1
|
Rich JA, Fan Y, Chen Q, Meerzaman D, Stetler-Stevenson WG, Peeney D. Analysis of cancer cell line and tissue RNA sequencing data reveals an essential and dark matrisome. Matrix Biol Plus 2024; 23:100156. [PMID: 39049902 PMCID: PMC11267082 DOI: 10.1016/j.mbplus.2024.100156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024] Open
Abstract
Extracellular matrix remodeling is a hallmark of tissue development, homeostasis, and disease. The processes that mediate remodeling, and the consequences of such, are the topic of extensive focus in biomedical research. Cell culture methods represent a crucial tool utilized by those interested in matrisome function, the easiest of which are implemented with immortalized/cancer cell lines. These cell lines often form the foundations of a research proposal, or serve as vehicles of validation for other model systems. For these reasons, it is important to understand the complement of matrisome genes that are expressed when identifying appropriate cell culture models for hypothesis testing. To this end, we harvested bulk RNA sequencing data from the Cancer Cell Line Encyclopedia (CCLE) to assess matrisome gene expression in 1019 human cell lines. Our examination reveals that a large proportion of the matrisome is poorly represented in human cancer cell lines, with approximately 10% not expressed above threshold in any of the cell lines assayed. Conversely, we identify clusters of essential/common matrisome genes that are abundantly expressed in cell lines. To validate these observations against tissue data, we compared our findings with bulk RNA sequencing data from the Genotype-Tissue Expression (GTEx) portal and The Cancer Genome Atlas (TCGA) program. This comparison demonstrates general agreement between the "essential/common" and "dark/uncommon" matrisome across the three datasets, albeit with discordance observed in 59 matrisome genes between cell lines and tissues. Notably, all of the discordant genes are essential/common in tissues yet minimally expressed in cell lines, underscoring critical considerations for matrix biology researchers employing immortalized cell lines for their investigations.
Collapse
Affiliation(s)
- Joshua A. Rich
- Extracellular Matrix Pathology Section, Laboratory of Pathology, National Cancer Institute, National Institute of Health, Bethesda, MD, United States
| | - Yu Fan
- Computational Genomics and Bioinformatics Branch, Center for Biomedical Informatics & Information Technology, National Cancer Institute, National Institute of Health, Rockville, MD, United States
| | - Qingrong Chen
- Computational Genomics and Bioinformatics Branch, Center for Biomedical Informatics & Information Technology, National Cancer Institute, National Institute of Health, Rockville, MD, United States
| | - Daoud Meerzaman
- Computational Genomics and Bioinformatics Branch, Center for Biomedical Informatics & Information Technology, National Cancer Institute, National Institute of Health, Rockville, MD, United States
| | - William G. Stetler-Stevenson
- Extracellular Matrix Pathology Section, Laboratory of Pathology, National Cancer Institute, National Institute of Health, Bethesda, MD, United States
| | - David Peeney
- Extracellular Matrix Pathology Section, Laboratory of Pathology, National Cancer Institute, National Institute of Health, Bethesda, MD, United States
| |
Collapse
|
2
|
Chen J, Zhang T, Liu D, Yang F, Feng Y, Wang A, Wang Y, He X, Luo F, Li J, Tan H, Jiang L. General Semi-Solid Freeze Casting for Uniform Large-Scale Isotropic Porous Scaffolds: An Application for Extensive Oral Mucosal Reconstruction. SMALL METHODS 2024; 8:e2301518. [PMID: 38517272 DOI: 10.1002/smtd.202301518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/29/2024] [Indexed: 03/23/2024]
Abstract
Ice-templated porous biomaterials possess transformative potential in regenerative medicine; yet, scaling up ice-templating processes for broader applications-owing to inconsistent pore formation-remains challenging. This study reports an innovative semi-solid freeze-casting technique that draws inspiration from semi-solid metal processing (SSMP) combined with ice cream-production routines. This versatile approach allows for the large-scale assembly of various materials, from polymers to inorganic particles, into isotropic 3D scaffolds featuring uniformly equiaxed pores throughout the centimeter scale. Through (cryo-)electron microscopy, X-ray tomography, and finite element modeling, the structural evolution of ice grains/pores is elucidated, demonstrating how the method increases the initial ice nucleus density by pre-fabricating a semi-frozen slurry, which facilitates a transition from columnar to equiaxed grain structures. For a practical demonstration, as-prepared scaffolds are integrated into a bilayer tissue patch using biodegradable waterborne polyurethane (WPU) for large-scale oral mucosal reconstruction in minipigs. Systematic analyses, including histology and RNA sequencing, prove that the patch modulates the healing process toward near-scarless mucosal remodeling via innate and adaptive immunomodulation and activation of pro-healing genes converging on matrix synthesis and epithelialization. This study not only advances the field of ice-templating fabrication but sets a promising precedent for scaffold-based large-scale tissue regeneration.
Collapse
Affiliation(s)
- Jinlin Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X center of materials, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Tianyu Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Dan Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Fan Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Yuan Feng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X center of materials, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Ao Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X center of materials, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Yanchao Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610000, P. R. China
| | - Xueling He
- Editorial Board of Journal of Sichuan University (Medical Sciences), Sichuan University, Chengdu, Sichuan, 610000, P. R. China
| | - Feng Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X center of materials, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Jiehua Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X center of materials, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Hong Tan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X center of materials, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Lu Jiang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| |
Collapse
|
3
|
Ross R, Guo Y, Walker RN, Bergamaschi D, Shaw TJ, Connelly JT. Biomechanical Activation of Keloid Fibroblasts Promotes Lysosomal Remodeling and Exocytosis. J Invest Dermatol 2024:S0022-202X(24)00374-9. [PMID: 38763173 DOI: 10.1016/j.jid.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/25/2024] [Accepted: 04/30/2024] [Indexed: 05/21/2024]
Abstract
Keloids are a severe form of scarring for which the underlying mechanisms are poorly understood, and treatment options are limited or inconsistent. Although biomechanical forces are potential drivers of keloid scarring, the direct cellular responses to mechanical cues have yet to be defined. The aim of this study was to examine the distinct responses of normal dermal fibroblasts and keloid-derived fibroblasts (KDFs) to changes in extracellular matrix stiffness. When cultured on hydrogels mimicking the elasticity of normal or scarred skin, KDFs displayed greater stiffness-dependent increases in cell spreading, F-actin stress fiber formation, and focal adhesion assembly. Elevated actomyosin contractility in KDFs disrupted the normal mechanical regulation of extracellular matrix deposition and conferred resistance on myosin inhibitors. Transcriptional profiling identified mechanically regulated pathways in normal dermal fibroblasts and KDFs, including the actin cytoskeleton, Hippo signaling, and autophagy. Further analysis of the autophagy pathway revealed that autophagic flux was intact in both fibroblast populations and depended on actomyosin contractility. However, KDFs displayed marked changes in lysosome organization and an increase in lysosomal exocytosis, which was mediated by actomyosin contractility. Together, these findings demonstrate that KDFs possess an intrinsic increase in cytoskeletal tension, which heightens the response to extracellular matrix mechanics and promotes lysosomal exocytosis.
Collapse
Affiliation(s)
- Rosie Ross
- Centre for Cell Biology and Cutaneous Research, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom; Centre for Inflammation Biology and Cancer Immunology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| | - Yiyang Guo
- Centre for Cell Biology and Cutaneous Research, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Rebecca N Walker
- Centre for Cell Biology and Cutaneous Research, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Daniele Bergamaschi
- Centre for Cell Biology and Cutaneous Research, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Tanya J Shaw
- Centre for Inflammation Biology and Cancer Immunology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| | - John T Connelly
- Centre for Cell Biology and Cutaneous Research, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.
| |
Collapse
|
4
|
Zhu YO, MacDonnell S, Kaplan T, Liu C, Ali Y, Rangel SM, Wipperman MF, Belback M, Sun DS, Ren Z, Zhou XA, Halasz G, Morton L, Kundu RV. Defining a Unique Gene Expression Profile in Mature and Developing Keloids. JID INNOVATIONS 2023; 3:100211. [PMID: 37564104 PMCID: PMC10410242 DOI: 10.1016/j.xjidi.2023.100211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 08/12/2023] Open
Abstract
Keloids are benign, fibroproliferative dermal tumors that typically form owing to abnormal wound healing. The current standard of care is generally ineffective and does not prevent recurrence. To characterize keloid scars and better understand the mechanism of their formation, we performed transcriptomic profiling of keloid biopsies from a total of 25 subjects of diverse racial and ethnic origins, 15 of whom provided a paired nonlesional sample, a longitudinal sample, or both. The transcriptomic signature of nonlesional skin biopsies from subjects with keloids resembled that of control skin at baseline but shifted to closely match that of keloid skin after dermal trauma. Peripheral keloid skin and rebiopsied surrounding normal skin both showed upregulation of epithelial-mesenchymal transition markers, extracellular matrix organization, and collagen genes. These keloid signatures strongly overlapped those from healthy wound healing studies, usually with greater perturbations, reinforcing our understanding of keloids as dysregulated and exuberant wound healing. In addition, 219 genes uniquely regulated in keloids but not in normal injured or uninjured skin were also identified. This study provides insights into mature and developing keloid signatures that can act as a basis for further validation and target identification in the search for transformative keloid treatments.
Collapse
Affiliation(s)
- Yuan O. Zhu
- Regeneron Pharmaceutical, Tarrytown, New York, USA
| | | | | | - Chien Liu
- Regeneron Pharmaceutical, Tarrytown, New York, USA
| | - Yasmeen Ali
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Stephanie M. Rangel
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | | - Madeleine Belback
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | | - Ziyou Ren
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Xiaolong Alan Zhou
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Gabor Halasz
- Regeneron Pharmaceutical, Tarrytown, New York, USA
| | - Lori Morton
- Regeneron Pharmaceutical, Tarrytown, New York, USA
| | - Roopal V. Kundu
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
5
|
Serror K, Ferrero L, Boismal F, Sintes M, Thery M, Vianay B, Henry E, Gentien D, DE LA Grange P, Boccara D, Mimoun M, Bouaziz JD, Benssussan A, Michel L. Evidence of inter- and intra-keloid heterogeneity through analysis of dermal fibroblasts: A new insight in deciphering keloid physiopathology. Exp Dermatol 2023. [PMID: 37148203 DOI: 10.1111/exd.14817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/29/2023] [Accepted: 04/08/2023] [Indexed: 05/08/2023]
Abstract
Keloid scars are hypertrophic and proliferating pathological scars extending beyond the initial lesion and without tendency to regression. Usually, keloids are considered and treated as a single entity but clinical observations suggest heterogeneity in keloid morphologies with distinction of superficial/extensive and nodular entities. Within a keloid, heterogeneity could also be detected between superficial and deep dermis or centre and periphery. Focusing on fibroblasts as main actors of keloid formation, we aimed at evaluating intra- and inter-keloid fibroblast heterogeneity by analysing their gene expression and functional capacities (proliferation, migration, traction forces), in order to improve our understanding of keloid pathogenesis. Fibroblasts were obtained from centre, periphery, papillary and reticular dermis from extensive or nodular keloids and were compared to control fibroblasts from healthy skin. Transcriptional profiling of fibroblasts identified a total of 834 differentially expressed genes between nodular and extensive keloids. Quantification of ECM-associated gene expression by RT-qPCR brought evidence that central reticular fibroblasts of nodular keloids are the population which synthesize higher levels of mature collagens, TGFβ, HIF1α and αSMA as compared to control skin, suggesting that this central deep region is the nucleus of ECM production with a centrifuge extension in keloids. Although no significant variations were found for basal proliferation, migration of peripheral fibroblasts from extensive keloids was higher than that of central ones and from nodular cells. Moreover, these peripheral fibroblasts from extensive keloids exhibited higher traction forces than central cells, control fibroblasts and nodular ones. Altogether, studying fibroblast features demonstrate keloid heterogeneity, leading to a better understanding of keloid pathophysiology and treatment adaptation.
Collapse
Affiliation(s)
- Kévin Serror
- INSERM UMR_S 976, Skin Research Center, Saint-Louis Hospital, Paris, France
- Paris University, Paris, France
- Department of Reconstructive and Plastic Surgery, Saint-Louis Hospital, Paris, France
| | - Lauren Ferrero
- INSERM UMR_S 976, Skin Research Center, Saint-Louis Hospital, Paris, France
- Paris University, Paris, France
- Department of Reconstructive and Plastic Surgery, Saint-Louis Hospital, Paris, France
| | - Françoise Boismal
- INSERM UMR_S 976, Skin Research Center, Saint-Louis Hospital, Paris, France
- Paris University, Paris, France
| | - Maxime Sintes
- INSERM UMR_S 976, Skin Research Center, Saint-Louis Hospital, Paris, France
- Paris University, Paris, France
| | - Manuel Thery
- Paris University, Paris, France
- INSERM UMR_S 976, CEA CytoMorphoLab, Saint-Louis Hospital, Paris, France
| | - Benoit Vianay
- Paris University, Paris, France
- INSERM UMR_S 976, CEA CytoMorphoLab, Saint-Louis Hospital, Paris, France
| | - Emilie Henry
- Genomics Platform, Translational Research Department, Research Center, Institut Curie, Paris Sciences et Lettres (PSL) Research University, Paris, France
| | - David Gentien
- Genomics Platform, Translational Research Department, Research Center, Institut Curie, Paris Sciences et Lettres (PSL) Research University, Paris, France
| | | | - David Boccara
- INSERM UMR_S 976, Skin Research Center, Saint-Louis Hospital, Paris, France
- Paris University, Paris, France
- Department of Reconstructive and Plastic Surgery, Saint-Louis Hospital, Paris, France
| | - Maurice Mimoun
- INSERM UMR_S 976, Skin Research Center, Saint-Louis Hospital, Paris, France
- Paris University, Paris, France
- Department of Reconstructive and Plastic Surgery, Saint-Louis Hospital, Paris, France
| | - Jean-David Bouaziz
- INSERM UMR_S 976, Skin Research Center, Saint-Louis Hospital, Paris, France
- Paris University, Paris, France
- Dermatology Department, Saint-Louis Hospital, Paris, France
| | - Armand Benssussan
- INSERM UMR_S 976, Skin Research Center, Saint-Louis Hospital, Paris, France
- Paris University, Paris, France
| | - Laurence Michel
- INSERM UMR_S 976, Skin Research Center, Saint-Louis Hospital, Paris, France
- Paris University, Paris, France
- Dermatology Department, Saint-Louis Hospital, Paris, France
| |
Collapse
|
6
|
Lin P, Zhang G, Li H. The Role of Extracellular Matrix in Wound Healing. Dermatol Surg 2023; 49:S41-S48. [PMID: 37115999 DOI: 10.1097/dss.0000000000003779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
BACKGROUND Extracellular matrix communicates with surrounding cells to maintain skin homeostasis and modulate multiple cellular processes including wound healing. OBJECTIVE To elucidate the dynamic composition and potential roles of extracellular matrix in normal skin, wound healing process, and abnormal skin scarring. MATERIALS AND METHODS Literature review was performed to identify relevant publications pertaining to the extracellular matrix deposition in normal skin and wound healing process, as well as in abnormal scars. RESULTS A summary of the matrix components in normal skin is presented. Their primary roles in hemostasis, inflammation, proliferation, and remodeling phases of wound healing are briefly discussed. Identification of novel extracellular matrix in keloids is also provided. CONCLUSION Abnormal scarring remains a challenging condition with unmet satisfactory treatments. Illumination of extracellular matrix composition and functions in wound healing process will allow for the development of targeted therapies in the future.
Collapse
Affiliation(s)
- Pingping Lin
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
- NMPA Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing, China
| | - Guohong Zhang
- Department of Pathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Hang Li
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
- NMPA Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing, China
| |
Collapse
|
7
|
Endzhievskaya S, Hsu CK, Yang HS, Huang HY, Lin YC, Hong YK, Lee JYW, Onoufriadis A, Takeichi T, Yu-Yun Lee J, Shaw TJ, McGrath JA, Parsons M. Loss of RhoE Function in Dermatofibroma Promotes Disorganized Dermal Fibroblast Extracellular Matrix and Increased Integrin Activation. J Invest Dermatol 2023:S0022-202X(23)00075-1. [PMID: 36774976 DOI: 10.1016/j.jid.2023.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 12/29/2022] [Accepted: 01/01/2023] [Indexed: 02/12/2023]
Abstract
Dermatofibromas (DFs) are common, benign fibrous skin tumors that can occur at any skin site. In most cases, DFs are solitary and sporadic, but a few are multiple and familial, and the mechanisms leading to these lesions are currently unclear. Using exome sequencing, we have identified a heterozygous variant in a pedigree with autosomal dominant multiple familial DF within RND3 (c.692C>T,p.T231M) that encodes for the small GTPase RhoE, a regulator of the actin cytoskeleton. Expression of T231M-RhoE or RhoE depletion using CRISPR in human dermal fibroblasts increased proliferation and adhesion to extracellular matrix through enhanced β1 integrin activation and more disorganized matrix. The enzyme PLOD2 was identified as a binding partner for RhoE, and the formation of this complex was disrupted by T231M-RhoE. PLOD2 promotes collagen cross-linking and activation of β1 integrins, and depleting PLOD2 in T231M-RhoE-expressing cells reduced T231M-RhoE-mediated β1 integrin activation and led to increased matrix alignment. Immunohistochemical analysis revealed reduced expression of RhoE but increased expression of PLOD2 in the dermis of DF skin samples compared with that of the controls. Our data show that loss of RhoE function leads to increased PLOD2 activation, enhancing integrin activation and leading to a disorganized extracellular matrix, contributing to DF.
Collapse
Affiliation(s)
- Sofia Endzhievskaya
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, United Kingdom
| | - Chao-Kai Hsu
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; International Center of Wound Repair and Regeneration, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hsing-San Yang
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hsin-Yu Huang
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Chen Lin
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Kai Hong
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - John Y W Lee
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, United Kingdom
| | - Alexandros Onoufriadis
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, United Kingdom
| | - Takuya Takeichi
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Julia Yu-Yun Lee
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tanya J Shaw
- Centre for Inflammation Biology & Cancer Immunology, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
| | - John A McGrath
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, United Kingdom
| | - Maddy Parsons
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, United Kingdom.
| |
Collapse
|
8
|
Ung CY, Warwick A, Onoufriadis A, Barker JN, Parsons M, McGrath JA, Shaw TJ, Dand N. Comorbidities of Keloid and Hypertrophic Scars Among Participants in UK Biobank. JAMA Dermatol 2023; 159:172-181. [PMID: 36598763 PMCID: PMC9857738 DOI: 10.1001/jamadermatol.2022.5607] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/26/2022] [Indexed: 01/05/2023]
Abstract
Importance Keloids and hypertrophic scars (excessive scarring) are relatively understudied disfiguring chronic skin conditions with high treatment resistance. Objective To evaluate established comorbidities of excessive scarring in European individuals, with comparisons across ethnic groups, and to identify novel comorbidities via a phenome-wide association study (PheWAS). Design, Setting, and Participants This multicenter cross-sectional population-based cohort study used UK Biobank (UKB) data and fitted logistic regression models for testing associations between excessive scarring and a variety of outcomes, including previously studied comorbidities and 1518 systematically defined disease categories. Additional modeling was performed within subgroups of participants defined by self-reported ethnicity (as defined in UK Biobank). Of 502 701 UKB participants, analyses were restricted to 230078 individuals with linked primary care records. Exposures Keloid or hypertrophic scar diagnoses. Main Outcomes and Measures Previously studied disease associations (hypertension, uterine leiomyoma, vitamin D deficiency, atopic eczema) and phenotypes defined in the PheWAS Catalog. Results Of the 972 people with excessive scarring, there was a higher proportion of female participants compared with the 229 106 controls (65% vs 55%) and a lower proportion of White ethnicity (86% vs 95%); mean (SD) age of the total cohort was 64 (8) years. Associations were identified with hypertension and atopic eczema in models accounting for age, sex, and ethnicity, and the association with atopic eczema (odds ratio [OR], 1.68; 95% CI, 1.36-2.07; P < .001) remained statistically significant after accounting for additional potential confounders. Fully adjusted analyses within ethnic groups revealed associations with hypertension in Black participants (OR, 2.05; 95% CI, 1.13-3.72; P = .02) and with vitamin D deficiency in Asian participants (OR, 2.24; 95% CI, 1.26-3.97; P = .006). The association with uterine leiomyoma was borderline significant in Black women (OR, 1.93; 95% CI, 1.00-3.71; P = .05), whereas the association with atopic eczema was significant in White participants (OR, 1.68; 95% CI, 1.34-2.12; P < .001) and showed a similar trend in Asian (OR, 2.17; 95% CI, 1.01-4.67; P = .048) and Black participants (OR, 1.89; 95% CI, 0.83-4.28; P = .13). The PheWAS identified 110 significant associations across disease systems; of the nondermatological, musculoskeletal disease and pain symptoms were prominent. Conclusions and Relevance This cross-sectional study validated comorbidities of excessive scarring in UKB with comprehensive coverage of health outcomes. It also documented additional phenome-wide associations that will serve as a reference for future studies to investigate common underlying pathophysiologic mechanisms.
Collapse
Affiliation(s)
- Chuin Y. Ung
- St John’s Institute of Dermatology, School of Basic and Medical Biosciences, King’s College London, London, United Kingdom
- Centre for Inflammation Biology & Cancer Immunology, King’s College London, London, United Kingdom
| | - Alasdair Warwick
- University College London Institute of Cardiovascular Science, London, United Kingdom
| | - Alexandros Onoufriadis
- St John’s Institute of Dermatology, School of Basic and Medical Biosciences, King’s College London, London, United Kingdom
| | - Jonathan N. Barker
- St John’s Institute of Dermatology, School of Basic and Medical Biosciences, King’s College London, London, United Kingdom
| | - Maddy Parsons
- Randall Division of Cell and Molecular Biophysics, King’s College London, London, United Kingdom
| | - John A. McGrath
- St John’s Institute of Dermatology, School of Basic and Medical Biosciences, King’s College London, London, United Kingdom
| | - Tanya J. Shaw
- Centre for Inflammation Biology & Cancer Immunology, King’s College London, London, United Kingdom
| | - Nick Dand
- Department of Medical and Molecular Genetics, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| |
Collapse
|
9
|
Shao X, Gomez CD, Kapoor N, Considine JM, Grams C, Gao Y(T, Naba A. MatrisomeDB 2.0: 2023 updates to the ECM-protein knowledge database. Nucleic Acids Res 2022; 51:D1519-D1530. [PMID: 36399478 PMCID: PMC9825471 DOI: 10.1093/nar/gkac1009] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/12/2022] [Accepted: 10/25/2022] [Indexed: 11/19/2022] Open
Abstract
The extracellular matrix (ECM) is a complex assembly of proteins that constitutes the scaffold organizing cells, tissues, and organs. Over the past decade, mass-spectrometry-based proteomics has become the method of choice to profile the composition of the ECM, or the matrisome, of tissues. To assist non-specialists with the reuse of ECM proteomic datasets, we released MatrisomeDB (https://matrisomedb.org) in 2020. Here, we report the expansion of the database to include 25 new curated studies on the ECM of 24 new tissues in addition to datasets on tissues previously included, more than doubling the size of the original database and achieving near-complete coverage of the in-silico predicted matrisome. We further enhanced data visualization by maps of peptides and post-translational-modifications detected onto domain-based representations and 3D structures of ECM proteins. We also referenced external resources to facilitate the design of targeted mass spectrometry assays. Last, we implemented an abstract-mining tool that generates an enrichment word cloud from abstracts of studies in which a queried protein is found with higher confidence and higher abundance relative to other studies in MatrisomeDB.
Collapse
Affiliation(s)
- Xinhao Shao
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Clarissa D Gomez
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Nandini Kapoor
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - James M Considine
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Christopher Grams
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Yu (Tom) Gao
- Correspondence may also be addressed to Dr. Yu (Tom) Gao. Tel: +1 312 996 8087;
| | - Alexandra Naba
- To whom correspondence should be addressed. Tel: +1 312 355 5417;
| |
Collapse
|
10
|
Lin P, Zhang G, Peng R, Zhao M, Li H. Increased expression of bone/cartilage-associated genes and core transcription factors in keloids by RNA sequencing. Exp Dermatol 2022; 31:1586-1596. [PMID: 35730251 DOI: 10.1111/exd.14630] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 06/01/2022] [Accepted: 06/19/2022] [Indexed: 02/05/2023]
Abstract
Fibroblasts in keloids undergo cell identity transition with altered transcriptional characteristics. However, the core transcription factors driving this cellular reprogramming remain largely unknown. Here, we report the results of transcriptional profiling from 48 keloid and 24 control dermal tissues. We identified 1187 upregulated differentially expressed genes (foldchange > 2, false discovery rate < 0.05) in keloids, which were mainly enriched in extracellular matrix organization and bone/cartilage development, with significantly increased expression of bone/cartilage-associated collagens (COL5A1, COL10A1, and COL11A1) and glycoproteins (ACAN, COMP, and SPARC). Deconvolution analysis also revealed significantly increased composition of osteoblasts in keloid dermis. A total of 92 upregulated transcription factors were screened out from differentially expressed genes and mainly enriched in transcription process and skeleton development. Additional sequencing of six keloid individuals with multiple regions and intersection further narrow the list with 10 transcription factors. Finally, AEBP1, CREB3L1, RUNX2, and ZNF469 have been identified as candidate core regulators in promoting the gaining of bone/cartilage-like characteristics in keloids. RNA-sequencing of full-skin keloids consolidated the existence of these four transcription factors. Immunohistochemistry was employed to verify the expression of AEBP1, CREB3L1, RUNX2, and ZNF469 in keloid fibroblasts. In conclusion, we bioinformatically discovered the increased expression of bone/cartilage-associated genes and candidate core transcription factors in keloids. Our findings promise to provide molecular clues to develop novel therapeutic modalities against skin fibrosis.
Collapse
Affiliation(s)
- Pingping Lin
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
- NMPA Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing, China
| | - Guohong Zhang
- Department of Pathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Rui Peng
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
- NMPA Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing, China
| | - Mingming Zhao
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
- NMPA Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing, China
| | - Hang Li
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
- NMPA Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing, China
| |
Collapse
|
11
|
Zhang Y, Hollis D, Ross R, Snow T, Terrill NJ, Lu Y, Wang W, Connelly J, Tozzi G, Gupta HS. Investigating the Fibrillar Ultrastructure and Mechanics in Keloid Scars Using In Situ Synchrotron X-ray Nanomechanical Imaging. MATERIALS 2022; 15:ma15051836. [PMID: 35269067 PMCID: PMC8911729 DOI: 10.3390/ma15051836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/24/2021] [Accepted: 01/21/2022] [Indexed: 12/10/2022]
Abstract
Fibrotic scarring is prevalent in a range of collagenous tissue disorders. Understanding the role of matrix biophysics in contributing to fibrotic progression is important to develop therapies, as well as to elucidate biological mechanisms. Here, we demonstrate how microfocus small-angle X-ray scattering (SAXS), with in situ mechanics and correlative imaging, can provide quantitative and position-resolved information on the fibrotic matrix nanostructure and its mechanical properties. We use as an example the case of keloid scarring in skin. SAXS mapping reveals heterogeneous gradients in collagen fibrillar concentration, fibril pre-strain (variations in D-period) and a new interfibrillar component likely linked to proteoglycans, indicating evidence of a complex 3D structure at the nanoscale. Furthermore, we demonstrate a proof-of-principle for a diffraction-contrast correlative imaging technique, incorporating, for the first time, DIC and SAXS, and providing an initial estimate for measuring spatially resolved fibrillar-level strain and reorientation in such heterogeneous tissues. By application of the method, we quantify (at the microscale) fibrillar reorientations, increases in fibrillar D-period variance, and increases in mean D-period under macroscopic tissue strains of ~20%. Our results open the opportunity of using synchrotron X-ray nanomechanical imaging as a quantitative tool to probe structure–function relations in keloid and other fibrotic disorders in situ.
Collapse
Affiliation(s)
- Yuezhou Zhang
- Institute of Bioengineering and School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK; (Y.Z.); (W.W.)
| | - Dave Hollis
- LaVision UK, 2 Minton Place, Victoria Road, Bicester OX26 6QB, UK;
| | - Rosie Ross
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK; (R.R.); (J.C.)
| | - Tim Snow
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; (T.S.); (N.J.T.)
| | - Nick J. Terrill
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; (T.S.); (N.J.T.)
| | - Yongjie Lu
- Centre for Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 5PZ, UK;
| | - Wen Wang
- Institute of Bioengineering and School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK; (Y.Z.); (W.W.)
| | - John Connelly
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK; (R.R.); (J.C.)
| | - Gianluca Tozzi
- School of Engineering, London South Bank University, London SE1 0AA, UK;
| | - Himadri S. Gupta
- Institute of Bioengineering and School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK; (Y.Z.); (W.W.)
- Correspondence:
| |
Collapse
|
12
|
Dussoyer M, Page A, Delolme F, Rousselle P, Nyström A, Moali C. Comparison of extracellular matrix enrichment protocols for the improved characterization of the skin matrisome by mass spectrometry. J Proteomics 2022; 251:104397. [PMID: 34678517 DOI: 10.1016/j.jprot.2021.104397] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 09/23/2021] [Accepted: 10/03/2021] [Indexed: 12/14/2022]
Abstract
A striking feature of skin organization is that the extracellular matrix (ECM) occupies a larger volume than the cells. Skin ECM also directly contributes to aging and most cutaneous diseases. In recent years, specific ECM enrichment protocols combined with in silico approaches allowed the proteomic description of the matrisome of various organs and tumor samples. Nevertheless, the skin matrisome remains under-studied and protocols allowing the efficient recovery of the diverse ECM found in skin are still to be described. Here, we compared four protocols allowing the enrichment of ECM proteins from adult mouse back skin and found that all protocols led to a significant enrichment (up to 65%) of matrisome proteins when compared to total skin lysates. The protocols based on decellularization and solubility profiling gave the best results in terms of numbers of proteins identified and confirmed that skin matrisome proteins exhibit very diverse solubility and abundance profiles. We also report the first description of the skin matrisome of healthy adult mice that includes 236 proteins comprising 95 core matrisome proteins and 141 associated matrisome proteins. These results provide a reliable basis for future characterizations of skin ECM proteins and their dysregulations in disease-specific contexts. SIGNIFICANCE: Extracellular matrix proteins are key players in skin physiopathology and have been involved in several diseases such as genetic disorders, wound healing defects, scleroderma and skin carcinoma. However, skin ECM proteins are numerous, diverse and challenging to analyze by mass spectrometry due to the multiplicity of their post-translational modifications and to the heterogeneity of their solubility profiles. Here, we performed the thorough evaluation of four ECM enrichment protocols compatible with the proteomic analysis of mouse back skin and provide the first description of the adult mouse skin matrisome in homeostasis conditions. Our work will greatly facilitate the future characterization of skin ECM alterations in preclinical mouse models and will inspire new optimizations to analyze the skin matrisome of other species and of human clinical samples.
Collapse
Affiliation(s)
- Mélissa Dussoyer
- University of Lyon, CNRS, Tissue Biology and Therapeutic Engineering Laboratory, LBTI, UMR5305, F-69367 Lyon, France
| | - Adeline Page
- University of Lyon, INSERM, ENS Lyon, CNRS, Protein Science Facility, SFR BioSciences, UAR3444/US8, F-69366 Lyon, France
| | - Frédéric Delolme
- University of Lyon, INSERM, ENS Lyon, CNRS, Protein Science Facility, SFR BioSciences, UAR3444/US8, F-69366 Lyon, France
| | - Patricia Rousselle
- University of Lyon, CNRS, Tissue Biology and Therapeutic Engineering Laboratory, LBTI, UMR5305, F-69367 Lyon, France
| | - Alexander Nyström
- Department of Clinical Dermatology/Medical Center, University of Freiburg, Freiburg, Germany; Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg, Germany
| | - Catherine Moali
- University of Lyon, CNRS, Tissue Biology and Therapeutic Engineering Laboratory, LBTI, UMR5305, F-69367 Lyon, France.
| |
Collapse
|
13
|
Fibroblast Memory in Development, Homeostasis and Disease. Cells 2021; 10:cells10112840. [PMID: 34831065 PMCID: PMC8616330 DOI: 10.3390/cells10112840] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 02/06/2023] Open
Abstract
Fibroblasts are the major cell population in the connective tissue of most organs, where they are essential for their structural integrity. They are best known for their role in remodelling the extracellular matrix, however more recently they have been recognised as a functionally highly diverse cell population that constantly responds and adapts to their environment. Biological memory is the process of a sustained altered cellular state and functions in response to a transient or persistent environmental stimulus. While it is well established that fibroblasts retain a memory of their anatomical location, how other environmental stimuli influence fibroblast behaviour and function is less clear. The ability of fibroblasts to respond and memorise different environmental stimuli is essential for tissue development and homeostasis and may become dysregulated in chronic disease conditions such as fibrosis and cancer. Here we summarise the four emerging key areas of fibroblast adaptation: positional, mechanical, inflammatory, and metabolic memory and highlight the underlying mechanisms and their implications in tissue homeostasis and disease.
Collapse
|
14
|
Keloid fibroblasts have elevated and dysfunctional mechanotransduction signaling that is independent of TGF-β. J Dermatol Sci 2021; 104:11-20. [PMID: 34538705 DOI: 10.1016/j.jdermsci.2021.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/09/2021] [Accepted: 09/01/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Fibroblasts found in keloid tissues are known to present an altered sensitivity to microenvironmental stimuli. However, the impact of changes in extracellular matrix stiffness on phenotypes of normal fibroblasts (NFs) and keloid fibroblasts (KFs) is poorly understood. OBJECTIVES Investigation the impact of matrix stiffness on NFs and KFs mainly via detecting yes-associated protein (YAP) expression. METHODS We used fibronectin-coated polyacrylamide hydrogel substrates with a range from physiological to pathological stiffness values with or without TGF-β (fibrogenic inducer). Atomic force microscopy was used to measure the stiffness of fibroblasts. Cellular mechanoresponses were screened by immunocytochemistry, Western blot and Luminex assay. RESULTS KFs are stiffer than NFs with greater expression of α-SMA. In NFs, YAP nuclear translocation was induced by increasing matrix stiffness as well as by stimulation with TGF-β. In contrast, KFs showed higher baseline levels of nuclear YAP that was not responsive to matrix stiffness or TGF-β. TGF-β1 induced p-SMAD3 in both KFs and NFs, demonstrating the pathway was functional and not hyperactivated in KFs. Moreover, blebbistatin suppressed α-SMA expression and cellular stiffness in KFs, linking the elevated YAP signaling to keloid phenotype. CONCLUSIONS These data suggest that whilst normal skin fibroblasts respond to matrix stiffness in vitro, keloid fibroblasts have elevated activation of mechanotransduction signaling insensitive to the microenvironment. This elevated signaling appears linked to the expression of α-SMA, suggesting a direct link to disease pathogenesis. These findings suggest changes to keloid fibroblast phenotype related to mechanotransduction contribute to disease and may be a useful therapeutic target.
Collapse
|
15
|
Mutoji KN, Sun M, Elliott G, Moreno IY, Hughes C, Gesteira TF, Coulson-Thomas VJ. Extracellular Matrix Deposition and Remodeling after Corneal Alkali Burn in Mice. Int J Mol Sci 2021; 22:5708. [PMID: 34071909 PMCID: PMC8199272 DOI: 10.3390/ijms22115708] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/13/2022] Open
Abstract
Corneal transparency relies on the precise arrangement and orientation of collagen fibrils, made of mostly Type I and V collagen fibrils and proteoglycans (PGs). PGs are essential for correct collagen fibrillogenesis and maintaining corneal homeostasis. We investigated the spatial and temporal distribution of glycosaminoglycans (GAGs) and PGs after a chemical injury. The chemical composition of chondroitin sulfate (CS)/dermatan sulfate (DS) and heparan sulfate (HS) were characterized in mouse corneas 5 and 14 days after alkali burn (AB), and compared to uninjured corneas. The expression profile and corneal distribution of CS/DSPGs and keratan sulfate (KS) PGs were also analyzed. We found a significant overall increase in CS after AB, with an increase in sulfated forms of CS and a decrease in lesser sulfated forms of CS. Expression of the CSPGs biglycan and versican was increased after AB, while decorin expression was decreased. We also found an increase in KS expression 14 days after AB, with an increase in lumican and mimecan expression, and a decrease in keratocan expression. No significant changes in HS composition were noted after AB. Taken together, our study reveals significant changes in the composition of the extracellular matrix following a corneal chemical injury.
Collapse
Affiliation(s)
- Kazadi N. Mutoji
- College of Optometry, University of Houston, Houston, TX 77204, USA; (K.N.M.); (M.S.); (G.E.); (I.Y.M.); (T.F.G.)
| | - Mingxia Sun
- College of Optometry, University of Houston, Houston, TX 77204, USA; (K.N.M.); (M.S.); (G.E.); (I.Y.M.); (T.F.G.)
| | - Garrett Elliott
- College of Optometry, University of Houston, Houston, TX 77204, USA; (K.N.M.); (M.S.); (G.E.); (I.Y.M.); (T.F.G.)
| | - Isabel Y. Moreno
- College of Optometry, University of Houston, Houston, TX 77204, USA; (K.N.M.); (M.S.); (G.E.); (I.Y.M.); (T.F.G.)
| | - Clare Hughes
- School of Biosciences, Cardiff University, Cardiff CF10 3AT, UK;
| | - Tarsis F. Gesteira
- College of Optometry, University of Houston, Houston, TX 77204, USA; (K.N.M.); (M.S.); (G.E.); (I.Y.M.); (T.F.G.)
- Optimvia, Batavia, OH 45103, USA
| | - Vivien J. Coulson-Thomas
- College of Optometry, University of Houston, Houston, TX 77204, USA; (K.N.M.); (M.S.); (G.E.); (I.Y.M.); (T.F.G.)
| |
Collapse
|
16
|
Bell RE, Shaw TJ. Keloid tissue analysis discredits a role for myofibroblasts in disease pathogenesis. Wound Repair Regen 2021; 29:637-641. [PMID: 33961308 DOI: 10.1111/wrr.12923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/09/2021] [Accepted: 04/14/2021] [Indexed: 11/29/2022]
Abstract
Myofibroblasts, renowned for their contractility and extracellular matrix production, are widely considered the key effector cells for nearly all scars resulting from tissue repair processes, ranging from normal scars to extreme fibrosis. For example, it is often assumed that myofibroblasts underpin the characteristics of keloid scars, which are debilitating pathological skin scars lacking effective treatments because of a poor understanding of the disease mechanisms. Here, we present primary and published transcriptional and histological evidence that myofibroblasts are not consistently present in primary keloid lesions, and when alpha-smooth muscle actin (αSMA)-positive cells are detected, they are not greater in number or expressing more αSMA than in normal or hypertrophic scars. In conclusion, keloid scars do not appear to require αSMA-positive myofibroblasts; continuing to consider keloids on a quantitative spectrum with normal or hypertrophic scars, with αSMA serving as a biomarker of disease severity, is hindering advancement of understanding and therapy development.
Collapse
Affiliation(s)
- Rachel E Bell
- Centre for Inflammation Biology & Cancer Immunology, Department of Inflammation Biology, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Tanya J Shaw
- Centre for Inflammation Biology & Cancer Immunology, Department of Inflammation Biology, School of Immunology & Microbial Sciences, King's College London, London, UK
| |
Collapse
|
17
|
Bojanic C, To K, Hatoum A, Shea J, Seah KTM, Khan W, Malata CM. Mesenchymal stem cell therapy in hypertrophic and keloid scars. Cell Tissue Res 2021; 383:915-930. [PMID: 33386995 PMCID: PMC7960584 DOI: 10.1007/s00441-020-03361-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 11/19/2020] [Indexed: 12/20/2022]
Abstract
Scars are the normal outcome of wound repair and involve a co-ordinated inflammatory and fibrotic process. When a scar does not resolve, uncontrolled chronic inflammation can persist and elicits excessive scarring that leads to a range of abnormal phenotypes such as hypertrophic and keloid scars. These pathologies result in significant impairment of quality of life over a long period of time. Existing treatment options are generally unsatisfactory, and there is mounting interest in innovative cell-based therapies. Despite the interest in mesenchymal stem cells (MSCs), there is yet to be a human clinical trial that investigates the potential of MSCs in treating abnormal scarring. A synthesis of existing evidence of animal studies may therefore provide insight into the barriers to human application. The aim of this PRISMA systematic review was to evaluate the effectiveness of MSC transplantation in the treatment of hypertrophic and keloid scars in in vivo models. A total of 11 case-control studies were identified that treated a total of 156 subjects with MSCs or MSC-conditioned media. Ten studies assessed hypertrophic scars, and one looked at keloid scars. All studies evaluated scars in terms of macroscopic and histological appearances and most incorporated immunohistochemistry. The included studies all found improvements in the above outcomes with MSC or MSC-conditioned media without complications. The studies reviewed support a role for MSC therapy in treating scars that needs further exploration. The transferability of these findings to humans is limited by factors such as the reliability and validity of the disease model, the need to identify the optimal MSC cell source, and the outcome measures employed.
Collapse
Affiliation(s)
- Christine Bojanic
- Plastic & Reconstructive Surgery Department, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Kendrick To
- Division of Trauma and Orthopaedics, Department of Surgery, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Adam Hatoum
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Jessie Shea
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - K T Matthew Seah
- Division of Trauma and Orthopaedics, Department of Surgery, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Wasim Khan
- Division of Trauma and Orthopaedics, Department of Surgery, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK.
| | - Charles M Malata
- Plastic & Reconstructive Surgery Department, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Cambridge Breast Unit, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- School of Medicine, Anglia Ruskin University, Cambridge & Chelmsford, UK
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW Fibroblasts, the major cell population in all connective tissues, are best known for their role in depositing and maintaining the extracellular matrix. Recently, numerous specialised functions have been discovered revealing unpredicted fibroblast heterogeneity. We will discuss this heterogeneity, from its origins in development to alterations in fibrotic disease conditions. RECENT FINDINGS Advances in lineage tracing and single-cell transcriptional profiling techniques have revealed impressive diversity amongst fibroblasts in a range of organ systems including the skin, lung, kidney and heart. However, there are major challenges in assimilating the findings and understanding their functional significance. Certain fibroblast subsets can make specific contributions to healthy tissue functioning and to fibrotic disease processes; thus, therapeutic manipulation of particular subsets could be clinically beneficial. Here we propose that four key variables determine a fibroblast's phenotype underpinning their enormous heterogeneity: tissue status, regional features, microenvironment and cell state. We review these in different organ systems, highlighting the importance of understanding the divergent fibroblast properties and underlying mechanisms in tissue fibrosis.
Collapse
Affiliation(s)
- Tanya J Shaw
- Centre for Inflammation Biology & Cancer Immunology, Department of Inflammation Biology, School of Immunology & Microbial Sciences, New Hunt’s House, Guy’s Campus, King’s College London, London, SE1 1UL UK
| | - Emanuel Rognoni
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ UK
| |
Collapse
|