1
|
Zhang Z, DiVittorio JR, Joseph AM, Correa SM. The Effects of Estrogens on Neural Circuits That Control Temperature. Endocrinology 2021; 162:6262699. [PMID: 33939822 PMCID: PMC8237993 DOI: 10.1210/endocr/bqab087] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Indexed: 12/17/2022]
Abstract
Declining and variable levels of estrogens around the time of menopause are associated with a suite of metabolic, vascular, and neuroendocrine changes. The archetypal adverse effects of perimenopause are vasomotor symptoms, which include hot flashes and night sweats. Although vasomotor symptoms are routinely treated with hormone therapy, the risks associated with these treatments encourage us to seek alternative treatment avenues. Understanding the mechanisms underlying the effects of estrogens on temperature regulation is a first step toward identifying novel therapeutic targets. Here we outline findings in rodents that reveal neural and molecular targets of estrogens within brain regions that control distinct components of temperature homeostasis. These insights suggest that estrogens may alter the function of multiple specialized neural circuits to coordinate the suite of changes after menopause. Thus, defining the precise cells and neural circuits that mediate the effects of estrogens on temperature has promise to identify strategies that would selectively counteract hot flashes or other negative side effects without the health risks that accompany systemic hormone therapies.
Collapse
Affiliation(s)
- Zhi Zhang
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA 90095, USA
- Laboratory of Neuroendocrinology, Brain Research Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Johnathon R DiVittorio
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Alexia M Joseph
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Stephanie M Correa
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA 90095, USA
- Laboratory of Neuroendocrinology, Brain Research Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
- Correspondence: Stephanie Correa, Ph.D., UCLA Dept. of Integrative Biology and Physiology 2028 Terasaki Life Sciences Building, 610 Charles E Young Drive East, Box 957239 Los Angeles, CA 90095, USA.
| |
Collapse
|
2
|
Zhang Z, Park JW, Ahn IS, Diamante G, Sivakumar N, Arneson D, Yang X, van Veen JE, Correa SM. Estrogen receptor alpha in the brain mediates tamoxifen-induced changes in physiology in mice. eLife 2021; 10:63333. [PMID: 33647234 PMCID: PMC7924955 DOI: 10.7554/elife.63333] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/25/2021] [Indexed: 12/24/2022] Open
Abstract
Adjuvant tamoxifen therapy improves survival in breast cancer patients. Unfortunately, long-term treatment comes with side effects that impact health and quality of life, including hot flashes, changes in bone density, and fatigue. Partly due to a lack of proven animal models, the tissues and cells that mediate these negative side effects are unclear. Here, we show that mice undergoing tamoxifen treatment experience changes in temperature, bone, and movement. Single-cell RNA sequencing reveals that tamoxifen treatment induces widespread gene expression changes in the hypothalamus and preoptic area (hypothalamus-POA). These expression changes are dependent on estrogen receptor alpha (ERα), as conditional knockout of ERα in the hypothalamus-POA ablates or reverses tamoxifen-induced gene expression. Accordingly, ERα-deficient mice do not exhibit tamoxifen-induced changes in temperature, bone, or movement. These findings provide mechanistic insight into the effects of tamoxifen on the hypothalamus-POA and indicate that ERα mediates several physiological effects of tamoxifen treatment in mice.
Collapse
Affiliation(s)
- Zhi Zhang
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, United States.,Laboratory of Neuroendocrinology of the Brain Research Institute, University of California Los Angeles, Los Angeles, United States
| | - Jae Whan Park
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, United States.,Laboratory of Neuroendocrinology of the Brain Research Institute, University of California Los Angeles, Los Angeles, United States
| | - In Sook Ahn
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, United States
| | - Graciel Diamante
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, United States
| | - Nilla Sivakumar
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, United States.,Laboratory of Neuroendocrinology of the Brain Research Institute, University of California Los Angeles, Los Angeles, United States
| | - Douglas Arneson
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, United States
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, United States
| | - J Edward van Veen
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, United States.,Laboratory of Neuroendocrinology of the Brain Research Institute, University of California Los Angeles, Los Angeles, United States
| | - Stephanie M Correa
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, United States.,Laboratory of Neuroendocrinology of the Brain Research Institute, University of California Los Angeles, Los Angeles, United States
| |
Collapse
|
3
|
Abstract
The thermoregulatory functions may vary with age. Thermosensitivity is active in neonates and children; both heat production and heat loss effector mechanisms are functional but easily exhaustable. Proportional and lasting defense against thermal challenges is difficult, and both hypothermia and hyperthermia may easily develop. Febrile or hypothermic responses to infections or endotoxin can also develop, together with confusion. In small children febrile convulsions may be dangerous. In old age the resting body temperature may be lower than in young adults. Further, thermosensitivity decreases, the thresholds for activating skin vasomotor and evaporative responses or metabolism are shifted, and responses to thermal challenges are delayed or insufficient: both hypothermia and hyperthermia may develop easily. Infection-induced fevers are often limited or absent, or replaced by hypothermia. Various types of brain damage may induce special forms of hypothermia, hyperthermia, or severe fever. Impaired mental state often accompanies hypothermia and hyperthermia, and may occasionally be a dominant feature of infection (instead of the most commonly observed fever). Aging brings about a turning point in women's life: the menopause. The well-known influence of regular hormonal cycles on the thermoregulation of a woman of fertile age gives way to menopausal hot flushes caused by estrogen withdrawal. Not all details of this thermoregulatory anomaly are fully understood yet.
Collapse
|
4
|
Treatment with an orally bioavailable prodrug of 17β-estradiol alleviates hot flushes without hormonal effects in the periphery. Sci Rep 2016; 6:30721. [PMID: 27477453 PMCID: PMC4967894 DOI: 10.1038/srep30721] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 07/06/2016] [Indexed: 11/15/2022] Open
Abstract
Estrogen deprivation has a profound effect on the female brain. One of the most obvious examples of this condition is hot flushes. Although estrogens relieve these typical climacteric symptoms, many women do not want to take them owing to unwanted side-effects impacting, for example, the uterus, breast and blood. Therefore, there is a need for developing safer estrogen therapies. We show here that treatment with 10β,17β-dihydroxyestra-1,4-dien-3-one (DHED), a novel brain-targeting bioprecursor prodrug of the main human estrogen, 17β-estradiol, alleviates hot flushes in rat models of thermoregulatory dysfunction of the brain. Oral administration of DHED elicits a significant reduction of tail skin temperature (TST) rise representing hot flushes in the morphine-dependent ovariectomized rat model and results in the restoration of estrogen deprivation-induced loss of diurnal rhythm in TST. These beneficial effects occur without detrimental peripheral hormonal exposure; thus, the treatment avoids potentially harmful stimulation of estrogen-sensitive peripheral organs, including the uterus and the anterior pituitary, or the proliferation of MCF-7a breast cancer cell xenografts. Our promising preclinical assessments warrant further considerations of DHED for the development of a brain-selective 17β-estradiol therapy to relieve hot flushes without undesirable peripheral side-effects.
Collapse
|
5
|
Jarry H. Estrogen receptor beta and its selective ligands: an option for treatment of menopausal vasomotor symptoms? Horm Mol Biol Clin Investig 2014; 16:7-12. [PMID: 25436742 DOI: 10.1515/hmbci-2013-0034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 07/18/2013] [Indexed: 11/15/2022]
Abstract
Abstract In the human female, menopause is the permanent end of fertility, defined as occurring 12 months after the last menstrual period. During peri- and postmenopausal stages, the vast majority of women experience moderate-to-severe vasomotor symptoms, such as hot flashes and night sweats, which interfere with sleep and may be severe enough to affect quality of life. The only treatment approved by national health authorities is hormone therapy with estrogen alone or in combination with a progestagen. However, this therapeutic regimen is associated with severe side effects, such as stimulation of growth of breast cancer or cardiovascular events. Thus, there is a demand for efficient and safe alternative treatments for menopausal complaints. After the discovery of estrogen receptor beta in many organs, and confirmation of its presence in the brain, many researchers raised the question of whether ERβ-specific ligands may be novel therapeutic agents for treatment of menopausal complaints with the desirable effects of estrogen but without increased risk of tumor incidence. This minireview will briefly summarize the relevance of estrogen receptor beta and its specific ligands for the treatment of menopausal symptoms with a focus on vasomotor menopausal symptoms. At present, estrogen receptor beta-selective ligands do not seem to be active in models of prevention or reversal of osteoporosis. However, data from animal experiments suggest that estrogen receptor beta-selective ligands might be safe therapeutics for the treatment of vasomotor menopausal symptoms.
Collapse
|
6
|
McGregor C, Sau A, Ruddy SC, Leung D, Webb M, Durst T, Wright JS, Lagace D, Pratt MAC. Novel ligands balance estrogen receptor β and α agonism for safe and effective suppression of the vasomotor response in the ovariectomized female rat model of menopause. Endocrinology 2014; 155:2480-91. [PMID: 24823389 DOI: 10.1210/en.2013-1976] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Vasomotor thermo-dysregulation (hot flashes) are an often debilitating symptom of menopause. Effective treatment is achieved primarily through activation of the estrogen receptor (ER)α with estrogens but is also associated with increased risk for breast and uterine cancer. In this study, we have tested novel compounds lacking the B ring of 17-hydroxy-β-estradiol (E2) (A-CD compounds) with differing ratios of ERα:ERβ binding affinities for the ability to reduce diurnal/nocturnal tail-skin temperatures (TSTs) in the ovariectomized female rat menopausal hot flash model. Normal mammary tissue expresses the predominantly antiproliferative ERβ. Therefore, we hypothesized that a preferential ERβ agonist with fractional ERα activity would safely reduce TSTs. The A-CD compound, L17, is a preferential ERβ agonist that has a ratio of ERβ:ERα binding affinity relative to E2 of 9.3 (where ERβ:ERα for E2, 1.0). In the ovariectomized rat, daily administration of low doses (1 mg/kg) of the A-CD compound TD81 (ERα:ERβ relative affinity, 15.2) was ineffective in temperature regulation, whereas L17 showed a trend toward TST reduction. Both E2 and the A-CD compound, TD3 (ERβ:ERα relative affinity, 5.0), also reduced TSTs but had marked proliferative effects on mammary and uterine tissues. At 2 mg/kg, L17 strongly reduced TSTs even more effectively than E2 but, importantly, had only minimal effect on uterine weight and mammary tissues. Both E2- and L17-treated rats showed similar weight reduction over the treatment period. E2 is rapidly metabolized to highly reactive quinones, and we show that L17 has 2-fold greater metabolic stability than E2. Finally, L17 and E2 similarly mediated induction of c-fos expression in neurons within the rat thermoregulatory hypothalamic median preoptic nucleus. Thus, the A-CD compound, L17, may represent a safe and effective approach to the treatment of menopausal hot flashes.
Collapse
Affiliation(s)
- Chelsea McGregor
- Department of Cellular and Molecular Medicine (C.M., A.S., S.C.R., D.La., M.A.C.P.), and University of Ottawa Neuroscience Institute (D.La.), University of Ottawa, Ottawa, Ontario, Canada K1H 8M5; Centre for Drug Research and Development (D.Le., M.W.), Vancouver, British Columbia, Canada V6T 1Z3; Department of Chemistry (T.D.), University of Ottawa, Ottawa, Ontario, Canada K1N 6N5; and Department of Chemistry (J.S.W.), Carleton University, Ottawa, Ontario, K1S 5B6 Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Girbig D, Keller K, Prelle K, Patchev V, Vonk R, Igl BW. A dynamic model of circadian rhythms in rodent tail skin temperature for comparison of drug effects. J Circadian Rhythms 2012; 10:1. [PMID: 22221596 PMCID: PMC3398330 DOI: 10.1186/1740-3391-10-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 01/05/2012] [Indexed: 11/10/2022] Open
Abstract
Menopause-associated thermoregulatory dysfunction can lead to symptoms such as hot flushes severely impairing quality of life of affected women. Treatment effects are often assessed by the ovariectomized rat model providing time series of tail skin temperature measurements in which circadian rhythms are a fundamental ingredient. In this work, a new statistical strategy is presented for analyzing such stochastic-dynamic data with the aim of detecting successful drugs in hot flush treatment. The circadian component is represented by a nonlinear dynamical system which is defined by the van der Pol equation and provides well-interpretable model parameters. Results regarding the statistical evaluation of these parameters are presented.
Collapse
Affiliation(s)
- Dorothee Girbig
- Global Drug Discovery Statistics and Experimental Medicine Statistics, Bayer HealthCare, Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
8
|
Jackson RL, Greiwe JS, Schwen RJ. Emerging evidence of the health benefits of S-equol, an estrogen receptor β agonist. Nutr Rev 2011; 69:432-48. [PMID: 21790611 DOI: 10.1111/j.1753-4887.2011.00400.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Many clinical studies have been carried out to determine the health benefits of soy protein and the isoflavones contained in soy. S-equol is not present in soybeans but is produced naturally in the gut of certain individuals, particularly Asians, by the bacterial biotransformation of daidzein, a soy isoflavone. In those intervention studies in which plasma S-equol levels were determined, a concentration of >5-10 ng/mL has been associated with a positive outcome for vasomotor symptoms, osteoporosis (as measured by an increase in bone mineral density), prostate cancer, and the cardiovascular risk biomarkers low-density lipoprotein cholesterol and C-reactive protein. These studies suggest that S-equol may provide therapeutic benefits for a number of medical needs.
Collapse
|
9
|
Single-dose and steady-state pharmacokinetic studies of S-equol, a potent nonhormonal, estrogen receptor β-agonist being developed for the treatment of menopausal symptoms. Menopause 2011. [DOI: 10.1097/gme.0b013e3181e9779c] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Nilsson S, Gustafsson JÅ. Estrogen receptors: therapies targeted to receptor subtypes. Clin Pharmacol Ther 2010; 89:44-55. [PMID: 21124311 DOI: 10.1038/clpt.2010.226] [Citation(s) in RCA: 247] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Over the past two decades, we have learned that estrogens play important physiological roles not only in women but also in men and that the biological effects of estrogen are mediated by not one but two distinct estrogen receptors (ERs), ERα and ERβ. Our appreciation of the physiological importance of estrogen and the mechanisms by which it acts has significantly increased over the years; however, we are only now beginning to decipher the roles of ERα and ERβ in different organs and to elucidate how selective ligands, acting through either of the two ERs, can prevent or treat various age- or sex-specific diseases. The specific roles of ERα and ERβ and the therapeutic potential of ER subtype-selective agonists in bone and metabolic homeostasis, depression, vasomotor symptoms, neurodegenerative diseases, and cancer are reviewed herein. It must be stated, however, that appropriate clinical studies are necessary to validate these compounds as agents for the prevention and treatment of diseases.
Collapse
Affiliation(s)
- S Nilsson
- Karo Bio AB, Novum, Huddinge, Sweden
| | | |
Collapse
|
11
|
Williams H, Dacks PA, Rance NE. An improved method for recording tail skin temperature in the rat reveals changes during the estrous cycle and effects of ovarian steroids. Endocrinology 2010; 151:5389-94. [PMID: 20861232 PMCID: PMC2954718 DOI: 10.1210/en.2010-0630] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the rat, tail skin vasomotion is a primary heat loss mechanism that can be monitored by changes in tail skin temperature (T(SKIN)). Previous studies showed that ovariectomy and estrogen replacement modify T(SKIN) in the rat. Based on these findings, the ovariectomized (OVX) rat has been used as a model to study the mechanisms and treatment of menopausal hot flushes. It is not known, however, if T(SKIN) changes across the estrous cycle in intact rats. Here, we describe an improved method for monitoring T(SKIN) in freely moving rats using a SubCue Mini datalogger mounted on the ventral surface of the tail. This method is noninvasive, cost-effective, and does not require restraints or tethering. We observed a distinct pattern of T(SKIN) across the estrous cycle characterized by low T(SKIN) on proestrous night. To determine whether this pattern was secondary to secretion of ovarian steroids, we monitored the thermoregulatory effects of 17β-estradiol (E(2)) and E(2) plus progesterone, administered via SILASTIC capsules to OVX rats. E(2) treatment of OVX rats significantly reduced T(SKIN) in the dark phase from 2 to 21 d after hormone treatment. The T(SKIN) of E(2)-treated OVX animals was not significantly different from OVX rats receiving E(2) plus progesterone. These data provide evidence that the reduction in T(SKIN) on proestrous night was secondary to elevated levels of ovarian estrogens. This study provides the first description of T(SKIN) changes with the estrous cycle and supports the role of estrogens in normal thermoregulation in the rat.
Collapse
Affiliation(s)
- Hemalini Williams
- Department of Pathology, Evelyn F. McKnight Brain Research Institute, University of Arizona College of Medicine, 1501 North Campbell Avenue, Tucson, Arizona 85724, USA
| | | | | |
Collapse
|
12
|
Roepke TA, Bosch MA, Rick EA, Lee B, Wagner EJ, Seidlova-Wuttke D, Wuttke W, Scanlan TS, Rønnekleiv OK, Kelly MJ. Contribution of a membrane estrogen receptor to the estrogenic regulation of body temperature and energy homeostasis. Endocrinology 2010; 151:4926-37. [PMID: 20685867 PMCID: PMC2946146 DOI: 10.1210/en.2010-0573] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The hypothalamus is a key region of the central nervous system involved in the control of homeostasis, including energy and core body temperature (Tc). 17β-Estradiol (E2) regulates Tc, in part, via actions in the basal hypothalamus and preoptic area. E2 primarily controls hypothalamic functions via the nuclear steroid receptors, estrogen receptor α/β. However, we have previously described an E2-responsive, Gq-coupled membrane receptor that reduces the postsynaptic inhibitory γ-aminobutyric acid-ergic tone and attenuates postovariectomy body weight gain in female guinea pigs through the administration of a selective Gq-mER ligand, STX. To determine the role of Gq-mER in regulating Tc, energy and bone homeostasis, ovariectomized female guinea pigs, implanted ip with temperature probes, were treated with STX or E2 for 7-8 wk. Tc was recorded for 4 wk, whereas food intake and body weight were monitored daily. Bone density and fat accumulation were determined postmortem. Both E2 and STX significantly reduced Tc in the females compared with controls. STX, similar to E2, reduced food intake and fat accumulation and increased tibial bone density. Therefore, a Gq-mER-coupled signaling pathway appears to be involved in maintaining homeostatic functions and may constitute a novel therapeutic target for treatment of hypoestrogenic symptoms.
Collapse
Affiliation(s)
- Troy A Roepke
- Department of Physiology and Pharmacology, Mail Code L334, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Jacome LF, Gautreaux C, Inagaki T, Mohan G, Alves S, Lubbers LS, Luine V. Estradiol and ERβ agonists enhance recognition memory, and DPN, an ERβ agonist, alters brain monoamines. Neurobiol Learn Mem 2010; 94:488-98. [PMID: 20828630 DOI: 10.1016/j.nlm.2010.08.016] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 08/09/2010] [Accepted: 08/31/2010] [Indexed: 12/23/2022]
Abstract
Effects of estradiol benzoate (EB), ERα-selective agonist, propyl pyrazole triol (PPT) and ERβ-selective agonists, diarylpropionitrile (DPN) and Compound 19 (C-19) on memory were investigated in OVX rats using object recognition (OR) and placement (OP) memory tasks. Treatments were acute (behavior 4h later) or sub chronic (daily injections for 2 days with behavior 48 h later). Objects were explored in sample trials (T1), and discrimination between sample (old) and new object/location in recognition trials (T2) was examined after 2-4h inter-trial delays. Subjects treated sub chronically with EB, DPN, and C-19, but not PPT, discriminated between old and new objects and objects in old and new locations, suggesting that, at these doses and duration of treatments, estrogenic interactions with ERβ contribute to enhancements in recognition memory. Acute injections of DPN, but not PPT, immediately after T1, also enhanced discrimination for both tasks (C19 was not investigated). Effects of EB, DPN and PPT on anxiety and locomotion, measured on elevated plus maze and open field, did not appear to account for the mnemonic enhancements. Monoamines and metabolites were measured following DPN treatment in subjects that did not receive behavioral testing. DPN was associated with alterations in monoamines in several brain areas: indexed by the metabolite, 3-methoxy-4-hydroxyphenylglycol (MHPG), or the MHPG/norepinephrine (NE) ratio, NE activity was increased by 60-130% in the prefrontal cortex (PFC) and ventral hippocampus, and NE activity was decreased by 40-80% in the v. diagonal bands and CA1. Levels of the dopamine (DA) metabolite, homovanillic acid (HVA), increased 100% in the PFC and decreased by 50% in the dentate gyrus following DPN treatment. The metabolite of serotonin, 5-hydroxyindole acetic acid (5-HIAA), was increased in the PFC and CA3, by approximately 20%. No monoaminergic changes were noted in striatum or medial septum. Results suggest that ERβ mediates sub chronic and acute effects of estrogens on recognition memory and that memory enhancements by DPN may occur, in part, through alterations in monoaminergic containing systems primarily in PFC and hippocampus.
Collapse
Affiliation(s)
- Luis F Jacome
- Biopsychology and Behavioral Science Subprogram, Graduate Program in Psychology, Graduate Center of City University of New York, NY 10016, USA
| | | | | | | | | | | | | |
Collapse
|