1
|
Wang QJ, Wipf P. Small Molecule Inhibitors of Protein Kinase D: Early Development, Current Approaches, and Future Directions. J Med Chem 2023; 66:122-139. [PMID: 36538005 DOI: 10.1021/acs.jmedchem.2c01599] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Now entering its fourth decade, research on the biological function, small molecule inhibition, and disease relevance of the three known isoforms of protein kinase D, PKD1, PKD2, and PKD3, has entered a mature development stage. This mini-perspective focuses on the medicinal chemistry that provided a structurally diverse set of mainly active site inhibitors, which, for a brief time period, moved through preclinical development stages but have yet to be tested in clinical trials. In particular, between 2006 and 2012, a rapid expansion of synthetic efforts led to several moderately to highly PKD-selective chemotypes but did not yet achieve PKD subtype selectivity or resolve general toxicity and pharmacokinetic challenges. In addition to cancer, other unresolved medical needs in cardiovascular, inflammatory, and metabolic diseases would, however, benefit from a renewed focus on potent and selective PKD modulators.
Collapse
Affiliation(s)
- Qiming Jane Wang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States.,School of Pharmacy, University of Eastern Finland, 70210 Kuopio, Finland
| |
Collapse
|
2
|
Spaulding SC, Bollag WB. The role of lipid second messengers in aldosterone synthesis and secretion. J Lipid Res 2022; 63:100191. [PMID: 35278411 PMCID: PMC9020094 DOI: 10.1016/j.jlr.2022.100191] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 11/23/2022] Open
Abstract
Second messengers are small rapidly diffusing molecules or ions that relay signals between receptors and effector proteins to produce a physiological effect. Lipid messengers constitute one of the four major classes of second messengers. The hydrolysis of two main classes of lipids, glycerophospholipids and sphingolipids, generate parallel profiles of lipid second messengers: phosphatidic acid (PA), diacylglycerol (DAG), and lysophosphatidic acid versus ceramide, ceramide-1-phosphate, sphingosine, and sphingosine-1-phosphate, respectively. In this review, we examine the mechanisms by which these lipid second messengers modulate aldosterone production at multiple levels. Aldosterone is a mineralocorticoid hormone responsible for maintaining fluid volume, electrolyte balance, and blood pressure homeostasis. Primary aldosteronism is a frequent endocrine cause of secondary hypertension. A thorough understanding of the signaling events regulating aldosterone biosynthesis may lead to the identification of novel therapeutic targets. The cumulative evidence in this literature emphasizes the critical roles of PA, DAG, and sphingolipid metabolites in aldosterone synthesis and secretion. However, it also highlights the gaps in our knowledge, such as the preference for phospholipase D-generated PA or DAG, as well as the need for further investigation to elucidate the precise mechanisms by which these lipid second messengers regulate optimal aldosterone production.
Collapse
Affiliation(s)
- Shinjini C Spaulding
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Wendy B Bollag
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, USA; Research Department, Charlie Norwood VA Medical Center, Augusta, GA, USA.
| |
Collapse
|
3
|
Choudhary V, Olala LO, Kagha K, Pan ZQ, Chen X, Yang R, Cline A, Helwa I, Marshall L, Kaddour-Djebbar I, McGee-Lawrence ME, Bollag WB. Regulation of the Glycerol Transporter, Aquaporin-3, by Histone Deacetylase-3 and p53 in Keratinocytes. J Invest Dermatol 2017; 137:1935-1944. [PMID: 28526298 DOI: 10.1016/j.jid.2017.04.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 04/05/2017] [Accepted: 04/26/2017] [Indexed: 12/31/2022]
Abstract
Aquaporin- (AQP) 3, a water and glycerol channel, plays an important role in epidermal function, with studies showing its involvement in keratinocyte proliferation, differentiation, and migration and in epidermal wound healing and barrier repair. Increasing speculation about the use of histone deacetylase (HDAC) inhibitors to treat skin diseases led us to investigate HDAC's role in the regulation of AQP3. The broad-spectrum HDAC inhibitor suberoylanilide hydroxamic acid induced AQP3 mRNA and protein expression in a dose- and time-dependent manner in normal keratinocytes. The SAHA-induced increase in AQP3 levels resulted in enhanced [3H]glycerol uptake in normal but not in AQP3-knockout keratinocytes, confirming that the expressed AQP3 was functional. Use of HDAC inhibitors with different specificities limited our exploration of the responsible HDAC member to HDAC1, HDAC2, or HDAC3. Cre-recombinase-mediated knockdown and overexpression of HDAC3 suggested a role for HDAC3 in suppressing AQP3 expression basally. Further investigation implicated p53 as a transcription factor involved in regulating HDAC inhibitor-induced AQP3 expression. Thus, our study supports the regulation of AQP3 expression by HDAC3 and p53. Because suberoylanilide hydroxamic acid is already approved to treat cutaneous T-cell lymphoma, it could potentially be used as a therapy for skin diseases like psoriasis, where AQP3 is abnormally expressed.
Collapse
Affiliation(s)
- Vivek Choudhary
- Charlie Norwood VA Medical Center, Augusta, Georgia, USA; Department of Physiology, Augusta University, Augusta, Georgia, USA; Department of Medicine (Dermatology), Augusta University, Augusta, Georgia, USA.
| | - Lawrence O Olala
- Charlie Norwood VA Medical Center, Augusta, Georgia, USA; Department of Physiology, Augusta University, Augusta, Georgia, USA
| | - Karen Kagha
- Department of Physiology, Augusta University, Augusta, Georgia, USA
| | - Zhi-Qiang Pan
- Department of Physiology, Augusta University, Augusta, Georgia, USA; School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xunsheng Chen
- Charlie Norwood VA Medical Center, Augusta, Georgia, USA; Department of Physiology, Augusta University, Augusta, Georgia, USA
| | - Rong Yang
- Department of Physiology, Augusta University, Augusta, Georgia, USA; Department of Physiology, Medical School, Jianghan University, Wuhan, China
| | - Abigail Cline
- Department of Physiology, Augusta University, Augusta, Georgia, USA
| | - Inas Helwa
- Department of Physiology, Augusta University, Augusta, Georgia, USA; Department of Oral Biology, Augusta University, Augusta, Georgia, USA
| | - Lauren Marshall
- Department of Physiology, Augusta University, Augusta, Georgia, USA
| | - Ismail Kaddour-Djebbar
- Charlie Norwood VA Medical Center, Augusta, Georgia, USA; Department of Physiology, Augusta University, Augusta, Georgia, USA
| | | | - Wendy B Bollag
- Charlie Norwood VA Medical Center, Augusta, Georgia, USA; Department of Physiology, Augusta University, Augusta, Georgia, USA; Department of Medicine (Dermatology), Augusta University, Augusta, Georgia, USA; Department of Oral Biology, Augusta University, Augusta, Georgia, USA
| |
Collapse
|
4
|
Wood BM, Bossuyt J. Emergency Spatiotemporal Shift: The Response of Protein Kinase D to Stress Signals in the Cardiovascular System. Front Pharmacol 2017; 8:9. [PMID: 28174535 PMCID: PMC5258689 DOI: 10.3389/fphar.2017.00009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 01/04/2017] [Indexed: 12/12/2022] Open
Abstract
Protein Kinase D isoforms (PKD 1-3) are key mediators of neurohormonal, oxidative, and metabolic stress signals. PKDs impact a wide variety of signaling pathways and cellular functions including actin dynamics, vesicle trafficking, cell motility, survival, contractility, energy substrate utilization, and gene transcription. PKD activity is also increasingly linked to cancer, immune regulation, pain modulation, memory, angiogenesis, and cardiovascular disease. This increasing complexity and diversity of PKD function, highlights the importance of tight spatiotemporal control of the kinase via protein–protein interactions, post-translational modifications or targeting via scaffolding proteins. In this review, we focus on the spatiotemporal regulation and effects of PKD signaling in response to neurohormonal, oxidant and metabolic signals that have implications for myocardial disease. Precise targeting of these mechanisms will be crucial in the design of PKD-based therapeutic strategies.
Collapse
Affiliation(s)
- Brent M Wood
- Department of Pharmacology, University of California, Davis, Davis CA, USA
| | - Julie Bossuyt
- Department of Pharmacology, University of California, Davis, Davis CA, USA
| |
Collapse
|
5
|
Tsai YY, Rainey WE, Johnson MH, Bollag WB. VLDL-activated cell signaling pathways that stimulate adrenal cell aldosterone production. Mol Cell Endocrinol 2016; 433:138-46. [PMID: 27222295 PMCID: PMC4955520 DOI: 10.1016/j.mce.2016.05.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/20/2016] [Accepted: 05/20/2016] [Indexed: 01/29/2023]
Abstract
Aldosterone plays an important role in regulating ion and fluid homeostasis and thus blood pressure, and hyperaldosteronism results in hypertension. Hypertension is also observed with obesity, which is associated with additional health risks, including cardiovascular disease. Obese individuals have high serum levels of very low-density lipoprotein (VLDL), which has been shown to stimulate aldosterone production; however, the mechanisms underlying VLDL-induced aldosterone production are still unclear. Here we demonstrate in human adrenocortical carcinoma (HAC15) cells that submaximal concentrations of angiotensin II and VLDL stimulate aldosterone production in an additive fashion, suggesting the possibility of common mechanisms of action. We show using inhibitors that VLDL-induced aldosterone production is mediated by the PLC/IP3/PKC signaling pathway. Our results suggest that PKC is upstream of the extracellular signal-regulated kinase (ERK) activation previously observed with VLDL. An understanding of the mechanisms mediating VLDL-induced aldosterone production may provide insights into therapies to treat obesity-associated hypertension.
Collapse
Affiliation(s)
- Ying-Ying Tsai
- Department of Physiology, Medical College of Georgia at Augusta University, 1120 15th Street, Augusta, GA, 30912, United States
| | - William E Rainey
- Department of Physiology, Medical College of Georgia at Augusta University, 1120 15th Street, Augusta, GA, 30912, United States
| | - Maribeth H Johnson
- Department of Biostatistics and Epidemiology, Medical College of Georgia at Augusta University, 1120 15th Street, Augusta, GA, 30912, United States
| | - Wendy B Bollag
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA, 30904, United States; Department of Physiology, Medical College of Georgia at Augusta University, 1120 15th Street, Augusta, GA, 30912, United States.
| |
Collapse
|
6
|
Expression and localization of the diacylglycerol kinase family and of phosphoinositide signaling molecules in adrenal gland. Cell Tissue Res 2015; 362:295-305. [PMID: 26003177 DOI: 10.1007/s00441-015-2199-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 04/13/2015] [Indexed: 10/23/2022]
Abstract
Adrenal glands play a central role in the secretion of steroid hormones and catecholamines. Previous studies have revealed that molecules engaged in phosphoinositide (PI) turnover are expressed in the adrenal gland, suggesting the importance of PI signaling in adrenal signal transduction. Diacylglycerol kinase (DGK) catalyzes the phosphorylation of diacylglycerol (DG), a major second messenger in the PI signaling cascade. The DGK family is expressed in distinct patterns in endocrine organs at the mRNA and protein levels. Nevertheless, little is known about the characteristics and morphological aspects of DGKs in the adrenal gland. We have performed immunohistochemical analyses to investigate the expression and localization of DGK isozymes, together with PI signaling molecules, in the adrenal gland at the protein level. Our results show that the DGK family and a set of PI signaling molecules are expressed intensely in zona glomerulosa cells and medullary chromaffin cells in the adrenal gland. In adrenal cells, DGKγ localizes to the Golgi complex, DGKε to the plasma membrane, and DGKζ to the nucleus. These findings show the distinct expression and subcellular localization of DGK isozymes and PI signaling molecules in the adrenal gland, suggesting that each DGK isozyme has a role in signal transduction in adrenal cells, especially in the zona glomerulosa and medulla.
Collapse
|
7
|
Abstract
Aldosterone is a steroid hormone synthesized in and secreted from the outer layer of the adrenal cortex, the zona glomerulosa. Aldosterone is responsible for regulating sodium homeostasis, thereby helping to control blood volume and blood pressure. Insufficient aldosterone secretion can lead to hypotension and circulatory shock, particularly in infancy. On the other hand, excessive aldosterone levels, or those too high for sodium status, can cause hypertension and exacerbate the effects of high blood pressure on multiple organs, contributing to renal disease, stroke, visual loss, and congestive heart failure. Aldosterone is also thought to directly induce end-organ damage, including in the kidneys and heart. Because of the significance of aldosterone to the physiology and pathophysiology of the cardiovascular system, it is important to understand the regulation of its biosynthesis and secretion from the adrenal cortex. Herein, the mechanisms regulating aldosterone production in zona glomerulosa cells are discussed, with a particular emphasis on signaling pathways involved in the secretory response to the main controllers of aldosterone production, the renin-angiotensin II system, serum potassium levels and adrenocorticotrophic hormone. The signaling pathways involved include phospholipase C-mediated phosphoinositide hydrolysis, inositol 1,4,5-trisphosphate, cytosolic calcium levels, calcium influx pathways, calcium/calmodulin-dependent protein kinases, diacylglycerol, protein kinases C and D, 12-hydroxyeicostetraenoic acid, phospholipase D, mitogen-activated protein kinase pathways, tyrosine kinases, adenylate cyclase, and cAMP-dependent protein kinase. A complete understanding of the signaling events regulating aldosterone biosynthesis may allow the identification of novel targets for therapeutic interventions in hypertension, primary aldosteronism, congestive heart failure, renal disease, and other cardiovascular disorders.
Collapse
Affiliation(s)
- Wendy B Bollag
- Charlie Norwood VA Medical Center, Augusta, Georgia; Department of Physiology, Medical College of Georgia at Georgia Regents University, Augusta, Georgia
| |
Collapse
|
8
|
Abstract
The purpose of this article is to review fundamentals in adrenal gland histophysiology. Key findings regarding the important signaling pathways involved in the regulation of steroidogenesis and adrenal growth are summarized. We illustrate how adrenal gland morphology and function are deeply interconnected in which novel signaling pathways (Wnt, Sonic hedgehog, Notch, β-catenin) or ionic channels are required for their integrity. Emphasis is given to exploring the mechanisms and challenges underlying the regulation of proliferation, growth, and functionality. Also addressed is the fact that while it is now well-accepted that steroidogenesis results from an enzymatic shuttle between mitochondria and endoplasmic reticulum, key questions still remain on the various aspects related to cellular uptake and delivery of free cholesterol. The significant progress achieved over the past decade regarding the precise molecular mechanisms by which the two main regulators of adrenal cortex, adrenocorticotropin hormone (ACTH) and angiotensin II act on their receptors is reviewed, including structure-activity relationships and their potential applications. Particular attention has been given to crucial second messengers and how various kinases, phosphatases, and cytoskeleton-associated proteins interact to ensure homeostasis and/or meet physiological demands. References to animal studies are also made in an attempt to unravel associated clinical conditions. Many of the aspects addressed in this article still represent a challenge for future studies, their outcome aimed at providing evidence that the adrenal gland, through its steroid hormones, occupies a central position in many situations where homeostasis is disrupted, thus highlighting the relevance of exploring and understanding how this key organ is regulated. © 2014 American Physiological Society. Compr Physiol 4:889-964, 2014.
Collapse
Affiliation(s)
- Nicole Gallo-Payet
- Division of Endocrinology, Department of Medicine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, and Centre de Recherche Clinique Étienne-Le Bel of the Centre Hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, Quebec, Canada
| | | |
Collapse
|
9
|
Choudhary V, Olala LO, Kaddour-Djebbar I, Helwa I, Bollag WB. Protein kinase D1 deficiency promotes differentiation in epidermal keratinocytes. J Dermatol Sci 2014; 76:186-95. [PMID: 25450094 PMCID: PMC4259831 DOI: 10.1016/j.jdermsci.2014.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/06/2014] [Accepted: 09/19/2014] [Indexed: 01/26/2023]
Abstract
BACKGROUND Protein kinase D (PKD or PKD1) is a serine/threonine protein kinase that has been shown to play a role in a variety of cellular processes; however, the function of PKD1 in the skin has not been fully investigated. The balance between proliferation and differentiation processes in the predominant cells of the epidermis, the keratinocytes, is essential for normal skin function. OBJECTIVE To investigate the effect of PKD1 deficiency on proliferation and differentiation of epidermal keratinocytes. METHODS We utilized a floxed PKD1 mouse model such that infecting epidermal keratinocytes derived from these mice with an adenovirus expressing Cre-recombinase allowed us to determine the effect of PKD1 gene loss in vitro. Proliferation and differentiation were monitored using qRT-PCR, Western blot, transglutaminase activity assays, [3H]thymidine incorporation into DNA and cell cycle analysis. RESULTS A significant decrease in PKD1 mRNA and protein levels was achieved in adenoviral Cre-recombinase-infected cells. Deficiency of PKD1 resulted in significant increases in the mRNA and protein expression of various differentiation markers such as loricrin, involucrin, and keratin 10 either basally and/or upon stimulation of differentiation. PKD1-deficient keratinocytes also showed an increase in transglutaminase expression and activity, indicating an anti-differentiative role of PKD1. Furthermore, the PKD1-deficient keratinocytes exhibited decreased proliferation. However, PKD1 loss had no effect on stem cell marker expression. CONCLUSIONS Cre-recombinase-mediated knockdown represents an additional approach demonstrating that PKD1 is an anti-differentiative, pro-proliferative signal in mouse keratinocytes.
Collapse
Affiliation(s)
- Vivek Choudhary
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA; Department of Physiology, Medical College of Georgia at Georgia Regents University, Augusta, GA 30912, USA; Section of Dermatology, Department of Medicine, Medical College of Georgia at Georgia Regents University, Augusta, GA 30912, USA
| | - Lawrence O Olala
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA; Department of Physiology, Medical College of Georgia at Georgia Regents University, Augusta, GA 30912, USA
| | - Ismail Kaddour-Djebbar
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA; Department of Physiology, Medical College of Georgia at Georgia Regents University, Augusta, GA 30912, USA
| | - Inas Helwa
- Department of Oral Biology, Georgia Regents University, Augusta, GA 30912, USA; Department of Physiology, Medical College of Georgia at Georgia Regents University, Augusta, GA 30912, USA
| | - Wendy B Bollag
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA; Department of Physiology, Medical College of Georgia at Georgia Regents University, Augusta, GA 30912, USA; Section of Dermatology, Department of Medicine, Medical College of Georgia at Georgia Regents University, Augusta, GA 30912, USA; Department of Oral Biology, Georgia Regents University, Augusta, GA 30912, USA; Departments of Cell Biology and Anatomy, and Orthopaedic Surgery, Medical College of Georgia at Georgia Regents University, Augusta, GA 30912, USA.
| |
Collapse
|
10
|
Aquaporin-3 re-expression induces differentiation in a phospholipase D2-dependent manner in aquaporin-3-knockout mouse keratinocytes. J Invest Dermatol 2014; 135:499-507. [PMID: 25233074 DOI: 10.1038/jid.2014.412] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 08/25/2014] [Accepted: 09/04/2014] [Indexed: 01/06/2023]
Abstract
Aquaporin-3 (AQP3) is a water and glycerol channel expressed in epidermal keratinocytes. Despite many studies, controversy remains about the role of AQP3 in keratinocyte differentiation. Previously, our laboratory has shown co-localization of AQP3 and phospholipase D2 (PLD2) in caveolin-rich membrane microdomains. We hypothesized that AQP3 transports glycerol and "funnels" this primary alcohol to PLD2 to form a pro-differentiative signal, such that the action of AQP3 to induce differentiation should require PLD2. To test this idea, we re-expressed AQP3 in mouse keratinocytes derived from AQP3-knockout mice. The re-expression of AQP3, which increased [3H]glycerol uptake, also induced mRNA and protein expression of epidermal differentiation markers such as keratin 1, keratin 10, and loricrin, with or without the induction of differentiation by an elevated extracellular calcium concentration. Re-expression of AQP3 had no effect on the expression of the proliferation markers keratin 5 and cyclin D1. Furthermore, a selective inhibitor of PLD2, CAY10594, and a lipase-dead (LD) PLD2 mutant, but not a LD PLD1 mutant, significantly inhibited AQP3 re-expression-induced differentiation marker expression with calcium elevation, suggesting a role for PLD2 in this process. Thus, our results indicate that AQP3 has a pro-differentiative role in epidermal keratinocytes and that PLD2 activity is necessary for this effect.
Collapse
|
11
|
Zhou X, Xue P, Yang M, Shi H, Lu D, Wang Z, Shi Q, Hu J, Xie S, Zhan W, Yu R. Protein kinase D2 promotes the proliferation of glioma cells by regulating Golgi phosphoprotein 3. Cancer Lett 2014; 355:121-9. [PMID: 25218347 DOI: 10.1016/j.canlet.2014.09.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 09/03/2014] [Accepted: 09/04/2014] [Indexed: 01/16/2023]
Abstract
Protein kinase D2 (PKD2) has been demonstrated to promote tumorigenesis in many types of cancers. However, how PKD2 regulates cancer cell growth is largely unknown. In this study, we found that over-expression of PKD2 promoted glioma cell growth but down-regulation of PKD2 inhibited it. Further investigation indicated that PKD2 down-regulation decreased the protein level of Golgi phosphoprotein 3(GOLPH3) as well as p-AKT level. On the contrary, over-expression of PKD2 increased the protein level of GOLPH3 and p-AKT. In addition, GOLPH3 exhibited similar effect on glioma cell growth to that of PKD2. Importantly, GOLPH3 down-regulation partially abolished glioma cell proliferation induced by PKD2 over-expression, while over-expression of GOLPH3 also partially rescued the inhibition effect of PKD2 down-regulation on glioma cell growth. Interestingly, the level of PKD2 and GOLPH3 significantly increased and was positively correlated in a cohort of glioma patients, as well as in patients from TCGA database. Taken together, these results reveal that PKD2 promotes glioma cell proliferation by regulating GOLPH3 and then AKT activation. Our findings indicate that both PKD2 and GOLPH3 play important roles in the progression of human gliomas and PKD2-GOLPH3-AKT signaling pathway might be a potential glioma therapeutic target.
Collapse
Affiliation(s)
- Xiuping Zhou
- Brain Hospital, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China; Insititute of Nervous System Diseases, Xuzhou Medical College, Xuzhou, Jiangsu, China.
| | - Pengfei Xue
- The Graduate School, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Minglin Yang
- The Graduate School, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Hengliang Shi
- Brain Hospital, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China; Insititute of Nervous System Diseases, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Dong Lu
- Brain Hospital, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China; Insititute of Nervous System Diseases, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Zhaohao Wang
- The Graduate School, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Qiong Shi
- Brain Hospital, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China; Insititute of Nervous System Diseases, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Jinxia Hu
- Brain Hospital, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China; Insititute of Nervous System Diseases, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Shao Xie
- Brain Hospital, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China; Insititute of Nervous System Diseases, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Wenjian Zhan
- Brain Hospital, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China; Insititute of Nervous System Diseases, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Rutong Yu
- Brain Hospital, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China; Insititute of Nervous System Diseases, Xuzhou Medical College, Xuzhou, Jiangsu, China.
| |
Collapse
|
12
|
Tsai YY, Rainey WE, Pan ZQ, Frohman MA, Choudhary V, Bollag WB. Phospholipase D activity underlies very-low-density lipoprotein (VLDL)-induced aldosterone production in adrenal glomerulosa cells. Endocrinology 2014; 155:3550-60. [PMID: 24956203 DOI: 10.1210/en.2014-1159] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aldosterone is the mineralocorticoid responsible for sodium retention, thus increased blood volume and pressure. Excessive production of aldosterone results in high blood pressure as well as renal disease, stroke, and visual loss via both direct effects and effects on blood pressure. Weight gain is often associated with increased blood pressure, but it remains unclear how obesity increases blood pressure. Obese patients typically have higher lipoprotein levels; moreover, some studies have suggested that aldosterone levels are also elevated and represent a link between obesity and hypertension. Very-low-density lipoprotein (VLDL) functions to transport triglycerides from the liver to peripheral tissues. Although previous studies have demonstrated that VLDL can stimulate aldosterone production, the mechanisms underlying this effect are largely unclear. Here we show for the first time that phospholipase D (PLD) is involved in VLDL-induced aldosterone production in both a human adrenocortical cell line (HAC15) and primary cultures of bovine zona glomerulosa cells. Our data also reveal that PLD mediates steroidogenic acute regulatory (StAR) protein and aldosterone synthase (CYP11B2) expression via increasing the phosphorylation (activation) of their regulatory transcription factors. Finally, by using selective PLD inhibitors, our studies suggest that both PLD1 and PLD2 isoforms play an important role in VLDL-induced aldosterone production.
Collapse
Affiliation(s)
- Ying-Ying Tsai
- Charlie Norwood VA Medical Center (V.C., W.B.B.), Augusta, Georgia 30904; Department of Physiology (Y.-Y.T., W.E.R., Z.P., V.C., W.B.B.), Medical College of Georgia at Georgia Regents University, Augusta, Georgia 30912; and Department of Pharmacology and Center for Developmental Genetics (M.A.F.), Stony Brook University, Stony Brook, New York 11794
| | | | | | | | | | | |
Collapse
|
13
|
Olala LO, Shapiro BA, Merchen TC, Wynn JJ, Bollag WB. Protein kinase C and Src family kinases mediate angiotensin II-induced protein kinase D activation and acute aldosterone production. Mol Cell Endocrinol 2014; 392:173-81. [PMID: 24859649 PMCID: PMC4120960 DOI: 10.1016/j.mce.2014.05.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 04/26/2014] [Accepted: 05/14/2014] [Indexed: 12/26/2022]
Abstract
Recent evidence has shown a role for the serine/threonine protein kinase D (PKD) in the regulation of acute aldosterone secretion upon angiotensin II (AngII) stimulation. However, the mechanism by which AngII activates PKD remains unclear. In this study, using both pharmacological and molecular approaches, we demonstrate that AngII-induced PKD activation is mediated by protein kinase C (PKC) and Src family kinases in primary bovine adrenal glomerulosa cells and leads to increased aldosterone production. The pan PKC inhibitor Ro 31-8220 and the Src family kinase inhibitors PP2 and Src-1 inhibited both PKD activation and acute aldosterone production. Additionally, like the dominant-negative serine-738/742-to-alanine PKD mutant that cannot be phosphorylated by PKC, the dominant-negative tyrosine-463-to-phenylalanine PKD mutant, which is not phosphorylatable by the Src/Abl pathway, inhibited acute AngII-induced aldosterone production. Taken together, our results demonstrate that AngII activates PKD via a mechanism involving Src family kinases and PKC, to underlie increased aldosterone production.
Collapse
Affiliation(s)
- Lawrence O Olala
- Charlie Norwood VA Medical Center, Augusta, GA 30904, United States; Department of Physiology, Medical College of Georgia at Georgia Regents University, Augusta, GA 30912, United States
| | - Brian A Shapiro
- Institute of Molecular Medicine and Genetics, Medical College of Georgia at Georgia Regents University, Augusta, GA 30912, United States
| | - Todd C Merchen
- Department of Surgery, Medical College of Georgia at Georgia Regents University, Augusta, GA 30912, United States
| | - James J Wynn
- Department of Surgery, Medical College of Georgia at Georgia Regents University, Augusta, GA 30912, United States
| | - Wendy B Bollag
- Charlie Norwood VA Medical Center, Augusta, GA 30904, United States; Department of Physiology, Medical College of Georgia at Georgia Regents University, Augusta, GA 30912, United States; Departments of Cell Biology and Anatomy, Medicine and Orthopaedic Surgery, Medical College of Georgia at Georgia Regents University, Augusta, GA 30912, United States.
| |
Collapse
|
14
|
Olala LO, Choudhary V, Johnson MH, Bollag WB. Angiotensin II-induced protein kinase D activates the ATF/CREB family of transcription factors and promotes StAR mRNA expression. Endocrinology 2014; 155:2524-33. [PMID: 24708239 PMCID: PMC4060184 DOI: 10.1210/en.2013-1485] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Aldosterone synthesis is initiated upon the transport of cholesterol from the outer to the inner mitochondrial membrane, where the cholesterol is hydrolyzed to pregnenolone. This process is the rate-limiting step in acute aldosterone production and is mediated by the steroidogenic acute regulatory (StAR) protein. We have previously shown that angiotensin II (AngII) activation of the serine/threonine protein kinase D (PKD) promotes acute aldosterone production in bovine adrenal glomerulosa cells, but the mechanism remains unclear. Thus, the purpose of this study was to determine the downstream signaling effectors of AngII-stimulated PKD activity. Our results demonstrate that overexpression of the constitutively active serine-to-glutamate PKD mutant enhances, whereas the dominant-negative serine-to-alanine PKD mutant inhibits, AngII-induced StAR mRNA expression relative to the vector control. PKD has been shown to phosphorylate members of the activating transcription factor (ATF)/cAMP response element binding protein (CREB) family of leucine zipper transcription factors, which have been shown previously to bind the StAR proximal promoter and induce StAR mRNA expression. In primary glomerulosa cells, AngII induces ATF-2 and CREB phosphorylation in a time-dependent manner. Furthermore, overexpression of the constitutively active PKD mutant enhances the AngII-elicited phosphorylation of ATF-2 and CREB, and the dominant-negative mutant inhibits this response. Furthermore, the constitutively active PKD mutant increases the binding of phosphorylated CREB to the StAR promoter. Thus, these data provide insight into the previously reported role of PKD in AngII-induced acute aldosterone production, providing a mechanism by which PKD may be mediating steroidogenesis in primary bovine adrenal glomerulosa cells.
Collapse
Affiliation(s)
- Lawrence O Olala
- Charlie Norwood Veterans Administration Medical Center (L.O.O., V.C., W.B.B.), Augusta, Georgia 30904; and Departments of Physiology (L.O.O., V.C., W.B.B.), Biostatistics and Epidemiology (M.H.J.), and Cell Biology and Anatomy and Medicine and Orthopaedic Surgery (W.B.B.), Medical College of Georgia at Georgia Regents University, Augusta, Georgia 30912
| | | | | | | |
Collapse
|
15
|
Chang HW, Huang CY, Yang SY, Wu VC, Chu TS, Chen YM, Hsieh BS, Wu KD. Role of D2 dopamine receptor in adrenal cortical cell proliferation and aldosterone-producing adenoma tumorigenesis. J Mol Endocrinol 2014; 52:87-96. [PMID: 24293642 DOI: 10.1530/jme-13-0044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Aldosterone-producing adenoma (APA) and bilateral adrenal hyperplasia are the two characteristic types of primary aldosteronism. Dysregulation of adrenal cortical cell proliferation contributes to both diseases. We previously demonstrated that APA expressed less dopamine D2 receptor than the respective non-tumor tissue and might contribute to the overproduction of aldosterone. As activation of D2 receptor inhibits the proliferation of various cells, downregulation of D2 receptor in APA may play a role in the tumorigenesis of APA. In this study, we demonstrate that D2 receptor plays a role in angiotensin II (AII)-stimulated adrenal cortical cell proliferation. The D2 receptor agonist, bromocriptine, inhibited AII-stimulated cell proliferation in primary cultures of the normal human adrenal cortex and APA through attenuating AII-induced phosphorylation of PK-stimulated cyclin D1 protein expression and cell proliferation. D2 receptor also inhibited AII-induced ERK1/2 phosphorylation. Our results demonstrate that, in addition to inhibiting aldosterone synthesis/production, D2 receptor exerts an anti-proliferative effect in adrenal cortical and APA cells by attenuating PKCμ and ERK phosphorylation. The lower level of expression of D2 receptor in APA may augment cell proliferation and plays a crucial role in the tumorigenesis of APA. Our novel finding suggests a new therapeutic target for primary aldosteronism.
Collapse
Affiliation(s)
- Hong-Wei Chang
- Nephrology Division, Department of Internal Medicine, Room 1419, National Taiwan University Hospital, Clinical Research Building, 7 Chung-Sun South Road, Taipei 100, Taiwan Department of Urology, National Taiwan University Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Olala LO, Seremwe M, Tsai YY, Bollag WB. A role for phospholipase D in angiotensin II-induced protein kinase D activation in adrenal glomerulosa cell models. Mol Cell Endocrinol 2013. [PMID: 23178798 PMCID: PMC3656657 DOI: 10.1016/j.mce.2012.11.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The mineralocorticoid aldosterone plays an important role in regulating blood pressure, with excess causing hypertension and exacerbating cardiovascular disease. Previous studies have indicated a role for both phospholipase D (PLD) and protein kinase D (PKD) in angiotensin II (AngII)-regulated aldosterone production in adrenal glomerulosa cells. Therefore, the relationship between AngII-activated PLD and PKD was determined in two glomerulosa cell models, primary bovine zona glomerulosa (ZG) and HAC15 human adrenocortical carcinoma cells, using two inhibitors, 1-butanol and the reported PLD inhibitor, fluoro-2-indolyl des-chlorohalopemide (FIPI). FIPI was first confirmed to decrease PLD activation in response to AngII in the two glomerulosa cell models. Subsequently, it was shown that both 1-butanol and FIPI inhibited AngII-elicited PKD activation and aldosterone production. These results indicate that PKD is downstream of PLD and suggest that PKD is one of the mechanisms through which PLD promotes aldosterone production in response to AngII in adrenal glomerulosa cells.
Collapse
Affiliation(s)
- Lawrence O. Olala
- Department of Physiology, Georgia Health Sciences University (formerly the Medical College of Georgia), 1120 15th Street, Augusta, GA 30912
| | - Mutsa Seremwe
- Department of Physiology, Georgia Health Sciences University (formerly the Medical College of Georgia), 1120 15th Street, Augusta, GA 30912
| | - Ying-Ying Tsai
- Department of Physiology, Georgia Health Sciences University (formerly the Medical College of Georgia), 1120 15th Street, Augusta, GA 30912
| | - Wendy B. Bollag
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA 30904
- Department of Physiology, Georgia Health Sciences University (formerly the Medical College of Georgia), 1120 15th Street, Augusta, GA 30912
- Departments of Cell Biology and Anatomy, Medicine, Oral Biology and Orthopaedic Surgery, Georgia Health Sciences University, 1120 15th Street, Augusta, GA 30912
- To whom correspondence should be addressed: Wendy Bollag, Georgia Health Sciences University, Department of Physiology, 1120 15th Street, Augusta, GA 30912, TEL: (706) 721-0698, FAX: (706) 721-7299,
| |
Collapse
|
17
|
Ji H, Meng Y, Zhang X, Luo W, Wu P, Xiao B, Zhang Z, Li X. Aldosterone induction of hepatic stellate cell contraction through activation of RhoA/ROCK-2 signaling pathway. ACTA ACUST UNITED AC 2011; 169:13-20. [PMID: 21545816 DOI: 10.1016/j.regpep.2011.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Revised: 03/21/2011] [Accepted: 04/16/2011] [Indexed: 12/30/2022]
Abstract
The RhoA/ROCK-2 signaling pathway is necessary for activated hepatic stellate cell (HSC) contraction. HSC contraction plays an important role in the pathogenesis of cirrhosis and portal hypertension. This study investigated whether aldosterone contributes to HSC contraction by activation of the RhoA/ROCK-2 signaling pathway. Primary HSCs were isolated from Sprague-Dawley rats via in situ pronase/collagenase perfusion. We found that aldosterone enhanced the contraction of a collagen lattice seeded with HSCs. This induced contraction was suppressed by the mineralcorticoid receptor (MR) inhibitor spironolactone, the ROCK-2 inhibitor Y27632, and the angiotensin II type 1 receptor (AT(1)R) inhibitor irbesartan. Moreover, actin fiber staining showed that aldosterone significantly increased actin fiber formation in HSCs. Pre-incubating with spironolactone, Y27632, or irbesartan inhibited the aldosterone-induced actin fiber reorganization. Molecularly, the effect of aldosterone on activation of HSC contraction was mediated by phosphorylated myosin light chain (P-MLC) through the RhoA/ROCK-2 signaling pathway. All these inhibitors had the ability to block aldosterone-induced protein expressions in the RhoA/ROCK-2/P-MLC cascade in HSCs. Taken together, our current study suggests that aldosterone induces contraction of activated HSCs through the activation of the RhoA/ROCK-2 signaling pathway. This finding may provide a potential therapeutic target for control of cirrhosis and portal hypertension.
Collapse
Affiliation(s)
- Hongli Ji
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Lu J, Sawano Y, Miyakawa T, Xue YL, Cai MY, Egashira Y, Ren DF, Tanokura M. One-week antihypertensive effect of Ile-Gln-Pro in spontaneously hypertensive rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:559-563. [PMID: 21182294 DOI: 10.1021/jf104126a] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The antihypertensive effect of an angiotensin I-converting enzyme (ACE) inhibitory peptide Ile-Gln-Pro (IQP), whose sequence was derived from Spirulina platensis , was investigated in spontaneously hypertensive rats (SHRs) for 1 week. The weighted systolic blood pressure (SBP) and diastolic blood pressure (DBP) of the peptide IQP-treated group were significantly lower than those of the negative control group from the third and fourth days, respectively. Accompanying the blood pressure reduction, a significant regulation of the expression of major components of the renin-angiotensin system (RAS) was found in the treatment group, including downregulation of the mRNA levels of renin, ACE, and the angiotensin II type 1 (AT1) receptor in the kidney, as well as serum angiotensinogen (Ang), ACE, and angiotensin II (Ang II) concentrations. The treatment group also showed upregulation of mRNA expression of the angiotensin II type 2 (AT2) receptor in the kidney. Our findings suggested that IQP might be of potential use in the treatment of hypertension.
Collapse
Affiliation(s)
- Jun Lu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Protein kinase Cμ mediates adenosine-stimulated steroidogenesis in primary rat adrenal cells. FEBS Lett 2010; 584:4442-8. [DOI: 10.1016/j.febslet.2010.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 09/17/2010] [Accepted: 10/06/2010] [Indexed: 11/22/2022]
|