1
|
Marinov GK, Ramalingam V, Greenleaf WJ, Kundaje A. An updated compendium and reevaluation of the evidence for nuclear transcription factor occupancy over the mitochondrial genome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597442. [PMID: 38895386 PMCID: PMC11185660 DOI: 10.1101/2024.06.04.597442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
In most eukaryotes, mitochondrial organelles contain their own genome, usually circular, which is the remnant of the genome of the ancestral bacterial endosymbiont that gave rise to modern mitochondria. Mitochondrial genomes are dramatically reduced in their gene content due to the process of endosymbiotic gene transfer to the nucleus; as a result most mitochondrial proteins are encoded in the nucleus and imported into mitochondria. This includes the components of the dedicated mitochondrial transcription and replication systems and regulatory factors, which are entirely distinct from the information processing systems in the nucleus. However, since the 1990s several nuclear transcription factors have been reported to act in mitochondria, and previously we identified 8 human and 3 mouse transcription factors (TFs) with strong localized enrichment over the mitochondrial genome using ChIP-seq (Chromatin Immunoprecipitation) datasets from the second phase of the ENCODE (Encyclopedia of DNA Elements) Project Consortium. Here, we analyze the greatly expanded in the intervening decade ENCODE compendium of TF ChIP-seq datasets (a total of 6,153 ChIP experiments for 942 proteins, of which 763 are sequence-specific TFs) combined with interpretative deep learning models of TF occupancy to create a comprehensive compendium of nuclear TFs that show evidence of association with the mitochondrial genome. We find some evidence for chrM occupancy for 50 nuclear TFs and two other proteins, with bZIP TFs emerging as most likely to be playing a role in mitochondria. However, we also observe that in cases where the same TF has been assayed with multiple antibodies and ChIP protocols, evidence for its chrM occupancy is not always reproducible. In the light of these findings, we discuss the evidential criteria for establishing chrM occupancy and reevaluate the overall compendium of putative mitochondrial-acting nuclear TFs.
Collapse
Affiliation(s)
- Georgi K Marinov
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | | | - William J Greenleaf
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, California 94305, USA
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
2
|
Gorman-Sandler E, Wood G, Cloude N, Frambes N, Brennen H, Robertson B, Hollis F. Mitochondrial might: powering the peripartum for risk and resilience. Front Behav Neurosci 2023; 17:1286811. [PMID: 38187925 PMCID: PMC10767224 DOI: 10.3389/fnbeh.2023.1286811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/01/2023] [Indexed: 01/09/2024] Open
Abstract
The peripartum period, characterized by dynamic hormonal shifts and physiological adaptations, has been recognized as a potentially vulnerable period for the development of mood disorders such as postpartum depression (PPD). Stress is a well-established risk factor for developing PPD and is known to modulate mitochondrial function. While primarily known for their role in energy production, mitochondria also influence processes such as stress regulation, steroid hormone synthesis, glucocorticoid response, GABA metabolism, and immune modulation - all of which are crucial for healthy pregnancy and relevant to PPD pathology. While mitochondrial function has been implicated in other psychiatric illnesses, its role in peripartum stress and mental health remains largely unexplored, especially in relation to the brain. In this review, we first provide an overview of mitochondrial involvement in processes implicated in peripartum mood disorders, underscoring their potential role in mediating pathology. We then discuss clinical and preclinical studies of mitochondria in the context of peripartum stress and mental health, emphasizing the need for better understanding of this relationship. Finally, we propose mitochondria as biological mediators of resilience to peripartum mood disorders.
Collapse
Affiliation(s)
- Erin Gorman-Sandler
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
- Columbia VA Healthcare System, Columbia, SC, United States
| | - Gabrielle Wood
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Nazharee Cloude
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Noelle Frambes
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Hannah Brennen
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Breanna Robertson
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Fiona Hollis
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
- Columbia VA Healthcare System, Columbia, SC, United States
- USC Institute for Cardiovascular Disease Research, Columbia, SC, United States
| |
Collapse
|
3
|
Ma Y, Zheng Y, Zhou Y, Weng N, Zhu Q. Mitophagy involved the biological processes of hormones. Biomed Pharmacother 2023; 167:115468. [PMID: 37703662 DOI: 10.1016/j.biopha.2023.115468] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/02/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023] Open
Abstract
Mitochondria fulfill vital functions in energy production, maintaining ion balance, and facilitating material metabolism. Mitochondria are sacrificed to protect cells or induce apoptosis when the body is under stress. The regulatory pathways of mitophagy include both ubiquitin-dependent and non-dependent pathways. The involvement of mitophagy has been demonstrated in the onset and progression of numerous diseases, highlighting its significant role. Endocrine hormones are chemical substances secreted by endocrine organs or endocrine cells, which participate in the regulation of physiological functions and internal environmental homeostasis of the body. Imbalances in endocrine hormones contribute to the development of various diseases. However, the precise impact of mitophagy on the physiological and pathological processes involving endocrine hormones remains unclear. This article aims to comprehensively overview recent advancements in understanding the mechanisms through which mitophagy regulates endocrine hormones.
Collapse
Affiliation(s)
- Yifei Ma
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu 610041, Sichuan, PR China
| | - Ying Zheng
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu 610041, Sichuan, PR China
| | - Ying Zhou
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu 610041, Sichuan, PR China
| | - Ningna Weng
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian 350011, PR China.
| | - Qing Zhu
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu 610041, Sichuan, PR China.
| |
Collapse
|
4
|
Galow AM, Brenmoehl J, Hoeflich A. Synergistic effects of hormones on structural and functional maturation of cardiomyocytes and implications for heart regeneration. Cell Mol Life Sci 2023; 80:240. [PMID: 37541969 PMCID: PMC10403476 DOI: 10.1007/s00018-023-04894-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/18/2023] [Accepted: 07/22/2023] [Indexed: 08/06/2023]
Abstract
The limited endogenous regenerative capacity of the human heart renders cardiovascular diseases a major health threat, thus motivating intense research on in vitro heart cell generation and cell replacement therapies. However, so far, in vitro-generated cardiomyocytes share a rather fetal phenotype, limiting their utility for drug testing and cell-based heart repair. Various strategies to foster cellular maturation provide some success, but fully matured cardiomyocytes are still to be achieved. Today, several hormones are recognized for their effects on cardiomyocyte proliferation, differentiation, and function. Here, we will discuss how the endocrine system impacts cardiomyocyte maturation. After detailing which features characterize a mature phenotype, we will contemplate hormones most promising to induce such a phenotype, the routes of their action, and experimental evidence for their significance in this process. Due to their pleiotropic effects, hormones might be not only valuable to improve in vitro heart cell generation but also beneficial for in vivo heart regeneration. Accordingly, we will also contemplate how the presented hormones might be exploited for hormone-based regenerative therapies.
Collapse
Affiliation(s)
- Anne-Marie Galow
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany.
| | - Julia Brenmoehl
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| | - Andreas Hoeflich
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| |
Collapse
|
5
|
Sabatino L. Nrf2-Mediated Antioxidant Defense and Thyroid Hormone Signaling: A Focus on Cardioprotective Effects. Antioxidants (Basel) 2023; 12:1177. [PMID: 37371907 DOI: 10.3390/antiox12061177] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/24/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023] Open
Abstract
Thyroid hormones (TH) perform a plethora of actions in numerous tissues and induce an overall increase in metabolism, with an augmentation in energy demand and oxygen expenditure. Oxidants are required for normal thyroid-cell proliferation, as well as for the synthesis of the main hormones secreted by the thyroid gland, triiodothyronine (T3) and thyroxine (T4). However, an uncontrolled excess of oxidants can cause oxidative stress, a major trigger in the pathogenesis of a broad spectrum of diseases, including inflammation and cancer. In particular, oxidative stress is implicated in both hypo- and hyper-thyroid diseases. Furthermore, it is important for the TH system to rely on efficient antioxidant defense, to maintain balance, despite sustained tissue exposure to oxidants. One of the main endogenous antioxidant responses is the pathway centered on the nuclear factor erythroid 2-related factor (Nrf2). The aim of the present review is to explore the multiple links between Nrf2-related pathways and various TH-associated conditions. The main aspect of TH signaling is described and the role of Nrf2 in oxidant-antioxidant homeostasis in the TH system is evaluated. Next, the antioxidant function of Nrf2 associated with oxidative stress induced by TH pathological excess is discussed and, subsequently, particular attention is given to the cardioprotective role of TH, which also acts through the mediation of Nrf2. In conclusion, the interaction between Nrf2 and most common natural antioxidant agents in altered states of TH is briefly evaluated.
Collapse
Affiliation(s)
- Laura Sabatino
- Institute of Clinical Physiology, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy
| |
Collapse
|
6
|
Terrin F, Tesoriere A, Plotegher N, Dalla Valle L. Sex and Brain: The Role of Sex Chromosomes and Hormones in Brain Development and Parkinson's Disease. Cells 2023; 12:1486. [PMID: 37296608 PMCID: PMC10252697 DOI: 10.3390/cells12111486] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Sex hormones and genes on the sex chromosomes are not only key factors in the regulation of sexual differentiation and reproduction but they are also deeply involved in brain homeostasis. Their action is crucial for the development of the brain, which presents different characteristics depending on the sex of individuals. The role of these players in the brain is fundamental in the maintenance of brain function during adulthood as well, thus being important also with respect to age-related neurodegenerative diseases. In this review, we explore the role of biological sex in the development of the brain and analyze its impact on the predisposition toward and the progression of neurodegenerative diseases. In particular, we focus on Parkinson's disease, a neurodegenerative disorder that has a higher incidence in the male population. We report how sex hormones and genes encoded by the sex chromosomes could protect from the disease or alternatively predispose toward its development. We finally underline the importance of considering sex when studying brain physiology and pathology in cellular and animal models in order to better understand disease etiology and develop novel tailored therapeutic strategies.
Collapse
Affiliation(s)
| | | | - Nicoletta Plotegher
- Department of Biology, University of Padova, 35131 Padova, Italy; (F.T.); (A.T.)
| | - Luisa Dalla Valle
- Department of Biology, University of Padova, 35131 Padova, Italy; (F.T.); (A.T.)
| |
Collapse
|
7
|
Melis MJ, Miller M, Peters VBM, Singer M. The role of hormones in sepsis: an integrated overview with a focus on mitochondrial and immune cell dysfunction. Clin Sci (Lond) 2023; 137:707-725. [PMID: 37144447 PMCID: PMC10167421 DOI: 10.1042/cs20220709] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/09/2023] [Accepted: 04/26/2023] [Indexed: 05/06/2023]
Abstract
Sepsis is a dysregulated host response to infection that results in life-threatening organ dysfunction. Virtually every body system can be affected by this syndrome to greater or lesser extents. Gene transcription and downstream pathways are either up- or downregulated, albeit with considerable fluctuation over the course of the patient's illness. This multi-system complexity contributes to a pathophysiology that remains to be fully elucidated. Consequentially, little progress has been made to date in developing new outcome-improving therapeutics. Endocrine alterations are well characterised in sepsis with variations in circulating blood levels and/or receptor resistance. However, little attention has been paid to an integrated view of how these hormonal changes impact upon the development of organ dysfunction and recovery. Here, we present a narrative review describing the impact of the altered endocrine system on mitochondrial dysfunction and immune suppression, two interlinked and key aspects of sepsis pathophysiology.
Collapse
Affiliation(s)
- Miranda J Melis
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, UK
| | - Muska Miller
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, UK
| | - Vera B M Peters
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, UK
| | - Mervyn Singer
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, UK
| |
Collapse
|
8
|
Rubalcava-Gracia D, García-Villegas R, Larsson NG. No role for nuclear transcription regulators in mammalian mitochondria? Mol Cell 2023; 83:832-842. [PMID: 36182692 DOI: 10.1016/j.molcel.2022.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/17/2022] [Accepted: 09/08/2022] [Indexed: 10/14/2022]
Abstract
Although the mammalian mtDNA transcription machinery is simple and resembles bacteriophage systems, there are many reports that nuclear transcription regulators, as exemplified by MEF2D, MOF, PGC-1α, and hormone receptors, are imported into mammalian mitochondria and directly interact with the mtDNA transcription machinery. However, the supporting experimental evidence for this concept is open to alternate interpretations, and a main issue is the difficulty in distinguishing indirect regulation of mtDNA transcription, caused by altered nuclear gene expression, from direct intramitochondrial effects. We provide a critical discussion and experimental guidelines to stringently assess roles of intramitochondrial factors implicated in direct regulation of mammalian mtDNA transcription.
Collapse
Affiliation(s)
- Diana Rubalcava-Gracia
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Rodolfo García-Villegas
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Nils-Göran Larsson
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
9
|
Hummel EM, Piovesan K, Berg F, Herpertz S, Kessler H, Kumsta R, Moser DA. Mitochondrial DNA as a marker for treatment-response in post-traumatic stress disorder. Psychoneuroendocrinology 2023; 148:105993. [PMID: 36462294 DOI: 10.1016/j.psyneuen.2022.105993] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022]
Abstract
Post-traumatic stress disorder (PTSD) is a serious mental health condition thought to be mediated by a dysregulated stress response system. Stress, especially chronic stress, affects mitochondrial activity and their efficiency in duplicating their genomes. Human cells contain numerous mitochondria that harbor multiple copies of their own genome, which consist of a mixture of wild type and variant mtDNA - a condition known as mitochondrial heteroplasmy. Number of mitochondrial genomes in a cell and the degree of heteroplasmy may serve as an indicator of mitochondrial allostatic load. Changes in mtDNA copy number and the proportion of variant mtDNA may be related to mental disorders and symptom severity, suggesting an involvement of mitochondrial dysfunction also in PTSD. Therefore, we examined number and composition of mitochondrial DNA before and after six weeks of inpatient psychotherapy treatment in a cohort of 60 female PTSD patients. We extracted DNA from isolated monocytes before and after inpatient treatment and quantified cellular mtDNA using multiplex qPCR. We hypothesized that treatment would lead to changes in cellular mtDNA levels and that change in mtDNA level would be associated with PTSD symptom severity and treatment response. It could be shown that mtDNA copy number and the ratio of variant mtDNA decreased during therapy, however, this change did not correlate with treatment response. Our results suggest that inpatient treatment can reduce signs of mitochondrial allostatic load, which could have beneficial effects on mental health. The quantification of mtDNA and the determination of cellular heteroplasmy could represent valuable biomarkers for the molecular characterization of mental disorders in the future.
Collapse
Affiliation(s)
- E M Hummel
- Department of Genetic Psychology, Faculty of Psychology, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany.
| | - K Piovesan
- Department of Genetic Psychology, Faculty of Psychology, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - F Berg
- Department of Genetic Psychology, Faculty of Psychology, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - S Herpertz
- Department of Psychosomatic Medicine and Psychotherapy, LWL-University Hospital, Ruhr University Bochum, Germany
| | - H Kessler
- Department of Psychosomatic Medicine and Psychotherapy, LWL-University Hospital, Ruhr University Bochum, Germany; Department of Psychosomatic Medicine and Psychotherapy, Fulda Hospital, University Medicine Marburg Campus Fulda, Fulda, Germany
| | - R Kumsta
- Department of Genetic Psychology, Faculty of Psychology, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany; Department of Behavioural and Cognitive Sciences, Laboratory for Stress and Gene-Environment nterplay, University of Luxemburg, Porte des Sciences, L-4366 Esch-sur-Alzette, Luxemburg
| | - D A Moser
- Department of Genetic Psychology, Faculty of Psychology, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany.
| |
Collapse
|
10
|
Zhao M, Su HZ, Zeng YH, Sun Y, Guo XX, Li YL, Wang C, Zhao ZY, Huang XJ, Lin KJ, Ye ZL, Lin BW, Hong S, Zheng J, Liu YB, Yao XP, Yang D, Lu YQ, Chen HZ, Zuo E, Yang G, Wang HT, Huang CW, Lin XH, Cen Z, Lai LL, Zhang YK, Li X, Lai T, Lin J, Zuo DD, Lin MT, Liou CW, Kong QX, Yan CZ, Xiong ZQ, Wang N, Luo W, Zhao CP, Cheng X, Chen WJ. Loss of function of CMPK2 causes mitochondria deficiency and brain calcification. Cell Discov 2022; 8:128. [DOI: 10.1038/s41421-022-00475-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 09/24/2022] [Indexed: 11/30/2022] Open
Abstract
AbstractBrain calcification is a critical aging-associated pathology and can cause multifaceted neurological symptoms. Cerebral phosphate homeostasis dysregulation, blood-brain barrier defects, and immune dysregulation have been implicated as major pathological processes in familial brain calcification (FBC). Here, we analyzed two brain calcification families and identified calcification co-segregated biallelic variants in the CMPK2 gene that disrupt mitochondrial functions. Transcriptome analysis of peripheral blood mononuclear cells (PBMCs) isolated from these patients showed impaired mitochondria-associated metabolism pathways. In situ hybridization and single-cell RNA sequencing revealed robust Cmpk2 expression in neurons and vascular endothelial cells (vECs), two cell types with high energy expenditure in the brain. The neurons in Cmpk2-knockout (KO) mice have fewer mitochondrial DNA copies, down-regulated mitochondrial proteins, reduced ATP production, and elevated intracellular inorganic phosphate (Pi) level, recapitulating the mitochondrial dysfunction observed in the PBMCs isolated from the FBC patients. Morphologically, the cristae architecture of the Cmpk2-KO murine neurons was also impaired. Notably, calcification developed in a progressive manner in the homozygous Cmpk2-KO mice thalamus region as well as in the Cmpk2-knock-in mice bearing the patient mutation, thus phenocopying the calcification pathology observed in the patients. Together, our study identifies biallelic variants of CMPK2 as novel genetic factors for FBC; and demonstrates how CMPK2 deficiency alters mitochondrial structures and functions, thereby highlighting the mitochondria dysregulation as a critical pathogenic mechanism underlying brain calcification.
Collapse
|
11
|
Muscle Function, Body Composition, Insulin Sensitivity and Physical Activity in Adolescents Born Preterm: Impact of Gestation and Vitamin D Status. Nutrients 2022; 14:nu14235045. [PMID: 36501074 PMCID: PMC9736929 DOI: 10.3390/nu14235045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/29/2022] Open
Abstract
Whilst several studies have explored adolescent metabolic and cognitive function after preterm birth, few have explored muscle function and physical activity. We set out to examine the relationship between gestational age and muscle metabolism in a cohort of adolescents who were born preterm. Participants were recruited from the Newcastle preterm birth growth study cohort. They did not have severe neurological disease and were not on daily medication. Participants underwent an assessment of oxidative muscle function using phosphorus magnetic resonance spectroscopy that included the half-time for recovery of equilibrium of phosphocreatine, τ½PCr. In addition, we measured key variables that might affect muscle function including physical activity levels determined by 3-day accelerometry, body composition using air displacement plethysmography, insulin sensitivity using the homeostatic model assessment/Matsuda index and serum vitamin D concentrations. 60 adolescents (35F) median age 15.6 years (range 12.1−18.8) with a median gestation of 31 weeks (range 24 to 34 weeks) underwent a single assessment. Males were more active and spent less time in sedentary mode. Time spent in light activity was associated with insulin sensitivity (IS) (Matsuda Index; p < 0.05) but there were no strong correlations between activity levels and gestational age. Greater fat mass, waist circumference and body mass index were all associated with lower IS. Gestational age was negatively associated with adjusted measures of oxidative muscle function (τ½PCr). In a stepwise multivariate linear regression model, gestational age at birth was the most significant predictor of oxidative muscle function (p = 0.005). Higher serum vitamin D levels were also associated with faster phosphocreatine recovery time (p = 0.045). Oxidative function in the skeletal muscle of adolescents born preterm is associated with gestational age and vitamin D concentrations. Our study suggests that being born preterm may have a long-term impact on muscle metabolism.
Collapse
|
12
|
Salles J, Chanet A, Guillet C, Vaes AMM, Brouwer-Brolsma EM, Rocher C, Giraudet C, Patrac V, Meugnier E, Montaurier C, Denis P, Le Bacquer O, Blot A, Jourdan M, Luiking Y, Furber M, Van Dijk M, Tardif N, Yves Boirie Y, Walrand S. Vitamin D status modulates mitochondrial oxidative capacities in skeletal muscle: role in sarcopenia. Commun Biol 2022; 5:1288. [PMID: 36434267 PMCID: PMC9700804 DOI: 10.1038/s42003-022-04246-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022] Open
Abstract
Skeletal muscle mitochondrial function is the biggest component of whole-body energy output. Mitochondrial energy production during exercise is impaired in vitamin D-deficient subjects. In cultured myotubes, loss of vitamin D receptor (VDR) function decreases mitochondrial respiration rate and ATP production from oxidative phosphorylation. We aimed to examine the effects of vitamin D deficiency and supplementation on whole-body energy expenditure and muscle mitochondrial function in old rats, old mice, and human subjects. To gain further insight into the mechanisms involved, we used C2C12 and human muscle cells and transgenic mice with muscle-specific VDR tamoxifen-inducible deficiency. We observed that in vivo and in vitro vitamin D fluctuations changed mitochondrial biogenesis and oxidative activity in skeletal muscle. Vitamin D supplementation initiated in older people improved muscle mass and strength. We hypothesize that vitamin D supplementation is likely to help prevent not only sarcopenia but also sarcopenic obesity in vitamin D-deficient subjects.
Collapse
Affiliation(s)
- Jérôme Salles
- grid.494717.80000000115480420Université Clermont Auvergne, INRAE, UNH, CRNH Auvergne, 63000 Clermont-Ferrand, France
| | - Audrey Chanet
- grid.494717.80000000115480420Université Clermont Auvergne, INRAE, UNH, CRNH Auvergne, 63000 Clermont-Ferrand, France
| | - Christelle Guillet
- grid.494717.80000000115480420Université Clermont Auvergne, INRAE, UNH, CRNH Auvergne, 63000 Clermont-Ferrand, France
| | - Anouk MM. Vaes
- grid.4818.50000 0001 0791 5666Wageningen University, Human Nutrition, Wageningen, the Netherlands
| | - Elske M. Brouwer-Brolsma
- grid.4818.50000 0001 0791 5666Wageningen University, Human Nutrition, Wageningen, the Netherlands
| | - Christophe Rocher
- grid.412041.20000 0001 2106 639XLaboratoire de Biogenèse Membranaire - UMR 5200 CNRS, Université de Bordeaux, 33140 Villenave d’Ornon, France
| | - Christophe Giraudet
- grid.494717.80000000115480420Université Clermont Auvergne, INRAE, UNH, CRNH Auvergne, 63000 Clermont-Ferrand, France
| | - Véronique Patrac
- grid.494717.80000000115480420Université Clermont Auvergne, INRAE, UNH, CRNH Auvergne, 63000 Clermont-Ferrand, France
| | - Emmanuelle Meugnier
- Univ Lyon, CarMeN Laboratory, INSERM, INRAE, INSA Lyon, Université Claude Bernard Lyon 1, 69310 Pierre-Bénite, France
| | - Christophe Montaurier
- grid.494717.80000000115480420Université Clermont Auvergne, INRAE, UNH, CRNH Auvergne, 63000 Clermont-Ferrand, France
| | - Philippe Denis
- grid.494717.80000000115480420Université Clermont Auvergne, INRAE, UNH, CRNH Auvergne, 63000 Clermont-Ferrand, France
| | - Olivier Le Bacquer
- grid.494717.80000000115480420Université Clermont Auvergne, INRAE, UNH, CRNH Auvergne, 63000 Clermont-Ferrand, France
| | - Adeline Blot
- grid.411163.00000 0004 0639 4151CHU Clermont-Ferrand, Centre de Recherche en Nutrition Humaine Auvergne, 63000 Clermont-Ferrand, France
| | - Marion Jourdan
- grid.468395.50000 0004 4675 6663Specialized Nutrition, Danone Nutricia Research, P.O. Box 80141, 3584 CT Utrecht, the Netherlands
| | - Yvette Luiking
- grid.468395.50000 0004 4675 6663Specialized Nutrition, Danone Nutricia Research, P.O. Box 80141, 3584 CT Utrecht, the Netherlands
| | - Matthew Furber
- grid.468395.50000 0004 4675 6663Specialized Nutrition, Danone Nutricia Research, P.O. Box 80141, 3584 CT Utrecht, the Netherlands
| | - Miriam Van Dijk
- grid.468395.50000 0004 4675 6663Specialized Nutrition, Danone Nutricia Research, P.O. Box 80141, 3584 CT Utrecht, the Netherlands
| | - Nicolas Tardif
- grid.24381.3c0000 0000 9241 5705Division of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Huddinge, Sweden
| | - Y. Yves Boirie
- grid.494717.80000000115480420Université Clermont Auvergne, INRAE, UNH, CRNH Auvergne, 63000 Clermont-Ferrand, France ,grid.411163.00000 0004 0639 4151CHU Clermont-Ferrand, Service Nutrition Clinique, 63000 Clermont-Ferrand, France
| | - Stéphane Walrand
- grid.494717.80000000115480420Université Clermont Auvergne, INRAE, UNH, CRNH Auvergne, 63000 Clermont-Ferrand, France ,grid.411163.00000 0004 0639 4151CHU Clermont-Ferrand, Service Nutrition Clinique, 63000 Clermont-Ferrand, France
| |
Collapse
|
13
|
Rupprecht R, Wetzel CH, Dorostkar M, Herms J, Albert NL, Schwarzbach J, Schumacher M, Neumann ID. Translocator protein (18kDa) TSPO: a new diagnostic or therapeutic target for stress-related disorders? Mol Psychiatry 2022; 27:2918-2926. [PMID: 35444254 DOI: 10.1038/s41380-022-01561-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/25/2022] [Accepted: 03/31/2022] [Indexed: 12/11/2022]
Abstract
Efficient treatment of stress-related disorders, such as depression, is still a major challenge. The onset of antidepressant drug action is generally quite slow, while the anxiolytic action of benzodiazepines is considerably faster. However, their long-term use is impaired by tolerance development, abuse liability and cognitive impairment. Benzodiazepines act as positive allosteric modulators of ɣ-aminobutyric acid type A (GABAA) receptors. 3α-reduced neurosteroids such as allopregnanolone also are positive allosteric GABAA receptor modulators, however, through a site different from that targeted by benzodiazepines. Recently, the administration of neurosteroids such as brexanolone or zuranolone has been shown to rapidly ameliorate symptoms in post-partum depression or major depressive disorder. An attractive alternative to the administration of exogenous neurosteroids is promoting endogenous neurosteroidogenesis via the translocator protein 18k Da (TSPO). TSPO is a transmembrane protein located primarily in mitochondria, which mediates numerous biological functions, e.g., steroidogenesis and mitochondrial bioenergetics. TSPO ligands have been used in positron emission tomography (PET) studies as putative markers of microglia activation and neuroinflammation in stress-related disorders. Moreover, TSPO ligands have been shown to modulate neuroplasticity and to elicit antidepressant and anxiolytic therapeutic effects in animals and humans. As such, TSPO may open new avenues for understanding the pathophysiology of stress-related disorders and for the development of novel treatment options.
Collapse
Affiliation(s)
- Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053, Regensburg, Germany.
| | - Christian H Wetzel
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053, Regensburg, Germany
| | - Mario Dorostkar
- Center for Neuropathology and Prion Research, Ludwig-Maximilian-University Munich, 81377, Munich, Germany
| | - Jochen Herms
- Center for Neuropathology and Prion Research, Ludwig-Maximilian-University Munich, 81377, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), 81377, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), 81377, Munich, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, Ludwig-Maximilian-University Munich, 81377, Munich, Germany
| | - Jens Schwarzbach
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053, Regensburg, Germany
| | - Michael Schumacher
- Research Unit 1195, INSERM and University Paris-Saclay, 94276, Le Kremlin-Bicêtre, France
| | - Inga D Neumann
- Department of Neurobiology and Animal Physiology, University Regensburg, 93040, Regensburg, Germany
| |
Collapse
|
14
|
Direct Interaction of Mitochondrial Cytochrome c Oxidase with Thyroid Hormones: Evidence for Two Binding Sites. Cells 2022; 11:cells11050908. [PMID: 35269529 PMCID: PMC8909594 DOI: 10.3390/cells11050908] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/23/2022] [Accepted: 03/03/2022] [Indexed: 12/18/2022] Open
Abstract
Thyroid hormones regulate tissue metabolism to establish an energy balance in the cell, in particular, by affecting oxidative phosphorylation. Their long-term impact is mainly associated with changes in gene expression, while the short-term effects may differ in their mechanisms. Our work was devoted to studying the short-term effects of hormones T2, T3 and T4 on mitochondrial cytochrome c oxidase (CcO) mediated by direct contact with the enzyme. The data obtained indicate the existence of two separate sites of CcO interaction with thyroid hormones, differing in their location, affinity and specificity to hormone binding. First, we show that T3 and T4 but not T2 inhibit the oxidase activity of CcO in solution and on membrane preparations with Ki ≈ 100–200 μM. In solution, T3 and T4 compete in a 1:1 ratio with the detergent dodecyl-maltoside to bind to the enzyme. The peroxidase and catalase partial activities of CcO are not sensitive to hormones, but electron transfer from heme a to the oxidized binuclear center is affected. We believe that T3 and T4 could be ligands of the bile acid-binding site found in the 3D structure of CcO by Ferguson-Miller’s group, and hormone-induced inhibition is associated with dysfunction of the K-proton channel. A possible role of this interaction in the physiological regulation of the enzyme is discussed. Second, we find that T2, T3, and T4 inhibit superoxide generation by oxidized CcO in the presence of excess H2O2. Inhibition is characterized by Ki values of 0.3–5 μM and apparently affects the formation of O2●− at the protein surface. The second binding site for thyroid hormones presumably coincides with the point of tight T2 binding on the Va subunit described in the literature.
Collapse
|
15
|
Proteomic analysis of the mitochondrial glucocorticoid receptor interacting proteins reveals pyruvate dehydrogenase and mitochondrial 60 kDa heat shock protein as potent binding partners. J Proteomics 2022; 257:104509. [DOI: 10.1016/j.jprot.2022.104509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 11/20/2022]
|
16
|
Anti-Apoptotic and Antioxidant Activities of the Mitochondrial Estrogen Receptor Beta in N2A Neuroblastoma Cells. Int J Mol Sci 2021; 22:ijms22147620. [PMID: 34299239 PMCID: PMC8306648 DOI: 10.3390/ijms22147620] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/05/2021] [Accepted: 07/13/2021] [Indexed: 12/11/2022] Open
Abstract
Estrogens are steroid hormones that play a crucial role in the regulation of the reproductive and non-reproductive system physiology. Among non-reproductive systems, the nervous system is mainly affected by estrogens due to their antioxidant, anti-apoptotic, and anti-inflammatory activities, which are mediated by membranous and nuclear estrogen receptors, and also by non-estrogen receptor-associated estrogen actions. Neuronal viability and functionality are also associated with the maintenance of mitochondrial functions. Recently, the localization of estrogen receptors, especially estrogen receptor beta, in the mitochondria of many types of neuronal cells is documented, indicating the direct involvement of the mitochondrial estrogen receptor beta (mtERβ) in the maintenance of neuronal physiology. In this study, cell lines of N2A cells stably overexpressing a mitochondrial-targeted estrogen receptor beta were generated and further analyzed to study the direct involvement of mtERβ in estrogen neuroprotective antioxidant and anti-apoptotic actions. Results from this study revealed that the presence of estrogen receptor beta in mitochondria render N2A cells more resistant to staurosporine- and H2O2-induced apoptotic stimuli, as indicated by the reduced activation of caspase-9 and -3, the increased cell viability, the increased ATP production, and the increased resistance to mitochondrial impairment in the presence or absence of 17-β estradiol (E2). Thus, the direct involvement of mtERβ in antioxidant and anti-apoptotic activities is documented, rendering mtERβ a promising therapeutic target for mitochondrial dysfunction-associated degenerative diseases.
Collapse
|
17
|
Wu SH, Li HB, Li GL, Qi YJ, Zhang J, Wang BY. Panax ginseng root, not leaf, can enhance thermogenic capacity and mitochondrial function in mice. PHARMACEUTICAL BIOLOGY 2020; 58:374-384. [PMID: 32366153 PMCID: PMC7241452 DOI: 10.1080/13880209.2020.1756348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 03/09/2020] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
Context: Panax ginseng C. A. Meyer (Araliaceae) root and leaf have always been considered in the traditional theory as hot and cold properties, respectively.Objective: To clarify the hot and cold properties of ginseng root and leaf from a thermodynamic viewpoint.Materials and methods: Thirty ICR male mice were randomly assigned to control (water), ginseng root group (GRP) and ginseng leaf group (GLP) with a concentration of 0.075 g/mL; the volume was 0.1 mL/10 g (body mass) per day by intragastric administration for 20 days. Ultra-Performance Liquid Chromatography (UPLC) was used to determine quality control through seven ginsenosides contained in ginseng root and leaf. Rest metabolic rate (RMR) and energy expenditure were monitored every 9 days by TSE System. At the 20th day, serum T3 or T4, liver or brown adipose tissue (BAT) mitochondrial respiration were investigated.Results: The quality control of GRP and GLP were within requirements of 2015 China Pharmacopoeia. The RMR (mLO2/h) in GLP (47.95 ± 4.20) was significantly lower than control (52.10 ± 4.79) and GRP (55.35 ± 4.48). Mitochondrial protein concentration and respiration were significantly increased in GRP (BAT, 79.12 ± 2 .08 mg/g, 239.89 ± 10.24 nmol O2/min/g tissue; Liver, 201.02 ± 10.89, 202.44 ± 3.24) and decreased in GLP (BAT, 53.42 ± 3.48, 153.49 ± 5.58; Liver, 138.69 ± 5.69, 104.50 ± 6.25) compared with control.Conclusions: The hot and cold properties of ginseng root and leaf are correlated with thermogenic capacity and mitochondrial function of BAT and liver, which deserve to further research.
Collapse
Affiliation(s)
- Su-hui Wu
- He-Nan University of Chinese Medicine, Zheng-Zhou, China
| | - Han-bing Li
- He-Nan University of Chinese Medicine, Zheng-Zhou, China
| | - Gen-Lin Li
- Basic Medical College, He-Nan University of Chinese Medicine, Zheng-Zhou, China
| | - Yue-juan Qi
- He-Nan University of Chinese Medicine, Zheng-Zhou, China
| | - Juan Zhang
- Basic Medical College, He-Nan University of Chinese Medicine, Zheng-Zhou, China
| | - Bai-yan Wang
- Basic Medical College, He-Nan University of Chinese Medicine, Zheng-Zhou, China
| |
Collapse
|
18
|
Dexamethasone upregulates mitochondrial Tom20, Tom70, and MnSOD through SGK1 in the kidney cells. J Physiol Biochem 2020; 77:1-11. [PMID: 33201408 DOI: 10.1007/s13105-020-00773-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 10/20/2020] [Indexed: 10/23/2022]
Abstract
Dexamethasone augments mitochondrial protein abundance. The translocase of the outer membrane (Tom) of mitochondria plays a major role in importing largely cytosolically synthesized proteins into mitochondria. We hypothesize that dexamethasone upregulates the Tom transport system, leading to increase of mitochondrial protein localization. Tom20 and Tom70 are the two major subunits. Dexamethasone increased Tom20 and Tom70 mRNA levels by 53 ± 11% and 25 ± 9% and mitochondrial protein abundance by 27 ± 7% and 25 ± 4% (p < 0.05 for all), respectively, in HEK293 cells. In parallel, dexamethasone elevated the SGK1 mRNA by 79 ± 17% and activity by 190 ± 42%, and mitochondrial protein level by 41 ± 2% (all p < 0.05) without significantly affecting the cytosol counterpart. The discovery of the effect of dexamethasone on SGK1 protein restricted in the mitochondria attracted us to examine the effect of the hormone on MnSOD, an enzyme with known mitochondrial localization and function. Similarly, dexamethasone significantly increased MnSOD transcripts by 67 ± 15% and protein level only in the mitochondria dose-dependently. Inhibition of SGK1 by GSK650394 and RNAi significantly attenuated the effects of the hormone on Tom20, Tom70, and MnSOD, indicating that SGK1 relays the effects of dexamethasone. Catalase inhibited the effects of dexamethasone on SGK1 and the subsequent effects of SGK1 on Tom20, Tom70, and MnSOD. Finally, knock-down of Tom20 and Tom70 by their siRNAs reduced dexamethasone-induced increases in the mitochondrial localization of SGK1 and MnSOD proteins. In conclusion, dexamethasone upregulates Tom20, Tom70, and MnSOD, and these effects are dependent on reactive oxygen species and SGK1. Dexamethasone-induced increases of SGK1 and MnSOD mitochondrial localization requires Tom20 and Tom70.
Collapse
|
19
|
Saeri S, Hadjzadeh MAR, Hosseini M, Hosseinian S, Arab Z. The effects of the combination of Cyperus rotundus, Crocus sativus, Piper nigrum, and Boswellia serrata on learning and memory deficit and oxidative damage in brain tissue of hypothyroid rats. J Food Biochem 2020; 44:e13391. [PMID: 32696531 DOI: 10.1111/jfbc.13391] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/28/2020] [Accepted: 06/29/2020] [Indexed: 01/22/2023]
Abstract
In the present study, the impact of a combination of four memory-enhancer herbs on cognitive impairment and brain tissue oxidative damage due to hypothyroidism was evaluated. Propylthiouracil (PTU; 0.05%) was administrated in drinking water. Rats were treated with a combination of four herbal products (Cyperus rotundus, Crocus sativus, Piper nigrum, and Boswellia serrata) mixed with honey at two doses (640 and 1,280 mg/kg) or donepezil (0.5 mg/kg), for 6 weeks. Memory performance on the Morris water maze (MWM) and avoidance behavior in passive avoidance was impaired by hypothyroidism, and brain tissue oxidative damage occurred. Herbal combination and donepezil significantly improved memory impairment, reduced malondialdehyde concentration, and nitric oxide metabolites while increased the thiol contents and catalase and superoxide dismutase enzymes activity in the brain. Our findings suggest that the mixture of herbal products improves learning and memory deficits caused by hypothyroidism, probably by reducing the brain tissue oxidative damage. PRACTICAL APPLICATIONS: Learning and memory impairment is a common feature of thyroid hormones deficiency. Several studies are showing that hypothyroidism in juvenile and mature rats induces significant cognitive impairment. Likewise, in humans, a close relationship between thyroid hormone deficiency and cognitive impairment has been reported. We used a mixture of herbal products, including Cyperus rotundus, Crocus sativus, Piper nigrum, and Boswellia serrata, to treat hypothyroidism-induced memory impairment. All these herbs are widely used as a food additive across the world. In Iranian traditional medicine, this herbal combination traditionally used to treat cognitive impairments. Numerous studies have indicated that these herbs show neuroprotective and memory-enhancing properties. Our finding indicated that a traditionally used herbal combination could potentially use as a treatment of cognitive impairment induced by thyroid hormone deficiency.
Collapse
Affiliation(s)
- Shiva Saeri
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mousa-Al-Reza Hadjzadeh
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Hosseinian
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zohreh Arab
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
20
|
Mersa A, Atashbar S, Ahvar N, Salimi A. 1,25‐dihydroxyvitamin D3 prevents deleterious effects of erythromycin on mitochondrial function in rat heart isolated mitochondria. Clin Exp Pharmacol Physiol 2020; 47:1554-1563. [DOI: 10.1111/1440-1681.13328] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/31/2020] [Accepted: 04/16/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Amir Mersa
- Department of Pharmacology and Toxicology School of Pharmacy Ardabil University of Medical Sciences Ardabil Iran
| | - Saman Atashbar
- Department of Pharmacology and Toxicology School of Pharmacy Ardabil University of Medical Sciences Ardabil Iran
| | - Negar Ahvar
- Department of Pharmacology and Toxicology School of Pharmacy Ardabil University of Medical Sciences Ardabil Iran
| | - Ahmad Salimi
- Department of Pharmacology and Toxicology School of Pharmacy Ardabil University of Medical Sciences Ardabil Iran
| |
Collapse
|
21
|
Belosludtseva NV, Talanov EY, Venediktova NI, Sharapov MG, Mironova GD, Belosludtsev KN. Structural and Functional Features of Ca 2+ Transport Systems in Liver Mitochondria of Rats with Experimental Hyperthyroidism. Bull Exp Biol Med 2020; 169:224-228. [PMID: 32654002 DOI: 10.1007/s10517-020-04855-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Indexed: 10/23/2022]
Abstract
We analyzed structural and functional features of the main mitochondrial Ca2+-transporting systems, mitochondrial Ca2+ uniporter complex (MCUC) and Ca2+-dependent cyclosporin A-sensitive mitochondrial permeability transition pore (MPT pore), in rats with hyperthyroid state. It was found that, the rate of Ca2+ accumulation by rat liver mitochondria in this pathology increases by 1.3 times, which can be associated with higher level of the channel-forming subunit of the uniporter MCU and lower content of dominant-negative subunit of this complex MCUb. At the same time, the level of the regulatory subunit MICU1 remained unchanged. It was shown that calcium retention capacity of liver mitochondria in rats with experimental hyperthyroidism decreased by 2 times in comparison with the control, which attested to reduced resistance of liver mitochondria of hyperthyroid rats to induction of the MPT pore. The observed changes are consistent with the data on increased amount of cyclophilin D, a mitochondrial matrix peptidyl-prolyl isomerase that is known to modulate the MPT pore opening and expression of the Ppif gene that encodes mitochondrial cyclophilin D in rats with experimental hyperthyroidism.
Collapse
Affiliation(s)
- N V Belosludtseva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region, Russia
| | - E Yu Talanov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region, Russia
| | - N I Venediktova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region, Russia
| | - M G Sharapov
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow region, Russia
| | - G D Mironova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region, Russia
| | - K N Belosludtsev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region, Russia.
- Mari State University, Yoshkar-Ola, Mari El, Russia.
| |
Collapse
|
22
|
Pronsato L, Milanesi L, Vasconsuelo A. Testosterone induces up-regulation of mitochondrial gene expression in murine C2C12 skeletal muscle cells accompanied by an increase of nuclear respiratory factor-1 and its downstream effectors. Mol Cell Endocrinol 2020; 500:110631. [PMID: 31676390 DOI: 10.1016/j.mce.2019.110631] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 10/25/2019] [Accepted: 10/25/2019] [Indexed: 01/03/2023]
Abstract
The reduction in muscle mass and strength with age, sarcopenia, is a prevalent condition among the elderly, linked to skeletal muscle dysfunction and cell apoptosis. We demonstrated that testosterone protects against H2O2-induced apoptosis in C2C12 muscle cells. Here, we analyzed the effect of testosterone on mitochondrial gene expression in C2C12 skeletal muscle cells. We found that testosterone increases mRNA expression of genes encoded by mitochondrial DNA, such as NADPH dehydrogenase subunit 1 (ND1), subunit 4 (ND4), cytochrome b (CytB), cytochrome c oxidase subunit 1 (Cox1) and subunit 2 (Cox2) in C2C12. Additionally, the hormone induced the expression of the nuclear respiratory factors 1 and 2 (Nrf-1 and Nrf-2), the mitochondrial transcription factors A (Tfam) and B2 (TFB2M), and the optic atrophy 1 (OPA1). The simultaneous treatment with testosterone and the androgen receptor antagonist, Flutamide, reduced these effects. H2O2-oxidative stress induced treatment, significantly decreased mitochondrial gene expression. Computational analysis revealed that mitochondrial DNA contains specific sequences, which the androgen receptor could recognize and bind, probably taking place a direct regulation of mitochondrial transcription by the receptor. These findings indicate that androgen plays an important role in the regulation of mitochondrial transcription and biogenesis in skeletal muscle.
Collapse
Affiliation(s)
- Lucía Pronsato
- Instituto de Investigaciones Biológicas y Biomédicas del Sur (INBIOSUR-CONICET), 8000, Bahía Blanca, Argentina.
| | - Lorena Milanesi
- Instituto de Investigaciones Biológicas y Biomédicas del Sur (INBIOSUR-CONICET), 8000, Bahía Blanca, Argentina.
| | - Andrea Vasconsuelo
- Instituto de Investigaciones Biológicas y Biomédicas del Sur (INBIOSUR-CONICET), 8000, Bahía Blanca, Argentina
| |
Collapse
|
23
|
Wang Q, Zhang Q, Gan Z, Li H, Yang Y, Zhang Y, Zhao X. Screening for reproductive biomarkers in Bactrian camel via iTRAQ analysis of proteomes. Reprod Domest Anim 2020; 55:189-199. [PMID: 31840896 DOI: 10.1111/rda.13607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 12/04/2019] [Indexed: 12/20/2022]
Abstract
Bactrian camel is an ancient and precious species of livestock; that is, unique resources exist in the desert and have important economic and scientific value. In recent years, the number of Bactrian camels has declined sharply. Due to its long reproductive cycle and seasonal oestrus, the mechanism of oestrus is unknown. To identify candidate biomarkers of reproduction, we performed a comprehensive proteomic analysis of serum from Bactrian camel in oestrus and non-oestrus, using isobaric tags for relative and absolute quantitation (iTRAQ) coupled with tandem mass spectrometry. We identified 359 proteins, of which 32 were differentially expressed: 11 were up-regulated and 21 were down-regulated in samples from camels in oestrus. We validated the differential expression of a subset of these proteins using qPCR and Western blot. Gene ontology annotation identified that the differentially expressed proteins function in cellular processes, metabolic processes and immune system processes. Notably, five of the differentially expressed proteins, PCGF5, histone H1.2, RBP4, FOLR1 and ANTXR2, are involved in reproductive regulatory processes in other animals. KEGG enrichment analysis demonstrated significant enrichment in several cardiac-related pathways, such as 'dilated cardiomyopathy', 'hypertrophic cardiomyopathy', 'cardiac muscle contraction' and 'adrenergic signalling in cardiomyopathy'. Our results suggest that candidate biomarker (PCGF5, histone H1.2, RBP4, FOLR1 and ANTXR2) discovery can aid in understanding reproduction in Bactrian camels. We conclude that the profiling of serum proteomes, followed by the measurement of selected proteins using more targeted methods, offers a promising approach for studying mechanisms of oestrus.
Collapse
Affiliation(s)
- Qi Wang
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
| | - Quanwei Zhang
- College of Life Science and Technology, Gansu Agriculture University, Lanzhou, China
| | - Ze Gan
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
| | - Haijiang Li
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
| | - Yang Yang
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China.,College of Life Science and Technology, Gansu Agriculture University, Lanzhou, China
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China.,College of Life Science and Technology, Gansu Agriculture University, Lanzhou, China
| |
Collapse
|
24
|
Liu D, Jin F, Shu G, Xu X, Qi J, Kang X, Yu H, Lu K, Jiang S, Han F, You J, Du Y, Ji J. Enhanced efficiency of mitochondria-targeted peptide SS-31 for acute kidney injury by pH-responsive and AKI-kidney targeted nanopolyplexes. Biomaterials 2019; 211:57-67. [DOI: 10.1016/j.biomaterials.2019.04.034] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 12/28/2022]
|
25
|
Baghcheghi Y, Salmani H, Beheshti F, Shafei MN, Sadeghnia HR, Soukhtanloo M, Ebrahimzadeh Bideskan A, Hosseini M. Effects of PPAR-γ agonist, pioglitazone on brain tissues oxidative damage and learning and memory impairment in juvenile hypothyroid rats. Int J Neurosci 2019; 129:1024-1038. [DOI: 10.1080/00207454.2019.1632843] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yousef Baghcheghi
- Student Research Committee, Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Salmani
- Student Research Committee, Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farimah Beheshti
- Department of Medical Basic Sciences and Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Mohammad Naser Shafei
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Sadeghnia
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Soukhtanloo
- Department of Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mahmoud Hosseini
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
26
|
Abstract
BACKGROUND The integration of biological, psychological, and social factors in medicine has benefited from increasingly precise stress response biomarkers. Mitochondria, a subcellular organelle with its own genome, produce the energy required for life and generate signals that enable stress adaptation. An emerging concept proposes that mitochondria sense, integrate, and transduce psychosocial and behavioral factors into cellular and molecular modifications. Mitochondrial signaling might in turn contribute to the biological embedding of psychological states. METHODS A narrative literature review was conducted to evaluate evidence supporting this model implicating mitochondria in the stress response, and its implementation in behavioral and psychosomatic medicine. RESULTS Chronically, psychological stress induces metabolic and neuroendocrine mediators that cause structural and functional recalibrations of mitochondria, which constitutes mitochondrial allostatic load. Clinically, primary mitochondrial defects affect the brain, the endocrine system, and the immune systems that play a role in psychosomatic processes, suggesting a shared underlying mechanistic basis. Mitochondrial function and dysfunction also contribute to systemic physiological regulation through the release of mitokines and other metabolites. At the cellular level, mitochondrial signaling influences gene expression and epigenetic modifications, and modulates the rate of cellular aging. CONCLUSIONS This evidence suggests that mitochondrial allostatic load represents a potential subcellular mechanism for transducing psychosocial experiences and the resulting emotional responses-both adverse and positive-into clinically meaningful biological and physiological changes. The associated article in this issue of Psychosomatic Medicine presents a systematic review of the effects of psychological stress on mitochondria. Integrating mitochondria into biobehavioral and psychosomatic research opens new possibilities to investigate how psychosocial factors influence human health and well-being across the life-span.
Collapse
Affiliation(s)
- Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Medical Center, New York, NY 10032, USA
- Department of Neurology, The H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Medical Center, New York, NY 10032, USA
- Columbia Aging Center, Columbia University, New York, NY 10032, USA
| | - Bruce S. McEwen
- Laboratory for Neuroendocrinology, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
27
|
Hoffmann A, Spengler D. The Mitochondrion as Potential Interface in Early-Life Stress Brain Programming. Front Behav Neurosci 2018; 12:306. [PMID: 30574076 PMCID: PMC6291450 DOI: 10.3389/fnbeh.2018.00306] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/26/2018] [Indexed: 12/23/2022] Open
Abstract
Mitochondria play a central role in cellular energy-generating processes and are master regulators of cell life. They provide the energy necessary to reinstate and sustain homeostasis in response to stress, and to launch energy intensive adaptation programs to ensure an organism’s survival and future well-being. By this means, mitochondria are particularly apt to mediate brain programming by early-life stress (ELS) and to serve at the same time as subcellular substrate in the programming process. With a focus on mitochondria’s integrated role in metabolism, steroidogenesis and oxidative stress, we review current findings on altered mitochondrial function in the brain, the placenta and peripheral blood cells following ELS-dependent programming in rodents and recent insights from humans exposed to early life adversity (ELA). Concluding, we propose a role of the mitochondrion as subcellular intersection point connecting ELS, brain programming and mental well-being, and a role as a potential site for therapeutic interventions in individuals exposed to severe ELS.
Collapse
Affiliation(s)
- Anke Hoffmann
- Epigenomics of Early Life, Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Dietmar Spengler
- Epigenomics of Early Life, Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
28
|
Panettieri RA, Schaafsma D, Amrani Y, Koziol-White C, Ostrom R, Tliba O. Non-genomic Effects of Glucocorticoids: An Updated View. Trends Pharmacol Sci 2018; 40:38-49. [PMID: 30497693 DOI: 10.1016/j.tips.2018.11.002] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/09/2018] [Accepted: 11/01/2018] [Indexed: 01/01/2023]
Abstract
Glucocorticoid (GC) anti-inflammatory effects generally require a prolonged onset of action and involve genomic processes. Because of the rapidity of some of the GC effects, however, the concept that non-genomic actions may contribute to GC mechanisms of action has arisen. While the mechanisms have not been completely elucidated, the non-genomic effects may play a role in the management of inflammatory diseases. For instance, we recently reported that GCs 'rapidly' enhanced the effects of bronchodilators, agents used in the treatment of allergic asthma. In this review article, we discuss (i) the non-genomic effects of GCs on pathways relevant to the pathogenesis of inflammatory diseases and (ii) the putative role of the membrane GC receptor. Since GC side effects are often considered to be generated through its genomic actions, understanding GC non-genomic effects will help design GCs with a better therapeutic index.
Collapse
Affiliation(s)
- Reynold A Panettieri
- Department of Medicine, Rutgers Institute for Translational Medicine and Science, Robert Wood Johnson School of Medicine, New Brunswick, NJ, USA
| | | | - Yassine Amrani
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, Leicester Biomedical Research Center Respiratory, Leicester, UK
| | - Cynthia Koziol-White
- Department of Medicine, Rutgers Institute for Translational Medicine and Science, Robert Wood Johnson School of Medicine, New Brunswick, NJ, USA
| | - Rennolds Ostrom
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, USA
| | - Omar Tliba
- Department of Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY, USA.
| |
Collapse
|
29
|
Yao Y, Chang X, Wang D, Ma H, Wang H, Zhang H, Li C, Wang J. Roles of ERK1/2 and PI3K/AKT signaling pathways in mitochondria-mediated apoptosis in testes of hypothyroid rats. Toxicol Res (Camb) 2018; 7:1214-1224. [PMID: 30542605 PMCID: PMC6240896 DOI: 10.1039/c8tx00122g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/25/2018] [Indexed: 12/27/2022] Open
Abstract
The absence of the thyroid hormone (TH) could impair testicular function, but its mechanism is still rudimentary. This study aims to explore the roles of estrogen receptor (ER α, β) and G protein-coupled receptor 30 (GPR30), extracellular signal regulated kinase (ERK1/2) and phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathways in apoptosis in testes of hypothyroidism rats. Male Wistar rats were randomly divided into control (C), low-(L) and high-hypothyroidism (H) groups [1 mL per 100 g BW per day normal saline, 0.001% and 0.1% propylthiouracil (PTU), respectively] by intragastrical gavage for 60 days. The levels of triiodothyronine (T3), thyroxine (T4) and thyroid stimulating hormone (TSH) in serum were measured. Expressions of ERα, ERβ and GPR30, pathway related protein expressions of ERK1/2 and PI3 K/AKT and apoptosis were detected in testicular homogenates. The results showed that T3 and T4 levels were decreased, and the TSH level was increased significantly in the H group. Protein expressions of ERα, ERβ and GPR30 decreased significantly in the H group. Significantly decreased protein expressions of p-ERK1/2, p-PI3K p85, p-AKT Ser473, Ras, p-Raf-1 Ser259, p-Raf-1 Ser338 and cyclin D1 in L and H groups as well PI3K p85, p-AKT and Thr308 in the H group were observed. Moreover, there was a significant increase in the Bad protein expression in L and H groups. In addition, there was a significant increase in the expression of Bax/Bcl-2, caspase 9 and cleaved caspase 3 and a significant decrease in the total caspase 3 protein expression in the H group. These results suggested that ERK1/2 and PI3K/AKT signaling pathways could be suppressed by hypothyroidism via inhibiting the expressions of ERs and could finally induce apoptosis in testes.
Collapse
Affiliation(s)
- Yueli Yao
- Department of Toxicology , School of Public Health , Lanzhou University , Lanzhou , 730000 , China . ; Tel: +86-931-8915010
| | - Xiaoru Chang
- Department of Toxicology , School of Public Health , Lanzhou University , Lanzhou , 730000 , China . ; Tel: +86-931-8915010
| | - Dong Wang
- Department of Toxicology , School of Public Health , Lanzhou University , Lanzhou , 730000 , China . ; Tel: +86-931-8915010
| | - Haitao Ma
- Department of Toxicology , School of Public Health , Lanzhou University , Lanzhou , 730000 , China . ; Tel: +86-931-8915010
| | - Huiling Wang
- Department of Integrated Chinese and Western Medicine Gynecology , Gansu Provincial Maternity and Child-care Hospital , Lanzhou , 730050 , China
| | - Haojun Zhang
- Department of Hospital Infection , Gansu Provincial Hospital , Lanzhou , 730000 , China
| | - Chengyun Li
- Department of Toxicology , School of Public Health , Lanzhou University , Lanzhou , 730000 , China . ; Tel: +86-931-8915010
| | - Junling Wang
- Department of Toxicology , School of Public Health , Lanzhou University , Lanzhou , 730000 , China . ; Tel: +86-931-8915010
| |
Collapse
|
30
|
Lassiter K, Dridi S, Greene E, Kong B, Bottje W. Identification of mitochondrial hormone receptors in avian muscle cells. Poult Sci 2018; 97:2926-2933. [DOI: 10.3382/ps/pey126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 03/14/2018] [Indexed: 01/16/2023] Open
|
31
|
Betulinic acid attenuates dexamethasone-induced oxidative damage through the JNK-P38 MAPK signaling pathway in mice. Biomed Pharmacother 2018; 103:499-508. [DOI: 10.1016/j.biopha.2018.04.073] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/09/2018] [Accepted: 04/09/2018] [Indexed: 12/20/2022] Open
|
32
|
Koch RE, Hill GE. Behavioural mating displays depend on mitochondrial function: a potential mechanism for linking behaviour to individual condition. Biol Rev Camb Philos Soc 2018; 93:1387-1398. [DOI: 10.1111/brv.12400] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/15/2018] [Accepted: 01/19/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Rebecca E. Koch
- Department of Biological Sciences; Auburn University; Auburn AL 36849 U.S.A
| | - Geoffrey E. Hill
- Department of Biological Sciences; Auburn University; Auburn AL 36849 U.S.A
| |
Collapse
|
33
|
Calzà L, Baldassarro VA, Fernandez M, Giuliani A, Lorenzini L, Giardino L. Thyroid Hormone and the White Matter of the Central Nervous System: From Development to Repair. VITAMINS AND HORMONES 2018; 106:253-281. [DOI: 10.1016/bs.vh.2017.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
34
|
Weinhouse C. Mitochondrial-epigenetic crosstalk in environmental toxicology. Toxicology 2017; 391:5-17. [PMID: 28855114 DOI: 10.1016/j.tox.2017.08.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 08/20/2017] [Accepted: 08/22/2017] [Indexed: 12/18/2022]
Abstract
Crosstalk between the nuclear epigenome and mitochondria, both in normal physiological function and in responses to environmental toxicant exposures, is a developing sub-field of interest in environmental and molecular toxicology. The majority (∼99%) of mitochondrial proteins are encoded in the nuclear genome, so programmed communication among nuclear, cytoplasmic, and mitochondrial compartments is essential for maintaining cellular health. In this review, we will focus on correlative and mechanistic evidence for direct impacts of each system on the other, discuss demonstrated or potential crosstalk in the context of chemical insult, and highlight biological research questions for future study. We will first review the two main signaling systems: nuclear signaling to the mitochondria [anterograde signaling], best described in regulation of oxidative phosphorylation (OXPHOS) and mitochondrial biogenesis in response to environmental signals received by the nucleus, and mitochondrial signals to the nucleus [retrograde signaling]. Both signaling systems can communicate intracellular energy needs or a need to compensate for dysfunction to maintain homeostasis, but both can also relay inappropriate signals in the presence of dysfunction in either system and contribute to adverse health outcomes. We will first review these two signaling systems and highlight known or biologically feasible epigenetic contributions to both, then briefly discuss the emerging field of epigenetic regulation of the mitochondrial genome, and finally discuss putative "crosstalk phenotypes", including biological phenomena, such as caloric restriction, maintenance of stemness, and circadian rhythm, and states of disease or loss of function, such as cancer and aging, in which both the nuclear epigenome and mitochondria are strongly implicated.
Collapse
Affiliation(s)
- Caren Weinhouse
- Duke Global Health Institute, Duke University, Durham, NC 27708, United States.
| |
Collapse
|
35
|
Allostatic load and comorbidities: A mitochondrial, epigenetic, and evolutionary perspective. Dev Psychopathol 2017; 28:1117-1146. [PMID: 27739386 DOI: 10.1017/s0954579416000730] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Stress-related pathophysiology drives comorbid trajectories that elude precise prediction. Allostatic load algorithms that quantify biological "wear and tear" represent a comprehensive approach to detect multisystemic disease processes of the mind and body. However, the multiple morbidities directly or indirectly related to stress physiology remain enigmatic. Our aim in this article is to propose that biological comorbidities represent discrete pathophysiological processes captured by measuring allostatic load. This has applications in research and clinical settings to predict physical and psychiatric comorbidities alike. The reader will be introduced to the concepts of allostasis, allostasic states, allostatic load, and allostatic overload as they relate to stress-related diseases and the proposed prediction of biological comorbidities that extend rather to understanding psychopathologies. In our transdisciplinary discussion, we will integrate perspectives related to (a) mitochondrial biology as a key player in the allostatic load time course toward diseases that "get under the skin and skull"; (b) epigenetics related to child maltreatment and biological embedding that shapes stress perception throughout lifespan development; and
Collapse
|
36
|
Thyroid hormone induce a p53-dependent DNA damage through PI3K/Akt activation in sperm. Gene 2017; 615:1-7. [DOI: 10.1016/j.gene.2017.03.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 03/06/2017] [Accepted: 03/15/2017] [Indexed: 12/14/2022]
|
37
|
Mitochondrial and endoplasmic reticulum dysfunction and related defense mechanisms in critical illness-induced multiple organ failure. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2534-2545. [PMID: 28219766 DOI: 10.1016/j.bbadis.2017.02.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 01/20/2017] [Accepted: 02/10/2017] [Indexed: 12/15/2022]
Abstract
Patients with critical illness-induced multiple organ failure suffer from a very high morbidity and mortality, despite major progress in intensive care. The pathogenesis of this condition is complex and incompletely understood. Inadequate tissue perfusion and an overwhelming inflammatory response with pronounced cellular damage have been suggested to play an important role, but interventions targeting these disturbances largely failed to improve patient outcome. Hence, new therapeutic perspectives are urgently needed. Cellular dysfunction, hallmarked by mitochondrial dysfunction and endoplasmic reticulum stress, is increasingly recognized as an important contributor to the development of organ failure in critical illness. Several cellular defense mechanisms are normally activated when the cell is in distress, but may fail or respond insufficiently to critical illness. This insight may open new therapeutic options by stimulating these cellular defense mechanisms. This review summarizes the current understanding of the role of mitochondrial dysfunction and endoplasmic reticulum stress in critical illness-induced multiple organ failure and gives an overview of the corresponding cellular defense mechanisms. Therapeutic perspectives based on these cellular defense mechanisms are discussed. This article is part of a Special Issue entitled: Immune and Metabolic Alterations in Trauma and Sepsis edited by Dr. Raghavan Raju.
Collapse
|
38
|
Lema SC, Chow MI, Resner EJ, Westman AA, May D, Dittman AH, Hardy KM. Endocrine and metabolic impacts of warming aquatic habitats: differential responses between recently isolated populations of a eurythermal desert pupfish. CONSERVATION PHYSIOLOGY 2016; 4:cow047. [PMID: 27833749 PMCID: PMC5100229 DOI: 10.1093/conphys/cow047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 09/14/2016] [Accepted: 09/19/2016] [Indexed: 06/06/2023]
Abstract
Temperatures of inland aquatic habitats are increasing with climate change, and understanding how fishes respond physiologically to thermal stress will be crucial for identifying species most susceptible to these changes. Desert fishes may be particularly vulnerable to rising temperatures because many species occupy only a fraction of their historical range and occur in habitats with already high temperatures. Here, we examined endocrine and metabolic responses to elevated temperature in Amargosa pupfish, Cyprinodon nevadensis amargosae. We studied C. n. amargosae from two habitats with distinct thermal conditions: the Amargosa River, which experiences diurnally and seasonally variable temperatures (0.2-40°C); and Tecopa Bore, a spring and marsh fed by hot groundwater (47.5°C) from an artesian borehole. These allopatric populations differ in morphology, and prior evidence suggests that temperature might contribute to these differences via altered thyroid hormone (TH) regulation of morphological development. Here, we document variation in hepatic iodothyronine deiodinase type 2 (dio2) and type 3 (dio3) and TH receptor β (trβ) gene transcript abundance between the Amargosa River and Tecopa Bore wild populations. Fish from these populations acclimated to 24 or 34°C retained differences in hepatic dio2, dio3 and trβ mRNAs and also varied in transcripts encoding the TH membrane transporters monocarboxylate transporter 8 (mct8) and organic anion-transporting protein 1c1 (oatp1c1). Tecopa Bore pupfish also exhibited higher dio2 and trβ mRNA levels in skeletal muscle relative to Amargosa River fish. Muscle citrate synthase activity was lower at 34°C for both populations, whereas lactate dehydrogenase activity and lactate dehydrogenase A-chain (ldhA) transcripts were both higher and 3,5,3'-triiodothryonine responsive in Tecopa Bore pupfish only. These findings reveal that local population variation and thermal experience interact to shape how pupfish respond to elevated temperatures, and point to the need to consider such interactions in management actions for desert fishes under a changing climate.
Collapse
Affiliation(s)
- Sean C Lema
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Michelle I Chow
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Emily J Resner
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Alex A Westman
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Darran May
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98105, USA
| | - Andrew H Dittman
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, Seattle, WA 98112, USA
| | - Kristin M Hardy
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| |
Collapse
|
39
|
Kotwicka M, Skibinska I, Jendraszak M, Jedrzejczak P. 17β-estradiol modifies human spermatozoa mitochondrial function in vitro. Reprod Biol Endocrinol 2016; 14:50. [PMID: 27565707 PMCID: PMC5002130 DOI: 10.1186/s12958-016-0186-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 08/19/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND It is assumed that spermatozoa are target cells for estrogens however, the mechanism of their action is not fully understood. The aim of this study was to investigate the influence of 17β-estradiol (E2) on the human spermatozoa mitochondrial function. METHODS The effects on spermatozoa of E2 at final concentrations of 10(-10), 10(-8) and 10(-6) M were studied regarding the following phenomena: (1) kinetics of intracellular free calcium ions changes (using Fluo-3), (2) mitochondrial membrane potential ΔΨm (using JC-1 fluorochrome), (3) production of superoxide anion in mitochondria (using MitoSOX RED dye), (4) spermatozoa vitality (propidium iodide staining) and (5) phosphatidylserine membrane translocation (staining with annexin V marked with fluorescein). RESULTS E2 initiated rapid (within a few seconds) dose dependent increase of intracellular free calcium ions concentration. E2 was changing the mitochondrial membrane potential: 10(-8) M initiated significant increase of percentage of high ΔΨm spermatozoa while the 10(-6) M induced significant decrease of high ΔΨm cells. In spermatozoa stimulated with E2 10(-6) M a significant increase of mitochondrial superoxide anion level was observed. 2 h incubation of spermatozoa with E2 did not alter cells vitality nor stimulated phosphatidylserine membrane translocation, for all three doses. CONCLUSIONS 17β-estradiol affected the human spermatozoa mitochondrial function. E2 in low concentration improved while in high concentration might deteriorate mitochondrial function.
Collapse
Affiliation(s)
- Malgorzata Kotwicka
- Department of Cell Biology, Faculty of Health Sciences, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznan, Poland
| | - Izabela Skibinska
- Department of Cell Biology, Faculty of Health Sciences, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznan, Poland
| | - Magdalena Jendraszak
- Department of Cell Biology, Faculty of Health Sciences, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznan, Poland
| | - Piotr Jedrzejczak
- Division of Infertility and Reproductive Endocrinology, Faculty of Medicine I, Poznan University of Medical Sciences, Polna 33, 60-535 Poznan, Poland
| |
Collapse
|
40
|
Koch RE, Josefson CC, Hill GE. Mitochondrial function, ornamentation, and immunocompetence. Biol Rev Camb Philos Soc 2016; 92:1459-1474. [DOI: 10.1111/brv.12291] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 06/11/2016] [Accepted: 06/14/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Rebecca E. Koch
- Department of Biological Sciences; Auburn University; Auburn AL 36849 U.S.A
| | - Chloe C. Josefson
- Department of Biological Sciences; Auburn University; Auburn AL 36849 U.S.A
| | - Geoffrey E. Hill
- Department of Biological Sciences; Auburn University; Auburn AL 36849 U.S.A
| |
Collapse
|
41
|
Stress and corticosteroids regulate rat hippocampal mitochondrial DNA gene expression via the glucocorticoid receptor. Proc Natl Acad Sci U S A 2016; 113:9099-104. [PMID: 27457949 DOI: 10.1073/pnas.1602185113] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Glucocorticoids (GCs) are involved in stress and circadian regulation, and produce many actions via the GC receptor (GR), which is classically understood to function as a nuclear transcription factor. However, the nuclear genome is not the only genome in eukaryotic cells. The mitochondria also contain a small circular genome, the mitochondrial DNA (mtDNA), that encodes 13 polypeptides. Recent work has established that, in the brain and other systems, the GR is translocated from the cytosol to the mitochondria and that stress and corticosteroids have a direct influence on mtDNA transcription and mitochondrial physiology. To determine if stress affects mitochondrially transcribed mRNA (mtRNA) expression, we exposed adult male rats to both acute and chronic immobilization stress and examined mtRNA expression using quantitative RT-PCR. We found that acute stress had a main effect on mtRNA expression and that expression of NADH dehydrogenase 1, 3, and 6 (ND-1, ND-3, ND-6) and ATP synthase 6 (ATP-6) genes was significantly down-regulated. Chronic stress induced a significant up-regulation of ND-6 expression. Adrenalectomy abolished acute stress-induced mtRNA regulation, demonstrating GC dependence. ChIP sequencing of GR showed that corticosterone treatment induced a dose-dependent association of the GR with the control region of the mitochondrial genome. These findings demonstrate GR and stress-dependent transcriptional regulation of the mitochondrial genome in vivo and are consistent with previous work linking stress and GCs with changes in the function of brain mitochondria.
Collapse
|
42
|
Tsai T, St John JC. The role of mitochondrial DNA copy number, variants, and haplotypes in farm animal developmental outcome. Domest Anim Endocrinol 2016; 56 Suppl:S133-46. [PMID: 27345311 DOI: 10.1016/j.domaniend.2016.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 03/11/2016] [Accepted: 03/15/2016] [Indexed: 01/20/2023]
Abstract
The vast majority of cellular energy is generated through the process of oxidative phosphorylation, which takes place in the electron transport chain in the mitochondria. The electron transport chain is encoded by 2 genomes, the chromosomal and the mitochondrial genomes. Mitochondrial DNA is associated with a number of traits, which include tolerance to heat, growth and physical performance, meat and milk quality, and fertility. Mitochondrial genomes can be clustered into groups known as mtDNA haplotypes. Mitochondrial DNA haplotypes are a potential genetic source for manipulating phenotypes in farm animals. The use of assisted reproductive technologies, such as nuclear transfer, allows favorable chromosomal genetic traits to be mixed and matched with sought after mtDNA haplotype traits. As a result super breeds can be generated.
Collapse
Affiliation(s)
- Tesha Tsai
- Centre for Genetic Diseases, Hudson Institute of Medical Research, Clayton, Vic, 3168, Australia; Department of Molecular and Translational Science, Monash University, Clayton, Vic, 3168, Australia
| | - Justin C St John
- Centre for Genetic Diseases, Hudson Institute of Medical Research, Clayton, Vic, 3168, Australia; Department of Molecular and Translational Science, Monash University, Clayton, Vic, 3168, Australia.
| |
Collapse
|
43
|
Boykins LG, Jones JCR, Estraño CE, Schwartzbach SD, Skalli O. Pre-embedding Double-Label Immunoelectron Microscopy of Chemically Fixed Tissue Culture Cells. Methods Mol Biol 2016; 1474:217-32. [PMID: 27515083 PMCID: PMC5734918 DOI: 10.1007/978-1-4939-6352-2_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Localization of specific proteins within cells at the nanometer level of resolution is central to understanding how these proteins function in cell processes such as motility and intracellular trafficking. Such localization can be achieved by combining transmission electron microscopy (TEM) with immunogold labeling. Here we describe a pre-embedding, indirect gold immunolabeling approach to localize two different proteins of interest with secondary antibodies labeled with gold particles of different sizes in cells grown on cover slips. In this protocol, the cells are immunolabeled prior to being embedded in an epoxy resin for ultrathin sectioning. The protocol also includes strategies for optimizing the balance between ultrastructure and antigen preservation, steps to minimize nonspecific antibody binding, and steps to optimize antibody penetration.
Collapse
Affiliation(s)
- Lou G Boykins
- Department of Biological Sciences, The University of Memphis, 103 Life Sciences Bldg, Memphis, TN, 38152, USA
| | - Jonathan C R Jones
- School of Molecular Biosciences, Washington State University, BLS 202F, 1770 NE Stadium Way, Pullman, WA, 99164, USA
| | - Carlos E Estraño
- Department of Biological Sciences, The University of Memphis, 103 Life Sciences Bldg, Memphis, TN, 38152, USA
| | - Steven D Schwartzbach
- Department of Biological Sciences, The University of Memphis, 103 Life Sciences Bldg, Memphis, TN, 38152, USA
| | - Omar Skalli
- Department of Biological Sciences, The University of Memphis, 103 Life Sciences Bldg, Memphis, TN, 38152, USA.
| |
Collapse
|
44
|
Mitochondrial Respiratory Chain Inhibitors Involved in ROS Production Induced by Acute High Concentrations of Iodide and the Effects of SOD as a Protective Factor. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:217670. [PMID: 26294939 PMCID: PMC4532905 DOI: 10.1155/2015/217670] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 02/12/2015] [Accepted: 03/24/2015] [Indexed: 11/23/2022]
Abstract
A major source of reactive oxygen species (ROS) generation is the mitochondria. By using flow cytometry of the mitochondrial fluorescent probe, MitoSOX Red, western blot of mitochondrial ROS scavenger Peroxiredoxin (Prx) 3 and fluorescence immunostaining, ELISA of cleaved caspases 3 and 9, and TUNEL staining, we demonstrated that exposure to 100 μM KI for 2 hours significantly increased mitochondrial superoxide production and Prx 3 protein expression with increased expressions of cleaved caspases 3 and 9. Besides, we indicated that superoxide dismutase (SOD) at 1000 unit/mL attenuated the increase in mitochondrial superoxide production, Prx 3 protein expression, and lactate dehydrogenase (LDH) release and improved the relative cell viability at 100 μM KI exposure. However, SOD inhibitor diethyldithiocarbamic acid (DETC) (2 mM), Rotenone (0.5 μM), a mitochondrial complex I inhibitor, and Antimycin A (10 μM), a complex III inhibitor, caused an increase in mitochondrial superoxide production, Prx 3 protein expression, and LDH release and decreased the relative cell viability. We conclude that the inhibitors of mitochondrial respiratory chain complex I or III may be involved in oxidative stress caused by elevated concentrations of iodide, and SOD demonstrates its protective effect on the Fischer rat thyroid cell line (FRTL) cells.
Collapse
|
45
|
Yi J, Zhu R, Wu J, Wu J, Xia W, Zhu L, Jiang W, Xiang S, Tan Z. In vivo protective effect of betulinic acid on dexamethasone induced thymocyte apoptosis by reducing oxidative stress. Pharmacol Rep 2015; 68:95-100. [PMID: 26721359 DOI: 10.1016/j.pharep.2015.07.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 06/06/2015] [Accepted: 07/01/2015] [Indexed: 12/19/2022]
Abstract
BACKGROUND Dexamethasone (Dex), a synthetic glucocorticoid, is strictly controlled for use due to its serious side effects, including immune suppression. Betulinic acid (BA), an antioxidant prepared from the white birch, exhibits immunomodulation properties. To assess the implications and investigate the mechanisms of BA-elicited immunomodulation, we hypothesized that Dex induced thymocyte apoptosis via oxidative stress could be lessened by BA. METHODS Mice were given oral doses of BA (0.25, 0.5, and 1.0mg/kg) daily for 14 days, and induced oxidative stress by giving a single dose of Dex intraperitoneal at the dosage of 25mg/kg body weight 8h after the last administration of BA. RESULTS Dex administration alone significantly decreased antioxidant enzyme activities, while significantly increased reactive oxygen species (ROS) production, lipid peroxidation, mitochondrial dysfunctions, caspase-3 activation and cellular apoptosis. However, pretreatment with BA dose-dependently mitigated Dex-induced oxidative damage after 14 days of feeding. In addition to ROS scavenging activity in Dex-induced thymocyte, BA administration decreased lipid peroxidation, up-regulated antioxidant enzymes, restored mitochondrial function, increased Bcl-2 expression but reduced Bax expression, inhibited caspase-3 activation, and improved cell survival. CONCLUSIONS These findings reveal a protective capability of BA against Dex-induced cell death by reducing oxidative stress via mitochondrial mediated signal pathway which could be the potential mechanism underlying BA-elicited immunomodulation.
Collapse
Affiliation(s)
- Jine Yi
- College of Veterinary Medicine, Hunan Agricultural University, Changsha City, China.
| | - Ruocen Zhu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha City, China
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, 4-10 Ag/For Center, University of Alberta, Edmonton, Canada
| | - Jing Wu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha City, China
| | - Wei Xia
- College of Veterinary Medicine, Hunan Agricultural University, Changsha City, China
| | - Lijuan Zhu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha City, China
| | - Weiwei Jiang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha City, China
| | - Siting Xiang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha City, China
| | - Zhuliang Tan
- College of Veterinary Medicine, Hunan Agricultural University, Changsha City, China.
| |
Collapse
|
46
|
Vaitkus JA, Farrar JS, Celi FS. Thyroid Hormone Mediated Modulation of Energy Expenditure. Int J Mol Sci 2015; 16:16158-75. [PMID: 26193258 PMCID: PMC4519944 DOI: 10.3390/ijms160716158] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 07/07/2015] [Accepted: 07/09/2015] [Indexed: 01/15/2023] Open
Abstract
Thyroid hormone (TH) has diverse effects on mitochondria and energy expenditure (EE), generating great interest and research effort into understanding and harnessing these actions for the amelioration and treatment of metabolic disorders, such as obesity and diabetes. Direct effects on ATP utilization are a result of TH's actions on metabolic cycles and increased cell membrane ion permeability. However, the majority of TH induced EE is thought to be a result of indirect effects, which, in turn, increase capacity for EE. This review discusses the direct actions of TH on EE, and places special emphasis on the indirect actions of TH, which include mitochondrial biogenesis and reduced metabolic efficiency through mitochondrial uncoupling mechanisms. TH analogs and the metabolic actions of T2 are also discussed in the context of targeted modulation of EE. Finally, clinical correlates of TH actions on metabolism are briefly presented.
Collapse
Affiliation(s)
- Janina A Vaitkus
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA.
| | - Jared S Farrar
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA.
| | - Francesco S Celi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA.
| |
Collapse
|
47
|
Picard M. Mitochondrial synapses: intracellular communication and signal integration. Trends Neurosci 2015; 38:468-74. [PMID: 26187720 DOI: 10.1016/j.tins.2015.06.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/05/2015] [Accepted: 06/11/2015] [Indexed: 12/17/2022]
Abstract
Communication is a central theme in biology. Consequently, specialized structures have evolved to permit rapid communication among cells, tissues, organs, and physiological systems, thus enhancing the overall function and adaptation of the organism. A prime example is the neuronal synapse. In the brain, synaptic communication establishes neuronal networks with the capacity to integrate, process, and store information, giving rise to complex output signals capable of orchestrating functions across the organism. At the intracellular level, discoveries now reveal the existence of 'mitochondrial synapses' establishing mitochondrial networks, with defined chromatin-modifying mitochondrial output signals capable of orchestrating gene expression across the genome. These discoveries raise the possibility that in addition to their role as powerhouses and neuromodulators, mitochondria behave as intracellular signal-processing networks.
Collapse
Affiliation(s)
- Martin Picard
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia and the University of Pennsylvania, PA 19104, USA.
| |
Collapse
|
48
|
Metallothionein-I/II Knockout Mice Aggravate Mitochondrial Superoxide Production and Peroxiredoxin 3 Expression in Thyroid after Excessive Iodide Exposure. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:267027. [PMID: 26101557 PMCID: PMC4458558 DOI: 10.1155/2015/267027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 01/13/2015] [Accepted: 02/11/2015] [Indexed: 12/30/2022]
Abstract
Purpose. We aim to figure out the effect of metallothioneins on iodide excess induced oxidative stress in the thyroid. Methods. Eight-week-old MT-I/II knockout (MT-I/II KO) mice and background-matched wild-type (WT) mice were used. Mitochondrial superoxide production and peroxiredoxin (Prx) 3 expression were measured. Results. In in vitro study, more significant increases in mitochondrial superoxide production and Prx 3 expression were detected in the MT-I/II KO groups. In in vivo study, significantly higher concentrations of urinary iodine level were detected in MT-I/II KO mice in 100 HI group. Compared to the NI group, there was no significant difference existing in serum thyroid hormones level in either groups (P > 0.05), while the mitochondrial superoxide production was significantly increased in 100 HI groups with significantly increased LDH activity and decreased relative cell viability. Compared to WT mice, more significant changes were detected in MT-I/II KO mice in 100 HI groups. No significant differences were detected between the NI group and 10 HI group in both the MT-I/II KO and WT mice groups (P > 0.05). Conclusions. Iodide excess in a thyroid without MT I/II protection may result in strong mitochondrial oxidative stress, which further leads to the damage of thyrocytes.
Collapse
|
49
|
Yi J, Zhu R, Wu J, Wu J, Tan Z. Ameliorative effect of betulinic acid on oxidative damage and apoptosis in the splenocytes of dexamethasone treated mice. Int Immunopharmacol 2015; 27:85-94. [PMID: 25959028 DOI: 10.1016/j.intimp.2015.04.050] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 04/22/2015] [Accepted: 04/25/2015] [Indexed: 10/23/2022]
Abstract
Betulinic acid (BA) is a bioactive pentacyclic triterpene that exhibits a variety of biological activities including antioxidative and immunomodulative properties. The objective of this study was to investigate the potential splenocytes protective effect and underlying mechanism of BA using dexamethasone (Dex)-induced mice as a model system. Pretreatment with BA (0.25, 0.5, and 1.0 mg/kg) dose-dependently ameliorated Dex-induced oxidative damage and apoptosis after 14 days of feeding. In addition to reactive oxygen species scavenging activity in Dex-induced splenocytes, BA administration up-regulated antioxidant enzymes, decreased lipid peroxidation, restored mitochondrial function, decreased the expression of pro-apoptotic protein Bax, prevented the decline of anti-apoptotic protein Bcl-2, inhibited caspase-9 and caspase-3 activation, and improved cell survival. These findings reveal that BA was able to mitigate Dex-induced oxidative stress and might play an important role in repairs of oxidative damage in immunological system.
Collapse
Affiliation(s)
- Jine Yi
- College of Veterinary Medicine, Hunan Agricultural University, Changsha City 410128, China.
| | - Ruocen Zhu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha City 410128, China
| | - Jing Wu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha City 410128, China
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, 4-10 Ag/For Center, University of Alberta, Edmonton T6G2P5, Canada
| | - Zhuliang Tan
- College of Veterinary Medicine, Hunan Agricultural University, Changsha City 410128, China.
| |
Collapse
|
50
|
Mitochondrial biology, targets, and drug delivery. J Control Release 2015; 207:40-58. [PMID: 25841699 DOI: 10.1016/j.jconrel.2015.03.036] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 03/30/2015] [Accepted: 03/31/2015] [Indexed: 02/07/2023]
Abstract
In recent years, mitochondrial medicine has emerged as a new discipline resting at the intersection of mitochondrial biology, pathology, and pharmaceutics. The central role of mitochondria in critical cellular processes such as metabolism and apoptosis has placed mitochondria at the forefront of cell science. Advances in mitochondrial biology have revealed that these organelles continually undergo fusion and fission while functioning independently and in complex cellular networks, establishing direct membrane contacts with each other and with other organelles. Understanding the diverse cellular functions of mitochondria has contributed to understanding mitochondrial dysfunction in disease states. Polyplasmy and heteroplasmy contribute to mitochondrial phenotypes and associated dysfunction. Residing at the center of cell biology, cellular functions, and disease pathology and being laden with receptors and targets, mitochondria are beacons for pharmaceutical modification. This review presents the current state of mitochondrial medicine with a focus on mitochondrial function, dysfunction, and common disease; mitochondrial receptors, targets, and substrates; and mitochondrial drug design and drug delivery with a focus on the application of nanotechnology to mitochondrial medicine. Mitochondrial medicine is at the precipice of clinical translation; the objective of this review is to aid in the advancement of mitochondrial medicine from infancy to application.
Collapse
|