s)
- Cong Fan
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yu Yang
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Mengling You
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhuo Chen
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Jian Jiang
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
2
|
Cunha M, Elhaddad O, Yahalomi T, Avadhanam V, Tole D, Darcy K, Levinger E, Tuuminen R, Achiron A. Type 1 and type 2 diabetes predisposed to higher Nd:YAG capsulotomy rates following cataract surgery: analysis of 53,471 consecutive cases. CANADIAN JOURNAL OF OPHTHALMOLOGY 2024; 59:380-385. [PMID: 38513717 DOI: 10.1016/j.jcjo.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/01/2024] [Accepted: 02/25/2024] [Indexed: 03/23/2024]
Abstract
OBJECTIVE To assess the effect of diabetes type on Nd:YAG capsulotomy rates following cataract surgery. DESIGN A retrospective cohort study. METHODS All patients who underwent cataract extraction at the Department of Ophthalmology, Bristol Eye Hospital, Bristol, UK, between 2003 and 2017 were included. The Nd:YAG capsulotomy rate following cataract surgery was assessed and compared between nondiabetic, type 1 diabetes (T1D), and type 2 diabetes (T2D) patients. Multivariate Cox regression analysis controlling for age and sex was used to estimate hazard ratios for Nd:YAG laser capsulotomies. RESULTS Included were 53,471 consecutive cataract surgeries. Overall, 42,651 eyes (79.8%) were in nondiabetic patients, 823 eyes (1.5%) were in T1D patients, and 9,997 eyes (18.7%) were in T2D patients. The mean follow-up time was 6.8 ± 4.2 years. In univariate analysis, the eyes of T1D patients (p < 0.001) and T2D patients (p = 0.003) had significantly higher Nd:YAG laser capsulotomy rates than the eyes of nondiabetic patients. In Cox regression analysis adjusted for the patient's age and sex, DM1 (HR 1.692, 95%CI 1.390-2.059, P<0.001) and DM2 (HR 1.157, 95%CI 1.075-1.244, P<0.001) remained significantly predictive for higher Nd:YAG laser capsulotomy rates. CONCLUSION In our large cohort study, patients with T1D and T2D were predisposed to high risk for Nd:YAG capsulotomy following cataract surgery. This study may be beneficial and raise awareness regarding the assessment of posterior capsular opacification development in pseudophakic diabetic patients, particularly those with T1D. The significance of ophthalmology screening for diabetes individuals is further supported by this issue.
Collapse
Affiliation(s)
- Mariana Cunha
- Helsinki Retina Research Group, University of Helsinki, Helsinki, Finland; Medical School, São Paulo State University (UNESP), São Paulo, Brazil
| | - Omar Elhaddad
- Bristol Eye Hospital, University Hospitals Bristol NHS Foundation Trust, Bristol, United Kingdom; Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Tal Yahalomi
- Department of Ophthalmology, Samson Assuta Ashdod Hospital and Faculty of Health Sciences, Ben-Gurion University of the Negev, Negev, Israel.
| | - Venkata Avadhanam
- Bristol Eye Hospital, University Hospitals Bristol NHS Foundation Trust, Bristol, United Kingdom
| | - Derek Tole
- Bristol Eye Hospital, University Hospitals Bristol NHS Foundation Trust, Bristol, United Kingdom
| | - Kieran Darcy
- Bristol Eye Hospital, University Hospitals Bristol NHS Foundation Trust, Bristol, United Kingdom
| | - Eliya Levinger
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Raimo Tuuminen
- Helsinki Retina Research Group, University of Helsinki, Helsinki, Finland; Department of Ophthalmology, Kymenlaakso Central Hospital, Kotka, Finland
| | - Asaf Achiron
- Tel-Aviv Sourasky Medical Center and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
3
|
Yin C, Zhang Y, Fan C, Zheng J, Yang Y, Zhang Y, Jiang J. Injectable and pH-Responsive Metformin-Loaded Hydrogel for Active Inhibition of Posterior Capsular Opacification. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59880-59894. [PMID: 39437316 DOI: 10.1021/acsami.4c13318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Posterior capsular opacification (PCO) is a common complication following cataract surgery, which can lead to a significant vision loss. This study introduces a facile method for developing a metformin-derived hydrogel (HCM6) stabilized by dynamic covalent bonds among natural polymers. This hydrogel demonstrates antifibrotic properties, on-demand drug release, pH responsiveness, injectability, and self-healing capabilities. Our in vitro experiments confirmed that the HCM6 hydrogel exhibits excellent biocompatibility, inhibiting lens epithelial cell migration, and transforming growth factor-2β (TGFβ2)-induced α-smooth muscle actin (α-SMA) expression in lens epithelial cells. In vivo studies conducted in a rat extracapsular lens extraction (ECLE) model revealed that HCM6 significantly suppressed PCO after 21 days of implantation with no observed pathological effects on surrounding tissues or the optic nerve. According to our experimental results, the inhibitory mechanism of PCO may be attributed to metformin's suppressive effect on lens cell migration, epithelial-mesenchymal transition (EMT), and lens fiber formation. In summary, the long-acting, controllable, and on-demand release characteristics of the HCM6 hydrogel not only provide an effective strategy for preventing PCO but also offer new avenues for treating undesirable proliferative conditions in ophthalmology and beyond.
Collapse
Affiliation(s)
- Chao Yin
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
- College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China
| | - Yue Zhang
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Ophthalmology, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Cong Fan
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Ophthalmology, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jun Zheng
- Institute of Integrative Medicine, Department of Integrated Chinese and Western Medicine, Xiangya Hospital Central South University, Changsha 410008, China
| | - Yu Yang
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Ophthalmology, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yi Zhang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
- National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China
| | - Jian Jiang
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Ophthalmology, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
4
|
Tao Q, Wu L, An J, Liu Z, Zhang K, Zhou L, Zhang X. Proteomic analysis of human aqueous humor from fuchs uveitis syndrome. Exp Eye Res 2024; 239:109752. [PMID: 38123010 DOI: 10.1016/j.exer.2023.109752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/25/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
Fuchs uveitis syndrome (FUS) is a commonly misdiagnosed uveitis syndrome often presenting as an asymptomatic mild inflammatory condition until complications arise. The diagnosis of this disease remains clinical because of the lack of specific laboratory tests. The aqueous humor (AH) is a complex fluid containing nutrients and metabolic wastes from the eye. Changes in the AH protein provide important information for diagnosing intraocular diseases. This study aimed to analyze the proteomic profile of AH in individuals diagnosed with FUS and to identify potential biomarkers of the disease. We used liquid chromatography-tandem mass spectrometry-based proteomic methods to evaluate the AH protein profiles of all 37 samples, comprising 15 patients with FUS, six patients with Posner-Schlossman syndrome (PSS), and 16 patients with age-related cataract. A total of 538 proteins were identified from a comprehensive spectral library of 634 proteins. Subsequent differential expression analysis, enrichment analysis, and construction of key sub-networks revealed that the inflammatory response, complement activation and hypoxia might be crucial in mediating the process of FUS. The hypoxia inducible factor-1 may serve as a key regulator and therapeutic target. Additionally, the innate and adaptive immune responses are considered dominant in the patients with FUS. A diagnostic model was constructed using machine-learning algorithm to classify FUS, PSS, and normal controls. Two proteins, complement C1q subcomponent subunit B and secretogranin-1, were found to have the highest scores by the Extreme Gradient Boosting, suggesting their potential utility as a biomarker panel. Furthermore, these two proteins as biomarkers were validated in a cohort of 18 patients using high resolution multiple reaction monitoring assays. Therefore, this study contributes to advancing of the current knowledge of FUS pathogenesis and promotes the development of effective diagnostic strategies.
Collapse
Affiliation(s)
- Qingqin Tao
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Lingzi Wu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China; Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jinying An
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | | | - Kai Zhang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Lei Zhou
- School of Optometry, Department of Applied Biology and Chemical Technology, Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong, China; Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, China
| | - Xiaomin Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China.
| |
Collapse
|
5
|
Yahalomi T, Elhaddad O, Avadhanam V, Tole D, Darcy K, Levinger E, Tuuminen R, Achiron A. Complications of pupil expansion devices: a large real-world study. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1283378. [PMID: 38983009 PMCID: PMC11182085 DOI: 10.3389/fopht.2023.1283378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/27/2023] [Indexed: 07/11/2024]
Abstract
Purpose To assess the risk for uveitis, pseudophakic cystoid macular edema (PCME), and posterior capsular opacification (PCO) associated with the use of pupil expansion devices in cataract surgery. Design A retrospective comparative cohort study. Participants Patients who underwent routine cataract surgery with and without pupil expansion devices at the Department of Ophthalmology, Bristol Eye Hospital, UK, between January 2008 and December 2017. Methods This study included 39,460 eyes operated without a pupil expansion device and 699 eyes operated with the device. Odds ratios for uveitis and PCME when using a pupil expansion device were calculated using univariate and multivariate regression analysis, having age, gender, diabetes, pseudoexfoliation, and pupil expansion device as independent variables. Multivariate Cox regression controlling for age and gender was used to estimate hazard ratios (HR) for Nd : YAG laser capsulotomies. Results Postoperative uveitis and PCME were reported in 3.9% and 2.7% of the eyes operated with a pupil expansion device compared to 2.3% and 1.3% operated without the device (p=0.005 and p=0.002, respectively). In univariate regression analysis, eyes with pupil expansion devices showed a higher risk of postoperative uveitis or PMCE after cataract surgery (OR 1.88, 95%CI 1.39-2.55, p<0.001). In multivariate regression analysis, the risk for PMCE was greater among diabetic patients and in eyes with a pupil expansion device than in those without (OR 1.50, 95%CI 1.24-1.83, P<0.001; OR 1.90, 95%CI 1.16-3.11, P=0.01). In Cox regression analysis adjusted for the patient's age and gender, the use of a pupil expansion device was associated with higher Nd : YAG laser capsulotomy rates (HR 1.316, 95%CI 1.011-1.714, P=0.041). Conclusion In our large cohort study, the use of pupil expansion devices in cataract surgery was associated with an increased risk of major postoperative complications. Effective anti-inflammatory treatment and follow-up are warranted in eyes operated with a pupil expansion device.
Collapse
Affiliation(s)
- Tal Yahalomi
- Department of Ophthalmology, Samson Assuta Ashdod Hospital, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be’er Sheva, Israel
| | - Omar Elhaddad
- Bristol Eye Hospital, University Hospitals Bristol NHS Foundation Trust, Bristol, United Kingdom
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Venkata Avadhanam
- Bristol Eye Hospital, University Hospitals Bristol NHS Foundation Trust, Bristol, United Kingdom
| | - Derek Tole
- Bristol Eye Hospital, University Hospitals Bristol NHS Foundation Trust, Bristol, United Kingdom
| | - Kieran Darcy
- Bristol Eye Hospital, University Hospitals Bristol NHS Foundation Trust, Bristol, United Kingdom
| | - Eliya Levinger
- Ophthalmology Department, Soraski Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Raimo Tuuminen
- Department of Ophthalmology, Kymenlaakso Central Hospital, Kotka, Finland
- Helsinki Retina Research Group, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Asaf Achiron
- Ophthalmology Department, Soraski Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| |
Collapse
|
6
|
Taiyab A, Belahlou Y, Wong V, Pandi S, Shekhar M, Chidambaranathan GP, West-Mays J. Understanding the Role of Yes-Associated Protein (YAP) Signaling in the Transformation of Lens Epithelial Cells (EMT) and Fibrosis. Biomolecules 2023; 13:1767. [PMID: 38136638 PMCID: PMC10741558 DOI: 10.3390/biom13121767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Fibrotic cataracts, posterior capsular opacification (PCO), and anterior subcapsular cataracts (ASC) are mainly attributed to the transforming growth factor-β (TGFβ)-induced epithelial-to-mesenchymal transition (EMT) of lens epithelial cells (LECs). Previous investigations from our laboratory have shown the novel role of non-canonical TGFβ signaling in the progression of EMT in LECs. In this study, we have identified YAP as a critical signaling molecule involved in lens fibrosis. The observed increase in nuclear YAP in capsules of human ASC patients points toward the involvement of YAP in lens fibrosis. In addition, the immunohistochemical (IHC) analyses on ocular sections from mice that overexpress TGFβ in the lens (TGFβtg) showed a co-expression of YAP and α-SMA in the fibrotic plaques when compared to wild-type littermate lenses, which do not. The incubation of rat lens explants with verteporfin, a YAP inhibitor, prevented a TGFβ-induced fiber-like phenotype, α-SMA, and fibronectin expression, as well as delocalization of E-cadherin and β-catenin. Finally, LECs co-incubated with TGFβ and YAP inhibitor did not exhibit an induction in matrix metalloproteinase 2 compared to those LECs treated with TGFβ alone. In conclusion, these data demonstrate that YAP is required for TGFβ-mediated lens EMT and fibrosis.
Collapse
Affiliation(s)
- Aftab Taiyab
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada; (Y.B.); (V.W.)
| | - Yasmine Belahlou
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada; (Y.B.); (V.W.)
| | - Vanessa Wong
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada; (Y.B.); (V.W.)
| | - Saranya Pandi
- Department of Immunology and Stem Cell Biology, Aravind Medical Research Foundation, Madurai 625020, Tamil Nadu, India; (S.P.); (G.P.C.)
| | - Madhu Shekhar
- Cataract and IOL Services, Aravind Eye Hospital and Post Graduate Institute of Ophthalmology, Madurai 625020, Tamil Nadu, India;
| | - Gowri Priya Chidambaranathan
- Department of Immunology and Stem Cell Biology, Aravind Medical Research Foundation, Madurai 625020, Tamil Nadu, India; (S.P.); (G.P.C.)
| | - Judith West-Mays
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada; (Y.B.); (V.W.)
| |
Collapse
|
7
|
O'Neill LM, Wang Y, Duncan MK. Modeling Cataract Surgery in Mice. J Vis Exp 2023:10.3791/66050. [PMID: 38108456 PMCID: PMC10981495 DOI: 10.3791/66050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023] Open
Abstract
Cataract surgery (CS) is an effective treatment for cataracts, a major cause of visual disability worldwide. However, CS leads to ocular inflammation, and in the long term, it can result in posterior capsular opacification (PCO) and/or lens dislocation driven by the post-surgical overgrowth of lens epithelial cells (LECs) and their conversion to myofibroblasts and/or aberrant fiber cells. However, the molecular mechanisms by which CS results in inflammation and PCO are still obscure because most in vitro models do not recapitulate the wound healing response of LECs seen in vivo, while traditional animal models of cataract surgery, such as rabbits, do not allow the genetic manipulation of gene expression to test mechanisms. Recently, our laboratory and others have successfully used genetically modified mice to study the molecular mechanisms that drive the induction of proinflammatory signaling and LEC epithelial to mesenchymal transition, leading to new insight into PCO pathogenesis. Here, we report the established protocol for modeling cataract surgery in mice, which allows for robust transcriptional profiling of the response of LECs to lens fiber cell removal via RNAseq, the evaluation of protein expression by semi-quantitative immunofluorescence, and the use of modern mouse genetics tools to test the function of genes that are hypothesized to participate in the pathogenesis of acute sequelae like inflammation as well as the later conversion of LECs to myofibroblasts and/or aberrant lens fiber cells.
Collapse
Affiliation(s)
- Leah M O'Neill
- Department of Biological Sciences, University of Delaware
| | - Yan Wang
- Department of Biological Sciences, University of Delaware
| | | |
Collapse
|
8
|
Xiang J, Pompetti AJ, Faranda AP, Wang Y, Novo SG, Li DWC, Duncan MK. ATF4 May Be Essential for Adaption of the Ocular Lens to Its Avascular Environment. Cells 2023; 12:2636. [PMID: 37998373 PMCID: PMC10670291 DOI: 10.3390/cells12222636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/25/2023] Open
Abstract
The late embryonic mouse lens requires the transcription factor ATF4 for its survival although the underlying mechanisms were unknown. Here, RNAseq analysis revealed that E16.5 Atf4 null mouse lenses downregulate the mRNA levels of lens epithelial markers as well as known markers of late lens fiber cell differentiation. However, a comparison of this list of differentially expressed genes (DEGs) with other known transcriptional regulators of lens development indicated that ATF4 expression is not directly controlled by the previously described lens gene regulatory network. Pathway analysis revealed that the Atf4 DEG list was enriched in numerous genes involved in nutrient transport, amino acid biosynthesis, and tRNA charging. These changes in gene expression likely result in the observed reductions in lens free amino acid and glutathione levels, which would result in the observed low levels of extractable lens protein, finally leading to perinatal lens disintegration. These data demonstrate that ATF4, via its function in the integrated stress response, is likely to play a crucial role in mediating the adaption of the lens to the avascularity needed to maintain lens transparency.
Collapse
Affiliation(s)
- Jiawen Xiang
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510230, China
| | - Anthony J. Pompetti
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Adam P. Faranda
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Yan Wang
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Samuel G. Novo
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - David Wan-Cheng Li
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510230, China
| | - Melinda K. Duncan
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
9
|
Li Q, Wang Y, Shi L, Wang Q, Yang G, Deng L, Tian Y, Hua X, Yuan X. Arginase-1 promotes lens epithelial-to-mesenchymal transition in different models of anterior subcapsular cataract. Cell Commun Signal 2023; 21:236. [PMID: 37723490 PMCID: PMC10506332 DOI: 10.1186/s12964-023-01210-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 06/30/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND Arginase-1 (ARG1) promotes collagen synthesis and cell proliferation. ARG1 is highly expressed in various tumour cells. The mechanisms of ARG1 in epithelial-to-mesenchymal transition (EMT)-associated cataracts were studied herein. METHODS C57BL/6 mice, a human lens epithelial cell line (HLEC-SRA01/04), and human lens capsule samples were used in this study. The right lens anterior capsule of the mouse eye was punctured through the central cornea with a 26-gauge hypodermic needle. Human lens epithelial cells (HLECs) were transfected with ARG1-targeted (siARG1) or negative control siRNA (siNC). For gene overexpression, HLECs were transfected with a plasmid bearing the ARG1 coding sequence or an empty vector. Medium containing 0.2% serum with or without transforming growth factor beta-2 (TGF-β2) was added for 6 or 24 h to detect mRNA or protein, respectively. The expression of related genes was measured by quantitative real-time polymerase chain reaction (RT-qPCR), western blotting, and immunohistochemical staining. Transwell assays and wound healing assays were used to determine cell migration. Cell proliferation, superoxide levels, nitric oxide (NO) levels, and arginase activity were estimated using Cell Counting Kit-8 assays, a superoxide assay kit, an NO assay kit, and an arginase activity kit. RESULTS ARG1, alpha-smooth muscle actin (α-SMA), fibronectin, and Ki67 expression increased after lens capsular injury, while zonula occludens-1 (ZO-1) expression decreased. Fibronectin and collagen type I alpha1 chain (collagen 1A1) expression increased, and cell migration increased significantly in ARG1-overexpressing HLECs compared with those transfected with an empty vector after TGF-β2 treatment. These effects were reversed by ARG1 knockdown. The arginase-related pathway plays an important role in EMT. mRNAs of enzymes of the arginase-related pathway were highly expressed after ARG1 overexpression. ARG1 knockdown suppressed these expression changes. Numidargistat (CB-1158) dihydrochloride (CB-1158), an ARG1 inhibitor, suppressed TGF-β2-induced anterior subcapsular cataract (ASC) by reducing the proliferation of lens epithelial cells (LECs) and decreasing fibronectin, α-SMA, collagen 1A1, and vimentin expression. Compared with that in nonanterior subcapsular cataract (non-ASC) patients, the expression of ARG1, collagen 1A1, vimentin, fibronectin, and Ki67 was markedly increased in ASC patients. CONCLUSIONS ARG1 can regulate EMT in EMT-associated cataracts. Based on the pathogenesis of ASC, these findings are expected to provide new therapeutic strategies for patients.
Collapse
Affiliation(s)
- Qingyu Li
- Department of Cataract, Tianjin Eye Hospital, Tianjin, China
- Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin, China
| | - Yuchuan Wang
- Department of Cataract, Tianjin Eye Hospital, Tianjin, China
- Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin, China
| | - Luoluo Shi
- Department of Cataract, Tianjin Eye Hospital, Tianjin, China
- Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin, China
| | - Qing Wang
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
- Heze Medical College, Heze, Shandong, China
| | - Guang Yang
- School of Microelectronics, Tianjin University, Tianjin, China
| | - Lin Deng
- Department of Cataract, Tianjin Eye Hospital, Tianjin, China
- Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin, China
| | - Ye Tian
- Department of Cataract, Tianjin Eye Hospital, Tianjin, China
- Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin, China
| | - Xia Hua
- Tianjin Aier Eye Hospital, Tianjin University, Tianjin, China.
| | - Xiaoyong Yuan
- Department of Cataract, Tianjin Eye Hospital, Tianjin, China.
- Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin, China.
| |
Collapse
|
10
|
Chen X, Chen Y, Li C, Li J, Zhang S, Liang C, Deng Q, Guo Z, Guo C, Yan H. Glutaredoxin 2 protects lens epithelial cells from epithelial-mesenchymal transition by suppressing mitochondrial oxidative stress-related upregulation of integrin-linked kinase. Exp Eye Res 2023; 234:109609. [PMID: 37541331 DOI: 10.1016/j.exer.2023.109609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/09/2023] [Accepted: 07/30/2023] [Indexed: 08/06/2023]
Abstract
Glutaredoxin 2 (Grx2), a mitochondrial glutathione-dependent oxidoreductase, is crucial for maintaining redox homeostasis and cellular functions in the lens. The oxidative stress-induced epithelial-mesenchymal transition (EMT) of lens epithelial cells (LECs) is related to posterior capsule opacification. In this study, we investigated the effects of Grx2 on oxidative stress-induced EMT in LECs during posterior capsule opacification. We found that Grx2 expression was substantially decreased during the EMT of LECs and in a mouse model of cataract surgery. Deletion of Grx2 aggravated the generation of reactive oxygen species, including those that are mitochondria-derived, and promoted the proliferation and EMT of the LECs. This was reversed by Grx2 overexpression. In vivo, proteomic liquid chromatography-mass spectrometry analysis showed that integrin-linked kinase (ILK) was significantly upregulated in the lens posterior capsule of a Grx2 knockout (KO) mouse model. Compared with that of the wild-type group, the expression of ILK and EMT markers was increased in the Grx2 KO group which was reversed in the Grx2 knock-in group. Inhibition of ILK partially blocked Grx2 knockdown-induced EMT and prevented the increased phosphorylation of Akt and GSK-3β and the nuclear translocation of β-catenin in the Grx2 KO group. Finally, inhibition of the Wnt/β-catenin pathway partially blocked the Grx2 knockdown-induced EMT. In conclusion, we demonstrated that Grx2 protects LECs from oxidative stress-related EMT by regulating the ILK/Akt/GSK-3β axis.
Collapse
Affiliation(s)
- Xi Chen
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, 710004, Shaanxi, China; Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710068, Shaanxi, China
| | - Ying Chen
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, 710004, Shaanxi, China
| | - Chenshuang Li
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, 710004, Shaanxi, China; Department of Ophthalmology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Jiankui Li
- Department of Gynecology & Obstetrics, NO. 960 Hospital of PLA, Jinan, 250000, Shandong, China
| | - Siqi Zhang
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, 710004, Shaanxi, China; Department of Ophthalmology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Chen Liang
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, 710004, Shaanxi, China; Department of Ophthalmology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Qi Deng
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710068, Shaanxi, China
| | - Zaoxia Guo
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, 710004, Shaanxi, China
| | - Chenjun Guo
- Department of Ophthalmology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, Shaanxi, China
| | - Hong Yan
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, 710004, Shaanxi, China; Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710068, Shaanxi, China; Department of Ophthalmology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China.
| |
Collapse
|
11
|
Li X, Li J, Sun D, Ma T, Chen W, Ye Z, Li Z. Development and Validation of a Prediction Model for Nd:YAG Laser Capsulotomy: A Retrospective Cohort Study of 9768 eyes. Ophthalmol Ther 2023; 12:1893-1912. [PMID: 37133707 PMCID: PMC10287599 DOI: 10.1007/s40123-023-00723-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/20/2023] [Indexed: 05/04/2023] Open
Abstract
INTRODUCTION Posterior capsular opacification (PCO) is the most common complication of cataract surgery. In this study, we develop a model to quantitatively predict the probability of Nd:YAG laser capsulotomy for vision-threatening PCO to improve the life quality of postoperative patients. METHODS A registry analysis of cataract procedures performed between the years 2010 and 2021. Following the screening of 16,802 patients (25,883 eyes), 9768 patients (eyes) were enrolled. The cohort was randomly divided into two groups: training (n = 6838) and validation (n = 2930). To identify relevant risk factors, univariate, multivariate, and Least Absolute Shrinkage and Selection Operator (LASSO) algorithm Cox regression analysis were employed, and a nomogram was created to demonstrate the prediction result. RESULTS At 5 years, the overall cumulative incidence of Nd:YAG laser capsulotomy was 12.0% (1169/9768). The following variables were included in the prediction model: sex [hazard ratio (HR) = 1.53, 95% CI 1.32-1.76], age (HR = 0.71, 95% CI 0.56-0.88), intraocular lens (IOL) material (HR = 2.65, 95% CI 2.17-3.24), high myopia (HR = 2.28, 95% CI 1.90-2.75), and fibrinogen (HR = 0.79, 95% CI 0.72-0.88). In the validation cohort, the area under the curve (AUC) of 1-, 3-, and 5-year predictions for Nd:YAG laser capsulotomy were 0.702, 0.691, and 0.688, respectively. For a subgroup of patients with high myopia, the protective effect of hydrophobic IOL disappeared (HR = 0.68, 95% CI 0.51-1.12, P = 0.127). CONCLUSION This model could predict the probability of Nd:YAG laser capsulotomy for vision-threatening PCO after cataract surgery by taking into account factors such as age, gender, IOL material, high myopia, and fibrinogen. Meanwhile, implantation of a hydrophobic IOL in individuals with high myopia did not demonstrate a protective impact against vision-threatening PCO.
Collapse
Affiliation(s)
- Xuanlong Li
- Medical School of Chinese PLA, Beijing, 100853 China
- Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100039 China
| | - Jinglan Li
- Medical School of Chinese PLA, Beijing, 100853 China
- Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100039 China
| | - Di Sun
- Medical School of Chinese PLA, Beijing, 100853 China
- Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100039 China
| | - Tianju Ma
- Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100039 China
| | - Wenqian Chen
- Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100039 China
| | - Zi Ye
- Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100039 China
| | - Zhaohui Li
- Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100039 China
| |
Collapse
|
12
|
Wang C, Zhao R, Zhao Z, Liu N, Cheng J, Guo M. Proteomic characterization and comparison of milk fat globule membrane proteins of Saanen goat milk from 3 habitats in China using SWATH-MS technique. J Dairy Sci 2023; 106:2289-2302. [PMID: 36870831 DOI: 10.3168/jds.2022-22393] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 11/01/2022] [Indexed: 03/06/2023]
Abstract
Saanen goats are among the major dairy goats in China. In present study, variation of milk fat globule membrane proteins profile of Saanen goat milk caused by geographic location was investigated using sequential window acquisition of all theoretical fragment ions data-independent acquisition mass spectrometry based proteomic approach. A total of 1,001 proteins were quantified in goat milk collected from 3 habitats of China [Guangdong (GD); Inner Mongolia (IM); Shannxi (SX)]. Most of the proteins were found to act cellular process of biological process, cell of cellular component, binding of molecular function after Gene Ontology annotation and metabolic of pathway indicated by Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Differentially expressed proteins (DEP) for GD versus IM, GD versus SX, IM versus SX were identified to be 81, 91, and 44, respectively. Gene Ontology enrichment analysis showed that the greatest DEP for 3 groups (GD vs. IM, GD vs. SX, IM vs. SX) were cellular process, cellular process and organonitrogen compound biosynthetic process/immune system process for biological process. For cellular component, the largest number of DEP for 3 comparison groups were organelle, organelle and organelle/intracellular. For molecular function, DEP of the 3 comparison groups were expressed most in structural molecule activity, binding and anion binding, respectively. Pathways with the majority of DEP were ribosome, systemic lupus erythematosus and primary immunodeficiency/systemic lupus erythematosus/amoebiasis/PI3K-Akt signaling pathway for GD versus IM, GD versus SX and IM versus SX, severally. Protein-protein interaction network analysis showed that DEP interacted most were 40S ribosomal protein S5, fibronectin and Cytochrome b-c1 complex subunit 2, mitochondrial for GD versus IM, GD versus SX and IM versus SX, separately. Data may give useful information for goat milk selection and milk authenticity in China.
Collapse
Affiliation(s)
- Cuina Wang
- Department of Food Science, Jilin University, Changchun, 130062, China
| | - Ru Zhao
- Department of Food Science, Jilin University, Changchun, 130062, China
| | - Zixuan Zhao
- Department of Food Science, Northeast Agriculture University, Harbin, 150030, China
| | - Ning Liu
- Department of Food Science, Northeast Agriculture University, Harbin, 150030, China
| | - Jianjun Cheng
- Department of Food Science, Northeast Agriculture University, Harbin, 150030, China
| | - Mingruo Guo
- Department of Nutrition and Food Sciences, College of Agriculture and Life Sciences, University of Vermont, Burlington 05405.
| |
Collapse
|
13
|
Wishart TFL, Lovicu FJ. Heparan sulfate proteoglycans (HSPGs) of the ocular lens. Prog Retin Eye Res 2023; 93:101118. [PMID: 36068128 DOI: 10.1016/j.preteyeres.2022.101118] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022]
Abstract
Heparan sulfate proteoglycans (HSPGs) reside in most cells; on their surface, in the pericellular milieu and/or extracellular matrix. In the eye, HSPGs can orchestrate the activity of key signalling molecules found in the ocular environment that promote its development and homeostasis. To date, our understanding of the specific roles played by individual HSPG family members, and the heterogeneity of their associated sulfated HS chains, is in its infancy. The crystalline lens is a relatively simple and well characterised ocular tissue that provides an ideal stage to showcase and model the expression and unique roles of individual HSPGs. Individual HSPG core proteins are differentially localised to eye tissues in a temporal and spatial developmental- and cell-type specific manner, and their loss or functional disruption results in unique phenotypic outcomes for the lens, and other ocular tissues. More recent work has found that different HS sulfation enzymes are also presented in a cell- and tissue-specific manner, and that disruption of these different sulfation patterns affects specific HS-protein interactions. Not surprisingly, these sulfated HS chains have also been reported to be required for lens and eye development, with dysregulation of HS chain structure and function leading to pathogenesis and eye-related phenotypes. In the lens, HSPGs undergo significant and specific changes in expression and function that can drive pathology, or in some cases, promote tissue repair. As master signalling regulators, HSPGs may one day serve as valuable biomarkers, and even as putative targets for the development of novel therapeutics, not only for the eye but for many other systemic pathologies.
Collapse
Affiliation(s)
- Tayler F L Wishart
- Molecular and Cellular Biomedicine, School of Medical Sciences, The University of Sydney, NSW, Australia.
| | - Frank J Lovicu
- Molecular and Cellular Biomedicine, School of Medical Sciences, The University of Sydney, NSW, Australia; Save Sight Institute, The University of Sydney, NSW, Australia.
| |
Collapse
|
14
|
Grillo E, Ravelli C, Colleluori G, D'Agostino F, Domenichini M, Giordano A, Mitola S. Role of gremlin-1 in the pathophysiology of the adipose tissues. Cytokine Growth Factor Rev 2023; 69:51-60. [PMID: 36155165 DOI: 10.1016/j.cytogfr.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/12/2022] [Indexed: 02/07/2023]
Abstract
Gremlin-1 is a secreted bone morphogenetic protein (BMP) antagonist playing a pivotal role in the regulation of tissue formation and embryonic development. Since its first identification in 1997, gremlin-1 has been shown to be a multifunctional factor involved in wound healing, inflammation, cancer and tissue fibrosis. Among others, the activity of gremlin-1 is mediated by its interaction with BMPs or with membrane receptors such as the vascular endothelial growth factor receptor 2 (VEGFR2) or heparan sulfate proteoglycans (HSPGs). Growing evidence has highlighted a central role of gremlin-1 in the homeostasis of the adipose tissue (AT). Of note, gremlin-1 is involved in AT dysfunction during type 2 diabetes, obesity and non-alcoholic fatty liver disease (NAFLD) metabolic disorders. In this review we discuss recent findings on gremlin-1 involvement in AT biology, with particular attention to its role in metabolic diseases, to highlight its potential as a prognostic marker and therapeutic target.
Collapse
Affiliation(s)
- Elisabetta Grillo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| | - Cosetta Ravelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Georgia Colleluori
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Via Tronto 10/A, 60020 Ancona, Italy
| | - Francesco D'Agostino
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Mattia Domenichini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Antonio Giordano
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Via Tronto 10/A, 60020 Ancona, Italy
| | - Stefania Mitola
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
15
|
Liu Z, Huang S, Zheng Y, Zhou T, Hu L, Xiong L, Li DWC, Liu Y. The lens epithelium as a major determinant in the development, maintenance, and regeneration of the crystalline lens. Prog Retin Eye Res 2023; 92:101112. [PMID: 36055924 DOI: 10.1016/j.preteyeres.2022.101112] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 02/01/2023]
Abstract
The crystalline lens is a transparent and refractive biconvex structure formed by lens epithelial cells (LECs) and lens fibers. Lens opacity, also known as cataracts, is the leading cause of blindness in the world. LECs are the principal cells of lens throughout human life, exhibiting different physiological properties and functions. During the embryonic stage, LECs proliferate and differentiate into lens fibers, which form the crystalline lens. Genetics and environment are vital factors that influence normal lens development. During maturation, LECs help maintain lens homeostasis through material transport, synthesis and metabolism as well as mitosis and proliferation. If disturbed, this will result in loss of lens transparency. After cataract surgery, the repair potential of LECs is activated and the structure and transparency of the regenerative tissue depends on postoperative microenvironment. This review summarizes recent research advances on the role of LECs in lens development, homeostasis, and regeneration, with a particular focus on the role of cholesterol synthesis (eg., lanosterol synthase) in lens development and homeostasis maintenance, and how the regenerative potential of LECs can be harnessed to develop surgical strategies and improve the outcomes of cataract surgery (Fig. 1). These new insights suggest that LECs are a major determinant of the physiological and pathological state of the lens. Further studies on their molecular biology will offer possibility to explore new approaches for cataract prevention and treatment.
Collapse
Affiliation(s)
- Zhenzhen Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Shan Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Yingfeng Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Tian Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Leyi Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Lang Xiong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - David Wan-Cheng Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China; Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, 100085, China.
| |
Collapse
|
16
|
The Immediate Early Response of Lens Epithelial Cells to Lens Injury. Cells 2022; 11:cells11213456. [PMID: 36359852 PMCID: PMC9654717 DOI: 10.3390/cells11213456] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
Cataracts are treated by lens fiber cell removal followed by intraocular lens (IOL) implantation into the lens capsule. While effective, this procedure leaves behind numerous lens epithelial cells (LECs) which undergo a wound healing response that frequently leads to posterior capsular opacification (PCO). In order to elucidate the acute response of LECs to lens fiber cell removal which models cataract surgery (post cataract surgery, PCS), RNA-seq was conducted on LECs derived from wild type mice at 0 and 6 h PCS. This analysis found that LECs upregulate the expression of numerous proinflammatory cytokines and profibrotic regulators by 6 h PCS suggesting rapid priming of pathways leading to inflammation and fibrosis PCS. LECs also highly upregulate the expression of numerous immediate early transcription factors (IETFs) by 6 h PCS and immunolocalization found elevated levels of these proteins by 3 h PCS, and this was preceded by the phosphorylation of ERK1/2 in injured LECs. Egr1 and FosB were among the highest expressed of these factors and qRT-PCR revealed that they also upregulate in explanted mouse lens epithelia suggesting potential roles in the LEC injury response. Analysis of lenses lacking either Egr1 or FosB revealed that both genes may regulate a portion of the acute LEC injury response, although neither gene was essential for expression of either proinflammatory or fibrotic markers at later times PCS suggesting that IETFs may work in concert to mediate the LEC injury response following cataract surgery.
Collapse
|
17
|
Xiong L, Sun Y, Huang J, Ma P, Wang X, Wang J, Chen B, Chen J, Huang M, Huang S, Liu Y. Long Non-Coding RNA H19 Prevents Lens Fibrosis through Maintaining Lens Epithelial Cell Phenotypes. Cells 2022; 11:cells11162559. [PMID: 36010635 PMCID: PMC9406623 DOI: 10.3390/cells11162559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 12/02/2022] Open
Abstract
The integrity of lens epithelial cells (LECs) lays the foundation for lens function and transparency. By contrast, epithelial-mesenchymal transition (EMT) of LECs leads to lens fibrosis, such as anterior subcapsular cataracts (ASC) and fibrotic forms of posterior capsule opacification (PCO). However, the underlying mechanisms remain unclear. Here, we aimed to explore the role of long non-coding RNA (lncRNA) H19 in regulating TGF-β2-induced EMT during lens fibrosis, revealing a novel lncRNA-based regulatory mechanism. In this work, we identified that lncRNA H19 was highly expressed in LECs, but downregulated by exposure to TGF-β2. In both human lens epithelial explants and SRA01/04 cells, knockdown of H19 aggravated TGF-β2-induced EMT, while overexpressing H19 partially reversed EMT and restored lens epithelial phenotypes. Semi-in vivo whole lens culture and H19 knockout mice demonstrated the indispensable role of H19 in sustaining lens clarity through maintaining LEC features. Bioinformatic analyses further implied a potential H19-centered regulatory mechanism via Smad-dependent pathways, confirmed by in vitro experiments. In conclusion, we uncovered a novel role of H19 in inhibiting TGF-β2-induced EMT of the lens by suppressing Smad-dependent signaling, providing potential therapeutic targets for treating lens fibrosis.
Collapse
|
18
|
Liu SZ, Xu YC, Tan XY, Zhao T, Zhang DG, Yang H, Luo Z. Transcriptional Regulation and Protein Localization of Zip10, Zip13 and Zip14 Transporters of Freshwater Teleost Yellow Catfish Pelteobagrus fulvidraco Following Zn Exposure in a Heterologous HEK293T Model. Int J Mol Sci 2022; 23:8034. [PMID: 35887381 PMCID: PMC9321221 DOI: 10.3390/ijms23148034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 12/04/2022] Open
Abstract
Zip family proteins are involved in the control of zinc (Zn) ion homeostasis. The present study cloned the promoters and investigated the transcription responses and protein subcellular localizations of three LIV-1 subfamily members (zip10, zip13, and zip14) from common freshwater teleost yellow catfish, Pelteobagrus fulvidraco, using in vitro cultured HEK293T model cells. The 2278 bp, 1917 bp, and 1989 bp sequences of zip10, zip13, and zip14 promoters, respectively, were subcloned into pGL3-Basic plasmid for promoter activity analysis. The pcDNA3.1 plasmid coding EGFP tagged pfZip10, pfZip13, and pfZip14 were generated for subsequent confocal microscope analysis. Several potential transcription factors' binding sites were predicted within the promoters. In vitro promoter analysis in the HEK293T cells showed that high Zn administration significantly reduced the transcriptional activities of the zip10, zip13, and zip14 promoters. The -2017 bp/-2004 bp MRE in the zip10 promoter, the -360 bp/-345 bp MRE in the zip13 promoter, and the -1457 bp/-1442 bp MRE in the zip14 promoter were functional loci that were involved in the regulation of the three zips. The -606 bp/-594 bp KLF4 binding site in the zip13 promoter was a functional locus responsible for zinc-responsive regulation of zip13. The -1383 bp/-1375 bp STAT3 binding site in the zip14 promoter was a functional locus responsible for zinc-responsive regulation of zip14. Moreover, confocal microscope analysis indicated that zinc incubation significantly reduced the fluorescence intensity of pfZip10-EGFP and pfZip14-EGFP but had no significant influence on pfZip13-EGFP fluorescence intensity. Further investigation found that pfZip10 localizes on cell membranes, pfZip14 colocalized with both cell membranes and lysosome, and pfZip13 colocalized with intracellular ER and Golgi. Our research illustrated the transcription regulation of zip10, zip13, and zip14 from P. fulvidraco under zinc administration, which provided a reference value for the mechanisms involved in Zip-family-mediated control of zinc homeostasis in vertebrates.
Collapse
Affiliation(s)
- Sheng-Zan Liu
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China; (S.-Z.L.); (Y.-C.X.); (X.-Y.T.); (T.Z.); (D.-G.Z.); (H.Y.)
| | - Yi-Chuang Xu
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China; (S.-Z.L.); (Y.-C.X.); (X.-Y.T.); (T.Z.); (D.-G.Z.); (H.Y.)
| | - Xiao-Ying Tan
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China; (S.-Z.L.); (Y.-C.X.); (X.-Y.T.); (T.Z.); (D.-G.Z.); (H.Y.)
| | - Tao Zhao
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China; (S.-Z.L.); (Y.-C.X.); (X.-Y.T.); (T.Z.); (D.-G.Z.); (H.Y.)
| | - Dian-Guang Zhang
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China; (S.-Z.L.); (Y.-C.X.); (X.-Y.T.); (T.Z.); (D.-G.Z.); (H.Y.)
| | - Hong Yang
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China; (S.-Z.L.); (Y.-C.X.); (X.-Y.T.); (T.Z.); (D.-G.Z.); (H.Y.)
| | - Zhi Luo
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China; (S.-Z.L.); (Y.-C.X.); (X.-Y.T.); (T.Z.); (D.-G.Z.); (H.Y.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
19
|
Wei Z, Gordon P, Hao C, Huangfu J, Fan E, Zhang X, Yan H, Fan X. Aged Lens Epithelial Cells Suppress Proliferation and Epithelial–Mesenchymal Transition-Relevance for Posterior Capsule Opacification. Cells 2022; 11:cells11132001. [PMID: 35805085 PMCID: PMC9265589 DOI: 10.3390/cells11132001] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/14/2022] [Accepted: 06/18/2022] [Indexed: 02/01/2023] Open
Abstract
Posterior capsule opacification (PCO) is a frequent complication after cataract surgery, and advanced PCO requires YAG laser (Nd: YAG) capsulotomy, which often gives rise to more complications. Lens epithelial cell (LEC) proliferation and transformation (i.e., epithelial–mesenchymal transition (EMT)) are two critical elements in PCO initiation and progression pathogenesis. While PCO marginally impacts aged cataract surgery patients, PCO incidences are exceptionally high in infants and children undergoing cataract surgery. The gene expression of lens epithelial cell aging and its role in the discrepancy of PCO prevalence between young and older people have not been fully studied. Here, we conducted a comprehensive differentially expressed gene (DEG) analysis of a cell aging model by comparing the early and late passage FHL124 lens epithelial cells (LECs). In vitro, TGFβ2, cell treatment, and in vivo mouse cataract surgical models were used to validate our findings. We found that aged LECs decelerated rates of cell proliferation accompanied by dysregulation of cellular immune response and cell stress response. Surprisingly, we found that LECs systematically downregulated epithelial–mesenchymal transition (EMT)-promoting genes. The protein expression of several EMT hallmark genes, e.g., fibronectin, αSMA, and cadherin 11, were gradually decreased during LECs aging. We then confirmed these findings in vitro and found that aged LECs markedly alleviated TGFβ2-mediated EMT. Importantly, we explicitly confirmed the in vitro findings from the in vivo mouse cataract surgery studies. We propose that both the high proliferation rate and EMT-enriched young LECs phenotypic characteristics contribute to unusually high PCO incidence in infants and children.
Collapse
Affiliation(s)
- Zongbo Wei
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd., CB Building, Room CB1119, Augusta, GA 30912, USA; (Z.W.); (C.H.); (J.H.)
| | - Pasley Gordon
- Department of Ophthalmology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA;
| | - Caili Hao
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd., CB Building, Room CB1119, Augusta, GA 30912, USA; (Z.W.); (C.H.); (J.H.)
| | - Jingru Huangfu
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd., CB Building, Room CB1119, Augusta, GA 30912, USA; (Z.W.); (C.H.); (J.H.)
| | - Emily Fan
- Lakeside High School at Columbia County, Evans, GA 30809, USA;
| | - Xiang Zhang
- Genomics, Epigenomics and Sequencing Core, Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH 45221, USA;
| | - Hong Yan
- Xi’an Fourth Hospital, Xi’an Jiaotong University, Xi’an 710049, China;
| | - Xingjun Fan
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd., CB Building, Room CB1119, Augusta, GA 30912, USA; (Z.W.); (C.H.); (J.H.)
- Correspondence:
| |
Collapse
|
20
|
Taiyab A, West-Mays J. Lens Fibrosis: Understanding the Dynamics of Cell Adhesion Signaling in Lens Epithelial-Mesenchymal Transition. Front Cell Dev Biol 2022; 10:886053. [PMID: 35656546 PMCID: PMC9152183 DOI: 10.3389/fcell.2022.886053] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/11/2022] [Indexed: 12/13/2022] Open
Abstract
Injury to the ocular lens perturbs cell-cell and cell-capsule/basement membrane interactions leading to a myriad of interconnected signaling events. These events include cell-adhesion and growth factor-mediated signaling pathways that can ultimately result in the induction and progression of epithelial-mesenchymal transition (EMT) of lens epithelial cells and fibrosis. Since the lens is avascular, consisting of a single layer of epithelial cells on its anterior surface and encased in a matrix rich capsule, it is one of the most simple and desired systems to investigate injury-induced signaling pathways that contribute to EMT and fibrosis. In this review, we will discuss the role of key cell-adhesion and mechanotransduction related signaling pathways that regulate EMT and fibrosis in the lens.
Collapse
|
21
|
Guan X, He Y, Li Y, Shi C, Wei Z, Zhao R, Han Y, Pan L, Yang J, Hou TZ. Gremlin aggravates periodontitis via activating the NF-κB signaling pathway. J Periodontol 2022; 93:1589-1602. [PMID: 34993960 DOI: 10.1002/jper.21-0474] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/27/2021] [Accepted: 11/20/2021] [Indexed: 11/06/2022]
Abstract
BACKGROUND Gremlin has been reported to regulate inflammation and osteogenesis. Periodontitis is a destructive disease degenerating periodontal tissues, therefore leads to alveolar bone resorption and tooth loss. Based on the importance of Gremlin's bio-activity, the aim of this study is to, in vivo and in vitro, unveil the function of Gremlin in regulating the development of periodontitis and its consequent effects on alveolar bone loss. METHODS Clinical specimens were used to determine the expression of Gremlin in periodontal tissues by immunohistochemical staining and western blot. Then utilizing the rat periodontitis model to investigate the function of gremlin-regulated nuclear factor-kappa B (NF-κB) pathway during the development of periodontal inflammation and the alveolar bone loss. Lastly, the regulation of the osteogenesis of human periodontal ligament stem cells (hPDLSCs) by Gremlin under inflamed condition was analyzed by alkaline phosphatase (ALP) and alizarin red staining (ARS). RESULTS We found clinically and experimentally that the expression of Gremlin is markedly increased in periodontitis tissues. Interestingly, we revealed that Gremlin regulated the progress of periodontitis via regulating the activities of NF-κB pathway and interleukin-1β (IL-1β). Notably, we observed that Gremlin influenced the osteogenesis of hPDLSCs. Thus, our present study identified Gremlin as a new key regulator for development of periodontitis. CONCLUSIONS Our current study illustrated that Gremlin acts as a crucial mediator and possibly serves as a potential diagnostic marker for periodontitis. Discovery of new factors involved in the pathophysiology of periodontitis could contribute to the development of novel therapeutic treatment for the disease. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xiaoyue Guan
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Endodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Yani He
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Endodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Yingxue Li
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Endodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Chen Shi
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Endodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Zhichen Wei
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Endodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Rui Zhao
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Endodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Yue Han
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Endodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Lifei Pan
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Endodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Jianmin Yang
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Tie Zhou Hou
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Endodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| |
Collapse
|
22
|
Zhang X, Lai K, Li S, Wang J, Li J, Wang W, Ni S, Lu B, Grzybowski A, Ji J, Han H, Yao K. Drug-eluting intraocular lens with sustained bromfenac release for conquering posterior capsular opacification. Bioact Mater 2021; 9:343-357. [PMID: 34820575 PMCID: PMC8586266 DOI: 10.1016/j.bioactmat.2021.07.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 02/06/2023] Open
Abstract
Cataract is the leading cause of visual impairment, and posterior capsular opacification (PCO) is the most common long-term complication of modern cataract surgery, which can cause severe visual impairment after surgery. The proliferation, migration, and epithelial-mesenchymal transition (EMT) of residual lens epithelial cells (LECs) stimulated by growth factors and cytokines, are the key pathological mechanisms involved in the development of PCO. This study demonstrated that non-steroidal anti-inflammatory drug (NSAID), bromfenac, was capable of effectively inhibiting cell migration, overexpression of EMT markers, such as fibronectin (FN), matrix metalloproteinase 2 (MMP2), α-smooth muscle actin (α-SMA), and transcription factor Snail, and extracellular signal-regulated kinase (ERK)/glycogen synthase kinase-3β (GSK-3β) signaling induced by transforming growth factor-β2 (TGF-β2) in vitro. The inhibitory effect of bromfenac on TGF-β2-induced EMT was also verified on a primary lens epithelial cell model using human anterior capsules. Furthermore, based on ultrasonic spray technology, we developed a drug-eluting intraocular lens (IOL) using poly (lactic-co-glycolic acid) (PLGA) with sustained bromfenac release ability for the prevention of PCO development. In the rabbit models of cataract surgery, bromfenac-eluting IOL exhibited remarkable PCO prevention and inflammation suppression effects with excellent biocompatibility. In conclusion, bromfenac can inhibit TGF-β2-induced cell migration and the EMT of LECs via ERK/GSK-3β/Snail signaling. The present study offers a novel approach for preventing PCO through PLGA-based drug sustained-release IOLs. Bromfenac inhibited TGF-β2-induced migration and EMT of LECs through ERK/GSK-3β/Snail signaling. Drug-eluting IOLs with sustained bromfenac release were developed based on ultrasonic spray technology. Bromfenac-eluting IOLs exhibited remarkable PCO prevention and inflammation suppression effects in vivo. Bromfenac-eluting IOLs hold great potential for clinical application of PCO prevention.
Collapse
Affiliation(s)
- Xiaobo Zhang
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China.,Zhejiang Provincial Key Laboratory of Ophthalmology, Hangzhou, PR China
| | - Kairan Lai
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China.,Zhejiang Provincial Key Laboratory of Ophthalmology, Hangzhou, PR China
| | - Su Li
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China.,Zhejiang Provincial Key Laboratory of Ophthalmology, Hangzhou, PR China
| | - Jing Wang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, PR China
| | - Jiayong Li
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China.,Zhejiang Provincial Key Laboratory of Ophthalmology, Hangzhou, PR China
| | - Wei Wang
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China
| | - Shuang Ni
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China
| | - Bing Lu
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China.,Zhejiang Provincial Key Laboratory of Ophthalmology, Hangzhou, PR China
| | - Andrzej Grzybowski
- Department of Ophthalmology, University of Warmia and Mazury, 60-554 Olsztyn, Poland.,Institute for Research in Ophthalmology, Gorczyczewskiego 2/3, 61-553 Poznan, Poland
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, PR China
| | - Haijie Han
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China.,Zhejiang Provincial Key Laboratory of Ophthalmology, Hangzhou, PR China
| | - Ke Yao
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China.,Zhejiang Provincial Key Laboratory of Ophthalmology, Hangzhou, PR China
| |
Collapse
|
23
|
Shihan MH, Novo SG, Wang Y, Sheppard D, Atakilit A, Arnold TD, Rossi NM, Faranda AP, Duncan MK. αVβ8 integrin targeting to prevent posterior capsular opacification. JCI Insight 2021; 6:145715. [PMID: 34554928 PMCID: PMC8663568 DOI: 10.1172/jci.insight.145715] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 09/22/2021] [Indexed: 12/18/2022] Open
Abstract
Fibrotic posterior capsular opacification (PCO), a major complication of cataract surgery, is driven by transforming growth factor–β (TGF-β). Previously, αV integrins were found to be critical for the onset of TGF-β–mediated PCO in vivo; however, the functional heterodimer was unknown. Here, β8 integrin–conditional knockout (β8ITG-cKO) lens epithelial cells (LCs) attenuated their fibrotic responses, while both β5 and β6 integrin–null LCs underwent fibrotic changes similar to WT at 5 days post cataract surgery (PCS). RNA-Seq revealed that β8ITG-cKO LCs attenuated their upregulation of integrins and their ligands, as well as known targets of TGF-β–induced signaling, at 24 hours PCS. Treatment of β8ITG-cKO eyes with active TGF-β1 at the time of surgery rescued the fibrotic response. Treatment of WT mice with an anti-αVβ8 integrin function blocking antibody at the time of surgery ameliorated both canonical TGF-β signaling and LC fibrotic response PCS, and treatment at 5 days PCS, after surgically induced fibrotic responses were established, largely reversed this fibrotic response. These data suggest that αVβ8 integrin is a major regulator of TGF-β activation by LCs PCS and that therapeutics targeting αVβ8 integrin could be effective for fibrotic PCO prevention and treatment.
Collapse
Affiliation(s)
- Mahbubul H Shihan
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Samuel G Novo
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Yan Wang
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | | | | | - Thomas D Arnold
- Department of Pediatrics, University of California, San Francisco, San Francisco, California, USA
| | - Nicole M Rossi
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Adam P Faranda
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Melinda K Duncan
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
24
|
Fichtner JE, Patnaik J, Christopher KL, Petrash JM. Cataract inhibitors: Present needs and future challenges. Chem Biol Interact 2021; 349:109679. [PMID: 34600869 DOI: 10.1016/j.cbi.2021.109679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/25/2021] [Accepted: 09/29/2021] [Indexed: 12/21/2022]
Abstract
Cataracts result from opacification of the ocular lens and represent the leading cause of blindness worldwide. After surgical removal of the diseased lens material and implantation of an artificial intraocular lens, up to 50% of cataract patients develop a secondary lens defect called posterior capsular opacification (PCO). While vision can be restored in PCO patients by a laser-mediated capsulotomy, novel therapies involving inhibition of aldose reductase are now being developed to prevent PCO development and complications of laser capsulotomy. A question we wished to address was whether cataract surgeons believe there is an unmet need for a preventative PCO therapy, whether they would prescribe such a therapy were it available, and to assess their perceptions regarding the benefits of and obstacles to adopting novel PCO therapies in the place of laser capsulotomy. We gathered perspectives from adult, pediatric, and veterinary cataract surgeons using an online questionnaire. From 161 surgeon responses, we found that the majority of adult, pediatric, and veterinary cataract surgeons (78% n = 35, 88% n = 37, and 96% n = 71 respectively) believed there is an unmet need for preventative PCO therapy, with more than 95% expressing interest in incorporating such therapy into surgical protocols. Perceived benefits included optimizing visual outcomes, avoiding the need for additional procedures, eliminating complications related to neodymium:yttrium-aluminum-garnet laser, preserving the posterior capsule particularly in patients receiving multifocal intraocular lens implants, providing a viable solution for PCO in animals, and using it in developing countries that lack access to neodymium:yttrium-aluminum-garnet lasers. Perceived obstacles included potential lack of reimbursement by insurance companies, and the need for strong efficacy and safety profiles. Among adult surgeons, 70% (n = 31) indicated that preventative PCO therapy could add value to premium intraocular lens packages. Our studies revealed that cataract surgeons overwhelmingly support the development of preventative PCO therapy, and that clinical trials will play a critical role to test the safety and efficacy of specific therapeutic agents.
Collapse
Affiliation(s)
- Justin E Fichtner
- University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jennifer Patnaik
- University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | | | - J Mark Petrash
- University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
| |
Collapse
|
25
|
Long-Term Clinically Significant Posterior Capsular Opacification Development Pattern in Eyes Implanted with an Aspheric Monofocal Intraocular Lens with a Square Optic Edge. J Ophthalmol 2021; 2021:4566436. [PMID: 34631162 PMCID: PMC8497157 DOI: 10.1155/2021/4566436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 11/26/2022] Open
Abstract
Purpose To analyse the posterior capsular opacification (PCO) development pattern in the long term in eyes implanted with a monofocal intraocular lens (IOL) with a square edge all around the optic. Methods Longitudinal retrospective study is data analyzed from a total of 7059 eyes from 4764 patients (mean age: 75.8 years) undergoing cataract surgery with implantation of an aspheric monofocal IOL (Bi-Flex HL 677AB/677P, Medicontur, Budapest, Hungary). These data were retrospectively collected using the electronic medical record of the hospitals involved. Nd : YAG capsulotomy rates were calculated per year during a follow-up of more than 10 years. The Kaplan–Meier analysis was used to establish the transparent capsule survival rate. Results The Nd : YAG capsulotomy rate increased from 1.1% at 1 year postoperatively to 17.2% at 5 years after surgery. No significant differences were found between eyes with and without capsulotomy in terms of age (p = 0.202), gender (p = 0.061), type of anaesthesia used (p = 0.128), and presence of conditions such as hard cataract (p = 0.111) or pseudoexfoliation (p = 0.137). IOL power was significantly lower in those eyes of patients requiring Nd : YAG capsulotomy during the follow-up (p < 0.001). Significantly more eyes implanted with the preloaded model of the IOL required capsulotomy (p < 0.001). Mean survival time and rate were 9.38 years and 85.9%, respectively. Conclusions Most eyes undergoing cataract with implantation of the Bi-Flex IOL do not develop a clinically significant PCO requiring Nd : YAG capsulotomy in the long term. IOL material and design may be the main factors accounting for this finding.
Collapse
|
26
|
Immune responses to injury and their links to eye disease. Transl Res 2021; 236:52-71. [PMID: 34051364 PMCID: PMC8380715 DOI: 10.1016/j.trsl.2021.05.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/12/2021] [Accepted: 05/24/2021] [Indexed: 12/31/2022]
Abstract
The eye is regarded as an immune privileged site. Since the presence of a vasculature would impair vision, the vasculature of the eye is located outside of the central light path. As a result, many regions of the eye evolved mechanisms to deliver immune cells to sites of dysgenesis, injury, or in response to the many age-related pathologies. While the purpose of these immune responses is reparative or protective, cytokines released by immune cells compromise visual acuity by inducing inflammation and fibrosis. The response to traumatic or pathological injury is distinct in different regions of the eye. Age-related diseases impact both the anterior and posterior segment and lead to reduced quality of life and blindness. Here we focus attention on the role that inflammation and fibrosis play in the progression of age-related pathologies of the cornea and the lens as well as in glaucoma, the formation of epiretinal membranes, and in proliferative vitreoretinopathy.
Collapse
Key Words
- 2ryERM
- A T-helper cell that expresses high levels of IL-17 which can suppress T-regulatory cell function
- A cytokine expressed early during inflammation that attracts neutrophils
- A cytokine expressed early during inflammation that attracts neutrophils, sometimes referred to as monocyte chemoattractant protein-1 (MCP-1))
- A mouse model that lacks functional T and B cells and used to study the immune response
- A pigmented mouse strain used for research and known to mount a primarily Th1 response to infection
- A protein encoded by the ADGRE1 gene that, in mice, is expressed primarily on macrophages
- A strain of pigmented mice used in glaucoma research
- ACAID
- APCs
- ASC
- An albino mouse strain used for research and known to mount a primarily Th2 response to infection
- Antigen Presenting Cells, this class includes dendritic cells and monocytes
- BALB/c
- BM
- C57BL6
- CCL2
- CD45
- CNS
- CXCL1
- Central Nervous System
- Cluster of differentiation 45 antigen
- DAMPs
- DBA/2J
- EBM
- ECM
- EMT
- ERM
- Epithelial Basement Membrane
- F4/80
- FGF2
- HA =hyaluronic acid
- HSK
- HSP
- HSPGs
- HSV
- ICN
- IL-20
- IL6
- ILM
- IOP
- Inner (or internal) limiting membrane
- Interleukin 6
- Interleukin-20
- MAGP1
- MHC-II
- Major histocompatibility complex type II, a class of MHC proteins typically found only on APCs
- Microfibril-associated glycoprotein 1
- N-cad
- N-cadherin
- NEI
- NK
- National Eye Institute
- Natural killer T cells
- PCO
- PDGF
- PDR
- PVD
- PVR
- Platelet derived growth factor
- Posterior capsular opacification
- RGC
- RPE
- RRD
- Rag1-/-
- Retinal ganglion cells
- Retinal pigment epithelial cells
- SMAD
- Sons of Mothers Against Decapentaplegic, SMADs are a class of molecules that mediate TGF and bone morphogenetic protein signaling
- T-helper cell 1 response, proinflammatory adaptive response involving interferon gamma and associated with autoimmunity
- T-helper cell 2 response involving IgE and interleukins 4,5, and 13, also induces the anti-inflammatory interleukin 10 family cytokines
- T-regulatory cell
- TG
- TGF1
- TM
- TNF
- Th1
- Th17
- Th2
- Transforming growth factor 1
- Treg
- Tumor necrosis factor a cytokine produced during inflammation
- VEGF
- Vascular endothelial growth factor
- WHO
- World Health Organization
- anterior chamber immune deviation
- anterior subcapsular cataracts
- basement membrane
- damage-associated molecular patterns
- epiretinal membrane
- epiretinal membrane secondary to disease pathology
- epithelial-mesenchymal transition
- extracellular matrix
- fibroblast growth factor 2, also referred to as basic FGF
- heat shock protein
- heparan sulfate proteoglycans
- herpes simplex virus
- herpes stromal keratitis
- iERM
- idiopathic epiretinal membrane
- intraepithelial corneal nerves
- intraocular pressure
- mTOR
- mechanistic target of rapamycin, a protein kinase encoded by the MTOR genes that regulates a variety of signal transduction events including cell growth, autophagy and actin cytoskeleton
- posterior vitreous detachment
- proliferative diabetic retinopathy
- proliferative vitreoretinopathy
- rhegmatogenous (rupture, tear) retinal detachment
- trabecular meshwork
- trigeminal ganglion
- αSMA
- α−Smooth muscle actin, a class of actin expressed in mesenchymal cells
Collapse
|
27
|
Wang L, Tian Y, Shang Z, Zhang B, Hua X, Yuan X. Metformin attenuates the epithelial-mesenchymal transition of lens epithelial cells through the AMPK/TGF-β/Smad2/3 signalling pathway. Exp Eye Res 2021; 212:108763. [PMID: 34517004 DOI: 10.1016/j.exer.2021.108763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/19/2021] [Accepted: 09/06/2021] [Indexed: 01/10/2023]
Abstract
Posterior capsule opacification (PCO) is a common ocular fibrosis disease related to the epithelial-mesenchymal transition (EMT) of human lens epithelial cells (HLECs). However, safe and effective drugs that prevent or treat PCO are lacking. Metformin (Mtf) has been used to treat fibrosis-related diseases affecting many organs and tissues, but its effect on ocular fibrosis-related diseases is unclear. We investigated whether Mtf can inhibit EMT and fibrosis in HLECs to prevent and treat PCO and elucidated the potential molecular mechanism. Here, we established an HLEC model of TGF-β-induced EMT and found that 400 μM Mtf inhibited vertical and lateral migration and EMT-related gene and protein expression in HLECs. Smad2/3 are downstream molecules of TGF-β that enter the nucleus to regulate EMT-related gene expression during the occurrence and development of PCO. We revealed that Mtf suppressed TGF-β-induced Smad2/3 phosphorylation and nuclear translocation. Mtf induces AMP-activated protein kinase (AMPK) phosphorylation. In this study, we found that Mtf induced the activation of AMPK phosphorylation in HLECs. To further explore the mechanism of Mtf, we pretreated HLECs with Compound C (an AMPK inhibitor) to repeat the above experiments and found that Compound C abolished the inhibitory effect of Mtf on HLEC EMT and the TGF-β/Smad2/3 signalling pathway. Thus, Mtf targets AMPK phosphorylation to inhibit the TGF-β/Smad2/3 signalling pathway and prevent HLEC EMT. Notably, we first illustrated the AMPK/TGF-β/Smad2/3 signalling pathway in HLECs, which may provide a new therapeutic strategy for PCO.
Collapse
Affiliation(s)
- Ling Wang
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, 300020, China; Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, 300020, China
| | - Ye Tian
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, 300020, China; Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, 300020, China
| | - Zhiqun Shang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Boya Zhang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Xia Hua
- Tianjin Aier Eye Hospital, Tianjin, 300191, China; Aier Eye Institute, Changsha, 410000, China.
| | - Xiaoyong Yuan
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, 300020, China; Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, 300020, China.
| |
Collapse
|
28
|
Patel SD, Aryal S, Mennetti LP, Parreno J. Whole mount staining of lenses for visualization of lens epithelial cell proteins. MethodsX 2021; 8:101376. [PMID: 34430272 PMCID: PMC8374519 DOI: 10.1016/j.mex.2021.101376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/26/2021] [Indexed: 11/17/2022] Open
Abstract
Whole mount imaging of the lens allows for high spatial resolution visualization of lens epithelial structures by using small molecule fluorescent probes. However, the visualization of specific proteins in lens epithelial cells within whole lenses remains a challenge as the capsule that surrounds the lens does not allow penetration of antibodies. Here we describe a whole mount imaging method that allows us to overcome this challenge by digesting the lens capsules of paraformaldehyde fixed lenses using collagenase. This method enables the penetration of antibodies for effective visualization of proteins in the epithelium of whole lenses.A limitation to lens whole mount imaging is the ability to visualize specific proteins as the collagen capsule surrounding the lens impedes the penetration of antibodies This protocol helps overcome this limitation by a light collagenase digestion of the capsule of fixed lenses prior to immunostaining This method allows for the imaging of specific proteins in the epithelium of the whole lens tissue
Collapse
Affiliation(s)
- Shaili D Patel
- Department of Biological Sciences, University of Delaware USA
| | - Sandeep Aryal
- Department of Biological Sciences, University of Delaware USA
| | | | - Justin Parreno
- Department of Biological Sciences, University of Delaware USA
| |
Collapse
|
29
|
Patnaik JL, Christopher KL, Pedler MG, Shieh B, Petrash CC, Wagner BD, Mandava N, Lynch AM, Palestine AG, Petrash JM. The Protective Effect of Metformin Use on Early Nd:YAG Laser Capsulotomy. Invest Ophthalmol Vis Sci 2021; 62:24. [PMID: 34415985 PMCID: PMC8383914 DOI: 10.1167/iovs.62.10.24] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Purpose To determine the effect of metformin on early Nd:YAG laser treatment for posterior capsule opacification (PCO) and to explore a molecular mechanism to explain a possible protective effect of metformin against PCO. Methods We conducted: 1) a retrospective cohort study of patient eyes undergoing phacoemulsification at our institution; and 2) laboratory investigation of the effect of metformin on the behavior of lens epithelial cells in the context of an animal model for PCO. Population-averaged Cox proportional hazards modeling was used to estimate risk for time to Nd:YAG. For laboratory studies, expression of markers for epithelial-to-mesenchymal transition (EMT) implicated in PCO pathogenesis was measured in tissue culture and following extracapsular lens extraction in a mouse model. Results The rate of Nd:YAG laser capsulotomy was 13.1% among the 9798 eyes. Both metformin use and diabetes were protective factors for Nd:YAG laser capsulotomy in univariate analysis. However, in multivariable analysis with nondiabetics as the reference group, only metformin use among diabetics was significantly protective of Nd:YAG (hazard ratio: 0.68, 95% CI: 0.54–0.85, P = 0.0008), while eyes of patients with diabetes without metformin use did not significantly differ (P = 0.5026). Treatment of lens epithelial cells with metformin reduced the level of the EMT markers ⍺-SMA and pERK induced by TGF-β2. Similarly, metformin treatment reduced ⍺-SMA expression in lens epithelial cells following extracapsular lens extraction in a mouse model. Conclusions The protective effect of metformin against early Nd:YAG may relate to its ability to downregulate EMT in residual lens epithelial cells that otherwise trend toward myofibroblast development and PCO.
Collapse
Affiliation(s)
- Jennifer L Patnaik
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Karen L Christopher
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Michelle G Pedler
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Biehuoy Shieh
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Carson C Petrash
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Brandie D Wagner
- Department of Biostatistics, Colorado School of Public Health, Aurora, Colorado, United States
| | - Naresh Mandava
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Anne M Lynch
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Alan G Palestine
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - J Mark Petrash
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, Colorado, United States
| |
Collapse
|
30
|
Faranda AP, Shihan MH, Wang Y, Duncan MK. The effect of sex on the mouse lens transcriptome. Exp Eye Res 2021; 209:108676. [PMID: 34146586 DOI: 10.1016/j.exer.2021.108676] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/31/2021] [Accepted: 06/09/2021] [Indexed: 02/08/2023]
Abstract
The transcriptome of mammalian tissues differs between males and females, and these differences can change across the lifespan, likely regulating known sexual dimorphisms in disease prevalence and severity. Cataract, the most prevalent disease of the ocular lens, occurs at similar rates in young individuals, but its incidence is elevated in older women compared to men of the same age. However, the influence of sex on the lens transcriptome was unknown. RNAseq based transcriptomic profiling of young adult C57BL/6J mouse lens epithelial and fiber cells revealed that few genes are differentially expressed between the sexes. In contrast, lens cells from aged (24 month old) male and female C57BL/6J mice differentially expressed many genes, including several whose expression is lens preferred. Like cataracts, posterior capsular opacification (PCO), a major sequela of cataract surgery, may also be more prevalent in women. Lens epithelial cells isolated from mouse eyes 24 h after lens fiber cell removal exhibited numerous transcriptomic differences between the sexes, including genes implicated in complement cascades and extracellular matrix regulation, and these differences are much more pronounced in aged mice than in young mice. These results provide an unbiased basis for future studies on how sex affects the lens response to aging, cataract development, and cataract surgery.
Collapse
Affiliation(s)
- Adam P Faranda
- Department of Biological Sciences University of Delaware, Newark, DE, 19716, USA
| | - Mahbubul H Shihan
- Department of Biological Sciences University of Delaware, Newark, DE, 19716, USA
| | - Yan Wang
- Department of Biological Sciences University of Delaware, Newark, DE, 19716, USA
| | - Melinda K Duncan
- Department of Biological Sciences University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
31
|
Walker JL, Menko AS. Immune cells in lens injury repair and fibrosis. Exp Eye Res 2021; 209:108664. [PMID: 34126081 DOI: 10.1016/j.exer.2021.108664] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 12/18/2022]
Abstract
Immune cells, both tissue resident immune cells and those immune cells recruited in response to wounding or degenerative conditions, are essential to both the maintenance and restoration of homeostasis in most tissues. These cells are typically provided to tissues by their closely associated vasculatures. However, the lens, like many of the tissues in the eye, are considered immune privileged sites because they have no associated vasculature. Such absence of immune cells was thought to protect the lens from inflammatory responses that would bring with them the danger of causing vision impairing opacities. However, it has now been shown, as occurs in other immune privileged sites in the eye, that novel pathways exist by which immune cells come to associate with the lens to protect it, maintain its homeostasis, and function in its regenerative repair. Here we review the discoveries that have revealed there are both innate and adaptive immune system responses to lens, and that, like most other tissues, the lens harbors a population of resident immune cells, which are the sentinels of danger or injury to a tissue. While resident and recruited immune cells are essential elements of lens homeostasis and repair, they also become the agents of disease, particularly as progenitors of pro-fibrogenic myofibroblasts. There still remains much to learn about the function of lens-associated immune cells in protection, repair and disease, the knowledge of which will provide new tools for maintaining the core functions of the lens in the visual system.
Collapse
Affiliation(s)
- Janice L Walker
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA; Department of Ophthalmology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - A Sue Menko
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA; Department of Ophthalmology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| |
Collapse
|
32
|
Factors Affecting Posterior Capsule Opacification in the Development of Intraocular Lens Materials. Pharmaceutics 2021; 13:pharmaceutics13060860. [PMID: 34200928 PMCID: PMC8230425 DOI: 10.3390/pharmaceutics13060860] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 01/01/2023] Open
Abstract
Posterior capsule opacification (PCO) is the most common complication arising from the corrective surgery used to treat cataract patients. PCO arises when lens epithelial cells (LEC) residing in the capsular bag post-surgery undergo hyper-proliferation and transdifferentiation into myofibroblasts, migrating from the posterior capsule over the visual axis of the newly implanted intraocular lens (IOL). The developmental pathways underlying PCO are yet to be fully understood and the current literature is contradictory regarding the impact of the recognised risk factors of PCO. The aim of this review is firstly to collate the known biochemical pathways that lead to PCO development, providing an up-to-date chronological overview from surgery to established PCO formation. Secondly, the risk factors of PCO are evaluated, focussing on the impact of IOLs’ properties. Finally, the latest experimental model designs used in PCO research are discussed to demonstrate the ongoing development of clinical PCO models, the efficacy of newly developed IOL technology, and potential therapeutic interventions. This review will contribute to current PCO literature by presenting an updated overview of the known developmental pathways of PCO, an evaluation of the impact of the risk factors underlying its development, and the latest experimental models used to investigate PCO. Furthermore, the review should provide developmental routes for research into the investigation of potential therapeutic interventions and improvements in IOL design in the aid of preventing PCO for new and existing patients.
Collapse
|
33
|
A simple method for quantitating confocal fluorescent images. Biochem Biophys Rep 2021; 25:100916. [PMID: 33553685 PMCID: PMC7856428 DOI: 10.1016/j.bbrep.2021.100916] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/14/2020] [Accepted: 01/05/2021] [Indexed: 01/02/2023] Open
Abstract
Western blotting (WB), enzyme-linked immunosorbent assay (ELISA) and flow cytometry (FC) have long been used to assess and quantitate relative protein expression in cultured cells and tissue samples. However, WB and ELISA have limited ability to meaningfully quantitate relative protein levels in tissues with complex cell composition, while tissue dissociation followed by FC is not feasible when tissue is limiting and/or cells difficult to isolate. While protein detection in tissue using immunofluorescent (IF) probes has traditionally been considered a qualitative technique, advances in probe stability and confocal imaging allow IF data to be easily quantitated, although reproducible quantitation of relative protein expression requires careful attention to appropriate controls, experiment design, and data collection. Here we describe the methods used to quantify the data presented in Shihan et al. Matrix Biology, 2020 which lays out a workflow where IF data collected on a confocal microscope can be used to quantitate the relative levels of a molecule of interest by measuring mean fluorescent intensity across a region of interest, cell number, and the percentage of cells in a sample “positive” for staining with the fluorescent probe of interest. Overall, this manuscript discusses considerations for collecting quantifiable fluorescent images on a confocal microscope and provides explicit methods for quantitating IF data using FIJI-ImageJ. These simple methods:Allow quantitation of molecules in small tissues using immunofluorescent (IF) detectionon tissue sections. Generate data that correlate well with that obtained from other methods. Yield reproducible data that expands the conclusions possible from IF imaging of tissues with complex cellular compositions.
Collapse
|
34
|
Long-term myofibroblast persistence in the capsular bag contributes to the late spontaneous in-the-bag intraocular lens dislocation. Sci Rep 2020; 10:20532. [PMID: 33239706 PMCID: PMC7689492 DOI: 10.1038/s41598-020-77207-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 10/28/2020] [Indexed: 12/15/2022] Open
Abstract
Late spontaneous in-the-bag intraocular lens (IOL) dislocation is a complication presenting 6 months or later after cataract surgery. We aimed to characterize the cells in the lens capsules (LCs) of 18 patients with spontaneous late in-the-bag IOL dislocation. Patients' average age was 82.6 ± 1.5 years (range 72-98), and most of them had pseudoexfoliation syndrome (PEX). Cells from the LCs were positive for myofibroblast (αSMA), proliferation (Ki-67, PCNA), early lens development/lens progenitor (SOX2, PAX6), chemokine receptor (CXCR4), and transmembrane (N-cadherin) markers, while negative for epithelial (E-cadherin) marker. Moreover, the cells produced abundant fibronectin, type I and type V collagen in the nearby extracellular matrix (ECM). During ex vivo cultivation of dislocated IOL-LCs in toto, the cells proliferated and likely migrated onto the IOL's anterior side. EdU proliferation assay confirmed the proliferation potential of the myofibroblasts (MFBs) in dislocated IOL-LCs. Primary cultured lens epithelial cells/MFBs isolated from the LC of dislocated IOLs could induce collagen matrix contraction and continuously proliferated, migrated, and induced ECM remodeling. Taken together, this indicates that long-lived MFBs of dislocated IOLs might contribute to the pathogenic mechanisms in late in-the-bag IOL dislocation.
Collapse
|
35
|
Wormstone IM, Wormstone YM, Smith AJO, Eldred JA. Posterior capsule opacification: What's in the bag? Prog Retin Eye Res 2020; 82:100905. [PMID: 32977000 DOI: 10.1016/j.preteyeres.2020.100905] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 12/18/2022]
Abstract
Cataract, a clouding of the lens, is the most common cause of blindness in the world. It has a marked impact on the wellbeing and productivity of individuals and has a major economic impact on healthcare providers. The only means of treating cataract is by surgical intervention. A modern cataract operation generates a capsular bag, which comprises a proportion of the anterior capsule and the entire posterior capsule. The bag remains in situ, partitions the aqueous and vitreous humours, and in the majority of cases, houses an intraocular lens (IOL). The production of a capsular bag following surgery permits a free passage of light along the visual axis through the transparent intraocular lens and thin acellular posterior capsule. Lens epithelial cells, however, remain attached to the anterior capsule, and in response to surgical trauma initiate a wound-healing response that ultimately leads to light scatter and a reduction in visual quality known as posterior capsule opacification (PCO). There are two commonly-described forms of PCO: fibrotic and regenerative. Fibrotic PCO follows classically defined fibrotic processes, namely hyperproliferation, matrix contraction, matrix deposition and epithelial cell trans-differentiation to a myofibroblast phenotype. Regenerative PCO is defined by lens fibre cell differentiation events that give rise to Soemmerring's ring and Elschnig's pearls and becomes evident at a later stage than the fibrotic form. Both fibrotic and regenerative forms of PCO contribute to a reduction in visual quality in patients. This review will highlight the wealth of tools available for PCO research, provide insight into our current knowledge of PCO and discuss putative management of PCO from IOL design to pharmacological interventions.
Collapse
Affiliation(s)
- I M Wormstone
- School of Biological Sciences, University of East Anglia, Norwich, UK.
| | - Y M Wormstone
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - A J O Smith
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - J A Eldred
- School of Biological Sciences, University of East Anglia, Norwich, UK
| |
Collapse
|