1
|
Weinguny M, Klanert G, Eisenhut P, Jonsson A, Ivansson D, Lövgren A, Borth N. Directed evolution approach to enhance efficiency and speed of outgrowth during single cell subcloning of Chinese Hamster Ovary cells. Comput Struct Biotechnol J 2020; 18:1320-1329. [PMID: 32612755 PMCID: PMC7306589 DOI: 10.1016/j.csbj.2020.05.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/16/2020] [Accepted: 05/17/2020] [Indexed: 01/08/2023] Open
Abstract
Chinese Hamster Ovary (CHO) cells are the working horse of the pharmaceutical industry. To obtain high producing cell clones and to satisfy regulatory requirements single cell cloning is a necessary step in cell line development. However, it is also a tedious, labor intensive and expensive process. Here we show an easy way to enhance subclonability using subcloning by single cell sorting itself as the selection pressure, resulting in improved subcloning performance of three different host cell lines. These improvements in subclonability also lead to an enhanced cellular growth behavior during standard batch culture. RNA-seq was performed to shed light on the underlying mechanisms, showing that there is little overlap in differentially expressed genes or associated pathways between the cell lines, each finding their individual strategy for optimization. However, in all three cell lines pathways associated with the extracellular matrix were found to be enriched, indicating that cells struggle predominantly with their microenvironment and possibly lack of cell-to-cell contact. The observed small overlap may hint that there are multiple ways for a cell line to achieve a certain phenotype due to numerous genetic and subsequently metabolic redundancies.
Collapse
Key Words
- CHO
- CHO cells
- CHO, Chinese hamster ovary
- Cell line development
- Cell sorting
- Chinese Hamster Ovary Cells
- CoI, clusters of interest
- DE, directed evolved
- Directed Evolution
- ECM, extracellular matrix
- ES, enrichment score
- FACS
- FACS, fluorescent-activated cell sorting
- Fluorescent-activated cell sorting
- GSEA, gene set analysis
- Growth enhancement
- Growth improvement
- LDC, limiting dilution cloning
- NES, negative enrichment score
- PC, principal component
- PCA, principal component analysis
- POI, product of interest
- RNA Sequencing
- RNA-Seq
- RNA-Seq, RNA sequencing
- SCC, single cell cloning
- Single Cell Cloning
- Single Cell Subcloning
- Subcloning
- lfcSE, logfoldstandard error
Collapse
Affiliation(s)
- Marcus Weinguny
- ACIB Gmbh, Austrian Centre of Industrial Biotechnology, Vienna, Austria
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | - Gerald Klanert
- ACIB Gmbh, Austrian Centre of Industrial Biotechnology, Vienna, Austria
| | - Peter Eisenhut
- ACIB Gmbh, Austrian Centre of Industrial Biotechnology, Vienna, Austria
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | | | | | | | - Nicole Borth
- ACIB Gmbh, Austrian Centre of Industrial Biotechnology, Vienna, Austria
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
- Corresponding author at: Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria.
| |
Collapse
|
2
|
Hofmann A, Brunssen C, Peitzsch M, Martin M, Mittag J, Jannasch A, Engelmann F, Brown NF, Weldon SM, Huber J, Streicher R, Deussen A, Eisenhofer G, Bornstein SR, Morawietz H. Aldosterone Synthase Inhibition Improves Glucose Tolerance in Zucker Diabetic Fatty (ZDF) Rats. Endocrinology 2016; 157:3844-3855. [PMID: 27526033 DOI: 10.1210/en.2016-1358] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Plasma aldosterone is elevated in type 2 diabetes and obesity in experimental and clinical studies and can act to inhibit both glucose-stimulated insulin secretion by the β-cell and insulin signaling. Currently mineralocorticoid receptor antagonism is the best characterized treatment to ameliorate aldosterone-mediated effects. A second alternative is inhibition of aldosterone synthase, an approach with protective effects on end-organ damage in heart or kidney in animal models. The effect of aldosterone synthase inhibition on metabolic parameters in type 2 diabetes is not known. Therefore, male Zucker diabetic fatty (ZDF) rats were treated for 11 weeks with the aldosterone synthase inhibitor FAD286, beginning at 7 weeks of age. Results were compared with the mineralocorticoid receptor antagonist eplerenone. Plasma aldosterone was abolished by FAD286 and elevated more than 9-fold by eplerenone. The area under the curve calculated from an oral glucose tolerance test (OGTT) was lower and overall insulin response during OGTT was increased by FAD286. In contrast, eplerenone elevated blood glucose levels and blunted insulin secretion during the OGTT. Fasting glucose was lowered and fasting insulin was increased by FAD286 in the prediabetic state. Glycated hemoglobin was lowered by FAD286, whereas eplerenone showed no effect. We conclude that aldosterone synthase inhibition, in contrast to mineralocorticoid receptor antagonism, has the potential for beneficial effects on metabolic parameters in type 2 diabetes.
Collapse
Affiliation(s)
- Anja Hofmann
- Division of Vascular Endothelium and Microcirculation (A.H., C.B., J.M., F.E., H.M.) and Division of Clinical Neurochemistry (M.P., G.E.), Institute of Clinical Chemistry and Laboratory Medicine, Department of Medicine III (G.E., S.R.B.), University Hospital Carl Gustav Carus Dresden, and Institute of Physiology (M.M., A.D.) and Department of Cardiac Surgery (A.J.), Herzzentrum Dresden, Medical Faculty, Technische Universität Dresden, 01307 Dresden, Germany; Department of Cardio Metabolic Diseases (N.F.B., S.M.W.), Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut 06877; Department of Cardio Metabolic Diseases (J.H., R.S.), Boehringer Ingelheim Pharma GmbH and Co KG, 88400 Biberach, Germany; and Department of Endocrinology and Diabetes (S.R.B.), Division of Diabetes and Nutritional Sciences, Rayne Institute, Faculty of Life Sciences and Medicine, Kings College London, London, SE5 9PJ, United Kingdom
| | - Coy Brunssen
- Division of Vascular Endothelium and Microcirculation (A.H., C.B., J.M., F.E., H.M.) and Division of Clinical Neurochemistry (M.P., G.E.), Institute of Clinical Chemistry and Laboratory Medicine, Department of Medicine III (G.E., S.R.B.), University Hospital Carl Gustav Carus Dresden, and Institute of Physiology (M.M., A.D.) and Department of Cardiac Surgery (A.J.), Herzzentrum Dresden, Medical Faculty, Technische Universität Dresden, 01307 Dresden, Germany; Department of Cardio Metabolic Diseases (N.F.B., S.M.W.), Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut 06877; Department of Cardio Metabolic Diseases (J.H., R.S.), Boehringer Ingelheim Pharma GmbH and Co KG, 88400 Biberach, Germany; and Department of Endocrinology and Diabetes (S.R.B.), Division of Diabetes and Nutritional Sciences, Rayne Institute, Faculty of Life Sciences and Medicine, Kings College London, London, SE5 9PJ, United Kingdom
| | - Mirko Peitzsch
- Division of Vascular Endothelium and Microcirculation (A.H., C.B., J.M., F.E., H.M.) and Division of Clinical Neurochemistry (M.P., G.E.), Institute of Clinical Chemistry and Laboratory Medicine, Department of Medicine III (G.E., S.R.B.), University Hospital Carl Gustav Carus Dresden, and Institute of Physiology (M.M., A.D.) and Department of Cardiac Surgery (A.J.), Herzzentrum Dresden, Medical Faculty, Technische Universität Dresden, 01307 Dresden, Germany; Department of Cardio Metabolic Diseases (N.F.B., S.M.W.), Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut 06877; Department of Cardio Metabolic Diseases (J.H., R.S.), Boehringer Ingelheim Pharma GmbH and Co KG, 88400 Biberach, Germany; and Department of Endocrinology and Diabetes (S.R.B.), Division of Diabetes and Nutritional Sciences, Rayne Institute, Faculty of Life Sciences and Medicine, Kings College London, London, SE5 9PJ, United Kingdom
| | - Melanie Martin
- Division of Vascular Endothelium and Microcirculation (A.H., C.B., J.M., F.E., H.M.) and Division of Clinical Neurochemistry (M.P., G.E.), Institute of Clinical Chemistry and Laboratory Medicine, Department of Medicine III (G.E., S.R.B.), University Hospital Carl Gustav Carus Dresden, and Institute of Physiology (M.M., A.D.) and Department of Cardiac Surgery (A.J.), Herzzentrum Dresden, Medical Faculty, Technische Universität Dresden, 01307 Dresden, Germany; Department of Cardio Metabolic Diseases (N.F.B., S.M.W.), Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut 06877; Department of Cardio Metabolic Diseases (J.H., R.S.), Boehringer Ingelheim Pharma GmbH and Co KG, 88400 Biberach, Germany; and Department of Endocrinology and Diabetes (S.R.B.), Division of Diabetes and Nutritional Sciences, Rayne Institute, Faculty of Life Sciences and Medicine, Kings College London, London, SE5 9PJ, United Kingdom
| | - Jennifer Mittag
- Division of Vascular Endothelium and Microcirculation (A.H., C.B., J.M., F.E., H.M.) and Division of Clinical Neurochemistry (M.P., G.E.), Institute of Clinical Chemistry and Laboratory Medicine, Department of Medicine III (G.E., S.R.B.), University Hospital Carl Gustav Carus Dresden, and Institute of Physiology (M.M., A.D.) and Department of Cardiac Surgery (A.J.), Herzzentrum Dresden, Medical Faculty, Technische Universität Dresden, 01307 Dresden, Germany; Department of Cardio Metabolic Diseases (N.F.B., S.M.W.), Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut 06877; Department of Cardio Metabolic Diseases (J.H., R.S.), Boehringer Ingelheim Pharma GmbH and Co KG, 88400 Biberach, Germany; and Department of Endocrinology and Diabetes (S.R.B.), Division of Diabetes and Nutritional Sciences, Rayne Institute, Faculty of Life Sciences and Medicine, Kings College London, London, SE5 9PJ, United Kingdom
| | - Anett Jannasch
- Division of Vascular Endothelium and Microcirculation (A.H., C.B., J.M., F.E., H.M.) and Division of Clinical Neurochemistry (M.P., G.E.), Institute of Clinical Chemistry and Laboratory Medicine, Department of Medicine III (G.E., S.R.B.), University Hospital Carl Gustav Carus Dresden, and Institute of Physiology (M.M., A.D.) and Department of Cardiac Surgery (A.J.), Herzzentrum Dresden, Medical Faculty, Technische Universität Dresden, 01307 Dresden, Germany; Department of Cardio Metabolic Diseases (N.F.B., S.M.W.), Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut 06877; Department of Cardio Metabolic Diseases (J.H., R.S.), Boehringer Ingelheim Pharma GmbH and Co KG, 88400 Biberach, Germany; and Department of Endocrinology and Diabetes (S.R.B.), Division of Diabetes and Nutritional Sciences, Rayne Institute, Faculty of Life Sciences and Medicine, Kings College London, London, SE5 9PJ, United Kingdom
| | - Felix Engelmann
- Division of Vascular Endothelium and Microcirculation (A.H., C.B., J.M., F.E., H.M.) and Division of Clinical Neurochemistry (M.P., G.E.), Institute of Clinical Chemistry and Laboratory Medicine, Department of Medicine III (G.E., S.R.B.), University Hospital Carl Gustav Carus Dresden, and Institute of Physiology (M.M., A.D.) and Department of Cardiac Surgery (A.J.), Herzzentrum Dresden, Medical Faculty, Technische Universität Dresden, 01307 Dresden, Germany; Department of Cardio Metabolic Diseases (N.F.B., S.M.W.), Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut 06877; Department of Cardio Metabolic Diseases (J.H., R.S.), Boehringer Ingelheim Pharma GmbH and Co KG, 88400 Biberach, Germany; and Department of Endocrinology and Diabetes (S.R.B.), Division of Diabetes and Nutritional Sciences, Rayne Institute, Faculty of Life Sciences and Medicine, Kings College London, London, SE5 9PJ, United Kingdom
| | - Nicholas F Brown
- Division of Vascular Endothelium and Microcirculation (A.H., C.B., J.M., F.E., H.M.) and Division of Clinical Neurochemistry (M.P., G.E.), Institute of Clinical Chemistry and Laboratory Medicine, Department of Medicine III (G.E., S.R.B.), University Hospital Carl Gustav Carus Dresden, and Institute of Physiology (M.M., A.D.) and Department of Cardiac Surgery (A.J.), Herzzentrum Dresden, Medical Faculty, Technische Universität Dresden, 01307 Dresden, Germany; Department of Cardio Metabolic Diseases (N.F.B., S.M.W.), Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut 06877; Department of Cardio Metabolic Diseases (J.H., R.S.), Boehringer Ingelheim Pharma GmbH and Co KG, 88400 Biberach, Germany; and Department of Endocrinology and Diabetes (S.R.B.), Division of Diabetes and Nutritional Sciences, Rayne Institute, Faculty of Life Sciences and Medicine, Kings College London, London, SE5 9PJ, United Kingdom
| | - Steven M Weldon
- Division of Vascular Endothelium and Microcirculation (A.H., C.B., J.M., F.E., H.M.) and Division of Clinical Neurochemistry (M.P., G.E.), Institute of Clinical Chemistry and Laboratory Medicine, Department of Medicine III (G.E., S.R.B.), University Hospital Carl Gustav Carus Dresden, and Institute of Physiology (M.M., A.D.) and Department of Cardiac Surgery (A.J.), Herzzentrum Dresden, Medical Faculty, Technische Universität Dresden, 01307 Dresden, Germany; Department of Cardio Metabolic Diseases (N.F.B., S.M.W.), Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut 06877; Department of Cardio Metabolic Diseases (J.H., R.S.), Boehringer Ingelheim Pharma GmbH and Co KG, 88400 Biberach, Germany; and Department of Endocrinology and Diabetes (S.R.B.), Division of Diabetes and Nutritional Sciences, Rayne Institute, Faculty of Life Sciences and Medicine, Kings College London, London, SE5 9PJ, United Kingdom
| | - Jochen Huber
- Division of Vascular Endothelium and Microcirculation (A.H., C.B., J.M., F.E., H.M.) and Division of Clinical Neurochemistry (M.P., G.E.), Institute of Clinical Chemistry and Laboratory Medicine, Department of Medicine III (G.E., S.R.B.), University Hospital Carl Gustav Carus Dresden, and Institute of Physiology (M.M., A.D.) and Department of Cardiac Surgery (A.J.), Herzzentrum Dresden, Medical Faculty, Technische Universität Dresden, 01307 Dresden, Germany; Department of Cardio Metabolic Diseases (N.F.B., S.M.W.), Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut 06877; Department of Cardio Metabolic Diseases (J.H., R.S.), Boehringer Ingelheim Pharma GmbH and Co KG, 88400 Biberach, Germany; and Department of Endocrinology and Diabetes (S.R.B.), Division of Diabetes and Nutritional Sciences, Rayne Institute, Faculty of Life Sciences and Medicine, Kings College London, London, SE5 9PJ, United Kingdom
| | - Rüdiger Streicher
- Division of Vascular Endothelium and Microcirculation (A.H., C.B., J.M., F.E., H.M.) and Division of Clinical Neurochemistry (M.P., G.E.), Institute of Clinical Chemistry and Laboratory Medicine, Department of Medicine III (G.E., S.R.B.), University Hospital Carl Gustav Carus Dresden, and Institute of Physiology (M.M., A.D.) and Department of Cardiac Surgery (A.J.), Herzzentrum Dresden, Medical Faculty, Technische Universität Dresden, 01307 Dresden, Germany; Department of Cardio Metabolic Diseases (N.F.B., S.M.W.), Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut 06877; Department of Cardio Metabolic Diseases (J.H., R.S.), Boehringer Ingelheim Pharma GmbH and Co KG, 88400 Biberach, Germany; and Department of Endocrinology and Diabetes (S.R.B.), Division of Diabetes and Nutritional Sciences, Rayne Institute, Faculty of Life Sciences and Medicine, Kings College London, London, SE5 9PJ, United Kingdom
| | - Andreas Deussen
- Division of Vascular Endothelium and Microcirculation (A.H., C.B., J.M., F.E., H.M.) and Division of Clinical Neurochemistry (M.P., G.E.), Institute of Clinical Chemistry and Laboratory Medicine, Department of Medicine III (G.E., S.R.B.), University Hospital Carl Gustav Carus Dresden, and Institute of Physiology (M.M., A.D.) and Department of Cardiac Surgery (A.J.), Herzzentrum Dresden, Medical Faculty, Technische Universität Dresden, 01307 Dresden, Germany; Department of Cardio Metabolic Diseases (N.F.B., S.M.W.), Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut 06877; Department of Cardio Metabolic Diseases (J.H., R.S.), Boehringer Ingelheim Pharma GmbH and Co KG, 88400 Biberach, Germany; and Department of Endocrinology and Diabetes (S.R.B.), Division of Diabetes and Nutritional Sciences, Rayne Institute, Faculty of Life Sciences and Medicine, Kings College London, London, SE5 9PJ, United Kingdom
| | - Graeme Eisenhofer
- Division of Vascular Endothelium and Microcirculation (A.H., C.B., J.M., F.E., H.M.) and Division of Clinical Neurochemistry (M.P., G.E.), Institute of Clinical Chemistry and Laboratory Medicine, Department of Medicine III (G.E., S.R.B.), University Hospital Carl Gustav Carus Dresden, and Institute of Physiology (M.M., A.D.) and Department of Cardiac Surgery (A.J.), Herzzentrum Dresden, Medical Faculty, Technische Universität Dresden, 01307 Dresden, Germany; Department of Cardio Metabolic Diseases (N.F.B., S.M.W.), Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut 06877; Department of Cardio Metabolic Diseases (J.H., R.S.), Boehringer Ingelheim Pharma GmbH and Co KG, 88400 Biberach, Germany; and Department of Endocrinology and Diabetes (S.R.B.), Division of Diabetes and Nutritional Sciences, Rayne Institute, Faculty of Life Sciences and Medicine, Kings College London, London, SE5 9PJ, United Kingdom
| | - Stefan R Bornstein
- Division of Vascular Endothelium and Microcirculation (A.H., C.B., J.M., F.E., H.M.) and Division of Clinical Neurochemistry (M.P., G.E.), Institute of Clinical Chemistry and Laboratory Medicine, Department of Medicine III (G.E., S.R.B.), University Hospital Carl Gustav Carus Dresden, and Institute of Physiology (M.M., A.D.) and Department of Cardiac Surgery (A.J.), Herzzentrum Dresden, Medical Faculty, Technische Universität Dresden, 01307 Dresden, Germany; Department of Cardio Metabolic Diseases (N.F.B., S.M.W.), Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut 06877; Department of Cardio Metabolic Diseases (J.H., R.S.), Boehringer Ingelheim Pharma GmbH and Co KG, 88400 Biberach, Germany; and Department of Endocrinology and Diabetes (S.R.B.), Division of Diabetes and Nutritional Sciences, Rayne Institute, Faculty of Life Sciences and Medicine, Kings College London, London, SE5 9PJ, United Kingdom
| | - Henning Morawietz
- Division of Vascular Endothelium and Microcirculation (A.H., C.B., J.M., F.E., H.M.) and Division of Clinical Neurochemistry (M.P., G.E.), Institute of Clinical Chemistry and Laboratory Medicine, Department of Medicine III (G.E., S.R.B.), University Hospital Carl Gustav Carus Dresden, and Institute of Physiology (M.M., A.D.) and Department of Cardiac Surgery (A.J.), Herzzentrum Dresden, Medical Faculty, Technische Universität Dresden, 01307 Dresden, Germany; Department of Cardio Metabolic Diseases (N.F.B., S.M.W.), Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut 06877; Department of Cardio Metabolic Diseases (J.H., R.S.), Boehringer Ingelheim Pharma GmbH and Co KG, 88400 Biberach, Germany; and Department of Endocrinology and Diabetes (S.R.B.), Division of Diabetes and Nutritional Sciences, Rayne Institute, Faculty of Life Sciences and Medicine, Kings College London, London, SE5 9PJ, United Kingdom
| |
Collapse
|
3
|
Iatrino R, Manunta P, Zagato L. Salt Sensitivity: Challenging and Controversial Phenotype of Primary Hypertension. Curr Hypertens Rep 2016; 18:70. [DOI: 10.1007/s11906-016-0677-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
4
|
Vinson GP. Functional Zonation of the Adult Mammalian Adrenal Cortex. Front Neurosci 2016; 10:238. [PMID: 27378832 PMCID: PMC4908136 DOI: 10.3389/fnins.2016.00238] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 05/17/2016] [Indexed: 12/31/2022] Open
Abstract
The standard model of adrenocortical zonation holds that the three main zones, glomerulosa, fasciculata, and reticularis each have a distinct function, producing mineralocorticoids (in fact just aldosterone), glucocorticoids, and androgens respectively. Moreover, each zone has its specific mechanism of regulation, though ACTH has actions throughout. Finally, the cells of the cortex originate from a stem cell population in the outer cortex or capsule, and migrate centripetally, changing their phenotype as they progress through the zones. Recent progress in understanding the development of the gland and the distribution of steroidogenic enzymes, trophic hormone receptors, and other factors suggests that this model needs refinement. Firstly, proliferation can take place throughout the gland, and although the stem cells are certainly located in the periphery, zonal replenishment can take place within zones. Perhaps more importantly, neither the distribution of enzymes nor receptors suggest that the individual zones are necessarily autonomous in their production of steroid. This is particularly true of the glomerulosa, which does not seem to have the full suite of enzymes required for aldosterone biosynthesis. Nor, in the rat anyway, does it express MC2R to account for the response of aldosterone to ACTH. It is known that in development, recruitment of stem cells is stimulated by signals from within the glomerulosa. Furthermore, throughout the cortex local regulatory factors, including cytokines, catecholamines and the tissue renin-angiotensin system, modify and refine the effects of the systemic trophic factors. In these and other ways it more and more appears that the functions of the gland should be viewed as an integrated whole, greater than the sum of its component parts.
Collapse
Affiliation(s)
- Gavin P Vinson
- School of Biological and Chemical Sciences, Queen Mary University of London London, UK
| |
Collapse
|
5
|
Schiffer L, Anderko S, Hannemann F, Eiden-Plach A, Bernhardt R. The CYP11B subfamily. J Steroid Biochem Mol Biol 2015; 151:38-51. [PMID: 25465475 DOI: 10.1016/j.jsbmb.2014.10.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/10/2014] [Accepted: 10/14/2014] [Indexed: 01/11/2023]
Abstract
The biosynthesis of steroid hormones is dependent on P450-catalyzed reactions. In mammals, cholesterol is the common precursor of all steroid hormones, and its conversion to pregnenolone is the initial and rate-limiting step in hormone biosynthesis in steroidogenic tissues such as gonads and adrenal glands. The production of glucocorticoids and mineralocorticoids takes place in the adrenal gland and the final steps are catalyzed by 2 mitochondrial cytochromes P450, CYP11B1 (11β-hydroxylase or P45011β) and CYP11B2 (aldosterone synthase or P450aldo). The occurrence and development of these 2 enzymes in different species, their contribution to the biosynthesis of steroid hormones as well as their regulation at different levels (gene expression, cellular regulation, regulation on the level of proteins) is the topic of this chapter.
Collapse
Affiliation(s)
- Lina Schiffer
- Institute of Biochemistry, Saarland University, Campus B2.2, 66123 Saarbrücken, Germany
| | - Simone Anderko
- Institute of Biochemistry, Saarland University, Campus B2.2, 66123 Saarbrücken, Germany
| | - Frank Hannemann
- Institute of Biochemistry, Saarland University, Campus B2.2, 66123 Saarbrücken, Germany
| | - Antje Eiden-Plach
- Institute of Biochemistry, Saarland University, Campus B2.2, 66123 Saarbrücken, Germany
| | - Rita Bernhardt
- Institute of Biochemistry, Saarland University, Campus B2.2, 66123 Saarbrücken, Germany.
| |
Collapse
|
6
|
Abstract
Aldosterone is a steroid hormone synthesized in and secreted from the outer layer of the adrenal cortex, the zona glomerulosa. Aldosterone is responsible for regulating sodium homeostasis, thereby helping to control blood volume and blood pressure. Insufficient aldosterone secretion can lead to hypotension and circulatory shock, particularly in infancy. On the other hand, excessive aldosterone levels, or those too high for sodium status, can cause hypertension and exacerbate the effects of high blood pressure on multiple organs, contributing to renal disease, stroke, visual loss, and congestive heart failure. Aldosterone is also thought to directly induce end-organ damage, including in the kidneys and heart. Because of the significance of aldosterone to the physiology and pathophysiology of the cardiovascular system, it is important to understand the regulation of its biosynthesis and secretion from the adrenal cortex. Herein, the mechanisms regulating aldosterone production in zona glomerulosa cells are discussed, with a particular emphasis on signaling pathways involved in the secretory response to the main controllers of aldosterone production, the renin-angiotensin II system, serum potassium levels and adrenocorticotrophic hormone. The signaling pathways involved include phospholipase C-mediated phosphoinositide hydrolysis, inositol 1,4,5-trisphosphate, cytosolic calcium levels, calcium influx pathways, calcium/calmodulin-dependent protein kinases, diacylglycerol, protein kinases C and D, 12-hydroxyeicostetraenoic acid, phospholipase D, mitogen-activated protein kinase pathways, tyrosine kinases, adenylate cyclase, and cAMP-dependent protein kinase. A complete understanding of the signaling events regulating aldosterone biosynthesis may allow the identification of novel targets for therapeutic interventions in hypertension, primary aldosteronism, congestive heart failure, renal disease, and other cardiovascular disorders.
Collapse
Affiliation(s)
- Wendy B Bollag
- Charlie Norwood VA Medical Center, Augusta, Georgia; Department of Physiology, Medical College of Georgia at Georgia Regents University, Augusta, Georgia
| |
Collapse
|
7
|
Hamlyn JM, Linde CI, Gao J, Huang BS, Golovina VA, Blaustein MP, Leenen FHH. Neuroendocrine humoral and vascular components in the pressor pathway for brain angiotensin II: a new axis in long term blood pressure control. PLoS One 2014; 9:e108916. [PMID: 25275393 PMCID: PMC4183521 DOI: 10.1371/journal.pone.0108916] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 08/26/2014] [Indexed: 11/29/2022] Open
Abstract
Central nervous system (CNS) administration of angiotensin II (Ang II) raises blood pressure (BP). The rise in BP reflects increased sympathetic outflow and a slower neuromodulatory pressor mechanism mediated by CNS mineralocorticoid receptors (MR). We investigated the hypothesis that the sustained phase of hypertension is associated also with elevated circulating levels of endogenous ouabain (EO), and chronic stimulation of arterial calcium transport proteins including the sodium-calcium exchanger (NCX1), the type 6 canonical transient receptor potential protein (TRPC6), and the sarcoplasmic reticulum calcium ATPase (SERCA2). Wistar rats received a chronic intra-cerebroventricular infusion of vehicle (C) or Ang II (A, 2.5 ng/min, for 14 days) alone or combined with the MR blocker, eplerenone (A+E, 5 µg/day), or the aldosterone synthase inhibitor, FAD286 (A+F, 25 µg/day). Conscious mean BP increased (P<0.05) in A (123±4 mm Hg) vs all other groups. Blood, pituitary and adrenal samples were taken for EO radioimmunoassay (RIA), and aortas for NCX1, TRPC6 and SERCA2 immunoblotting. Central infusion of Ang II raised plasma EO (0.58±0.08 vs C 0.34±0.07 nM (P<0.05), but not in A + E and A + F groups as confirmed by off-line liquid chromatography (LC)-RIA and LC-multistage mass spectrometry. Two novel isomers of EO were elevated by Ang II; the second less polar isomer increased >50-fold in the A+F group. Central Ang II increased arterial expression of NCX1, TRPC6 and SERCA2 (2.6, 1.75 and 3.7-fold, respectively; P<0.01)) but not when co-infused with E or F. Adrenal and pituitary EO were unchanged. We conclude that brain Ang II activates a CNS-humoral axis involving plasma EO. The elevated EO reprograms peripheral ion transport pathways known to control arterial Na+ and Ca2+ homeostasis; this increases contractility and augments sympathetic effects. The new axis likely contributes to the chronic pressor effect of brain Ang II.
Collapse
Affiliation(s)
- John M. Hamlyn
- Department of Physiology, University of Maryland Baltimore, Baltimore, Maryland, United States of America
- * E-mail:
| | - Cristina I. Linde
- Department of Physiology, University of Maryland Baltimore, Baltimore, Maryland, United States of America
| | - Junjie Gao
- Department of Physiology, University of Maryland Baltimore, Baltimore, Maryland, United States of America
| | - Bing S. Huang
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Vera A. Golovina
- Department of Physiology, University of Maryland Baltimore, Baltimore, Maryland, United States of America
| | - Mordecai P. Blaustein
- Department of Physiology, University of Maryland Baltimore, Baltimore, Maryland, United States of America
- Department of Medicine, University of Maryland Baltimore, Baltimore, Maryland, United States of America
| | | |
Collapse
|
8
|
Nishimoto K, Rigsby CS, Wang T, Mukai K, Gomez-Sanchez CE, Rainey WE, Seki T. Transcriptome analysis reveals differentially expressed transcripts in rat adrenal zona glomerulosa and zona fasciculata. Endocrinology 2012; 153:1755-63. [PMID: 22374966 PMCID: PMC3320243 DOI: 10.1210/en.2011-1915] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In mammals, aldosterone is produced in the zona glomerulosa (zG), the outermost layer of the adrenal cortex, whereas glucocorticoids are produced in adjacent zona fasciculata (zF). However, the cellular mechanisms controlling the zonal development and the differential hormone production (i.e. functional zonation) are poorly understood. To explore the mechanisms, we defined zone-specific transcripts in this study. Eleven-week-old male rats were used and adrenal tissues were collected from zG and zF using laser-capture microdissection. RNA was isolated, biotin labeled, amplified, and hybridized to Illumina microarray chips. The microarray data were compared by fold change calculations. In zG, 235 transcripts showed more than a 2-fold up-regulation compared to zF with statistical significance. Similarly, 231 transcripts showed up-regulation in zF. The microarray findings were validated using quantitative RT-PCR and immunohistochemical staining on selected transcripts, including Cyp11b2 (zG/zF: 214.2x), Rgs4 (68.4x), Smoc2 (49.3x), and Mia1 (43.1x) in zG as well as Ddah1 (zF/zG 16.2x), Cidea (15.5x), Frzb (9.5x), and Hsd11b2 (8.3x) in zF. The lists of transcripts obtained in the current study will be an invaluable tool for the elucidation of cellular mechanisms leading to zG and zF functional zonation.
Collapse
Affiliation(s)
- Koshiro Nishimoto
- Department of Physiology, Georgia Health Sciences University, Augusta, Georgia 30912, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Aiba M, Fujibayashi M. Alteration of subcapsular adrenocortical zonation in humans with aging: the progenitor zone predominates over the previously well-developed zona glomerulosa after 40 years of age. J Histochem Cytochem 2011; 59:557-64. [PMID: 21411711 DOI: 10.1369/0022155411404071] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Few studies have examined functional adrenal zonation throughout human life. Adrenals from 61 surgical/autopsy patients from 1 day old to 92 years old who had no clinical endocrinological/mineralocorticoid abnormalities were assessed for immunohistochemically defined adrenal zonation. The zona glomerulosa (zG) was well developed in all 11 patients ranging in age from newborn to the 30s. After 40 years of age, however, the zG occupied less than one-quarter of the adrenal circumference, suggestive of zG involution. The other subcapsular areas were occupied by the progenitor zone (zP), which expressed neither cytochrome P450(aldo) nor P450(11β) but 3β-hydroxysteroid dehydrogenase and P450scc, although some autopsy cases had adrenals with zG zonation because of secondary aldosteronism, and others who had experienced severe stresses showed subcapsular zona fasciculata (zF). In conclusion, the adrenal cortex consists of homogeneous zG-topped columns from birth to adolescence. Subsequently, in the fifth decade of life, the cortex is reconstituted by integration of three types of cortical columns: scattered zG-topped columns and zonal zP-topped columns, the latter having the ability for bidirectional differentiation into either zG-topped columns or zF-topped columns, according to secondary aldosteronism or the presence of severe stresses. Such adrenocortical remodeling is ascribed to high-sodium/low-potassium diets.
Collapse
Affiliation(s)
- Motohiko Aiba
- Department of Surgical Pathology, Tokyo Women's Medical University Medical Center East, Tokyo, Japan.
| | | |
Collapse
|
10
|
Leenen FH. The central role of the brain aldosterone–“ouabain” pathway in salt-sensitive hypertension. Biochim Biophys Acta Mol Basis Dis 2010; 1802:1132-9. [DOI: 10.1016/j.bbadis.2010.03.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 03/02/2010] [Accepted: 03/07/2010] [Indexed: 11/29/2022]
|
11
|
Boulkroun S, Samson-Couterie B, Dzib JFG, Lefebvre H, Louiset E, Amar L, Plouin PF, Lalli E, Jeunemaitre X, Benecke A, Meatchi T, Zennaro MC. Adrenal Cortex Remodeling and Functional Zona Glomerulosa Hyperplasia in Primary Aldosteronism. Hypertension 2010; 56:885-92. [PMID: 20937967 DOI: 10.1161/hypertensionaha.110.158543] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Sheerazed Boulkroun
- From the Institut National de la Santé et de la Recherche Médicale (S.B., B.S.-C., L.A., P.-F.P., X.J., T.M., M.-C.Z.), U970, Paris Cardiovascular Research Center, Paris, France; University Paris Descartes (S.B., B.S.-C., L.A., P.-F.P., X.J., T.M., M.-C.Z.), Paris, France; Institut des Hautes Études Scientifiques (J.-F.G.D., A.B.), Bures sur Yvette, France; Institut National de la Santé et de la Recherche Médicale (H.L., E.Lo.), U982, Mont-Saint-Aignan, France; University of Rouen (H.L., E.Lo.)
| | - Benoit Samson-Couterie
- From the Institut National de la Santé et de la Recherche Médicale (S.B., B.S.-C., L.A., P.-F.P., X.J., T.M., M.-C.Z.), U970, Paris Cardiovascular Research Center, Paris, France; University Paris Descartes (S.B., B.S.-C., L.A., P.-F.P., X.J., T.M., M.-C.Z.), Paris, France; Institut des Hautes Études Scientifiques (J.-F.G.D., A.B.), Bures sur Yvette, France; Institut National de la Santé et de la Recherche Médicale (H.L., E.Lo.), U982, Mont-Saint-Aignan, France; University of Rouen (H.L., E.Lo.)
| | - José-Felipe Golib Dzib
- From the Institut National de la Santé et de la Recherche Médicale (S.B., B.S.-C., L.A., P.-F.P., X.J., T.M., M.-C.Z.), U970, Paris Cardiovascular Research Center, Paris, France; University Paris Descartes (S.B., B.S.-C., L.A., P.-F.P., X.J., T.M., M.-C.Z.), Paris, France; Institut des Hautes Études Scientifiques (J.-F.G.D., A.B.), Bures sur Yvette, France; Institut National de la Santé et de la Recherche Médicale (H.L., E.Lo.), U982, Mont-Saint-Aignan, France; University of Rouen (H.L., E.Lo.)
| | - Hervé Lefebvre
- From the Institut National de la Santé et de la Recherche Médicale (S.B., B.S.-C., L.A., P.-F.P., X.J., T.M., M.-C.Z.), U970, Paris Cardiovascular Research Center, Paris, France; University Paris Descartes (S.B., B.S.-C., L.A., P.-F.P., X.J., T.M., M.-C.Z.), Paris, France; Institut des Hautes Études Scientifiques (J.-F.G.D., A.B.), Bures sur Yvette, France; Institut National de la Santé et de la Recherche Médicale (H.L., E.Lo.), U982, Mont-Saint-Aignan, France; University of Rouen (H.L., E.Lo.)
| | - Estelle Louiset
- From the Institut National de la Santé et de la Recherche Médicale (S.B., B.S.-C., L.A., P.-F.P., X.J., T.M., M.-C.Z.), U970, Paris Cardiovascular Research Center, Paris, France; University Paris Descartes (S.B., B.S.-C., L.A., P.-F.P., X.J., T.M., M.-C.Z.), Paris, France; Institut des Hautes Études Scientifiques (J.-F.G.D., A.B.), Bures sur Yvette, France; Institut National de la Santé et de la Recherche Médicale (H.L., E.Lo.), U982, Mont-Saint-Aignan, France; University of Rouen (H.L., E.Lo.)
| | - Laurence Amar
- From the Institut National de la Santé et de la Recherche Médicale (S.B., B.S.-C., L.A., P.-F.P., X.J., T.M., M.-C.Z.), U970, Paris Cardiovascular Research Center, Paris, France; University Paris Descartes (S.B., B.S.-C., L.A., P.-F.P., X.J., T.M., M.-C.Z.), Paris, France; Institut des Hautes Études Scientifiques (J.-F.G.D., A.B.), Bures sur Yvette, France; Institut National de la Santé et de la Recherche Médicale (H.L., E.Lo.), U982, Mont-Saint-Aignan, France; University of Rouen (H.L., E.Lo.)
| | - Pierre-François Plouin
- From the Institut National de la Santé et de la Recherche Médicale (S.B., B.S.-C., L.A., P.-F.P., X.J., T.M., M.-C.Z.), U970, Paris Cardiovascular Research Center, Paris, France; University Paris Descartes (S.B., B.S.-C., L.A., P.-F.P., X.J., T.M., M.-C.Z.), Paris, France; Institut des Hautes Études Scientifiques (J.-F.G.D., A.B.), Bures sur Yvette, France; Institut National de la Santé et de la Recherche Médicale (H.L., E.Lo.), U982, Mont-Saint-Aignan, France; University of Rouen (H.L., E.Lo.)
| | - Enzo Lalli
- From the Institut National de la Santé et de la Recherche Médicale (S.B., B.S.-C., L.A., P.-F.P., X.J., T.M., M.-C.Z.), U970, Paris Cardiovascular Research Center, Paris, France; University Paris Descartes (S.B., B.S.-C., L.A., P.-F.P., X.J., T.M., M.-C.Z.), Paris, France; Institut des Hautes Études Scientifiques (J.-F.G.D., A.B.), Bures sur Yvette, France; Institut National de la Santé et de la Recherche Médicale (H.L., E.Lo.), U982, Mont-Saint-Aignan, France; University of Rouen (H.L., E.Lo.)
| | - Xavier Jeunemaitre
- From the Institut National de la Santé et de la Recherche Médicale (S.B., B.S.-C., L.A., P.-F.P., X.J., T.M., M.-C.Z.), U970, Paris Cardiovascular Research Center, Paris, France; University Paris Descartes (S.B., B.S.-C., L.A., P.-F.P., X.J., T.M., M.-C.Z.), Paris, France; Institut des Hautes Études Scientifiques (J.-F.G.D., A.B.), Bures sur Yvette, France; Institut National de la Santé et de la Recherche Médicale (H.L., E.Lo.), U982, Mont-Saint-Aignan, France; University of Rouen (H.L., E.Lo.)
| | - Arndt Benecke
- From the Institut National de la Santé et de la Recherche Médicale (S.B., B.S.-C., L.A., P.-F.P., X.J., T.M., M.-C.Z.), U970, Paris Cardiovascular Research Center, Paris, France; University Paris Descartes (S.B., B.S.-C., L.A., P.-F.P., X.J., T.M., M.-C.Z.), Paris, France; Institut des Hautes Études Scientifiques (J.-F.G.D., A.B.), Bures sur Yvette, France; Institut National de la Santé et de la Recherche Médicale (H.L., E.Lo.), U982, Mont-Saint-Aignan, France; University of Rouen (H.L., E.Lo.)
| | - Tchao Meatchi
- From the Institut National de la Santé et de la Recherche Médicale (S.B., B.S.-C., L.A., P.-F.P., X.J., T.M., M.-C.Z.), U970, Paris Cardiovascular Research Center, Paris, France; University Paris Descartes (S.B., B.S.-C., L.A., P.-F.P., X.J., T.M., M.-C.Z.), Paris, France; Institut des Hautes Études Scientifiques (J.-F.G.D., A.B.), Bures sur Yvette, France; Institut National de la Santé et de la Recherche Médicale (H.L., E.Lo.), U982, Mont-Saint-Aignan, France; University of Rouen (H.L., E.Lo.)
| | - Maria-Christina Zennaro
- From the Institut National de la Santé et de la Recherche Médicale (S.B., B.S.-C., L.A., P.-F.P., X.J., T.M., M.-C.Z.), U970, Paris Cardiovascular Research Center, Paris, France; University Paris Descartes (S.B., B.S.-C., L.A., P.-F.P., X.J., T.M., M.-C.Z.), Paris, France; Institut des Hautes Études Scientifiques (J.-F.G.D., A.B.), Bures sur Yvette, France; Institut National de la Santé et de la Recherche Médicale (H.L., E.Lo.), U982, Mont-Saint-Aignan, France; University of Rouen (H.L., E.Lo.)
| |
Collapse
|
12
|
Torres TEP, de Mendonça POR, Lotfi CFP. Synthetic modified N-POMC1–28 controls in vivo proliferation and blocks apoptosis in rat adrenal cortex. Cell Tissue Res 2010; 341:239-50. [DOI: 10.1007/s00441-010-0998-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 05/20/2010] [Indexed: 10/19/2022]
|
13
|
Huang BS, Leenen FHH. The brain renin-angiotensin-aldosterone system: A major mechanism for sympathetic hyperactivity and left ventricular remodeling and dysfunction after myocardial infarction. Curr Heart Fail Rep 2009; 6:81-8. [DOI: 10.1007/s11897-009-0013-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
14
|
Szekeres M, Turu G, Orient A, Szalai B, Süpeki K, Cserzo M, Várnai P, Hunyady L. Mechanisms of angiotensin II-mediated regulation of aldosterone synthase expression in H295R human adrenocortical and rat adrenal glomerulosa cells. Mol Cell Endocrinol 2009; 302:244-53. [PMID: 19418629 DOI: 10.1016/j.mce.2008.12.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
In adrenal zona glomerulosa cells angiotensin II (Ang II) is a key regulator of steroidogenesis. Our purpose was to compare the mechanisms of Ang II-induced changes in the expression level of early transcription factors NR4A1 (NGFIB) and NR4A2 (Nurr1) genes, and the CYP11B2 gene encoding aldosterone synthase in H295R human adrenocortical tumor cells and in primary rat adrenal glomerulosa cells. Real-time PCR studies have demonstrated that Ang II increased the expression levels of NR4A1 and NR4A2 in H295R cells within 1 h after stimulation, which persisted up to 6 h; whereas in rat adrenal glomerulosa cells the kinetics of the expression of these genes were more rapid and transient. Ang II also induced prolonged nuclear translocation of Nurr1 and NGFIB proteins in both cell types. Studies using MEK inhibitor (PD98059, 20 microM), protein kinase C inhibitor (BIM1, 3 microM) and calmodulin kinase (CAMK) inhibitor (KN93, 10 microM) revealed that in rat adrenal glomerulosa cells CAMK-mediated mechanisms play a predominant role in the regulation of CYP11B2. In accordance with earlier findings, in H295R cells MEK inhibition increased the expression of NR4A1, NR4A2 and CYP11B2 genes, however, it decreased the Ang II-induced gene expression levels, suggesting that ERK activation has a role in control of expression of these genes. No such mechanism was detected in rat glomerulosa cells. Sar1-Ile4-Ile8-AngII, which can cause G protein-independent ERK activation, also stimulated the expression of CYP11B2 in H295R cells. These data suggest that the previously reported CAMK-mediated stimulation of early transcription factors NGFIB and Nurr1 has a predominant role in Ang II-induced CYP11B2 activation in rat adrenal glomerulosa cells, whereas in H295R cells ERK activation and G protein-independent mechanisms also contribute to this process.
Collapse
Affiliation(s)
- Mária Szekeres
- Department of Physiology, Semmelweis University, Faculty of Medicine, Budapest, Hungary.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Huang BS, White RA, Jeng AY, Leenen FHH. Role of central nervous system aldosterone synthase and mineralocorticoid receptors in salt-induced hypertension in Dahl salt-sensitive rats. Am J Physiol Regul Integr Comp Physiol 2009; 296:R994-R1000. [DOI: 10.1152/ajpregu.90903.2008] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In Dahl salt-sensitive (S) rats, high salt intake increases cerebrospinal fluid (CSF) Na+ concentration ([Na+]) and blood pressure (BP). Intracerebroventricular (ICV) infusion of a mineralocorticoid receptor (MR) blocker prevents the hypertension. To assess the role of aldosterone locally produced in the brain, we evaluated the effects of chronic central blockade with the aldosterone synthase inhibitor FAD286 and the MR blocker spironolactone on changes in aldosterone and corticosterone content in the hypothalamus and the increase in CSF [Na+] and hypertension induced by high salt intake in Dahl S rats. After 4 wk of high salt intake, plasma aldosterone and corticosterone were not changed, but hypothalamic aldosterone increased by ∼35% and corticosterone tended to increase in Dahl S rats, whereas both steroids decreased by ∼65% in Dahl salt-resistant rats. In Dahl S rats fed the high-salt diet, ICV infusion of FAD286 or spironolactone did not affect the increase in CSF [Na+]. ICV infusion of FAD286 prevented the increase in hypothalamic aldosterone and 30 mmHg of the 50-mmHg BP increase induced by high salt intake. ICV infusion of spironolactone fully prevented the salt-induced hypertension. These results suggest that, in Dahl S rats, high salt intake increases aldosterone synthesis in the hypothalamus and aldosterone acts as the main MR agonist activating central pathways contributing to salt-induced hypertension.
Collapse
|
16
|
Huang BS, White RA, Ahmad M, Tan J, Jeng AY, Leenen FHH. Central infusion of aldosterone synthase inhibitor attenuates left ventricular dysfunction and remodelling in rats after myocardial infarction. Cardiovasc Res 2008; 81:574-81. [PMID: 18689429 DOI: 10.1093/cvr/cvn222] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS Blockade of mineralocorticoid receptors in the central nervous system (CNS) prevents sympathetic hyperactivity and improves left ventricle (LV) function in rats post-myocardial infarction (MI). We examined whether aldosterone produced locally in the brain may contribute to the activation of mineralocorticoid receptors in the CNS. METHODS AND RESULTS Two days after coronary artery ligation, Wistar rats received an intra-cerebroventricular (icv) infusion via osmotic mini-pumps of the aldosterone synthase inhibitor FAD286 at 100 microg/kg/day or vehicle for 4 weeks. LV function was assessed by echocardiography at 2 and 4 weeks, and by Millar catheter at 4 weeks. At 4 weeks post-MI, aldosterone in the hippocampus was increased by 70% and tended to increase in the hypothalamus by 20%. These increases were prevented by FAD286. Across groups, aldosterone in the hippocampus and hypothalamus showed a high correlation. There were no differences in brain corticosterone levels. Compared to sham rats, at both 2 and 4 weeks post-MI rats treated with vehicle showed increased LV dimensions and decreased LV ejection fraction. Icv infusion of FAD286 attenuated these changes in LV dimensions and ejection fraction by approximately 30%. At 4 weeks post-MI, LV peak systolic pressure (LVPSP) and dP/dt(max/min) were decreased and LV end-diastolic pressure (LVEDP) was increased. In rats treated with icv FAD286, LVPSP and dP/dt(min) remained normal and LVEDP and dP/dt(max) were markedly improved. Post-MI increases in cardiac fibrosis and cardiomyocyte diameter were substantially attenuated by icv FAD286. CONCLUSION These data suggest that aldosterone produced locally in the brain acts as the main agonist of mineralocorticoid receptors in the CNS and contributes substantially to the progressive heart failure post MI.
Collapse
Affiliation(s)
- Bing S Huang
- Hypertension Unit, University of Ottawa Heart Institute, H360 40 Ruskin Street, Ottawa, Ontario, Canada K1Y 4W7
| | | | | | | | | | | |
Collapse
|
17
|
Vallon V, Eraly SA, Wikoff WR, Rieg T, Kaler G, Truong DM, Ahn SY, Mahapatra NR, Mahata SK, Gangoiti JA, Wu W, Barshop BA, Siuzdak G, Nigam SK. Organic anion transporter 3 contributes to the regulation of blood pressure. J Am Soc Nephrol 2008; 19:1732-40. [PMID: 18508962 DOI: 10.1681/asn.2008020180] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Renal organic anion transporters (OAT) are known to mediate the excretion of many drugs, but their function in normal physiology is not well understood. In this study, mice lacking organic anion transporter 3 (Oat3) had a 10 to 15% lower BP than wild-type mice, raising the possibility that Oat3 transports an endogenous regulator of BP. The aldosterone response to a low-salt diet was blunted in Oat3-null mice, but baseline aldosterone concentration was higher in these mice, suggesting that aldosterone dysregulation does not fully explain the lower BP in the basal state; therefore, both targeted and global metabolomic analyses of plasma and urine were performed, and several potential endogenous substrates of Oat3 were found to accumulate in the plasma of Oat3-null mice. One of these substrates, thymidine, was transported by Oat3 expressed in vitro. In vivo, thymidine, as well as two of the most potent Oat3 inhibitors that were characterized, reduced BP by 10 to 15%; therefore, Oat3 seems to regulate BP, and Oat3 inhibitors might be therapeutically useful antihypertensive agents. Moreover, polymorphisms in human OAT3 might contribute to the genetic variation in susceptibility to hypertension.
Collapse
Affiliation(s)
- Volker Vallon
- Division of Nephrology and Hypertension, Department of Medicine, University of California San Diego and VASDHCS, 3350 La Jolla Village Drive (9151), San Diego, CA 92161, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Huang BS, White RA, Ahmad M, Jeng AY, Leenen FHH. Central infusion of aldosterone synthase inhibitor prevents sympathetic hyperactivity and hypertension by central Na+ in Wistar rats. Am J Physiol Regul Integr Comp Physiol 2008; 295:R166-72. [PMID: 18495825 DOI: 10.1152/ajpregu.90352.2008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In Wistar rats, increasing cerebrospinal fluid (CSF) Na+ concentration ([Na+]) by intracerebroventricular (ICV) infusion of hypertonic saline causes sympathetic hyperactivity and hypertension that can be prevented by blockade of brain mineralocorticoid receptors (MR). To assess the role of aldosterone produced locally in the brain in the activation of MR in the central nervous system (CNS), Wistar rats were infused ICV with artificial CSF (aCSF), Na+ -rich (800 mmol/l) aCSF, aCSF plus the aldosterone synthase inhibitor FAD286 (100 microg x kg(-1) x day(-1)), or Na+ -rich aCSF plus FAD286. After 2 wk of infusion, rats treated with Na+ -rich aCSF exhibited significant increases in aldosterone and corticosterone content in the hypothalamus but not in the hippocampus, as well as increases in resting blood pressure (BP) and sympathoexcitatory responses to air stress, and impairment of arterial baroreflex function. Concomitant ICV infusion of FAD286 prevented the Na+ -induced increase in hypothalamic aldosterone but not corticosterone and prevented most of the increases in resting BP and sympathoexcitatory and pressor responses to air stress and the baroreflex impairment. FAD286 had no effects in rats infused with ICV aCSF. In another set of rats, 24-h BP and heart rate were recorded via telemetry before and during a 14-day ICV infusion of Na+ -rich aCSF with or without FAD286. Na+ -rich aCSF without FAD286 caused sustained increases ( approximately 10 mmHg) in resting mean arterial pressure that were absent in the rats treated with FAD286. These data suggest that in Wistar rats, an increase in CSF [Na+] may increase the biosynthesis of corticosterone and aldosterone in the hypothalamus, and mainly aldosterone activates MR in the CNS leading to sympathetic hyperactivity and hypertension.
Collapse
Affiliation(s)
- Bing S Huang
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | | | | | | | | |
Collapse
|
19
|
Torres TEP, Lotfi CFP. Distribution of cells expressing Jun and Fos proteins and synthesizing DNA in the adrenal cortex of hypophysectomized rats: regulation by ACTH and FGF2. Cell Tissue Res 2007; 329:443-55. [PMID: 17551755 DOI: 10.1007/s00441-007-0436-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Accepted: 05/07/2007] [Indexed: 11/26/2022]
Abstract
Protein expression of the early response genes, jun and fos, has been suggested to play an important role in the in vitro and in vivo proliferation of adrenal cells. To elucidate the immunolocalization of proliferative cells and the patterns of adrenal gland expression of members of the activating protein-1 (AP-1) family of oncogenes, we used hypophysectomized rats. The effects of adrenocorticotropic hormone (ACTH) and fibroblast growth factor 2 (FGF2) on Fos and Jun protein expression were investigated, and DNA synthesis was assessed by using bromodeoxyuridine (BrdU) incorporation. No change was detectable in the adrenal cortex at 2 days after hypophysectomy, although a reduction occurred in the number of BrdU-positive cells in the zona fasciculata. This hypophysectomy-induced early phase of adrenal cortex atrophy in the zona fasciculata was correlated with JunB protein induction, suggesting the formation of an inhibitory AP-1 complex. Accumulation of c-Jun/JunD and c-Fos/FosB, but not of JunB, in the zona fasciculata and zona reticularis implied that, after ACTH stimulation, these proteins were the principal AP-1 components in these zones. In these same zones, ACTH increased BrdU-positive cell counts, indicating that the composition of the AP-1 complex in these zones was proliferation-related. However, FGF2 induced an antagonistic modulation of the response to ACTH, by reducing the numbers of Jun-/Fos-positive cells and inhibiting DNA synthesis. Our results implicate the AP-1 family of transcription factors (in particular, the dynamics within the Jun protein family) in the regulation of cell control during ACTH-induced proliferation of the adrenal cortex.
Collapse
|
20
|
Bastida CM, Cremades A, Castells MT, López-Contreras AJ, López-García C, Sánchez-Mas J, Peñafiel R. Sexual dimorphism of ornithine decarboxylase in the mouse adrenal: influence of polyamine deprivation on catecholamine and corticoid levels. Am J Physiol Endocrinol Metab 2007; 292:E1010-7. [PMID: 17148758 DOI: 10.1152/ajpendo.00316.2006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Adrenal sexual dimorphism is thought to be important in explaining sex-related differences regarding prevalent diseases and the responses to stress and drugs. We report here that in CD1 mice there is marked sexual dimorphism affecting not only gland size and corticoid hormone secretion but also adrenal ornithine decarboxylase (ODC), polyamine, and catecholamine levels in which testosterone appears to be a major determinant. Our results show that adrenal weight, ODC activity, and corticosterone and aldosterone secretion were higher in female than in male mice and that orchidectomy brought these male parameters closer to the values found in females. mRNA levels of steroidogenic proteins SF-1, Dax-1, steroid 21-hydroxylase, and aldosterone synthase appeared to be slightly higher in female than in male adrenals. Immunocytochemical analysis of adrenal ODC revealed that immunoreactivity was higher in females than in males and was located mainly in the cortical cells, and especially in zona glomerulosa, whereas no sex differences in ODC mRNA levels were observed. These results suggest that sex-associated differences in the expression of ODC in the mouse adrenal gland appear to be related mainly to posttranscriptional mechanisms. Combination treatment of mice with alpha-difluoromethylornithine (a suicide inhibitor of ODC) and a polyamine-deficient diet produced a marked decrease in adrenal polyamine and catecholamine levels and a significant reduction in plasma corticosterone and aldosterone concentrations that were not associated with a decrease in the mRNA levels of steroidogenic proteins. All of these data suggest a relevant role for testosterone, ODC, and polyamines in the mouse adrenal function.
Collapse
Affiliation(s)
- Carmen M Bastida
- Department of Pharmacology, Faculty of Medicine, University of Murcia, Murcia, Spain
| | | | | | | | | | | | | |
Collapse
|
21
|
Li LA, Lin TCE. Interacting influence of potassium and polychlorinated biphenyl on cortisol and aldosterone biosynthesis. Toxicol Appl Pharmacol 2007; 220:252-61. [PMID: 17350062 DOI: 10.1016/j.taap.2007.01.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Revised: 01/26/2007] [Accepted: 01/29/2007] [Indexed: 10/23/2022]
Abstract
Giving human adrenocortical H295R cells 14 mM KCl for 24 h significantly induced not only aldosterone biosynthesis but also cortisol biosynthesis. Pre-treating the cells with polychlorinated biphenyl 126 (PCB126) further increased potassium-induced aldosterone and cortisol productions in a dose-dependent manner, but all examined concentrations of PCB126 had little effect on the yields of precursor steroids progesterone and 17-OH-progesterone. Subsequent examinations revealed that CYP11B1 and CYP11B2 genes, responsible for the respective final steps of the cortisol and aldosterone biosynthetic pathways, exhibited increased responsiveness to PCB126 under high potassium. While 10(-5) M PCB126 was needed to induce a significant increase in the basal mRNA abundance of either gene, PCB126 could enhance potassium-induced mRNA expression of CYP11B1 at 10(-7) M and CYP11B2 at 10(-9) M. Actually, potassium and PCB126 synergistically upregulated mRNA expression of both genes. Potassium raised the transcriptional rates of CYP11B1 and CYP11B2 probably through a conserved Ad5 cis-element, whereas PCB126 appeared to regulate these two genes at the post-transcriptional level. Positive potassium-PCB126 synergism was also detected in CYP11B2 enzyme activity estimated by aldosterone/progesterone ratio. In contrast, potassium and PCB126 increased CYP11B1 enzyme activity or cortisol/17-OH-progesterone ratio additively. Moreover, potassium improved the time effect of PCB126 on gene expression and enzyme activity of CYP11B2, but not the PCB126 time response of CYP11B1. These data demonstrated that potassium differentially enhanced the potency of PCB126 to induce CYP11B1- and CYP11B2-mediated steroidogenesis.
Collapse
Affiliation(s)
- Lih-Ann Li
- Division of Environmental Health and Occupational Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli 35053, Taiwan, ROC.
| | | |
Collapse
|
22
|
Hakki T, Bernhardt R. CYP17- and CYP11B-dependent steroid hydroxylases as drug development targets. Pharmacol Ther 2006; 111:27-52. [PMID: 16426683 DOI: 10.1016/j.pharmthera.2005.07.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2005] [Accepted: 07/22/2005] [Indexed: 01/03/2023]
Abstract
Steroid hormone biosynthesis is catalyzed by the action of a series of cytochrome P450 enzymes as well as reductases. Defects in steroid hydroxylating P450s are the cause of several severe defects such as the adrenogenital syndrome (AGS), corticosterone methyl oxidase (CMO) I or II deficiencies, or pseudohermaphroditism. In contrast, overproduction of steroid hormones can be involved in breast or prostate cancer, in hypertension, and heart fibrosis. Besides inhibiting the action of the steroid hormones on the level of steroid hormone receptors by using antihormones, which often is connected with severe side effects, more recently the steroid hydroxylases themselves turned out to be promising new targets for drug development. Since the 3-dimensional structures of steroid hydroxylases are not yet available, computer models of the corresponding CYPs may help to develop new inhibitors of these enzymes. During the past years, the necessary test systems have been developed and new compounds have been synthesized, which displayed selective and specific inhibition of CYP17, CYP11B2, and CYP11B1. With some of these potential new drugs, clinical trials are under way. It can be expected that in the near future some of these compounds will contribute to our arsenal of new and selective drugs.
Collapse
Affiliation(s)
- Tarek Hakki
- Institute of Biochemistry, P.O. Box 151150, Saarland University, D-66041 Saarbrücken, Germany
| | | |
Collapse
|
23
|
Mattos GE, Lotfi CFP. Differences between the growth regulatory pathways in primary rat adrenal cells and mouse tumor cell line. Mol Cell Endocrinol 2005; 245:31-42. [PMID: 16289304 DOI: 10.1016/j.mce.2005.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Revised: 09/20/2005] [Accepted: 10/06/2005] [Indexed: 11/16/2022]
Abstract
In this study, DNA synthesis, phosphorylation of ERK1/2 and CREB proteins, as well as induction of c-Fos protein, were examined in rat adrenocortical, glomerulosa and fasciculata/reticularis cells, as well as in the Y1 cell line. We found that FGF2 was mitogenic only in glomerulosa cells and although ACTH did not activate ERK1/2, it did activate CREB protein, indicating efficient transduction of signals initiated in the ACTH receptors of rat adrenocortical cells. The FGF2 activated ERK1/2 in rat adrenal cells by a mechanism that might be modulated by upstream PKA pathway phosphorylation of MEK and despite the nonmitogenic effect of ACTH on rat adrenal cells it effectively induces c-Fos protein. The results presented herein describe distinct differences between the ACTH and FGF2 signal transduction mechanisms seen in adrenocortical cells and those observed in the Y1 cell line, indicating that, in vitro, ACTH blockage of the mitogenic effect occurs in normal adrenal cells after induction of c-Fos protein.
Collapse
Affiliation(s)
- Gabriele E Mattos
- Department of Anatomy, Institute of Biomedical Sciences, Universidade of São Paulo, São Paulo 05508-900, SP, Brazil
| | | |
Collapse
|
24
|
Assié G, Auzan C, Gasc JM, Baviera E, Balaton A, Elalouf JM, Jeunemaitre X, Plouin PF, Corvol P, Clauser E. Steroidogenesis in aldosterone-producing adenoma revisited by transcriptome analysis. J Clin Endocrinol Metab 2005; 90:6638-49. [PMID: 16204365 DOI: 10.1210/jc.2005-1309] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Primary aldosteronism (PAL) is the most frequent cause of secondary arterial hypertension. In PAL, aldosterone production is chronic, excessive, and autonomous. OBJECTIVE The objective of this study was to identify the angiotensin-II independent alterations of steroidogenesis responsible for PAL. DESIGN Genomewide gene expression was compared in two tissues differentiated for aldosterone production, both nonstimulated by circulating angiotensin II and differing in their autonomy to produce aldosterone: aldosterone-producing adenoma (APA) and its adjacent dissected zona glomerulosa (ZG). SETTING The setting of this study was the Comete Network. PATIENTS Patients with APA were studied. INTERVENTION Transcriptome comparison was made of one APA and its adjacent ZG by serial analysis of gene expression; validation by in situ hybridization was performed for 19 genes in 11 samples. OUTCOME The study outcome was genes differentially expressed in APA and adjacent ZG. RESULTS Activation of steroidogenesis in PAL is restricted to the overexpression of the enzymes producing aldosterone-specific steroids, aldosterone synthase and also 21-hydroxylase, suggesting that upstream precursor production is not limiting. Increased expression of high-density lipoprotein receptor, adrenodoxin and P450 oxidoreductase suggests that these systems provide cholesterol and electrons to the mitochondrial steroidogenic enzymes. As for acute stimulation of aldosterone production, an activation of calcium signaling is suggested by concordant overexpression of calcium-binding proteins or effectors. Calcium activation may result from an abnormal activity of G(q) protein-coupled receptors. This calcium activation may be the starting point of the other gene expression changes observed in APA. Finally, other differentially expressed genes include three genes encoding unidentified proteins. CONCLUSION This work provides an original and integrated view of the mechanisms of aldosterone production in PAL.
Collapse
Affiliation(s)
- Guillaume Assié
- Institut National de la Santé et de la Recherche Médicale, Unité 567, Centre National de la Recherche Scientifique 8104, Université Paris 5, Institut Cochin, 24 rue du Fg Saint Jacques, 75014 Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|