1
|
Guo W, Wang X, Chen Y, Wang F, Qiu J, Lu W. Effect of Menopause Status on Brain Perfusion Hemodynamics. Stroke 2024; 55:260-268. [PMID: 37850361 DOI: 10.1161/strokeaha.123.044841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 09/26/2023] [Indexed: 10/19/2023]
Abstract
BACKGROUND The menopause transition is associated with an increasing risk of cerebrovascular disorders. However, the direct effect of menopause status on brain perfusion hemodynamics remains unclear. This study aimed to explore the influence of menopause status on cerebral blood flow (CBF) using arterial spin labeling magnetic resonance imaging. METHODS In this cross-sectional study, 185 subjects underwent arterial spin labeling magnetic resonance imaging at a hospital in China between September 2020 and December 2022, including 38 premenopausal women (mean age, 47.74±2.02 years), 42 perimenopausal women (mean age, 50.62±3.15 years), 42 postmenopausal women (mean age, 54.02±4.09 years), and 63 men (mean age, 52.70±4.33 years) of a similar age range. Mean CBF values in the whole brain, gray matter, white matter, cortical gray matter, subcortical gray matter, juxtacortical white matter, deep white matter, and periventricular white matter were extracted. ANCOVA was used to compare mean CBF among the 4 groups, controlling for confounding factors. Student t test was applied to compare mean CBF between the 3 female groups and age-matched males, respectively. Multivariable regression analysis was used to analysis the effect of age, sex, and menopause status on the CBF of the whole brain, gray matter, white matter, and subregions. RESULTS Perimenopausal and postmenopausal women showed a higher proportion of white matter hyperintensities compared with the other 2 groups (P<0.001). Premenopausal women exhibited higher CBF in the whole brain, gray matter, white matter, and subregions, compared with perimenopausal, postmenopausal women and men (P≤0.001). Multivariable regression analysis demonstrated significant effect of age and insignificant effect of sex on CBF for all participants. In addition, menopause status and the interaction between age and menopause status on CBF of whole brain, gray matter, white matter, and the subregions were observed in female participants, except for the deep and periventricular white matter regions, with premenopausal women exhibited a slight increase in CBF with age, while perimenopausal and postmenopausal women exhibited declines in CBF with age. CONCLUSIONS The current findings suggest that alterations of brain perfusion hemodynamics begin during the perimenopause period, which may be due to the increased burden of white matter hyperintensities.
Collapse
Affiliation(s)
- Wei Guo
- Department of Radiology, the Second Affiliated Hospital of Shandong First Medical University, Taian, China (W.G., Y.C., F.W., W.L.)
| | - Xiuzhu Wang
- Department of Obstetrics, Taian City Central Hospital, China (X.W.)
| | - Yinzhong Chen
- Department of Radiology, the Second Affiliated Hospital of Shandong First Medical University, Taian, China (W.G., Y.C., F.W., W.L.)
| | - Feng Wang
- Department of Radiology, the Second Affiliated Hospital of Shandong First Medical University, Taian, China (W.G., Y.C., F.W., W.L.)
| | - Jianfeng Qiu
- Department of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China (J.Q.)
| | - Weizhao Lu
- Department of Radiology, the Second Affiliated Hospital of Shandong First Medical University, Taian, China (W.G., Y.C., F.W., W.L.)
| |
Collapse
|
2
|
Lu W, Sun Y, Gao H, Qiu J. A review of multi-modal magnetic resonance imaging studies on perimenopausal brain: a hint towards neural heterogeneity. Eur Radiol 2023; 33:5282-5297. [PMID: 36977851 DOI: 10.1007/s00330-023-09549-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/05/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023]
Abstract
The population ageing process worldwide is leading to an increasing number of women in the perimenopausal phase. Many of the perimenopausal symptoms, such as headache, depression, insomnia, and cognitive decline, are neurological in nature. Therefore, the study of the perimenopausal brain is of great importance. In addition, relevant studies can also provide an imaging basis for multiple therapies to treat perimenopausal symptoms. Because of its non-invasive nature, magnetic resonance imaging (MRI) has now been widely applied to the study of perimenopausal brains, revealing alterations in the brain associated with symptoms during the menopause transition. In this review, we collected papers and works of literature on the perimenopausal brain using MRI techniques in the Web of Science database. We firstly described the general principles and analysis methods of different MRI modalities briefly and then reviewed the structural, functional, perfusion, and metabolic compounds changes in the brain of perimenopausal women respectively, and described the latest advances in probing the perimenopausal brain using MRI, resulting in summary diagrams and figures. Based on the summary of existing works of the literature, this review further provided a perspective on multi-modal MRI studies in the perimenopausal brain, suggesting that population-based, multi-center, and longitudinal studies will be beneficial to the comprehensive understanding of changes in the perimenopausal brain. In addition, we found a hint towards neural heterogeneity in the perimenopausal brain, which should be addressed by future MRI studies to provide more help for the precise diagnosis and personalized treatment of perimenopausal symptoms. KEY POINTS: • Perimenopause is not only a physiological transition but also a period of neurological transition. • Multi-modal MRI studies have revealed that perimenopause is accompanied by alterations in the brain, which is implicated in many perimenopausal symptoms. • The diversity in the multi-modal MRI findings may give a hint to neural heterogeneity in the perimenopausal brain.
Collapse
Affiliation(s)
- Weizhao Lu
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, No. 366 Taishan Street, Taian, 271000, China
| | - Yuanyuan Sun
- Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, No. 619 Changcheng Road, Taian, 271016, China
| | - Hui Gao
- Department of Gynaecology, Beijing Tian Tan Hospital, Beijing, China
| | - Jianfeng Qiu
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, No. 366 Taishan Street, Taian, 271000, China.
| |
Collapse
|
3
|
DuBois M, Tseng A, Francis SM, Haynos AF, Peterson CB, Jacob S. Utility of Downstream Biomarkers to Assess and Optimize Intranasal Delivery of Oxytocin. Pharmaceutics 2022; 14:1178. [PMID: 35745751 PMCID: PMC9228821 DOI: 10.3390/pharmaceutics14061178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 02/05/2023] Open
Abstract
Oxytocin (OT), a mammalian neurohormone associated with social cognition and behavior, can be administered in its synthetic form intranasally (IN) and impact brain chemistry and behavior. IN-OT shows potential as a noninvasive intervention for disorders characterized by social challenges, e.g., autism spectrum disorder (ASD) and anorexia nervosa (AN). To evaluate IN-OT's efficacy, we must quantify OT uptake, availability, and clearance; thus, we assessed OT levels in urine (uOT) before and after participants (26 ASD, 7 AN, and 7 healthy controls) received 40 IU IN-OT or placebo across two sessions using double-blind, placebo-controlled crossover designs. We also measured uOT and plasma (pOT) levels in a subset of participants to compare the two sampling methods. We found significantly higher uOT and pOT following intranasal delivery of active compound versus placebo, but analyses yielded larger effect sizes and more clearly differentiated pre-post-OT levels for uOT than pOT. Further, we applied a two-step cluster (TSC), blinded backward-chaining approach to determine whether active/placebo groups could be identified by uOT and pOT change alone; uOT levels may serve as an accessible and accurate systemic biomarker for OT dose-response. Future studies will explore whether uOT levels correlate directly with behavioral targets to improve dosing for therapeutic goals.
Collapse
Affiliation(s)
| | | | | | | | | | - Suma Jacob
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN 55455, USA; (M.D.); (A.T.); (S.M.F.); (A.F.H.); (C.B.P.)
| |
Collapse
|
4
|
Lowerison MR, Sekaran NVC, Zhang W, Dong Z, Chen X, Llano DA, Song P. Aging-related cerebral microvascular changes visualized using ultrasound localization microscopy in the living mouse. Sci Rep 2022; 12:619. [PMID: 35022482 PMCID: PMC8755738 DOI: 10.1038/s41598-021-04712-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/14/2021] [Indexed: 01/09/2023] Open
Abstract
Aging-related cognitive decline is an emerging health crisis; however, no established unifying mechanism has been identified for the cognitive impairments seen in an aging population. A vascular hypothesis of cognitive decline has been proposed but is difficult to test given the requirement of high-fidelity microvascular imaging resolution with a broad and deep brain imaging field of view, which is restricted by the fundamental trade-off of imaging penetration depth and resolution. Super-resolution ultrasound localization microscopy (ULM) offers a potential solution by exploiting circulating microbubbles to achieve a vascular resolution approaching the capillary scale without sacrificing imaging depth. In this report, we apply ULM imaging to a mouse model of aging and quantify differences in cerebral vascularity, blood velocity, and vessel tortuosity across several brain regions. We found significant decreases in blood velocity, and significant increases in vascular tortuosity, across all brain regions in the aged cohort, and significant decreases in blood volume in the cerebral cortex. These data provide the first-ever ULM measurements of subcortical microvascular dynamics in vivo within the context of the aging brain and reveal that aging has a major impact on these measurements.
Collapse
Affiliation(s)
- Matthew R Lowerison
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave, Urbana, IL, 61801, USA
| | - Nathiya Vaithiyalingam Chandra Sekaran
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Molecular and Integrative Physiology, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave, Urbana, IL, 61801, USA
| | - Wei Zhang
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave, Urbana, IL, 61801, USA
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Wuhan City, Hubei Province, China
| | - Zhijie Dong
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave, Urbana, IL, 61801, USA
| | - Xi Chen
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave, Urbana, IL, 61801, USA
| | - Daniel A Llano
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Department of Molecular and Integrative Physiology, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave, Urbana, IL, 61801, USA.
| | - Pengfei Song
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave, Urbana, IL, 61801, USA.
| |
Collapse
|
5
|
Prakapenka AV, Peña VL, Strouse I, Northup-Smith S, Schrier A, Ahmed K, Bimonte-Nelson HA, Sirianni RW. Intranasal 17β-Estradiol Modulates Spatial Learning and Memory in a Rat Model of Surgical Menopause. Pharmaceutics 2020; 12:E1225. [PMID: 33348722 PMCID: PMC7766209 DOI: 10.3390/pharmaceutics12121225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/01/2020] [Accepted: 12/08/2020] [Indexed: 01/23/2023] Open
Abstract
Exogenously administered 17β-estradiol (E2) can improve spatial learning and memory, although E2 also exerts undesired effects on peripheral organs. Clinically, E2 has been solubilized in cyclodextrin for intranasal administration, which enhances brain-specific delivery. Prior work shows that the cyclodextrin structure impacts region-specific brain distribution of intranasally administered small molecules. Here, we investigated (1) cyclodextrin type-specific modulation of intranasal E2 brain distribution, and (2) cognitive and peripheral tissue effects of intranasal E2 in middle-aged ovariectomized rats. First, brain and peripheral organ distribution of intranasally administered, tritiated E2 was measured for E2 solubilized freely or in one of four cyclodextrin formulations. The E2-cyclodextrin formulation with greatest E2 uptake in cognitive brain regions versus uterine horns was then compared to free E2 on learning, memory, and uterine measures. Free E2 improved spatial reference memory, whereas E2-cyclodextrin impaired spatial working memory compared to their respective controls. Both E2 formulations increased uterine horn weights relative to controls, with E2-cyclodextrin resulting in the greatest uterine horn weight, suggesting increased uterine stimulation. Thus, intranasal administration of freely solubilized E2 is a strategic delivery tool that can yield a cognitively beneficial impact of the hormone alongside decreased peripheral effects compared to intranasal administration of cyclodextrin solubilized E2.
Collapse
Affiliation(s)
- Alesia V. Prakapenka
- Department of Psychology, Arizona State University, Tempe, AZ 85281, USA; (A.V.P.); (V.L.P.); (I.S.); (S.N.-S.); (A.S.); (K.A.); (H.A.B.-N.)
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
- Arizona Alzheimer’s Consortium, Phoenix, AZ 85014, USA
| | - Veronica L. Peña
- Department of Psychology, Arizona State University, Tempe, AZ 85281, USA; (A.V.P.); (V.L.P.); (I.S.); (S.N.-S.); (A.S.); (K.A.); (H.A.B.-N.)
- Arizona Alzheimer’s Consortium, Phoenix, AZ 85014, USA
| | - Isabel Strouse
- Department of Psychology, Arizona State University, Tempe, AZ 85281, USA; (A.V.P.); (V.L.P.); (I.S.); (S.N.-S.); (A.S.); (K.A.); (H.A.B.-N.)
- Arizona Alzheimer’s Consortium, Phoenix, AZ 85014, USA
| | - Steven Northup-Smith
- Department of Psychology, Arizona State University, Tempe, AZ 85281, USA; (A.V.P.); (V.L.P.); (I.S.); (S.N.-S.); (A.S.); (K.A.); (H.A.B.-N.)
- Arizona Alzheimer’s Consortium, Phoenix, AZ 85014, USA
| | - Ally Schrier
- Department of Psychology, Arizona State University, Tempe, AZ 85281, USA; (A.V.P.); (V.L.P.); (I.S.); (S.N.-S.); (A.S.); (K.A.); (H.A.B.-N.)
- Arizona Alzheimer’s Consortium, Phoenix, AZ 85014, USA
| | - Kinza Ahmed
- Department of Psychology, Arizona State University, Tempe, AZ 85281, USA; (A.V.P.); (V.L.P.); (I.S.); (S.N.-S.); (A.S.); (K.A.); (H.A.B.-N.)
- Arizona Alzheimer’s Consortium, Phoenix, AZ 85014, USA
| | - Heather A. Bimonte-Nelson
- Department of Psychology, Arizona State University, Tempe, AZ 85281, USA; (A.V.P.); (V.L.P.); (I.S.); (S.N.-S.); (A.S.); (K.A.); (H.A.B.-N.)
- Arizona Alzheimer’s Consortium, Phoenix, AZ 85014, USA
| | - Rachael W. Sirianni
- Vivian L. Smith Department of Neurosurgery, UTHealth Medical School, Houston, TX 77030, USA
| |
Collapse
|
6
|
Barnes JN, Charkoudian N. Integrative cardiovascular control in women: Regulation of blood pressure, body temperature, and cerebrovascular responsiveness. FASEB J 2020; 35:e21143. [PMID: 33151577 DOI: 10.1096/fj.202001387r] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/21/2020] [Accepted: 10/13/2020] [Indexed: 12/14/2022]
Abstract
Over the past several decades, it has become increasingly clear that women have distinct cardiovascular profiles compared to men. In this review, our goal is to provide an overview of the literature regarding the influences of female sex and reproductive hormones (primarily estradiol) on mechanisms of cardiovascular control relevant to regulation of blood pressure, body temperature, and cerebral blood flow. Young women tend to have lower resting blood pressure compared with men. This sex difference is reversed at menopause, when women develop higher sympathetic nerve activity and the risk of systemic hypertension increases sharply as postmenopausal women age. Vascular responses to thermal stress, including cutaneous vasodilation and vasoconstriction, are also affected by reproductive hormones in women, where estradiol appears to promote vasodilation and heat dissipation. The influence of reproductive hormones on cerebral blood flow and sex differences in the ability of the cerebral vasculature to increase its blood flow (cerebrovascular reactivity) are relatively new areas of investigation. Sex and hormonal influences on integrative blood flow regulation have further implications during challenges to physiological homeostasis, including exercise. We propose that increasing awareness of these sex-specific mechanisms is important for optimizing health care and promotion of wellness in women across the life span.
Collapse
Affiliation(s)
- Jill N Barnes
- Bruno Balke Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, USA
| | - Nisha Charkoudian
- US Army Research Institute of Environmental Medicine, Natick, MA, USA
| |
Collapse
|
7
|
Salinero AE, Robison LS, Gannon OJ, Riccio D, Mansour F, Abi-Ghanem C, Zuloaga KL. Sex-specific effects of high-fat diet on cognitive impairment in a mouse model of VCID. FASEB J 2020; 34:15108-15122. [PMID: 32939871 DOI: 10.1096/fj.202000085r] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 08/12/2020] [Accepted: 09/01/2020] [Indexed: 12/20/2022]
Abstract
Mid-life metabolic disease (ie, obesity, diabetes, and prediabetes) causes vascular dysfunction and is a risk factor for vascular contributions to cognitive impairment and dementia (VCID), particularly in women. Using middle-aged mice, we modeled metabolic disease (obesity/prediabetes) via chronic high-fat (HF) diet and modeled VCID via unilateral common carotid artery occlusion. VCID impaired spatial memory in both sexes, but episodic-like memory in females only. HF diet caused greater weight gain and glucose intolerance in middle-aged females than males. HF diet alone impaired episodic-like memory in both sexes, but spatial memory in females only. Finally, the combination of HF diet and VCID elicited cognitive impairments in all tests, in both sexes. Sex-specific correlations were found between metabolic outcomes and memory. Notably, both visceral fat and the pro-inflammatory cytokine tumor necrosis factor alpha correlated with spatial memory deficits in middle-aged females, but not males. Overall, our data show that HF diet causes greater metabolic impairment and a wider array of cognitive deficits in middle-aged females than males. The combination of HF diet with VCID elicits deficits across multiple cognitive domains in both sexes. Our data are in line with clinical data, which shows that mid-life metabolic disease increases VCID risk, particularly in females.
Collapse
Affiliation(s)
- Abigail E Salinero
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Lisa S Robison
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Olivia J Gannon
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - David Riccio
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Febronia Mansour
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Charly Abi-Ghanem
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Kristen L Zuloaga
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| |
Collapse
|
8
|
Effects of Steroid Hormones on Sex Differences in Cerebral Perfusion. PLoS One 2015; 10:e0135827. [PMID: 26356576 PMCID: PMC4565711 DOI: 10.1371/journal.pone.0135827] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 07/27/2015] [Indexed: 11/19/2022] Open
Abstract
Sex differences in the brain appear to play an important role in the prevalence and progression of various neuropsychiatric disorders, but to date little is known about the cerebral mechanisms underlying these differences. One widely reported finding is that women demonstrate higher cerebral perfusion than men, but the underlying cause of this difference in perfusion is not known. This study investigated the putative role of steroid hormones such as oestradiol, testosterone, and dehydroepiandrosterone sulphate (DHEAS) as underlying factors influencing cerebral perfusion. We acquired arterial spin labelling perfusion images of 36 healthy adult subjects (16 men, 20 women). Analyses on average whole brain perfusion levels included a multiple regression analysis to test for the relative impact of each hormone on the global perfusion. Additionally, voxel-based analyses were performed to investigate the sex difference in regional perfusion as well as the correlations between local perfusion and serum oestradiol, testosterone, and DHEAS concentrations. Our results replicated the known sex difference in perfusion, with women showing significantly higher global and regional perfusion. For the global perfusion, DHEAS was the only significant predictor amongst the steroid hormones, showing a strong negative correlation with cerebral perfusion. The voxel-based analyses revealed modest sex-dependent correlations between local perfusion and testosterone, in addition to a strong modulatory effect of DHEAS in cortical, subcortical, and cerebellar regions. We conclude that DHEAS in particular may play an important role as an underlying factor driving the difference in cerebral perfusion between men and women.
Collapse
|
9
|
Huang J, Bai F, Yang X, Chen C, Bao X, Zhang Y. Identifying brain functional alterations in postmenopausal women with cognitive impairment. Maturitas 2015; 81:371-6. [PMID: 26037032 DOI: 10.1016/j.maturitas.2015.04.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 04/09/2015] [Accepted: 04/13/2015] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Gender differences and menopause are associated with the cognitive decline and pathogenesis of Alzheimer's disease (AD). Although deficits of subcortical-cortical loops have been implicated in AD, no study has directly examined the resting-state brain functional alterations in postmenopausal women with mild cognitive impairment (MCI). METHODOLOGY Forty-eight subjects were recruited, including 15 older females with MCI, 13 older females without MCI, 10 older males with MCI and 10 older males without MCI. Full-scale neuropsychological tests were used to evaluate cognitive function. Resting-state fMRI and the amplitude of low-frequency fluctuation (ALFF) approach were used to investigate changes in the brain function in these subjects. A voxel-wise analysis of variance (ANOVA: gender × disease) was performed, and gender-brain-behavior relationships were further examined. RESULTS First, older females with MCI showed cognitive dysfunction in multiple domains compared to normal controls. Second, the brain function of subcortical-cortical loops was disrupted in older females with MCI. Finally, regional resting-state function of the left precuneus was significantly associated with altered episodic memory in these female patients. CONCLUSIONS This study revealed the patterns of neural networks in older females with cognitive disorders, and may provide new ideas and evidence regarding the mechanism of cognitive impairment in postmenopausal women.
Collapse
Affiliation(s)
- Jingjing Huang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Jiangsu, China
| | - Feng Bai
- Department of Neurology, Affiliated Zhongda Hospital of Southeast University, Jiangsu, China
| | - Xiaoqing Yang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Jiangsu, China
| | - Chen Chen
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Jiangsu, China
| | - Xueping Bao
- Department of Radiology, Affiliated Hospital of Nantong University, Jiangsu, China
| | - Yuquan Zhang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Jiangsu, China.
| |
Collapse
|
10
|
Haimov-Kochman R, Berger I. Cognitive functions of regularly cycling women may differ throughout the month, depending on sex hormone status; a possible explanation to conflicting results of studies of ADHD in females. Front Hum Neurosci 2014; 8:191. [PMID: 24744721 PMCID: PMC3978296 DOI: 10.3389/fnhum.2014.00191] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 03/16/2014] [Indexed: 12/25/2022] Open
Abstract
Attention Deficit/Hyperactivity Disorder (ADHD) is considered as a model of neuro-developmental cognitive function. ADHD research previously studied mainly males. A major biological distinction between the genders is the presence of a menstrual cycle, which is associated with variations in sex steroid hormone levels. There is a growing body of literature showing that sex hormones have the ability to regulate intracellular signaling systems that are thought to be abnormal in ADHD. Thus, it is conceivable to believe that this functional interaction between sex hormones and molecules involved with synaptic plasticity and neurotransmitter systems may be associated with some of the clinical characteristics of women with ADHD. In spite of the impact of sex hormones on major neurotransmitter systems of the brain in a variety of clinical settings, the menstrual cycle is usually entered to statistical analyses as a nuisance or controlled for by only testing male samples. Evaluation of brain structure, function and chemistry over the course of the menstrual cycle as well as across the lifespan of women (premenarche, puberty, cycling period, premenopause, postmenopause) is critical to understanding sex differences in both normal and aberrant mental function and behavior. The studies of ADHD in females suggest confusing and non-consistent conclusions. None of these studies examined the possible relationship between phase of the menstrual cycle, sex hormones levels and ADHD symptoms. The menstrual cycle should therefore be taken into consideration in future studies in the neurocognitive field since it offers a unique opportunity to understand whether and how subtle fluctuations of sex hormones and specific combinations of sex hormones influence neuronal circuits implicated in the cognitive regulation of emotional processing. The investigation of biological models involving the role of estrogen, progesterone, and other sex steroids has the potential to generate new and improved diagnostic and treatment strategies that could change the course of cognitive-behavioral disorders such as ADHD.
Collapse
Affiliation(s)
- Ronit Haimov-Kochman
- Unit of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Hadassah Hebrew University Medical CenterJerusalem, Israel
| | - Itai Berger
- The Neuro-Cognitive Center, Pediatric Wing, Hadassah Hebrew University Medical CenterJerusalem, Israel
| |
Collapse
|
11
|
Davey DA. Alzheimer's disease, dementia, mild cognitive impairment and the menopause: a 'window of opportunity'? ACTA ACUST UNITED AC 2013; 9:279-90. [PMID: 23638783 DOI: 10.2217/whe.13.22] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Alzheimer's disease (AD) is not an inevitable consequence of aging and may be modified by both adverse and protective factors. The pathological changes of AD commence in midlife and AD has a long preclinical phase that may be diagnosed by biomarkers in the cerebrospinal fluid and by brain MRI. New clinical criteria for the diagnosis of AD dementia and AD mild cognitive impairment (MCI) have been proposed. MCI and dementia are frequently the result of AD and cerebrovascular disease combined. Over the age of 85 years, MCI and dementia are more common in women than in men. Women with a surgical premature menopause have an increased risk of MCI and AD. Menopausal hormone therapy from the menopause to the age of 60 years, when any risks of menopausal hormone therapy are extremely small, may provide a 'window of opportunity' to reduce the risk of MCI and AD in later life. Many measures may help to prevent, delay or minimize AD in both women and men and should be actively encouraged.
Collapse
Affiliation(s)
- Dennis A Davey
- Department of Obstetrics & Gynaecology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town, Western Cape, 7925, South Africa.
| |
Collapse
|
12
|
Chaturapanich G, Yamthed R, Piyachaturawat P, Chairoungdua A, Suvitayavat W, Kongsaktrakoon B, Suksamrarn A, Pholpramool C. Nitric oxide signalling is involved in diarylheptanoid-induced increases in femoral arterial blood flow in ovariectomized rats. Clin Exp Pharmacol Physiol 2013; 40:240-9. [DOI: 10.1111/1440-1681.12058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 01/14/2013] [Accepted: 01/15/2013] [Indexed: 11/27/2022]
Affiliation(s)
- Ganyapong Chaturapanich
- Department of Physiology; Faculty of Science; Siriraj Hospital; Mahidol University; Bangkok; Thailand
| | | | - Pawinee Piyachaturawat
- Department of Physiology; Faculty of Science; Siriraj Hospital; Mahidol University; Bangkok; Thailand
| | - Arthit Chairoungdua
- Department of Physiology; Faculty of Science; Siriraj Hospital; Mahidol University; Bangkok; Thailand
| | - Wisuda Suvitayavat
- Department of Physiology; Faculty of Pharmacy; Siriraj Hospital; Mahidol University; Bangkok; Thailand
| | - Boontium Kongsaktrakoon
- Department of Physiology; Faculty of Pharmacy; Siriraj Hospital; Mahidol University; Bangkok; Thailand
| | - Apichart Suksamrarn
- Department of Chemistry; Faculty of Science; Ramkhamhaeng University; Bangkok; Thailand
| | - Chumpol Pholpramool
- Department of Physiology; Faculty of Science; Siriraj Hospital; Mahidol University; Bangkok; Thailand
| |
Collapse
|
13
|
Lee GJ, Curiel AR, Miller KJ, Amano S, Gorsuch R, Small GW. Language performance in postmenopausal women with and without hormone therapy and men. ACTA ACUST UNITED AC 2012; 8:625-632. [PMID: 25705244 DOI: 10.2217/ahe.12.66] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
AIMS In the current study, we explored the potential effects of hormone therapy (HT) on language functioning in healthy, postmenopausal women and compared them with men of similar ages. MATERIALS & METHODS Language functioning on tasks of verbal fluency and object naming was examined in 100 participants (mean age: 61.9 years; 33 HT users, 15 HT non-users and 52 men) at baseline and follow-up (mean follow-up time period: 2.6 years). RESULTS At baseline, men had higher composite language scores than HT users. However, HT users demonstrated more improvement over time compared with men, whereas HT non-users performed similarly to men, with no improvement over time. Longer duration of HT use was not associated with improved performance on language tests. CONCLUSION These results suggest an association between HT use and better language ability in postmenopausal women.
Collapse
Affiliation(s)
- Grace J Lee
- Department of Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, CA 90024, USA
| | | | - Karen J Miller
- Department of Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, CA 90024, USA ; Longevity Center Semel Institute for Neuroscience & Human Behavior, University of California, Los Angeles, CA 90024, USA
| | - Stacy Amano
- Fuller Theological Seminary, Pasadena, CA, USA
| | | | - Gary W Small
- Department of Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, CA 90024, USA ; Longevity Center Semel Institute for Neuroscience & Human Behavior, University of California, Los Angeles, CA 90024, USA
| |
Collapse
|
14
|
Hedges VL, Ebner TJ, Meisel RL, Mermelstein PG. The cerebellum as a target for estrogen action. Front Neuroendocrinol 2012; 33:403-11. [PMID: 22975197 PMCID: PMC3496070 DOI: 10.1016/j.yfrne.2012.08.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 08/20/2012] [Accepted: 08/24/2012] [Indexed: 12/22/2022]
Abstract
This review focuses on the effects of estrogens upon the cerebellum, a brain region long ignored as a site of estrogen action. Highlighted are the diverse effects of estradiol within the cerebellum, emphasizing the importance of estradiol signaling in cerebellar development, modulation of synaptic neurotransmission in the adult, and the potential influence of estrogens on various health and disease states. We also provide new data, consistent with previous studies, in which locally synthesized estradiol modulates cerebellar glutamatergic neurotransmission, providing one underlying mechanism by which the actions of estradiol can affect this brain region.
Collapse
Affiliation(s)
- Valerie L Hedges
- Department of Neuroscience and Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455, United States
| | | | | | | |
Collapse
|
15
|
Fischer-Shofty M, Shamay-Tsoory SG, Harari H, Levkovitz Y. The effect of intranasal administration of oxytocin on fear recognition. Neuropsychologia 2010; 48:179-84. [PMID: 19747930 DOI: 10.1016/j.neuropsychologia.2009.09.003] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2009] [Revised: 08/15/2009] [Accepted: 09/03/2009] [Indexed: 10/20/2022]
Abstract
The oxytocinergic system has recently been placed amongst the most promising targets for various psychiatric treatments due to its role in prosocial behavior and anxiety reduction. Although recent studies have demonstrated a general effect of administration of oxytocin on emotion recognition, no study to date has examine the effect of oxytocin on each emotion separately. In the present study, a double-blind placebo-controlled crossover design was used in a dynamic facial expression task, in order to assess the effects of administration of oxytocin on emotion recognition. A single dose of oxytocin or a placebo was administered intranasally to 27 healthy male subjects 45 min prior to task performance. The results showed that a single intranasal administration of oxytocin, as opposed to the placebo, improved the subjects' ability to recognize fear, but not other emotions. These results suggest a specific role for oxytocin in fear recognition, which could be relevant for clinical disorders that manifest deficits in processing emotional facial expressions, particularly fear.
Collapse
Affiliation(s)
- M Fischer-Shofty
- Department of Psychology, University of Haifa, Haifa 31905, Israel
| | | | | | | |
Collapse
|
16
|
Abstract
OBJECTIVE To review the relation in midlife and beyond between estrogen exposures and episodic memory in women. BACKGROUND Episodic memory performance declines with usual aging, and impairments in episodic memory often portend the development of Alzheimer disease. In the laboratory, estradiol influences hippocampal function and animal learning. However, it is controversial whether estrogens affect memory after a woman's reproductive years. METHOD Focused literature review, including a summary of a systematic search of clinical trials of estrogens in which outcomes included an objective measure of episodic memory. RESULTS The natural menopause transition is not associated with the objective changes in episodic memory. Strong clinical trial evidence indicates that initiating estrogen-containing hormone therapy after the age of about 60 years does not benefit episodic memory. Clinical trial findings in middle-aged women before the age of 60 years are limited by smaller sample sizes and shorter treatment durations, but these also do not indicate substantial memory effects. Limited short-term evidence, however, suggests that estrogens may improve verbal memory after surgical menopause. Although hormone therapy initiation in old age increases dementia risk, observational studies raise the question of an early critical window during which midlife estrogen therapy reduces late-life Alzheimer disease. However, almost no data address whether midlife estrogen therapy affects episodic memory in old age. CONCLUSIONS Episodic memory is not substantially impacted by the natural menopause transition or improved by the use of estrogen-containing hormone therapy after the age of 60 years. Further research is needed to determine whether outcomes differ after surgical menopause or whether episodic memory later in life is modified by midlife estrogenic exposures.
Collapse
Affiliation(s)
- Victor W Henderson
- Departments of Health Research and Policy (Epidemiology), and of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305-5405, USA.
| |
Collapse
|
17
|
|