1
|
Stefanakis K, Kokkorakis M, Mantzoros CS. The impact of weight loss on fat-free mass, muscle, bone and hematopoiesis health: Implications for emerging pharmacotherapies aiming at fat reduction and lean mass preservation. Metabolism 2024; 161:156057. [PMID: 39481534 DOI: 10.1016/j.metabol.2024.156057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Similar to bariatric surgery, incretin receptor agonists have revolutionized the treatment of obesity, achieving up to 15-25 % weight loss in many patients, i.e., at a rate approaching that achieved with bariatric surgery. However, over 25 % of total weight lost from both surgery and pharmacotherapy typically comes from fat-free mass, including skeletal muscle mass, which is often overlooked and can impair metabolic health and increase the risk of subsequent sarcopenic obesity. Loss of muscle and bone as well as anemia can compromise physical function, metabolic rate, and overall health, especially in older adults. The myostatin-activin-follistatin-inhibin system, originally implicated in reproductive function and subsequently muscle regulation, appears to be crucial for muscle and bone maintenance during weight loss. Activins and myostatin promote muscle degradation, while follistatins inhibit their activity in states of negative energy balance, thereby preserving lean mass. Novel compounds in the pipeline, such as Bimagrumab, Trevogrumab, and Garetosmab-which inhibit activin and myostatin signaling-have demonstrated promise in preventing muscle loss while promoting fat loss. Either alone or combined with incretin receptor agonists, these medications may enhance fat loss while preserving or even increasing muscle and bone mass, offering a potential solution for improving body composition and metabolic health during significant weight loss. Since this dual therapeutic approach could help address the challenges of muscle and bone loss during weight loss, well-designed studies are needed to optimize these strategies and assess long-term benefits. For the time being, considerations like advanced age and prefrailty may affect the choice of suitable candidates in clinical practice for current and emerging anti-obesity medications due to the associated risk of sarcopenia.
Collapse
Affiliation(s)
- Konstantinos Stefanakis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Michail Kokkorakis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Wang T, Ma X, Ma C, Wu X, ZhaXi T, Yin L, Li W, Li Y, Liang C, Yan P. Whole genome resequencing-based analysis of plateau adaptation in Meiren yak ( Bos grunniens). Anim Biotechnol 2024; 35:2298406. [PMID: 38193808 DOI: 10.1080/10495398.2023.2298406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
The Meiren yak is an important genetic resource in Gansu Province, China. In this study, we aimed to explore the evolutionary history and population structure of the genetic resource of Meiren yak and to mine the characteristic genes of Meiren yak. We analysed a total of 93 yaks of eight yak breeds based on whole genome resequencing combined with population genomics and used θπ ratio and Fst method to screen the selected sites in the genome region. The results proved that Meiren yak can be used as a potential genetic resource in Gansu Province. The genes in Meiren yak with positive selection in selection signal analysis were subjected to the Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analyses, which indicated that the genes were related to the adaptability to high altitude and hypoxic environment. By analysing the genetic variation of Meiren yak at the genome-wide level, this study provided a theoretical basis for genetic improvement of Meiren yak and for the development of high-quality yak resources.
Collapse
Affiliation(s)
- Tong Wang
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
- Life science and Engineering College, Northwest Minzu University, Lanzhou, China
| | - XiaoMing Ma
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - ChaoFan Ma
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
- Life science and Engineering College, Northwest Minzu University, Lanzhou, China
| | - XiaoYun Wu
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Ta ZhaXi
- Qilian County Veterinary Animal Husbandry Station, Qinghai, China
| | - LiXin Yin
- Huazhi Biotech Co. Ltd, Changsha, China
| | - WeiGuo Li
- Huazhi Biotech Co. Ltd, Changsha, China
| | - YuFei Li
- Huazhi Biotech Co. Ltd, Changsha, China
| | - ChunNian Liang
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Ping Yan
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| |
Collapse
|
3
|
Li C, Fang C, Chan M, Chen C, Chang Y, Hsiao M. The cytoplasmic expression of FSTL3 correlates with colorectal cancer progression, metastasis status and prognosis. J Cell Mol Med 2023; 27:672-686. [PMID: 36807490 PMCID: PMC9983317 DOI: 10.1111/jcmm.17690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 12/10/2022] [Accepted: 01/20/2023] [Indexed: 02/21/2023] Open
Abstract
Follistatin-like (FSTL) family members are associated with cancer progression. However, differences between FSTL members with identical cancer types have not been systematically investigated. Among the most malignant tumours worldwide, colorectal cancer (CRC) has high metastatic potential and chemoresistance, which makes it challenging to treat. A systematic examination of the relationship between the expression of FSTL family members in CRC will provide valuable information for prognosis and therapeutic development. Based on large cohort survival analyses, we determined that FSTL3 was associated with a significantly worse prognosis in CRC at the RNA and protein levels. Immunohistochemistry staining of CRC specimens revealed that FSTL3 expression levels in the cytosol were significantly associated with a poor prognosis in terms of overall and disease-free survival. Molecular simulation analysis showed that FSTL3 participated in multiple cell motility signalling pathways via the TGF-β1/TWIST1 axis to control CRC metastasis. The findings provide evidence of the significance of FSTL3 in the oncogenesis and metastasis of CRC. FSTL3 may be useful as a diagnostic or prognostic biomarker, and as a potential therapeutic target.
Collapse
Affiliation(s)
| | - Chih‐Yeu Fang
- National Institute of Infectious Diseases and VaccinologyNational Health Research InstitutesMiaoliTaiwan
| | | | - Chi‐Long Chen
- Department of Pathology, School of Medicine, College of MedicineTaipei Medical UniversityTaipeiTaiwan,Department of PathologyTaipei Medical University HospitalTaipeiTaiwan
| | - Yu‐Chan Chang
- Department of Biomedical Imaging and Radiological SciencesNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Michael Hsiao
- Genomics Research CenterAcademia SinicaTaipeiTaiwan,Department of BiochemistryKaohsiung Medical UniversityKaohsiungTaiwan
| |
Collapse
|
4
|
Tian S, Xu X, Yang X, Fan L, Jiao Y, Zheng M, Zhang S. Roles of follistatin-like protein 3 in human non-tumor pathophysiologies and cancers. Front Cell Dev Biol 2022; 10:953551. [PMID: 36325361 PMCID: PMC9619213 DOI: 10.3389/fcell.2022.953551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 10/07/2022] [Indexed: 11/13/2022] Open
Abstract
Follistatin-like protein 3 (FSTL3) is a type of FSTLs. By interacting with a disintegrin and metalloproteinase 12 (ADAM12), transforming growth factor-β ligands (activin, myostatin and growth differentiation factor (GDF) 11), FSTL3 can either activate or inhibit these molecules in human non-tumor pathophysiologies and cancers. The FSTL3 gene was initially discovered in patients with in B-cell chronic lymphocytic leukemia, and subsequent studies have shown that the FSTL3 protein is associated with reproductive development, insulin resistance, and hematopoiesis. FSTL3 reportedly contributes to the development and progression of many cancers by promoting tumor metastasis, facilitating angiogenesis, and inducing stem cell differentiation. This review summarizes the current pathophysiological roles of FSTL3, which may be a putative prognostic biomarker for various diseases and serve as a potential therapeutic target.
Collapse
Affiliation(s)
- Shifeng Tian
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Xiaoyi Xu
- Department of Stomatology, Tianjin Union Medical Center, Tianjin, China
| | - Xiaohui Yang
- Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Linlin Fan
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuqi Jiao
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Minying Zheng
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
- *Correspondence: Shiwu Zhang,
| |
Collapse
|
5
|
Follistatin dysregulation impaired trophoblast biological functions by GDF11-Smad2/3 axis in preeclampsia placentas. Placenta 2022; 121:145-154. [PMID: 35339026 DOI: 10.1016/j.placenta.2022.03.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Preeclampsia (PE) is one of the main causes of maternal, fetal, and neonatal mortality. So far, the underlying mechanism of this pregnancy-specific syndrome remains unelucidated. The expression of Follistatin (FST) decreased in maternal serum (especially early onset severe PE) and placental trophoblasts of PE patients. However, whether FST-deficiency in preeclamptic placentas alters trophoblast function remains to be determined. METHODS Trophoblast cell lines were cultured in vitro and LV3 short hairpin RNA (shRNA) was used to silence FST. Growth and differentiation factor 11 (GDF11) expression level in placentas and serum were detected by immunohistochemistry and enzyme-linked immune-sorbent assay, respectively. To verify the effect of reduced FST expression on trophoblasts, microRNA-24-3p, which was predicted to target the 3'-untranslated region (3'-UTR) of FST, was screened out, and miR-24-3p mimic, inhibitor was used to regulate FST expression in trophoblasts. RESULTS Downregulation of FST significantly enhanced the apoptosis and impaired migration and invasion of trophoblast. Reduced FST caused the upregulation of GDF11 in trophoblasts. Interestingly, GDF11 reduced in preeclamptic placental microvascular endothelial cells. Dysregulation of FST-GDF11-Smad2/3 signaling pathway, leading to increased apoptosis of trophoblast. Expression levels of miR-24-3p, was significantly elevated in preeclamptic placentas. Trophoblast cells transfected with miR-24-3p mimics displayed impaired migration and invasion and increased apoptosis. Treated by miR-24-3p inhibitor, trophoblast cells exhibited rescued function. DISCUSSION FST-deficiency impaired trophoblast function by upregulating GDF11 levels in trophoblasts. The regulation of FST-GDF11-Smad2/3 axis by microRNAs mimic or inhibitor may be critical to trophoblast function regulation and helps to deepen our understanding of the molecular mechanism of PE.
Collapse
|
6
|
Guyot B, Lefort S, Voeltzel T, Pécheur EI, Maguer-Satta V. Altered BMP2/4 Signaling in Stem Cells and Their Niche: Different Cancers but Similar Mechanisms, the Example of Myeloid Leukemia and Breast Cancer. Front Cell Dev Biol 2022; 9:787989. [PMID: 35047500 PMCID: PMC8762220 DOI: 10.3389/fcell.2021.787989] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/14/2021] [Indexed: 12/31/2022] Open
Abstract
Understanding mechanisms of cancer development is mandatory for disease prevention and management. In healthy tissue, the microenvironment or niche governs stem cell fate by regulating the availability of soluble molecules, cell-cell contacts, cell-matrix interactions, and physical constraints. Gaining insight into the biology of the stem cell microenvironment is of utmost importance, since it plays a role at all stages of tumorigenesis, from (stem) cell transformation to tumor escape. In this context, BMPs (Bone Morphogenetic Proteins), are key mediators of stem cell regulation in both embryonic and adult organs such as hematopoietic, neural and epithelial tissues. BMPs directly regulate the niche and stem cells residing within. Among them, BMP2 and BMP4 emerged as master regulators of normal and tumorigenic processes. Recently, a number of studies unraveled important mechanisms that sustain cell transformation related to dysregulations of the BMP pathway in stem cells and their niche (including exposure to pollutants such as bisphenols). Furthermore, a direct link between BMP2/BMP4 binding to BMP type 1 receptors and the emergence and expansion of cancer stem cells was unveiled. In addition, a chronic exposure of normal stem cells to abnormal BMP signals contributes to the emergence of cancer stem cells, or to disease progression independently of the initial transforming event. In this review, we will illustrate how the regulation of stem cells and their microenvironment becomes dysfunctional in cancer via the hijacking of BMP signaling with main examples in myeloid leukemia and breast cancers.
Collapse
Affiliation(s)
- Boris Guyot
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Université de Lyon, Lyon, France
- Department of Cancer Initiation and Tumor Cell Identity, Lyon, France
- Université de Lyon 1, Lyon, France
- Centre Leon Bérard, Lyon, France
| | - Sylvain Lefort
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Université de Lyon, Lyon, France
- Department of Cancer Initiation and Tumor Cell Identity, Lyon, France
- Université de Lyon 1, Lyon, France
- Centre Leon Bérard, Lyon, France
| | - Thibault Voeltzel
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Université de Lyon, Lyon, France
- Department of Cancer Initiation and Tumor Cell Identity, Lyon, France
- Université de Lyon 1, Lyon, France
- Centre Leon Bérard, Lyon, France
| | - Eve-Isabelle Pécheur
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Université de Lyon, Lyon, France
- Department of Cancer Initiation and Tumor Cell Identity, Lyon, France
- Université de Lyon 1, Lyon, France
- Centre Leon Bérard, Lyon, France
| | - Véronique Maguer-Satta
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Université de Lyon, Lyon, France
- Department of Cancer Initiation and Tumor Cell Identity, Lyon, France
- Université de Lyon 1, Lyon, France
| |
Collapse
|
7
|
Liu Y, Li J, Zeng S, Zhang Y, Zhang Y, Jin Z, Liu S, Zou X. Bioinformatic Analyses and Experimental Verification Reveal that High FSTL3 Expression Promotes EMT via Fibronectin-1/α5β1 Interaction in Colorectal Cancer. Front Mol Biosci 2021; 8:762924. [PMID: 34901156 PMCID: PMC8652210 DOI: 10.3389/fmolb.2021.762924] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Colorectal cancer (CRC) is a typical cancer prevalent worldwide. Despite the conventional treatments, CRC has a poor prognosis due to relapse and metastasis. Moreover, there is a dearth of sensitive biomarkers for predicting prognosis in CRC. Methods: This study used a bioinformatics approach combining validation experiments to examine the value of follistatin-like 3 (FSTL3) as a prognostic predictor and therapeutic target in CRC. Results:FSTL3 was remarkably upregulated in the CRC samples. FSTL3 overexpression was significantly associated with a poor prognosis. FSTL3 was found to activate the epithelial-mesenchymal transition by promoting the binding of FN1 to α5β1. FSTL3 expression was also positively correlated with the abundance of the potent immunosuppressors, M2 macrophages. Conclusion:FSTL3 overexpression affects CRC prognosis and thus, FSTL3 can be a prognostic biomarker and therapeutic target with potential applications in CRC.
Collapse
Affiliation(s)
- Yuanjie Liu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China.,No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiepin Li
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China.,No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China.,Department of Oncology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Shuhong Zeng
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China.,No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ying Zhang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China.,No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yonghua Zhang
- Department of Oncology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Zhichao Jin
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Shenlin Liu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China.,No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xi Zou
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| |
Collapse
|
8
|
Qiu W, Kuo CY, Tian Y, Su GH. Dual Roles of the Activin Signaling Pathway in Pancreatic Cancer. Biomedicines 2021; 9:biomedicines9070821. [PMID: 34356885 PMCID: PMC8301451 DOI: 10.3390/biomedicines9070821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/29/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
Activin, a member of the TGF-β superfamily, is involved in many physiological processes, such as embryonic development and follicle development, as well as in multiple human diseases including cancer. Genetic mutations in the activin signaling pathway have been reported in many cancer types, indicating that activin signaling plays a critical role in tumorigenesis. Recent evidence reveals that activin signaling may function as a tumor-suppressor in tumor initiation, and a promoter in the later progression and metastasis of tumors. This article reviews many aspects of activin, including the signaling cascade of activin, activin-related proteins, and its role in tumorigenesis, particularly in pancreatic cancer development. The mechanisms regulating its dual roles in tumorigenesis remain to be elucidated. Further understanding of the activin signaling pathway may identify potential therapeutic targets for human cancers and other diseases.
Collapse
Affiliation(s)
- Wanglong Qiu
- The Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; (W.Q.); (C.K.); (Y.T.)
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Chia-Yu Kuo
- The Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; (W.Q.); (C.K.); (Y.T.)
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Yu Tian
- The Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; (W.Q.); (C.K.); (Y.T.)
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Gloria H. Su
- The Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; (W.Q.); (C.K.); (Y.T.)
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Otolaryngology and Head and Neck Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
- Correspondence:
| |
Collapse
|
9
|
Rybtsova N, Berezina T, Kagansky A, Rybtsov S. Can Blood-Circulating Factors Unveil and Delay Your Biological Aging? Biomedicines 2020; 8:E615. [PMID: 33333870 PMCID: PMC7765271 DOI: 10.3390/biomedicines8120615] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 12/15/2022] Open
Abstract
According to the World Health Organization, the population of over 60 will double in the next 30 years in the developed countries, which will enforce a further raise of the retirement age and increase the burden on the healthcare system. Therefore, there is an acute issue of maintaining health and prolonging active working longevity, as well as implementation of early monitoring and prevention of premature aging and age-related disorders to avoid early disability. Traditional indicators of biological age are not always informative and often require extensive and expensive analysis. The study of blood factors is a simple and easily accessible way to assess individual health and supplement the traditional indicators of a person's biological age with new objective criteria. With age, the processes of growth and development, tissue regeneration and repair decline; they are gradually replaced by enhanced catabolism, inflammatory cell activity, and insulin resistance. The number of senescent cells supporting the inflammatory loop rises; cellular clearance by autophagy and mitophagy slows down, resulting in mitochondrial and cellular damage and dysfunction. Monitoring of circulated blood factors not only reflects these processes, but also allows suggesting medical intervention to prevent or decelerate the development of age-related diseases. We review the age-related blood factors discussed in recent publications, as well as approaches to slowing aging for healthy and active longevity.
Collapse
Affiliation(s)
- Natalia Rybtsova
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK;
| | - Tatiana Berezina
- Department of Scientific Basis of Extreme Psychology, Moscow State University of Psychology and Education, 127051 Moscow, Russia;
| | - Alexander Kagansky
- Centre for Genomic and Regenerative Medicine, School of Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia
| | - Stanislav Rybtsov
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK;
| |
Collapse
|
10
|
Characterization and expression of the follistatin-related protein gene in golden pompano Trachinotus ovatus larvae. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Ayaz-Guner S, Alessio N, Acar MB, Aprile D, Özcan S, Di Bernardo G, Peluso G, Galderisi U. A comparative study on normal and obese mice indicates that the secretome of mesenchymal stromal cells is influenced by tissue environment and physiopathological conditions. Cell Commun Signal 2020; 18:118. [PMID: 32727501 PMCID: PMC7388533 DOI: 10.1186/s12964-020-00614-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/23/2020] [Indexed: 12/11/2022] Open
Abstract
Background The term mesenchymal stromal cells (MSCs) designates an assorted cell population comprised of stem cells, progenitor cells, fibroblasts, and stromal cells. MSCs contribute to the homeostatic maintenance of many organs through paracrine and long-distance signaling. Tissue environment, in both physiological and pathological conditions, may affect the intercellular communication of MSCs. Methods We performed a secretome analysis of MSCs isolated from subcutaneous adipose tissue (sWAT) and visceral adipose tissue (vWAT), and from bone marrow (BM), of normal and obese mice. Results The MSCs isolated from tissues of healthy mice share a common core of released factors: components of cytoskeletal and extracellular structures; regulators of basic cellular functions, such as protein synthesis and degradation; modulators of endoplasmic reticulum stress; and counteracting oxidative stress. It can be hypothesized that MSC secretome beneficially affects target cells by the horizontal transfer of many released factors. Each type of MSC may exert specific signaling functions, which could be determined by looking at the many factors that are exclusively released from every MSC type. The vWAT-MSCs release factors that play a role in detoxification activity in response to toxic substances and drugs. The sWAT-MSC secretome contains proteins involved in in chondrogenesis, osteogenesis, and angiogenesis. Analysis of BM-MSC secretome revealed that these cells exert a signaling function by remodeling extracellular matrix structures, such as those containing glycosaminoglycans. Obesity status profoundly modified the secretome content of MSCs, impairing the above-described activity and promoting the release of inflammatory factors. Conclusion We demonstrated that the content of MSC secretomes depends on tissue microenvironment and that pathological condition may profoundly alter its composition. Video abstract
Collapse
Affiliation(s)
- Serife Ayaz-Guner
- Department of Molecular Biology and Genetics, Faculty of Life and Natural Science, Abdullah Gül University, Kayseri, Turkey
| | - Nicola Alessio
- Department of Experimental Medicine, Luigi Vanvitelli Campania University, Naples, Italy
| | - Mustafa B Acar
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey.,Department of Biology, Faculty of Sciences; Erciyes University, Kayseri, Turkey
| | - Domenico Aprile
- Department of Experimental Medicine, Luigi Vanvitelli Campania University, Naples, Italy
| | - Servet Özcan
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey.,Department of Biology, Faculty of Sciences; Erciyes University, Kayseri, Turkey
| | - Giovanni Di Bernardo
- Department of Experimental Medicine, Luigi Vanvitelli Campania University, Naples, Italy
| | | | - Umberto Galderisi
- Department of Experimental Medicine, Luigi Vanvitelli Campania University, Naples, Italy. .,Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey. .,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, 1900 N. 12th St, Philadelphia, PA, 19107-6799, USA.
| |
Collapse
|
12
|
Deutsch JL, Heath JL. MLLT10 in benign and malignant hematopoiesis. Exp Hematol 2020; 87:1-12. [PMID: 32569758 DOI: 10.1016/j.exphem.2020.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 01/01/2023]
Abstract
Non-random chromosomal translocations involving the putative transcription factor Mixed Lineage Leukemia Translocated to 10 (MLLT10, also known as AF10) are commonly observed in both acute myeloid and lymphoid leukemias and are indicative of a poor prognosis. Despite the well-described actions of oncogenic MLLT10 fusion proteins, the role of wild-type MLLT10 in hematopoiesis is not well characterized. The protein structure and several interacting partners have been described and provide indications as to the potential functions of MLLT10. This review examines these aspects of MLLT10, contextualizing its function in benign and malignant hematopoiesis.
Collapse
Affiliation(s)
- Jamie L Deutsch
- Department of Pediatrics, University of Vermont, Burlington, VT
| | - Jessica L Heath
- Department of Pediatrics, University of Vermont, Burlington, VT; Department of Biochemistry, University of Vermont, Burlington, VT 05405; University of Vermont Cancer Center, Burlington, VT.
| |
Collapse
|
13
|
Jing X, Wu H, Cheng X, Chen X, Zhang Y, Shi M, Zhang T, Wang X, Zhao R. MLLT10 promotes tumor migration, invasion, and metastasis in human colorectal cancer. Scand J Gastroenterol 2018; 53:964-971. [PMID: 30102091 DOI: 10.1080/00365521.2018.1481521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVES Colorectal cancer (CRC), one of the most aggressive gastrointestinal malignancies, is a frequently diagnosed life-threatening cancer worldwide. Most CRC patients have poor prognosis mainly because of frequent metastasis and recurrence. Thus, it is crucial to find out some new biomarkers and to show deeper insights into the mechanisms of CRC. MLLT10, Myeloid/lymphoid or mixed-lineage leukemia translocated to 10, also known as AF10, a recurrent MLL partner. In this study, we found that MLLT10 promotes CRC tumor invasion and metastasis both in vitro and in vivo. METHODS Here, the expression of MLLT10 was evaluated by immunohistochemistry. Then, the plasmid and lentivirus particles for MLLT10 overexpression or knockdown were designed and constructed into SW620 and HT29 cells. Finally, cell proliferation assay, cell adhesion assay, transwell migration, and invasion assay were used to detect the migration and invasion ability of MLLT10 in CRC cells. A tail vein injection assay was employed to evaluate the role of MLLT10 in tumor metastases. RESULTS MLLT10 expression was significantly higher in CRC tissues than in noncancerous tissues and was associated with some clinicopathological factors. In vitro, the overexpression of MLLT10 promoted CRC cell migration and invasion, while after MLLT10 was knocked down, the opposite results were observed. Furthermore, we used animal metastasis models to detect the function of MLLT10 in vivo, the results are same with the outcomes in vitro. In lung metastasis sites, the knockdown of MLLT10 in SW620 cells significantly inhibited Vimentin expression, whereas the E-Cadherin was increased. CONCLUSIONS These results indicate that MLLT10 regulates the metastasis of CRC cells via EMT.
Collapse
Affiliation(s)
- Xiaoqian Jing
- a Department of Surgery, Ruijin Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Haoxuan Wu
- a Department of Surgery, Ruijin Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Xi Cheng
- a Department of Surgery, Ruijin Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Xianze Chen
- a Department of Surgery, Ruijin Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Yaqi Zhang
- a Department of Surgery, Ruijin Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Minmin Shi
- a Department of Surgery, Ruijin Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Tao Zhang
- a Department of Surgery, Ruijin Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Xiongjun Wang
- b Precise Genome Engineering Center, School of Life Sciences , Guangzhou University , Guangzhou , China
| | - Ren Zhao
- a Department of Surgery, Ruijin Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai , China
| |
Collapse
|
14
|
Kelaini S, Vilà-González M, Caines R, Campbell D, Eleftheriadou M, Tsifaki M, Magee C, Cochrane A, O'neill K, Yang C, Stitt AW, Zeng L, Grieve DJ, Margariti A. Follistatin-Like 3 Enhances the Function of Endothelial Cells Derived from Pluripotent Stem Cells by Facilitating β-Catenin Nuclear Translocation Through Inhibition of Glycogen Synthase Kinase-3β Activity. Stem Cells 2018; 36:1033-1044. [PMID: 29569797 PMCID: PMC6099345 DOI: 10.1002/stem.2820] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 02/10/2018] [Accepted: 03/13/2018] [Indexed: 12/12/2022]
Abstract
The fight against vascular disease requires functional endothelial cells (ECs) which could be provided by differentiation of induced Pluripotent Stem Cells (iPS Cells) in great numbers for use in the clinic. However, the great promise of the generated ECs (iPS-ECs) in therapy is often restricted due to the challenge in iPS-ECs preserving their phenotype and function. We identified that Follistatin-Like 3 (FSTL3) is highly expressed in iPS-ECs, and, as such, we sought to clarify its possible role in retaining and improving iPS-ECs function and phenotype, which are crucial in increasing the cells' potential as a therapeutic tool. We overexpressed FSTL3 in iPS-ECs and found that FSTL3 could induce and enhance endothelial features by facilitating β-catenin nuclear translocation through inhibition of glycogen synthase kinase-3β activity and induction of Endothelin-1. The angiogenic potential of FSTL3 was also confirmed both in vitro and in vivo. When iPS-ECs overexpressing FSTL3 were subcutaneously injected in in vivo angiogenic model or intramuscularly injected in a hind limb ischemia NOD.CB17-Prkdcscid/NcrCrl SCID mice model, FSTL3 significantly induced angiogenesis and blood flow recovery, respectively. This study, for the first time, demonstrates that FSTL3 can greatly enhance the function and maturity of iPS-ECs. It advances our understanding of iPS-ECs and identifies a novel pathway that can be applied in cell therapy. These findings could therefore help improve efficiency and generation of therapeutically relevant numbers of ECs for use in patient-specific cell-based therapies. In addition, it can be particularly useful toward the treatment of vascular diseases instigated by EC dysfunction. Stem Cells 2018;36:1033-1044.
Collapse
Affiliation(s)
- Sophia Kelaini
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Marta Vilà-González
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Rachel Caines
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - David Campbell
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | | | - Marianna Tsifaki
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Corey Magee
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Amy Cochrane
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Karla O'neill
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Chunbo Yang
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Alan W Stitt
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Lingfang Zeng
- Cardiovascular Division, King's College London, London, United Kingdom
| | - David J Grieve
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Andriana Margariti
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
15
|
Zylbersztejn F, Flores-Violante M, Voeltzel T, Nicolini FE, Lefort S, Maguer-Satta V. The BMP pathway: A unique tool to decode the origin and progression of leukemia. Exp Hematol 2018; 61:36-44. [PMID: 29477370 DOI: 10.1016/j.exphem.2018.02.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/08/2018] [Accepted: 02/13/2018] [Indexed: 12/25/2022]
Abstract
The microenvironment (niche) governs the fate of stem cells (SCs) by balancing self-renewal and differentiation. Increasing evidence indicates that the tumor niche plays an active role in cancer, but its important properties for tumor initiation progression and resistance remain to be identified. Clinical data show that leukemic stem cell (LSC) survival is responsible for disease persistence and drug resistance, probably due to their sustained interactions with the tumor niche. Bone morphogenetic protein (BMP) signaling is a key pathway controlling stem cells and their niche. BMP2 and BMP4 are important in both the normal and the cancer context. Several studies have revealed profound alterations of the BMP signaling in cancer SCs, with major deregulations of the BMP receptors and their downstream signaling elements. This was illustrated in the hematopoietic system by pioneer studies in chronic myelogenous leukemia that may now be expanded to acute myeloid leukemia and lymphoid leukemia, as reviewed here. At diagnosis, cells from the leukemic microenvironment are the major providers of soluble BMPs. Conversely, LSCs display altered receptors and downstream BMP signaling elements accompanied by altered functional responses to BMPs. These studies reveal the role of BMPs in tumor initiation, in addition to their known effects in later stages of transformation and progression. They also reveal the importance of BMPs in fueling cell transformation and expansion by overamplifying a natural SC response. This mechanism may explain the survival of LSCs independently of the initial oncogenic event and therefore may be involved in resistance processes.
Collapse
Affiliation(s)
- Florence Zylbersztejn
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 5286, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France; Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France; Université de Lyon, 69000, Lyon, France; Department of Signaling of Tumor Escape, Lyon, France
| | - Mario Flores-Violante
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 5286, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France; Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France; Université de Lyon, 69000, Lyon, France; Department of Signaling of Tumor Escape, Lyon, France
| | - Thibault Voeltzel
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 5286, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France; Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France; Université de Lyon, 69000, Lyon, France; Department of Signaling of Tumor Escape, Lyon, France
| | - Franck-Emmanuel Nicolini
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 5286, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France; Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France; Université de Lyon, 69000, Lyon, France; Department of Signaling of Tumor Escape, Lyon, France; Centre Léon Bérard, 69000 Lyon, France
| | - Sylvain Lefort
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 5286, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France; Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France; Université de Lyon, 69000, Lyon, France; Department of Signaling of Tumor Escape, Lyon, France
| | - Véronique Maguer-Satta
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 5286, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France; Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France; Université de Lyon, 69000, Lyon, France; Department of Signaling of Tumor Escape, Lyon, France.
| |
Collapse
|
16
|
Serum cytokine profile in patients with breast cancer. Cytokine 2017; 89:173-178. [DOI: 10.1016/j.cyto.2015.12.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 12/22/2015] [Accepted: 12/23/2015] [Indexed: 12/31/2022]
|
17
|
Schmid H, Jelkmann W. Investigational therapies for renal disease-induced anemia. Expert Opin Investig Drugs 2016; 25:901-16. [DOI: 10.1080/13543784.2016.1182981] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
18
|
The effects of Gremlin1 on human umbilical cord blood hematopoietic progenitors. Blood Cells Mol Dis 2015; 54:103-9. [DOI: 10.1016/j.bcmd.2014.07.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 07/15/2014] [Indexed: 11/21/2022]
|
19
|
Aguirre Palma LM, Gehrke I, Kreuzer KA. Angiogenic factors in chronic lymphocytic leukaemia (CLL): Where do we stand? Crit Rev Oncol Hematol 2014; 93:225-36. [PMID: 25459668 DOI: 10.1016/j.critrevonc.2014.10.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 07/23/2014] [Accepted: 10/01/2014] [Indexed: 01/09/2023] Open
Abstract
The role of angiogenesis in haematological malignancies such as chronic lymphocytic leukaemia (CLL) is difficult to envision, because leukaemia cells are not dependent on a network of blood vessels to support basic physiological requirements. Regardless, CLL cells secrete high levels of major angiogenic factors, such as vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), and platelet derived growth factor (PDGF). Nonetheless, it remains unclear how most angiogenic factors regulate accumulation and delayed apoptosis of CLL cells. Angiogenic factors such as leptin, granulocyte colony-stimulating factor (G-CSF), follistatin, angiopoietin-1 (Ang1), angiogenin (ANG), midkine (MK), pleiotrophin (PTN), progranulin (PGRN), proliferin (PLF), placental growth factor (PIGF), and endothelial locus-1 (Del-1), represent novel therapeutic targets of future CLL research but have remained widely overlooked. This review aims to outline our current understanding of angiogenic growth factors and their relationship with CLL, a still uncured haematopoietic malignancy.
Collapse
Affiliation(s)
| | - Iris Gehrke
- Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, MB, Canada.
| | - Karl-Anton Kreuzer
- Department I of Internal Medicine, University of Cologne, Cologne, Germany.
| |
Collapse
|
20
|
Jelkmann W. The ESA scenario gets complex: from biosimilar epoetins to activin traps. Nephrol Dial Transplant 2014; 30:553-9. [PMID: 24748667 DOI: 10.1093/ndt/gfu089] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Recombinant human erythropoietin (rhEpo, epoetin) has proved beneficial in preventing transfusion-dependent anaemia in patients with chronic kidney disease. Apart from copied epoetins distributed in less regulated markets, 'biosimilar' epoetins have gained currency in many regions, where they compete with the originals and with rhEpo analogues with prolonged survival in circulation ('biobetter'). Recombinant erythropoiesis stimulating agents are potent and well tolerated. However, their production is costly, and they must be administered by the parenteral route. Hence, other anti-anaemia treatments are being evaluated. Clinical trials are being performed with stabilizers of the hypoxia-inducible transcription factors (HIFs), which increase endogenous Epo production. HIF stabilizers are chemical drugs and they are active on oral administration. However, there is fear that they may promote tumour growth. Epo mimetic peptides have also raised expectations. Yet the prototype peginesatide was recalled after just 1 year of its widespread use in the USA because of serious side-effects including cases of death. Most recently, clinical trials have been initiated with sotatercept, a recombinant soluble activin receptor type 2A IgG-Fc fusion protein. Sotatercept binds distinct members of the transforming growth factor-β family, thereby preventing the inhibitory action of these factors in erythropoiesis. Taken together, rhEpo and its long-acting recombinant analogues will likely remain mainstay of anti-anaemia therapies in the near future.
Collapse
|
21
|
Founds SA, Ren D, Roberts JM, Jeyabalan A, Powers RW. Follistatin-like 3 across gestation in preeclampsia and uncomplicated pregnancies among lean and obese women. Reprod Sci 2014; 22:402-9. [PMID: 24700053 DOI: 10.1177/1933719114529372] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The purpose of this study was to examine circulating maternal follistatin-like 3 (FSTL-3) by gestational age and obesity in pregnancy and preeclampsia. FSTL-3 was quantified in maternal plasma collected in each trimester from prepregnancy body mass index-determined groups: 15 lean and 24 obese controls and 20 obese women who developed preeclampsia. Repeated measures mixed models and logistic regression were conducted (P ≤ .05). FSTL-3 was not related to maternal adiposity. FSTL-3 changed across pregnancy in lean controls and obese preeclampsia but not in obese controls. FSTL-3 was higher in preeclampsia in the second trimester compared to lean controls and in the third trimester compared to both control groups. Elevated FSTL-3 at mid-gestation was associated with an increased odds of preeclampsia (odds ratio 3.15; 95% confidence interval 1.19-8.36; P = .02). Elevated FSTL-3 concentrations were attributable to preeclampsia and were associated with increased likelihood of later developing preeclampsia, suggesting further study as a biomarker prior to clinically evident disease.
Collapse
Affiliation(s)
- Sandra A Founds
- School of Nursing, University of Pittsburgh, Pittsburgh, PA, USA Magee-Womens Research Institute and Foundation, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dianxu Ren
- School of Nursing, University of Pittsburgh, Pittsburgh, PA, USA Center for Research and Evaluation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - James M Roberts
- Magee-Womens Research Institute and Foundation, University of Pittsburgh, Pittsburgh, PA, USA Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA Clinical and Translational Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Arun Jeyabalan
- Magee-Womens Research Institute and Foundation, University of Pittsburgh, Pittsburgh, PA, USA Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Robert W Powers
- Magee-Womens Research Institute and Foundation, University of Pittsburgh, Pittsburgh, PA, USA Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
22
|
Breda L, Rivella S. Modulators of erythropoiesis: emerging therapies for hemoglobinopathies and disorders of red cell production. Hematol Oncol Clin North Am 2014; 28:375-86. [PMID: 24589272 PMCID: PMC3970239 DOI: 10.1016/j.hoc.2013.12.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Use of new compound such as inhibitors of JAK2 or transforming growth factor β-like molecules might soon revolutionize the treatment of β-thalassemia and related disorders. However, this situation requires careful optimization, noting the potential for off-target immune suppression for JAK2 inhibitors and the lack of mechanistic insights for the use of the ligand trap soluble molecules that sequester ligands of activin receptor IIA and B.
Collapse
Affiliation(s)
- Laura Breda
- Department of Pediatrics, Hematology-Oncology, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10021, USA.
| | - Stefano Rivella
- Department of Pediatrics, Hematology-Oncology, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10021, USA; Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10021, USA
| |
Collapse
|
23
|
Primitive CML cell expansion relies on abnormal levels of BMPs provided by the niche and on BMPRIb overexpression. Blood 2013; 122:3767-77. [PMID: 24100446 DOI: 10.1182/blood-2013-05-501460] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Leukemic stem cells in chronic phase chronic myelogenous leukemia (CP-CML) are responsible for disease persistence and eventual drug resistance, most likely because they survive, expand, and are sustained through interactions with their microenvironment. Bone morphogenetic proteins 2 (BMP2) and 4 (BMP4) regulate the fate and proliferation of normal hematopoietic stem cells, as well as interactions with their niche. We show here that the intrinsic expression of members of the BMP response pathway are deregulated in CML cells with differences exhibited in mature (CD34(-)) and immature (CD34(+)) compartments. These changes are accompanied by altered functional responses of primitive leukemic cells to BMP2 and BMP4 and strong increases in soluble BMP2 and BMP4 in the CML bone marrow. Using primary cells and a cell line mimicking CP-CML, we found that myeloid progenitor expansion is driven by the exposure of immature cells overexpressing BMP receptor Ib to BMP2 and BMP4. In summary, we demonstrate that deregulation of intracellular BMP signaling in primary CP-CML samples corrupts and amplifies their response to exogenous BMP2 and BMP4, which are abnormally abundant within the tumor microenvironment. These results provide new insights with regard to leukemic stem cell biology and suggest possibilities for the development of novel therapeutic tools specifically targeting the CML niche.
Collapse
|
24
|
AF10 plays a key role in the survival of uncommitted hematopoietic cells. PLoS One 2012; 7:e51626. [PMID: 23284727 PMCID: PMC3526614 DOI: 10.1371/journal.pone.0051626] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 11/02/2012] [Indexed: 12/11/2022] Open
Abstract
Hematopoiesis is a complex process regulated by both cell intrinsic and cell extrinsic factors. Alterations in the expression of critical genes during hematopoiesis can modify the balance between stem cell differentiation and proliferation, and may ultimately give rise to leukemia and other diseases. AF10 is a transcription factor that has been implicated in the development of leukemia following chromosomal rearrangements between the AF10 gene and one of at least two other genes, MLL and CALM. The link between AF10 and leukemia, together with the known interactions between AF10 and hematopoietic regulators, suggests that AF10 may be important in hematopoiesis and in leukemic transformation. Here we show that AF10 is important for proper hematopoietic differentiation. The induction of hematopoietic differentiation in both human hematopoietic cell lines and murine total bone marrow cells triggers a decrease of AF10 mRNA and protein levels, particularly in stem cells and multipotent progenitors. Gain- and loss-of-function studies demonstrate that over- or under-expression of AF10 leads to apoptotic cell death in stem cells and multipotent progenitors. We conclude that AF10 plays a key role in the maintenance of multipotent hematopoietic cells.
Collapse
|
25
|
Huang HM, Li YC, Chung MH. Activin A induction of erythroid differentiation through MKK6-p38alpha/p38beta pathway is inhibited by follistatin. J Cell Physiol 2010; 223:687-94. [PMID: 20162623 DOI: 10.1002/jcp.22074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Activin A is a member of the transforming growth factor (TGF)-beta superfamily that regulates cell proliferation and differentiation. Using the p38 inhibitor SB203580, our previous studies demonstrated that p38 was involved in activin A-mediated hemoglobin (Hb) synthesis in K562 cells. SB203580 is an inhibitor of p38alpha and p38beta isoforms. In this study, we show that p38alpha and p38beta mRNA were expressed in K562 cells and that activin A activated the kinase activities of these isoforms. To investigate the roles of p38alpha and p38beta isoforms in activin A-mediated erythroid differentiation, we generated stable clones that over-expressed the dominant negative p38 isoforms p38alpha(AF) and p38beta(AF) in K562 cells. The expressions of either p38alpha(AF) or p38beta(AF) reduced activin A-induced p38 activation, Hb synthesis, and zeta-globin promoter activity. Similarly, down-regulation of either p38alpha or p38beta by isoform-specific siRNAs also reduced activin A-induced zeta-globin promoter activity. Co-expressions of p38alpha(AF) and p38beta(AF), together, greatly inhibited the transcription activity of the zeta-globin promoter. Conversely, expression of mitogen-activated protein kinase kinase (MKK) 6b(E), a constitutive activator of p38, significantly activated zeta-globin promoter. Co-expressions of either p38alpha or p38beta with MKK6b had a similar activation of zeta-globin promoter. Activin A induction of erythroid differentiation was inhibited by follistatin. Activin A-induced phosphorylation of MKK6 and p38 was also inhibited by follistatin. Moreover, over-expression of MKK6b(E) reverted follistatin inhibition of activin A-induced zeta-globin promoter activity. These results demonstrate that activin A induces erythroid differentiation of K562 cells through activation of MKK6-p38alpha/p38beta pathway and follistatin inhibits those effects.
Collapse
Affiliation(s)
- Huei-Mei Huang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | | | | |
Collapse
|
26
|
BMP4 regulation of human megakaryocytic differentiation is involved in thrombopoietin signaling. Blood 2008; 112:3154-63. [PMID: 18664625 DOI: 10.1182/blood-2008-03-145326] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Activin A, BMP2, and BMP4, 3 members of the transforming growth factor-beta family, are involved in the regulation of hematopoiesis. Here, we explored the role of these molecules in human megakaryopoiesis using an in vitro serum-free assay. Our results highlight for the first time that, in the absence of thrombopoietin, BMP4 is able to induce CD34(+) progenitor differentiation into megakaryocytes through all stages. Although we have previously shown that activin A and BMP2 are involved in erythropoietic commitment, these molecules have no effect on human megakaryopoietic engagement and differentiation. Using signaling pathway-specific inhibitors, we show that BMP4, like thrombopoietin, exerts its effects on human megakaryopoiesis through the JAK/STAT and mTor pathways. Inhibition of the BMP signaling pathway with blocking antibodies, natural soluble inhibitors (FLRG or follistatin), or soluble BMP receptors reveals that thrombopoietin uses the BMP4 pathway to induce megakaryopoiesis, whereas the inverse is not occurring. Finally, we show that thrombopoietin up-regulates the BMP4 autocrine loop in megakaryocytic progenitors by inducing their production of BMP4 and up-regulating BMP receptor expression. In summary, this work indicates that BMP4 plays an important role in the control of human megakaryopoiesis.
Collapse
|
27
|
Forissier S, Razanajaona D, Ay AS, Martel S, Bartholin L, Rimokh R. AF10-dependent transcription is enhanced by its interaction with FLRG. Biol Cell 2008; 99:563-71. [PMID: 17868029 DOI: 10.1042/bc20060131] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND INFORMATION FLRG (follistatin-related gene) is a secreted glycoprotein which is very similar to follistatin. As observed for follistatin, FLRG is involved in the regulation of various biological processes through its binding to members of the TGFbeta (transforming growth factor beta) superfamily, activin, BMPs (bone morphogenetic proteins) and myostatin. Unlike follistatin, FLRG has been found to be both secreted and localized within the nucleus of many FLRG-producing cells, suggesting the existence of specific intracellular functions of the protein. RESULTS In order to analyse the function of the nuclear form of FLRG, we performed a yeast two-hybrid screen, in which we identified AF10 [ALL1 (acute lymphoblastic leukaemia) fused gene from chromosome 10], a translocation partner of the MLL (mixed-lineage leukaemia) oncogene in human leukaemia, as a FLRG-interacting protein. This interaction was confirmed by far-Western-blot analysis and co-immunoprecipitation with transfected COS-7 cells. The N-terminal region of AF10, including the PHD (plant homeodomain), is sufficient to mediate this interaction, and has been shown to be involved in AF10 homo-oligomerization. By immunoprecipitation experiments, we showed that FLRG enhances the homo-oligomerization of AF10. Functional studies demonstrated that FLRG enhances the transactivation properties of the AF10 protein fused to Gal4 DNA-binding domains in transient transfection assays. CONCLUSIONS Our present study provides novel insights into the function of the nuclear form of the FLRG protein, which is revealed as a novel regulator of transcription. The nuclear isoform of FLRG lacks an intrinsic transactivation domain, but enhances AF10-mediated transcription, probably through promoting the homo-oligomerization of AF10, thus facilitating the recruitment of co-activators.
Collapse
|
28
|
Biron-Shental T, Schaiff WT, Rimon E, Shim TL, Nelson DM, Sadovsky Y. Hypoxia enhances the expression of follistatin-like 3 in term human trophoblasts. Placenta 2007; 29:51-7. [PMID: 17959243 DOI: 10.1016/j.placenta.2007.09.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Revised: 08/15/2007] [Accepted: 09/05/2007] [Indexed: 01/21/2023]
Abstract
Hypoxic injury hinders placental differentiation and alters trophoblast gene expression. We tested the hypothesis that the expression of follistatin-like 3 (FSTL3), a member of the follistatin family of proteins, is modulated by hypoxia in primary human trophoblast (PHT). Using immunofluorescence of human term placental villi we detected the expression of FSTL3 protein in placental villi, primarily in trophoblasts. We verified this finding in cultured term PHT cells. Basal expression of FSTL3 transcript in cultured PHT cells, determined using quantitative PCR, was stable over the culture period. Importantly, when compared to culture in FiO(2)=20% or FiO(2)=8%, PHT cells cultured in FiO(2) <1% exhibited a 4-6 fold increase in FSTL3 mRNA expression as early as 4h in hypoxia. Whereas cellular FSTL3 protein was unchanged in hypoxia, we found that hypoxia increased the level of FSTL3 in the medium. Lastly, the exposure of PHT cells to either the hypoxia-mimetic cobalt chloride or the proline hydroxylase inhibitor dimethyloxaloylglycine upregulated the expression of FSTL3 transcript. Our data indicate that hypoxia enhances the expression of FSTL3 and its release from PHT cells. Our finding that hypoxia-mimetic agents enhance FSTL3 expression implicates HIF1alpha in this process.
Collapse
Affiliation(s)
- T Biron-Shental
- Department of Obstetrics and Gynecology, Washington University, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
29
|
Razanajaona D, Joguet S, Ay AS, Treilleux I, Goddard-Léon S, Bartholin L, Rimokh R. Silencing of FLRG, an antagonist of activin, inhibits human breast tumor cell growth. Cancer Res 2007; 67:7223-9. [PMID: 17671190 DOI: 10.1158/0008-5472.can-07-0805] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Activin, a member of the transforming growth factor beta (TGFbeta) superfamily, regulates diverse processes, such as cellular growth and differentiation. There is increasing evidence that TGFbeta and its signaling effectors are key determinants of tumor cell behavior. Loss of sensitivity to TGFbeta-induced growth arrest is an important step toward malignancy. We previously characterized FLRG as an extracellular antagonist of activin. Here, we show that activin-induced growth inhibition is altered in FLRG-expressing breast cancer lines. Silencing FLRG induced growth inhibition, which is reversible upon addition of exogenous FLRG. We showed that FLRG silencing effects resulted from restoration of endogenous activin functions as shown by increased levels of phosphorylated smad2 and up-regulation of activin target gene transcripts. Furthermore, the growth inhibition induced by FLRG silencing was reversible by treatment with a soluble form of type II activin receptor. Finally, a strong expression of FLRG was observed in invasive breast carcinomas in contrast with the normal luminal epithelial cells in which FLRG was not detected. Our data provide strong evidence that endogenous FLRG contributes to tumor cell proliferation through antagonizing endogenous activin effects.
Collapse
|
30
|
Liu XL, Yuan JY, Zhang JW, Zhang XH, Wang RX. Differential gene expression in human hematopoietic stem cells specified toward erythroid, megakaryocytic, and granulocytic lineage. J Leukoc Biol 2007; 82:986-1002. [PMID: 17626799 DOI: 10.1189/jlb.0107014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
To better understand the transcriptional program that accompanies orderly lineage-specific hematopoietic differentiation, we analyzed expression changes during the lineage-specific differentiation of human hematopoietic stem cells (HSC; CD34+/CD38-/CD33-); HSC and multipotent myeloid progenitors (MMP; CD34+/CD38-/CD33+) were isolated from the bone marrow of healthy individuals by MACS. CD34+ cells in semi-solid culture were stimulated with the cytokines erythropoietin, IL-6, and G-CSF to promote differentiation to committed erythroid, megakaryocytic, and granulocytic clones, respectively. Differential display RT-PCR analysis was performed to compare the mRNA transcripts in HSC, MMP, and the committed lineage-specific clones derived from these committed lineage-specific progenitors. Expressed sequence tags (n=256), which were differentially expressed, were identified. One hundred ninety-four were homologous to known genes, and some were associated with hematopoiesis. These known genes were classified as involved in transcription/translation, signal transduction, cell surface receptors/ligands, cell signaling, cell metabolism, cell cycle, cell apoptosis, and oncogenesis. We identified genes, which were up- or down-regulated specifically in the lineage-committed clones compared with HSC or/and MMP, suggesting that specific gene activation and repression might be necessary for specific lineage commitment and differentiation. Our data provide an extensive transcriptional profile of human hematopoiesis during in vitro, lineage-specific differentiation.
Collapse
Affiliation(s)
- Xiao-Ling Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100005, China
| | | | | | | | | |
Collapse
|
31
|
Bartholin L, Guindon S, Martel S, Corbo L, Rimokh R. Identification of NF-kappaB responsive elements in follistatin related gene (FLRG) promoter. Gene 2007; 393:153-62. [PMID: 17395406 DOI: 10.1016/j.gene.2007.02.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Revised: 02/05/2007] [Accepted: 02/14/2007] [Indexed: 01/16/2023]
Abstract
Follistatin related gene (FLRG) has been previously identified from a chromosomal translocation observed in a B-cell chronic lymphocytic leukemia (B-CLL). FLRG (alternative names: follistatin-related protein, FSRP/follistatin-like-3, FSTL3) is a secreted glycoprotein highly similar to follistatin. Like follistatin, FLRG is involved in the regulation of various biological effects through its binding to members of the transforming growth factor beta (TGFbeta) superfamily such as activin A and myostatin. We have previously shown that TGFbeta and activin A are potent inducers of FLRG transcriptional activation through the Smad proteins. Using a biochemical approach, we investigated whether tumor necrosis factor alpha (TNFalpha) could regulate FLRG expression since TNFalpha plays a critical role in hematopoietic malignancies. We demonstrate that TNFalpha activates FLRG expression at the transcriptional level. This activation depends on a promoter region containing four 107-108 bp DNA repeats, which are evolutionary conserved in primates. These repeats carry a strong phylogenetic signal, which is not common among non-coding sequences. Each DNA repeat contains one TNFalpha responsive element (5'-GGGAGAG/TTCC-3') able to bind nuclear factor kappaB (NF-kappaB) transcription factors. We also show that TGFbeta, through the Smad proteins, potentates the effect of TNFalpha on FLRG expression. This cooperation is unexpected since TGFbeta and TNFalpha usually have opposite biological effects. In all, this work brings new insights in the understanding of FLRG regulation by cytokines and growth factors. It opens attractive perspectives of research that should allow us to better understand the role of FLRG during tumorigenesis.
Collapse
|
32
|
Maguer-Satta V, Forissier S, Bartholin L, Martel S, Jeanpierre S, Bachelard E, Rimokh R. A novel role for fibronectin type I domain in the regulation of human hematopoietic cell adhesiveness through binding to follistatin domains of FLRG and follistatin. Exp Cell Res 2006; 312:434-42. [PMID: 16336961 DOI: 10.1016/j.yexcr.2005.11.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Revised: 11/03/2005] [Accepted: 11/05/2005] [Indexed: 11/29/2022]
Abstract
FLRG and follistatin belong to the family of follistatin proteins involved in the regulation of various biological effects, such as hematopoiesis, mediated by their binding to activin and BMP, both members of the TGFbeta family. To further characterize the function of FLRG, we searched for other possible functional partners using a yeast two-hybrid screen. We identified human fibronectin as a new partner for both FLRG and follistatin. We also demonstrated that their physical interaction is mediated by type I motifs of fibronectin and follistatin domains. We then analyzed the biological consequences of these protein interactions on the regulation of hematopoiesis. For the first time, we associated a biological effect with the regulation of human hematopoietic cell adhesiveness of both the type I motifs of fibronectin and the follistatin domains of FLRG and follistatin. Indeed, we observed a significant and specific dose-dependent increase of cell adhesion to fibronectin in the presence of FLRG or follistatin, using either a human hematopoietic cell line or primary cells. In particular, we observed a significantly increased adhesion of immature hematopoietic precursors (CFC, LTC-IC). Altogether these results highlight a new mechanism by which FLRG and follistatin regulate human hematopoiesis.
Collapse
Affiliation(s)
- Véronique Maguer-Satta
- INSERM U590, Centre Léon Bérard, Université Claude Bernard Lyon I, Lyon, 69373 Lyon Cedex 08, France.
| | | | | | | | | | | | | |
Collapse
|
33
|
Bartholin L, Destaing O, Forissier S, Martel S, Maguer-Satta V, Jurdic P, Rimokh R. FLRG, a new ADAM12-associated protein, modulates osteoclast differentiation. Biol Cell 2005; 97:577-88. [PMID: 15574124 DOI: 10.1042/bc20040506] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND INFORMATION FLRG (follistatin-related gene) is a secreted glycoprotein that is highly homologous with follistatin. These proteins are involved in the regulation of various biological effects mediated by their binding to TGF-beta (transforming growth factor-beta) superfamily members, activin A and bone morphogenetic proteins. To characterize further the function of FLRG, we used a yeast two-hybrid screen to look for other possible functional partners. RESULTS We report a direct interaction between the cysteine-rich domain of FLRG and ADAM12 (a disintegrin and metalloprotease 12). ADAMs are metalloprotease-disintegrin proteins that have been implicated in cell adhesion, protein ectodomain shedding, matrix protein degradation and cell fusion. Several studies have reported that ADAM12 protein, as well as activin A, are important regulators of osteoclast differentiation. We observed that the expressions of ADAM12 and activin A are modulated during osteoclast formation, whereas the FLRG expression seemed to remain quite constant. We showed that the FLRG protein inhibits osteoclast differentiation from murine primary spleen cells and macrophage RAW264.7 cells cultured in the presence of RANK-L (receptor activator of nuclear factor kappaB ligand) and M-CSF (macrophage colony-stimulating factor). Addition of FLRG protein to precursors significantly reduces the number of osteoclasts, as well as the average number of nuclei in each osteoclast. CONCLUSIONS Our study indicates that the FLRG protein may contribute to bone formation by inhibiting osteoclast differentiation.
Collapse
|