1
|
Nagliya D, Baggio Lopez T, Del Calvo G, Stoicovy RA, Borges JI, Suster MS, Lymperopoulos A. Differential Modulation of Catecholamine and Adipokine Secretion by the Short Chain Fatty Acid Receptor FFAR3 and α 2-Adrenergic Receptors in PC12 Cells. Int J Mol Sci 2024; 25:5227. [PMID: 38791266 PMCID: PMC11120680 DOI: 10.3390/ijms25105227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/29/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Sympathetic nervous system (SNS) hyperactivity is mediated by elevated catecholamine (CA) secretion from the adrenal medulla, as well as enhanced norepinephrine (NE) release from peripheral sympathetic nerve terminals. Adrenal CA production from chromaffin cells is tightly regulated by sympatho-inhibitory α2-adrenergic (auto)receptors (ARs), which inhibit both epinephrine (Epi) and NE secretion via coupling to Gi/o proteins. α2-AR function is, in turn, regulated by G protein-coupled receptor (GPCR)-kinases (GRKs), especially GRK2, which phosphorylate and desensitize them, i.e., uncouple them from G proteins. On the other hand, the short-chain free fatty acid (SCFA) receptor (FFAR)-3, also known as GPR41, promotes NE release from sympathetic neurons via the Gi/o-derived free Gβγ-activated phospholipase C (PLC)-β/Ca2+ signaling pathway. However, whether it exerts a similar effect in adrenal chromaffin cells is not known at present. In the present study, we examined the interplay of the sympatho-inhibitory α2A-AR and the sympatho-stimulatory FFAR3 in the regulation of CA secretion from rat adrenal chromaffin (pheochromocytoma) PC12 cells. We show that FFAR3 promotes CA secretion, similarly to what GRK2-dependent α2A-AR desensitization does. In addition, FFAR3 activation enhances the effect of the physiologic stimulus (acetylcholine) on CA secretion. Importantly, GRK2 blockade to restore α2A-AR function or the ketone body beta-hydroxybutyrate (BHB or 3-hydroxybutyrate), via FFAR3 antagonism, partially suppress CA production, when applied individually. When combined, however, CA secretion from PC12 cells is profoundly suppressed. Finally, propionate-activated FFAR3 induces leptin and adiponectin secretion from PC12 cells, two important adipokines known to be involved in tissue inflammation, and this effect of FFAR3 is fully blocked by the ketone BHB. In conclusion, SCFAs can promote CA and adipokine secretion from adrenal chromaffin cells via FFAR3 activation, but the metabolite/ketone body BHB can effectively inhibit this action.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (D.N.); (T.B.L.); (G.D.C.); (R.A.S.); (J.I.B.); (M.S.S.)
| |
Collapse
|
2
|
Gomes A, Leite F, Ribeiro L. Adipocytes and macrophages secretomes coregulate catecholamine-synthesizing enzymes. Int J Med Sci 2021; 18:582-592. [PMID: 33437193 PMCID: PMC7797554 DOI: 10.7150/ijms.52219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/09/2020] [Indexed: 12/13/2022] Open
Abstract
Obesity associates with macrophage accumulation in adipose tissue where these infiltrating cells interact with adipocytes and contribute to the systemic chronic metabolic inflammation present in immunometabolic diseases. Tyrosine hydroxylase (TH) and phenylethanolamine N-methyltransferase (PNMT) are two of the main enzymes of catecholamines (CA) synthesis. Adipocytes and macrophages produce, secrete and respond to CA, but the regulation of their synthesis in the interplay between immune and metabolic systems remains unknown. A model of indirect cell coculture with conditioned medium (CM) from RAW 264.7 macrophages with or without LPS-activation and 3T3-L1 adipocytes and preadipocytes was established to study the effect of cellular secretomes on the expression of the above enzymes. During the adipocyte differentiation process, we found a decrease of TH and PNMT expression. The secretome from LPS-activated macrophages downregulated TH and PNMT expression in preadipocytes, but not in mature adipocytes. Mature adipocytes CM induced a decrease of PNMT levels in RAW 264.7 macrophages. Pre and mature adipocytes showed a similar pattern of TH, PNMT and peroxisome proliferator-activated receptor gamma expression after exposure to pro and anti-inflammatory cytokines. We evidenced macrophages and adipocytes coregulate the expression of CA synthesis enzymes through secretome, with non-inflammatory signaling networks possibly being involved. Mediators released by macrophages seem to equally affect CA production by adipocytes, while adipocytes secretome preferentially affect AD production by macrophages. CA synthesis seems to be more determinant in early stages of adipogenic differentiation. Our results suggest that CA are key signaling molecules in the regulation of immune-metabolic crosstalk within the adipose tissue.
Collapse
Affiliation(s)
- Andreia Gomes
- Department of Biomedicine, Unit of Biochemistry, Faculty of Medicine, University of Porto. Alameda Prof Hernâni Monteiro, 4200-319 Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde, University of Porto. Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Fernanda Leite
- Department of Clinical Haematology, Centro Hospitalar Universitário of Porto, Largo Professor Abel Salazar, 4099-001, Porto, Portugal
- UMIB/ICBAS - Unit for Multidisciplinary Investigation in Biomedicine- Institutode Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Laura Ribeiro
- Department of Biomedicine, Unit of Biochemistry, Faculty of Medicine, University of Porto. Alameda Prof Hernâni Monteiro, 4200-319 Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde, University of Porto. Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto. Alameda Prof Hernâni Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
3
|
Gomes A, Soares R, Costa R, Marino F, Cosentino M, Malagon MM, Ribeiro L. High-fat diet promotes adrenaline production by visceral adipocytes. Eur J Nutr 2019; 59:1105-1114. [PMID: 31011795 DOI: 10.1007/s00394-019-01971-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 04/15/2019] [Indexed: 12/31/2022]
Abstract
PURPOSE Catecholamines (CA) play a major role in metabolism and immune response. Recent reports showing adipose tissue can synthetize CA enlighten new roles for these amines in obesity. This study aimed to evaluate the expression of both tyrosine hydroxylase (TH) and phenylethanolamine N-methyltransferase (PNMT) and CA content along preadipocytes differentiation, under normal and obesigenic conditions. METHODS 8-9 week-old male C57BL/6 mice were divided in two groups: one fed with a high-fat diet (HFD) and other with a standard diet (SD) for 20 weeks. Afterwards, both TH and PNMT expression, localization, and CA content in adipocytes, were evaluated. RESULTS qPCR results showed no changes for TH and PNMT expression during the differentiation process for visceral and subcutaneous preadipocytes from mice fed with SD. Comparing to SD, HFD increased TH gene expression of subcutaneous preadipocytes and PNMT gene expression of both visceral preadipocytes and adipocytes. HPLC-ED analyses revealed HFD increased visceral adipocytes noradrenaline intracellular content comparing with preadipocytes (p = 0.037). When compared with SD, HFD raised and decreased noradrenaline content, respectively, in visceral adipocytes (p = 0.004) and subcutaneous preadipocytes (p = 0.001). Along the differentiation process, HFD increased visceral adrenaline intracellular content comparing with SD (p < 0.001). HFD increased visceral comparing to subcutaneous adrenaline content for both preadipocytes (p = 0.004) and adipocytes (p = 0.001). CONCLUSIONS TH and PNMT expression in adipose tissue is differently modulated in visceral and subcutaneous adipose depots, and seems to depend on diet. Differences observed in visceral adipose CA handling in HFD-fed mice might uncover novel pharmacological/nutritional strategies against obesity and cardiovascular risk.
Collapse
Affiliation(s)
- Andreia Gomes
- Department of Biomedicine, Unit of Biochemistry, Faculty of Medicine, University of Porto, Alameda Prof Hernâni Monteiro, 4200-319, Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Raquel Soares
- Department of Biomedicine, Unit of Biochemistry, Faculty of Medicine, University of Porto, Alameda Prof Hernâni Monteiro, 4200-319, Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Raquel Costa
- Department of Biomedicine, Unit of Biochemistry, Faculty of Medicine, University of Porto, Alameda Prof Hernâni Monteiro, 4200-319, Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Franca Marino
- Center of Research in Medical Pharmacology, University of Insubria, Via Ottorino Rossi n. 9, 21100, Varèse, Italy
| | - Marco Cosentino
- Center of Research in Medical Pharmacology, University of Insubria, Via Ottorino Rossi n. 9, 21100, Varèse, Italy
| | - Maria M Malagon
- Department of Cell Biology, Physiology and Immunology, Instituto Maimonides de Investigación Biomédica (IMIBIC), Reina Sofia University Hospital, Av. Menéndez Pidal, 14004, Córdoba, Spain
| | - Laura Ribeiro
- Department of Biomedicine, Unit of Biochemistry, Faculty of Medicine, University of Porto, Alameda Prof Hernâni Monteiro, 4200-319, Porto, Portugal.
- i3S, Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.
- Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, Alameda Prof Hernâni Monteiro, 4200-319, Porto, Portugal.
| |
Collapse
|
4
|
Pharmacogenetic Correlates of Antipsychotic-Induced Weight Gain in the Chinese Population. Neurosci Bull 2019; 35:561-580. [PMID: 30607769 DOI: 10.1007/s12264-018-0323-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 09/15/2018] [Indexed: 12/11/2022] Open
Abstract
Antipsychotic-induced weight gain (AIWG) is a common adverse effect of this treatment, particularly with second-generation antipsychotics, and it is a major health problem around the world. We aimed to review the progress of pharmacogenetic studies on AIWG in the Chinese population to compare the results for Chinese with other ethnic populations, identify the limitations and problems of current studies, and provide future research directions in China. Both English and Chinese electronic databases were searched to identify eligible studies. We determined that > 25 single-nucleotide polymorphisms in 19 genes have been investigated in association with AIWG in Chinese patients over the past few decades. HTR2C rs3813929 is the most frequently studied single-nucleotide polymorphism, and it seems to be the most strongly associated with AIWG in the Chinese population. However, many genes that have been reported to be associated with AIWG in other ethnic populations have not been included in Chinese studies. To explain the pharmacogenetic reasons for AIWG in the Chinese population, genome-wide association studies and multiple-center, standard, unified, and large samples are needed.
Collapse
|
5
|
Wang X, Villar VA, Tiu A, Upadhyay KK, Cuevas S. Dopamine D2 receptor upregulates leptin and IL-6 in adipocytes. J Lipid Res 2018; 59:607-614. [PMID: 29472382 PMCID: PMC5880505 DOI: 10.1194/jlr.m081000] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 02/12/2018] [Indexed: 12/12/2022] Open
Abstract
Leptin is a pro-inflammatory cytokine secreted by the adipose tissue. Dopamine D2 receptors (D2Rs) have anti-inflammatory effects in the brain and kidney tissues. Mouse and human adipocytes express D2R; D2R protein was 10-fold greater in adipocytes from human visceral tissue than subcutaneous tissue. However, the function of D2R in adipocytes is not well understood. 3T3-L1 cells were treated with D2-like receptor agonist quinpirole, and immunoblot and quantitative PCR were performed. Quinpirole increased the protein and mRNA expression of leptin and IL-6, but not adiponectin and visfatin (24 h). It also increased the mRNA expression of TNF-α , MCP1, and NFkB-p50. An acute increase in the protein expression of leptin and TNF-α was also found in the cells treated with quinpirole. The leptin concentration in the culture media was increased by quinpirole-bathing the 3T3-L1 adipocytes. These quinpirole effects on leptin and IL-6 expression were prevented by the D2R antagonist L741,626. Similarly, siRNA-mediated silencing of Drd2 decreased the leptin, IL-6, mRNA, and protein expressions. The D2R-mediated increase in leptin expression was prevented by the phosphoinositide 3-kinase inhibitor LY294002. Acute quinpirole treatment in C57Bl/6J mice increased serum leptin concentration and leptin mRNA in visceral adipocyte tissue but not in subcutaneous adipocytes, confirming the stimulatory effect of D2R on leptin in vivo. Our results suggest that the stimulation of D2R increases leptin production and may have a tissue-specific pro-inflammatory effect in adipocytes.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Department of Medicine, Division of Renal Diseases & Hypertension, The George Washington University School of Medicine and Health Sciences, Washington, DC 20037
| | - Van Anthony Villar
- Department of Medicine, Division of Renal Diseases & Hypertension, The George Washington University School of Medicine and Health Sciences, Washington, DC 20037
| | - Andrew Tiu
- Department of Medicine, Division of Renal Diseases & Hypertension, The George Washington University School of Medicine and Health Sciences, Washington, DC 20037
| | - Kiran K Upadhyay
- Department of Pediatrics, Division of Pediatric Nephrology, University of Florida, Gainesville, FL 32607
| | - Santiago Cuevas
- Research Center for Genetic Medicine, Children's National Health System, Washington DC 20010.
| |
Collapse
|
6
|
Leite F, Leite Â, Santos A, Lima M, Barbosa J, Cosentino M, Ribeiro L. Predictors of Subclinical Inflammatory Obesity: Plasma Levels of Leptin, Very Low-Density Lipoprotein Cholesterol and CD14 Expression of CD16+ Monocytes. Obes Facts 2017; 10:308-322. [PMID: 28738359 PMCID: PMC5644939 DOI: 10.1159/000464294] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 02/15/2017] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE Predictors of subclinical inflammatory obesity (SIO) can be important tools for early therapeutic interventions in obesity-related comorbidities. Waist circumference (WC) and BMI have different SIO sensitivity. We aimed to i) identify SIO predictors and ii) investigate whether CD16+ monocytes are associated with BMI- (generally) or WC-defined (centrally) obesity. METHODS Anthropometric and metabolic/endocrine (namely catecholamines, adrenaline and noradrenaline) parameters were evaluated, and CD16+ monocytes were studied by flow cytometry in the peripheral blood from 63 blood donors, and compared and correlated to each other. Multiple linear regression analysis was performed to identify variables that best predict SIO. RESULTS CD16+ monocyte counts were similar in BMI and WC groups. CD16+ monocytes from centrally obese (CO) showed a more inflammatory pattern, as compared to non-CO subjects. WC was sensitive to lipidemia and, in CO subjects, lipidemia was associated with a more inflammatory phenotype of CD16+ monocytes. These differences were not noticed between BMI groups. Adrenaline was correlated with CD16+ monocyte expansion with a lower inflammatory pattern. Leptin, very low-density lipoprotein cholesterol (VLDL-C), and CD14 expression of CD16+ monocytes were found to be CO predictors. CONCLUSIONS WC-, but not BMI-defined obesity, was associated with a more inflammatory pattern of CD16+ monocytes, without monocyte expansion, suggesting that a monocyte maturation process rather than an independent arise of CD16+ monocytes occurs in CO. Thus, in a population with low cardiovascular risk, leptin, VLDL-C, and CD14 expression of CD16+ monocytes predict CO, constituting a putative tool for screening of SIO.
Collapse
Affiliation(s)
- Fernanda Leite
- Department of Biochemistry, Faculty of Medicine, University of Porto, Porto, Portugal
- Department of Clinical Haematology, Centro Hospitalar do Porto, Porto, Portugal
- UMIB/ICBAS - Unit for Multidisciplinary Investigation in Biomedicine - Instituto de Ciências Biomédicas Abel Salazar, Porto, Portugal
- *Dr. Fernanda Leite, Department of Biochemistry, Faculty of Medicine, University of Porto, Alameda Prof. Hernani Monteiro, 4200-319 Porto, Portugal,
| | - Ângela Leite
- Lusophone University of Oporto, Oporto, Portugal
| | - Ana Santos
- Department of Clinical Haematology, Centro Hospitalar do Porto, Porto, Portugal
- UMIB/ICBAS - Unit for Multidisciplinary Investigation in Biomedicine - Instituto de Ciências Biomédicas Abel Salazar, Porto, Portugal
| | - Margarida Lima
- Department of Clinical Haematology, Centro Hospitalar do Porto, Porto, Portugal
- UMIB/ICBAS - Unit for Multidisciplinary Investigation in Biomedicine - Instituto de Ciências Biomédicas Abel Salazar, Porto, Portugal
| | - Joselina Barbosa
- Department of Medical Education and Simulation, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Marco Cosentino
- Center of Research in Medical Pharmacology, University of Insubria, Varese, Italy
| | - Laura Ribeiro
- Department of Biochemistry, Faculty of Medicine, University of Porto, Porto, Portugal
- Department of Medical Education and Simulation, Faculty of Medicine, University of Porto, Porto, Portugal
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| |
Collapse
|
7
|
Gavello D, Vandael D, Gosso S, Carbone E, Carabelli V. Dual action of leptin on rest-firing and stimulated catecholamine release via phosphoinositide 3-kinase-driven BK channel up-regulation in mouse chromaffin cells. J Physiol 2015; 593:4835-53. [PMID: 26282459 DOI: 10.1113/jp271078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 08/12/2015] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Leptin is an adipokine produced by the adipose tissue regulating body weight through its appetite-suppressing effect and, as such, exerts a relevant action on the adipo-adrenal axis. Leptin has a dual action on adrenal mouse chromaffin cells both at rest and during stimulation. At rest, the adipokine inhibits the spontaneous firing of most cells by enhancing the probability of BK channel opening through the phosphoinositide 3-kinase signalling cascade. This inhibitory effect is absent in db(-) /db(-) mice deprived of Ob receptors. During sustained stimulation, leptin preserves cell excitability by generating well-adapted action potential (AP) trains of lower frequency and broader width and increases catecholamine secretion by increasing the size of the ready-releasable pool and the rate of vesicle release. In conclusion, leptin dampens AP firing at rest but preserves AP firing and enhances catecholamine release during sustained stimulation, highlighting the importance of the adipo-adrenal axis in the leptin-mediated increase of sympathetic tone and catecholamine release. ABSTRACT Leptin is an adipokine produced by the adipose tissue regulating body weight through its appetite-suppressing effect. Besides being expressed in the hypothalamus and hippocampus, leptin receptors (ObRs) are also present in chromaffin cells of the adrenal medulla. In the present study, we report the effect of leptin on mouse chromaffin cell (MCC) functionality, focusing on cell excitability and catecholamine secretion. Acute application of leptin (1 nm) on spontaneously firing MCCs caused a slowly developing membrane hyperpolarization followed by complete blockade of action potential (AP) firing. This inhibitory effect at rest was abolished by the BK channel blocker paxilline (1 μm), suggesting the involvement of BK potassium channels. Single-channel recordings in 'perforated microvesicles' confirmed that leptin increased BK channel open probability without altering its unitary conductance. BK channel up-regulation was associated with the phosphoinositide 3-kinase (PI3K) signalling cascade because the PI3K specific inhibitor wortmannin (100 nm) fully prevented BK current increase. We also tested the effect of leptin on evoked AP firing and Ca(2+) -driven exocytosis. Although leptin preserves well-adapted AP trains of lower frequency, APs are broader and depolarization-evoked exocytosis is increased as a result of the larger size of the ready-releasable pool and higher frequency of vesicle release. The kinetics and quantal size of single secretory events remained unaltered. Leptin had no effect on firing and secretion in db(-) /db(-) mice lacking the ObR gene, confirming its specificity. In conclusion, leptin exhibits a dual action on MCC activity. It dampens AP firing at rest but preserves AP firing and increases catecholamine secretion during sustained stimulation, highlighting the importance of the adipo-adrenal axis in the leptin-mediated increase of sympathetic tone and catecholamine release.
Collapse
Affiliation(s)
- Daniela Gavello
- Department of Drug Science and Technology, University of Torino, Torino, Italy.,NIS Center, CNISM, University of Torino, Torino, Italy
| | - David Vandael
- Department of Drug Science and Technology, University of Torino, Torino, Italy.,NIS Center, CNISM, University of Torino, Torino, Italy.,Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg, Austria
| | - Sara Gosso
- Department of Drug Science and Technology, University of Torino, Torino, Italy.,NIS Center, CNISM, University of Torino, Torino, Italy
| | - Emilio Carbone
- Department of Drug Science and Technology, University of Torino, Torino, Italy.,NIS Center, CNISM, University of Torino, Torino, Italy
| | - Valentina Carabelli
- Department of Drug Science and Technology, University of Torino, Torino, Italy.,NIS Center, CNISM, University of Torino, Torino, Italy
| |
Collapse
|
8
|
Than A, He HL, Chua SH, Xu D, Sun L, Leow MKS, Chen P. Apelin Enhances Brown Adipogenesis and Browning of White Adipocytes. J Biol Chem 2015; 290:14679-91. [PMID: 25931124 DOI: 10.1074/jbc.m115.643817] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Indexed: 12/17/2022] Open
Abstract
Brown adipose tissue expends energy in the form of heat via the mitochondrial uncoupling protein UCP1. Recent studies showed that brown adipose tissue is present in adult humans and may be exploited for its anti-obesity and anti-diabetes actions. Apelin is an adipocyte-derived hormone that plays important roles in energy metabolism. Here, we report that apelin-APJ signaling promotes brown adipocyte differentiation by increasing the expressions of brown adipogenic and thermogenic transcriptional factors via the PI3K/Akt and AMPK signaling pathways. It is also found that apelin relieves the TNFα inhibition on brown adipogenesis. In addition, apelin increases the basal activity of brown adipocytes, as evidenced by the increased PGC1α and UCP1 expressions, mitochondrial biogenesis, and oxygen consumption. Finally, we provide both in vitro and in vivo evidence that apelin is able to increase the brown-like characteristics in white adipocytes. This study, for the first time, reveals the brown adipogenic and browning effects of apelin and suggests a potential therapeutic route to combat obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Aung Than
- From the Bioengineering Program, School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457
| | - Hui Ling He
- From the Bioengineering Program, School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457
| | - Si Hui Chua
- From the Bioengineering Program, School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457
| | - Dan Xu
- the Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, and
| | - Lei Sun
- the Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, and
| | - Melvin Khee-Shing Leow
- the Endocrine and Diabetes Clinic, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore
| | - Peng Chen
- From the Bioengineering Program, School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457,
| |
Collapse
|
9
|
Kargi AY, Iacobellis G. Adipose tissue and adrenal glands: novel pathophysiological mechanisms and clinical applications. Int J Endocrinol 2014; 2014:614074. [PMID: 25018768 PMCID: PMC4075085 DOI: 10.1155/2014/614074] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 05/24/2014] [Indexed: 12/22/2022] Open
Abstract
Hormones produced by the adrenal glands and adipose tissues have important roles in normal physiology and are altered in many disease states. Obesity is associated with changes in adrenal function, including increase in adrenal medullary catecholamine output, alterations of the hypothalamic-pituitary-adrenal (HPA) axis, elevations in circulating aldosterone together with changes in adipose tissue glucocorticoid metabolism, and enhanced adipocyte mineralocorticoid receptor activity. It is unknown whether these changes in adrenal endocrine function are in part responsible for the pathogenesis of obesity and related comorbidities or represent an adaptive response. In turn, adipose tissue hormones or "adipokines" have direct effects on the adrenal glands and interact with adrenal hormones at several levels. Here we review the emerging evidence supporting the existence of "cross talk" between the adrenal gland and adipose tissue, focusing on the relevance and roles of their respective hormones in health and disease states including obesity, metabolic syndrome, and primary disorders of the adrenals.
Collapse
Affiliation(s)
- Atil Y. Kargi
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- *Atil Y. Kargi:
| | - Gianluca Iacobellis
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
10
|
Than A, Zhang X, Leow MKS, Poh CL, Chong SK, Chen P. Apelin attenuates oxidative stress in human adipocytes. J Biol Chem 2013; 289:3763-74. [PMID: 24362107 DOI: 10.1074/jbc.m113.526210] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
It has been recently recognized that the increased oxidative stress (ROS overproduction) in obese condition is a key contributor to the pathogenesis of obesity-associated metabolic diseases. Apelin is an adipocytokine secreted by adipocytes, and known for its anti-obesity and anti-diabetic properties. In obesity, both oxidative stress and plasma level of apelin are increased. However, the regulatory roles of apelin on oxidative stress in adipocytes remain unknown. In the present study, we provide evidence that apelin, through its interaction with apelin receptor (APJ), suppresses production and release of reactive oxygen species (ROS) in adipocytes. This is further supported by the observations that apelin promotes the expression of anti-oxidant enzymes via MAPK kinase/ERK and AMPK pathways, and suppresses the expression of pro-oxidant enzyme via AMPK pathway. We further demonstrate that apelin is able to relieve oxidative stress-induced dysregulations of the expression of anti- and pro-oxidant enzymes, mitochondrial biogenesis and function, as well as release of pro- and anti-inflammatory adipocytokines. This study, for the first time, reveals the antioxidant properties of apelin in adipocytes, and suggests its potential as a novel therapeutic target for metabolic diseases.
Collapse
Affiliation(s)
- Aung Than
- From the Division of Bioengineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457
| | | | | | | | | | | |
Collapse
|
11
|
Vargovic P, Ukropec J, Laukova M, Kurdiova T, Balaz M, Manz B, Ukropcova B, Kvetnansky R. Repeated immobilization stress induces catecholamine production in rat mesenteric adipocytes. Stress 2013; 16:340-52. [PMID: 23035889 DOI: 10.3109/10253890.2012.736046] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Catecholamines (CATs), the major regulator of lipolysis in adipose tissue, are produced mainly by the sympathoadrenal system. However, recent studies report endogenous CAT production in adipocytes themselves. This study investigated the effects of single and repeated (7-14 times) immobilization (IMO) stress on CAT production in various fat depots of the rat. Single IMO quickly induced a rise of norepinephrine (NE) and epinephrine (EPI) concentration in mesenteric and brown adipose depots. Adaptive response to repeated IMO included robust increases of NE and EPI levels in mesenteric and subcutaneous adipose tissue. These changes likely reflect the activation of sympathetic nervous system in fat depots by IMO. However, this process was also paralleled by an increase in tyrosine hydroxylase gene expression in mesenteric fat, suggesting regulation of endogenous CAT production in adipose tissue cells. Detailed time-course analysis (time course 10, 30, and 120 min) clearly showed that repeated stress led to increased CAT biosynthesis in isolated mesenteric adipocytes resulting in gradual accumulation of intracellular EPI during IMO exposure. Comparable changes were also found in stromal/vascular fractions, with more pronounced effects of single than repeated IMO. The potential physiological importance of these findings is accentuated by parallel increase in expression of vesicular monoamine transporter 1, indicating a need for CAT storage in adipocyte vesicles. Taken together, we show that CAT production occurs in adipose tissue and may be activated by stress directly in adipocytes.
Collapse
Affiliation(s)
- Peter Vargovic
- Laboratory of Stress Research, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Than A, Leow MKS, Chen P. Control of adipogenesis by the autocrine interplays between angiotensin 1-7/Mas receptor and angiotensin II/AT1 receptor signaling pathways. J Biol Chem 2013; 288:15520-31. [PMID: 23592774 DOI: 10.1074/jbc.m113.459792] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Angiotensin II (AngII), a peptide hormone released by adipocytes, can be catabolized by adipose angiotensin-converting enzyme 2 (ACE2) to form Ang(1-7). Co-expression of AngII receptors (AT1 and AT2) and Ang(1-7) receptors (Mas) in adipocytes implies the autocrine regulation of the local angiotensin system upon adipocyte functions, through yet unknown interactive mechanisms. In the present study, we reveal the adipogenic effects of Ang(1-7) through activation of Mas receptor and its subtle interplays with the antiadipogenic AngII-AT1 signaling pathways. Specifically, in human and 3T3-L1 preadipocytes, Ang(1-7)-Mas signaling promotes adipogenesis via activation of PI3K/Akt and inhibition of MAPK kinase/ERK pathways, and Ang(1-7)-Mas antagonizes the antiadipogenic effect of AngII-AT1 by inhibiting the AngII-AT1-triggered MAPK kinase/ERK pathway. The autocrine regulation of the AngII/AT1-ACE2-Ang(1-7)/Mas axis upon adipogenesis has also been revealed. This study suggests the importance of the local regulation of the delicately balanced angiotensin system upon adipogenesis and its potential as a novel therapeutic target for obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Aung Than
- Division of Bioengineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457
| | | | | |
Collapse
|
13
|
Than A, Cheng Y, Foh LC, Leow MKS, Lim SC, Chuah YJ, Kang Y, Chen P. Apelin inhibits adipogenesis and lipolysis through distinct molecular pathways. Mol Cell Endocrinol 2012; 362:227-41. [PMID: 22842084 DOI: 10.1016/j.mce.2012.07.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 06/19/2012] [Accepted: 07/06/2012] [Indexed: 12/30/2022]
Abstract
Apelin is an adipokine secreted by adipocytes. Co-expression of apelin and apelin receptor (APJ) in adipocytes implies the autocrine regulations of apelin on adipocyte functions through yet unknown molecular mechanisms. In the present study, we provide evidence that apelin, through its interaction with APJ receptor, inhibits adipogenesis of pre-adipocytes and lipolysis in mature adipocytes. The detailed molecular pathways underlying apelin signaling is proposed based on our experimental observations. Specifically, we show that apelin suppresses adipogenesis through MAPK kinase/ERK dependent pathways. And by preventing lipid droplet fragmentation, apelin inhibits basal lipolysis through AMP kinase dependent enhancement of perilipin expression and inhibits hormone-stimulated acute lipolysis through decreasing perilipin phosphorylation. Apelin induced decrease of free fatty acid release can be attributed to its dual inhibition on adipogenesis and lipolysis. This study suggests that the autocrine signaling of apelin may serve as a novel therapeutic target for obesity and other metabolic disorders.
Collapse
Affiliation(s)
- Aung Than
- Division of Bioengineering, Nanyang Technological University, Singapore 637457, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Fanjul C, Barrenetxe J, Iñigo C, Sakar Y, Ducroc R, Barber A, Lostao MP. Leptin regulates sugar and amino acids transport in the human intestinal cell line Caco-2. Acta Physiol (Oxf) 2012; 205:82-91. [PMID: 22252010 DOI: 10.1111/j.1748-1716.2012.02412.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 10/04/2011] [Accepted: 01/09/2012] [Indexed: 01/09/2023]
Abstract
AIM Studies in rodents have shown that leptin controls sugars and glutamine entry in the enterocytes by regulating membrane transporters. Here, we have examined the effect of leptin on sugar and amino acids absorption in the human model of intestinal cells Caco-2 and investigated the transporters involved. METHODS Substrate uptake experiments were performed in Caco-2 cells, grown on plates, in the presence and the absence of leptin, and the expression of the different transporters in brush border membrane vesicles was analysed by Western blot. RESULTS Leptin inhibited 0.1 mm α-methyl-D-glucoside uptake after 5 or 30 min treatment and decreased SGLT1 protein abundance in the apical membrane. Uptake of 20 μm glutamine and 0.1 mm phenylalanine was also inhibited by leptin, indicating sensitivity to the hormone of the Na(+) -dependent neutral amino acid transporters ASCT2 and B(0) AT1. This inhibition was accompanied by a reduction in the transporters expression at the brush border membrane. Leptin also inhibited 1 mm proline and β-alanine uptake in Na(+) medium at pH 6, conditions for optimal activity of the H(+) -dependent neutral amino acid transporter PAT1. In this case, abundance of PAT1 in the brush border membrane after leptin treatment was not modified. Interestingly, leptin inhibitory effect on β-alanine uptake was reversed by the PKA inhibitor H-89 suggesting involvement of PKA pathway in leptin's regulation of PAT1 activity. CONCLUSION These data show in human intestinal cells that leptin can rapidly control the activity of physiologically relevant transporters for rich-energy molecules, that is, D-glucose (SGLT1) and amino acids (ASCT2, B(0) AT1 and PAT1).
Collapse
Affiliation(s)
- C. Fanjul
- Department of Nutrition, Food Science, Physiology and Toxicology; University of Navarra; Pamplona; Spain
| | - J. Barrenetxe
- Department of Nutrition, Food Science, Physiology and Toxicology; University of Navarra; Pamplona; Spain
| | - C. Iñigo
- Department of Biochemistry; Miguel Servet Hospital; Zaragoza; Spain
| | | | | | - A. Barber
- Department of Nutrition, Food Science, Physiology and Toxicology; University of Navarra; Pamplona; Spain
| | - M. P. Lostao
- Department of Nutrition, Food Science, Physiology and Toxicology; University of Navarra; Pamplona; Spain
| |
Collapse
|
15
|
Ye F, Zhang H, Yang YX, Hu HD, Sze SK, Meng W, Qian J, Ren H, Yang BL, Luo MY, Wu X, Zhu W, Cai WJ, Tong JB. Comparative proteome analysis of 3T3-L1 adipocyte differentiation using iTRAQ-coupled 2D LC-MS/MS. J Cell Biochem 2012; 112:3002-14. [PMID: 21678470 DOI: 10.1002/jcb.23223] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Adipose tissue is critical in obesity and type II diabetes. Blocking of adipocyte differentiation is one of the anti-obesity strategies targeting on strong rise in fat storage and secretion of adipokine(s). However, the molecular basis of adipocyte differentiation and its regulation remains obscure. Therefore, we exposed 3T3-L1 cell line to appropriate hormonal inducers as adipocyte differentiation model. Using iTRAQ-coupled 2D LC-MS/MS, a successfully exploited high-throughput proteomic technology, we nearly quantitated 1,000 protein species and found 106 significantly altered proteins during adipocyte differentiation. The great majority of differentially expressed proteins were related to metabolism enzymes, structural molecules, and proteins involved in signal transduction. In addition to previously reported differentially expressed molecules, more than 20 altered proteins previously unknown to be involved with adipogenic process were firstly revealed (e.g., HEXB, DPP7, PTTG1IP, PRDX5, EPDR1, SPNB2, STEAP3, TPP1, etc.). The partially differential proteins were verified by Western blot and/or real-time PCR analysis. Furthermore, the association of PCX and VDAC2, two altered proteins, with adipocyte conversion was analyzed using siRNA method, and the results showed that they could contribute considerably to adipogenesis. In conclusion, our data provide valuable information for further understanding of adipogenesis.
Collapse
Affiliation(s)
- Feng Ye
- Department of Histology & Embryology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Than A, Tee WT, Chen P. Apelin secretion and expression of apelin receptors in 3T3-L1 adipocytes are differentially regulated by angiotensin type 1 and type 2 receptors. Mol Cell Endocrinol 2012; 351:296-305. [PMID: 22249006 DOI: 10.1016/j.mce.2012.01.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 12/27/2011] [Accepted: 01/04/2012] [Indexed: 12/28/2022]
Abstract
Adipocytes play pivotal roles in regulating metabolism through secretion of a variety of adipokines, which in turn is regulated by other metabolic factors (e.g., insulin). Understanding the regulations of adipokine secretion is important because adipokines are implicated with metabolic disorders, such as, obesity and diabetes mellitus. Here, we investigated the regulatory roles of angiotensin II (AngII) on the secretion of apelin in 3T3-L1 adipocytes, and distinct signaling pathways mediated by AngII receptor type 1 (AT₁) and type 2 (AT₂) were revealed. It was found that activation of AT₁ receptors stimulates apelin secretion in Ca²⁺, protein kinase C, and MAPK kinase dependent ways while activation of AT₂ receptors inhibits apelin secretion through cAMP and cGMP dependent pathways. Furthermore, we demonstrate that the expression of apelin receptor (APJ) is also similarly regulated by AT₁ and AT₂ receptors. Finally, a detailed AngII signaling map is proposed.
Collapse
Affiliation(s)
- Aung Than
- Division of Bioengineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | | | | |
Collapse
|
17
|
Than A, Tan Y, Ong WY, Farooqui AA, Chen P. Kainate Receptors Mediate Regulated Exocytosis of Secretory Phospholipase A2 in SH-SY5Y Neuroblastoma Cells. Neurosignals 2011; 20:72-85. [DOI: 10.1159/000330414] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 06/27/2011] [Indexed: 01/03/2023] Open
|
18
|
Borcherding DC, Hugo ER, Idelman G, De Silva A, Richtand NW, Loftus J, Ben-Jonathan N. Dopamine receptors in human adipocytes: expression and functions. PLoS One 2011; 6:e25537. [PMID: 21966540 PMCID: PMC3180449 DOI: 10.1371/journal.pone.0025537] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 09/06/2011] [Indexed: 12/28/2022] Open
Abstract
Introduction Dopamine (DA) binds to five receptors (DAR), classified by their ability to increase (D1R-like) or decrease (D2R-like) cAMP. In humans, most DA circulates as dopamine sulfate (DA-S), which can be de-conjugated to bioactive DA by arylsulfatase A (ARSA). The objective was to examine expression of DAR and ARSA in human adipose tissue and determine whether DA regulates prolactin (PRL) and adipokine expression and release. Methods DAR were analyzed by RT-PCR and Western blotting in explants, primary adipocytes and two human adipocyte cell lines, LS14 and SW872. ARSA expression and activity were determined by qPCR and enzymatic assay. PRL expression and release were determined by luciferase reporter and Nb2 bioassay. Analysis of cAMP, cGMP, leptin, adiponectin and interleukin 6 (IL-6) was done by ELISA. Activation of MAPK and PI3 kinase/Akt was determined by Western blotting. Results DAR are variably expressed at the mRNA and protein levels in adipose tissue and adipocytes during adipogenesis. ARSA activity in adipocyte increases after differentiation. DA at nM concentrations suppresses cAMP, stimulates cGMP, and activates MAPK in adipocytes. Acting via D2R-like receptors, DA and DA-S inhibit PRL gene expression and release. Acting via D1R/D5R receptors, DA suppresses leptin and stimulates adiponectin and IL-6 release. Conclusions This is the first report that human adipocytes express functional DAR and ARSA, suggesting a regulatory role for peripheral DA in adipose functions. We speculate that the propensity of some DAR-activating antipsychotics to increase weight and alter metabolic homeostasis is due, in part, to their direct action on adipose tissue.
Collapse
Affiliation(s)
- Dana C. Borcherding
- Department of Cancer and Cell Biology, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Eric R. Hugo
- Department of Cancer and Cell Biology, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Gila Idelman
- Department of Cancer and Cell Biology, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Anuradha De Silva
- Department of Cancer and Cell Biology, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Nathan W. Richtand
- Department of Cancer and Cell Biology, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Jean Loftus
- The Christ Hospital, Cincinnati, Ohio, United States of America
| | - Nira Ben-Jonathan
- Department of Cancer and Cell Biology, University of Cincinnati, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
19
|
Huang Y, Cai D, Chen P. Micro- and Nanotechnologies for Study of Cell Secretion. Anal Chem 2011; 83:4393-406. [DOI: 10.1021/ac200358b] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Yinxi Huang
- Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457
| | - Dong Cai
- Biology Department, Boston College, Boston, Massachusetts 02467, United States
| | - Peng Chen
- Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457
| |
Collapse
|
20
|
Lau CH, Muniandy S. Novel adiponectin-resistin (AR) and insulin resistance (IRAR) indexes are useful integrated diagnostic biomarkers for insulin resistance, type 2 diabetes and metabolic syndrome: a case control study. Cardiovasc Diabetol 2011; 10:8. [PMID: 21251282 PMCID: PMC3036610 DOI: 10.1186/1475-2840-10-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Accepted: 01/21/2011] [Indexed: 12/12/2022] Open
Abstract
Background Adiponectin and resistin are adipokines which modulate insulin action, energy, glucose and lipid homeostasis. Meta-analyses showed that hypoadiponectinemia and hyperresistinemia are strongly associated with increased risk of insulin resistance, type 2 diabetes (T2DM), metabolic syndrome (MS) and cardiovascular disease. The aim of this study was to propose a novel adiponectin-resistin (AR) index by taking into account both adiponectin and resistin levels to povide a better indicator of the metabolic homeostasis and metabolic disorders. In addition, a novel insulin resistance (IRAR) index was proposed by integration of the AR index into an existing insulin resistance index to provide an improved diagnostic biomarker of insulin sensitivity. Methods In this case control study, anthropometric clinical and metabolic parameters including fasting serum total adiponectin and resistin levels were determined in 809 Malaysian men (208 controls, 174 MS without T2DM, 171 T2DM without MS, 256 T2DM with MS) whose ages ranged between 40-70 years old. Significant differences in continuous variables among subject groups were confirmed by ANCOVA or MANCOVA test using 1,000 stratified bootstrap samples with bias corrected and accelerated (BCa) 95% CI. Spearman's rho rank correlation test was used to test the correlation between two variables. Results The AR index was formulated as 1+log10(R0)-log10(A0). The AR index was more strongly associated with increased risk of T2DM and MS than hypoadiponectinemia and hyperresistinemia alone. The AR index was more strongly correlated with the insulin resistance indexes and key metabolic endpoints of T2DM and MS than adiponectin and resistin levels alone. The AR index was also correlated with a higher number of MS components than adiponectin and resistin levels alone. The IRAR index was formulated as log10(I0G0)+log10(I0G0)log10(R0/A0). The normal reference range of the IRAR index for insulin sensitive individuals was between 3.265 and 3.538. The minimum cut-off values of the IRAR index for insulin resistance assessment were between 3.538 and 3.955. Conclusions The novel AR and IRAR indexes are cost-effective, precise, reproducible and reliable integrated diagnostic biomarkers of insulin sensitivity for screening subjects with increased risk of future development of T2DM and MS.
Collapse
Affiliation(s)
- Cia-Hin Lau
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | | |
Collapse
|