1
|
Nassar KM, Yang X, Baker A, Gopalam R, Arnold WC, Adeniran TT, Hernandez Fernandez MH, Mahajan M, Lai Z, Chen Y, Sareddy GR, Viswanadhapalli S, Sun LZ, Vadlamudi RK, Pratap UP. PELP1 Is a Novel Therapeutic Target in Hepatocellular Carcinoma. CANCER RESEARCH COMMUNICATIONS 2024; 4:2610-2620. [PMID: 39258975 PMCID: PMC11456993 DOI: 10.1158/2767-9764.crc-24-0173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/31/2024] [Accepted: 09/05/2024] [Indexed: 09/12/2024]
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths in the United States, with a median survival period of approximately 10 months. There is an urgent need for the development of effective targeted therapies for the treatment of HCC. Proline-, glutamic acid-, and leucine-rich protein 1 (PELP1) signaling is implicated in the progression of many cancers, although its specific contribution to the progression of HCC is not yet well understood. Analysis of The Cancer Genome Atlas HCC gene expression data sets and IHC analysis of HCC tissue microarray revealed that HCC tumors had elevated expression of PELP1 compared with normal tissues, and high expression of PELP1 is associated with unfavorable survival outcomes. Suppression of PELP1 expression using short hairpin RNA significantly reduced the cell viability, clonogenicity, and invasion of HCC cells. Importantly, SMIP34, a first-in-class small-molecule inhibitor targeting PELP1, effectively decreased the cell viability, clonogenic survival, and invasiveness of HCC cells. Gene expression analysis using RNA sequencing revealed that PELP1 knockdown cells exhibited a decrease in c-Myc, E2F, and other oncogenic pathways related to HCC. Mechanistic studies showed that SMIP34 treatment impaired the Rix complex, a critical component of ribosomal biogenesis, in HCC cells. Furthermore, the knockdown or pharmacologic inhibition of PELP1 significantly decelerated the HCC tumor growth in xenograft models. In summary, our study findings indicate that PELP1 could serve as a promising target for therapeutic intervention in HCC. SIGNIFICANCE HCC is one of the leading causes of cancer fatalities in the United States. Effective targeted therapeutics for HCC are urgently needed. In this study, we show that PELP1 proto-oncogene is crucial to HCC progression and that PELP1 inhibition reduced HCC cell proliferation in vitro and in vivo. Our results imply that PELP1-targeted drugs like SMIP34 may be useful as new therapeutic agents for HCC treatment.
Collapse
Affiliation(s)
- Khaled Mohamed Nassar
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas.
| | - Xue Yang
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas.
| | - Adriana Baker
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas.
| | - Rahul Gopalam
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas.
| | - William C. Arnold
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas.
| | - Timilehin T. Adeniran
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas.
| | | | - Megharani Mahajan
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas.
| | - Zhao Lai
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, Texas.
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, Texas.
| | - Yidong Chen
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, Texas.
- Department of Population Health Sciences, University of Texas Health San Antonio, San Antonio, Texas.
| | - Gangadhara R. Sareddy
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas.
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas.
| | - Suryavathi Viswanadhapalli
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas.
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas.
| | - Lu-Zhe Sun
- Department of Cell Systems & Anatomy, University of Texas Health San Antonio, San Antonio, Texas.
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas.
| | - Ratna K. Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas.
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas.
- Audie L. Murphy South Texas Veterans Health Care System, San Antonio, Texas.
| | - Uday P. Pratap
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas.
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas.
| |
Collapse
|
2
|
Yang X, Liu Z, Tang W, Pratap UP, Collier AB, Altwegg KA, Gopalam R, Li X, Yuan Y, Zhou D, Lai Z, Chen Y, Sareddy GR, Valente PT, Kost ER, Viswanadhapalli S, Vadlamudi RK. PELP1 inhibition by SMIP34 reduces endometrial cancer progression via attenuation of ribosomal biogenesis. Mol Oncol 2024; 18:2136-2156. [PMID: 37853941 PMCID: PMC11467795 DOI: 10.1002/1878-0261.13539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 10/20/2023] Open
Abstract
Endometrial carcinoma (ECa) is the fourth most common cancer among women. The oncogene PELP1 is frequently overexpressed in a variety of cancers, including ECa. We recently generated SMIP34, a small-molecule inhibitor of PELP1 that suppresses PELP1 oncogenic signaling. In this study, we assessed the effectiveness of SMIP34 in treating ECa. Treatment of established and primary patient-derived ECa cells with SMIP34 resulted in a significant reduction of cell viability, colony formation ability, and induction of apoptosis. RNA-seq analyses showed that SMIP34-regulated genes were negatively correlated with ribosome biogenesis and eukaryotic translation pathways. Mechanistic studies showed that the Rix complex, which is essential for ribosomal biogenesis, is disrupted upon SMIP34 binding to PELP1. Biochemical assays confirmed that SMIP34 reduced ribosomal biogenesis and new protein synthesis. Further, SMIP34 enhanced the efficacy of mTOR inhibitors in reducing viability of ECa cells. SMIP34 is also effective in reducing cell viability in ECa organoids in vitro and explants ex vivo. Importantly, SMIP34 treatment resulted in a significant reduction of the growth of ECa xenografts. Collectively, these findings underscore the potential of SMIP34 in treating ECa.
Collapse
Affiliation(s)
- Xue Yang
- Department of Obstetrics and GynecologyUniversity of Texas Health San AntonioTXUSA
- Department of Obstetrics and Gynecology, Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Zexuan Liu
- Department of Obstetrics and GynecologyUniversity of Texas Health San AntonioTXUSA
- Department of Oncology, Xiangya HospitalCentral South UniversityChangshaChina
| | - Weiwei Tang
- Department of Obstetrics and GynecologyUniversity of Texas Health San AntonioTXUSA
- Department of Obstetrics and Gynecology, Affiliated Hospital of Integrated Traditional Chinese and Western MedicineNanjing University of Chinese MedicineChina
| | - Uday P. Pratap
- Department of Obstetrics and GynecologyUniversity of Texas Health San AntonioTXUSA
| | - Alexia B. Collier
- Department of Obstetrics and GynecologyUniversity of Texas Health San AntonioTXUSA
| | - Kristin A. Altwegg
- Department of Obstetrics and GynecologyUniversity of Texas Health San AntonioTXUSA
- Mays Cancer CenterUniversity of Texas Health San AntonioTXUSA
| | - Rahul Gopalam
- Department of Obstetrics and GynecologyUniversity of Texas Health San AntonioTXUSA
| | - Xiaonan Li
- Department of Obstetrics and GynecologyUniversity of Texas Health San AntonioTXUSA
| | - Yaxia Yuan
- Department of Biochemistry & Structural BiologyUniversity of Texas Health San AntonioTXUSA
| | - Daohong Zhou
- Department of Biochemistry & Structural BiologyUniversity of Texas Health San AntonioTXUSA
| | - Zhao Lai
- Department of Molecular Medicine, Department of Population Sciences, and Greehey Children's Cancer Research InstituteUniversity of Texas Health San AntonioSan AntonioTXUSA
| | - Yidong Chen
- Department of Molecular Medicine, Department of Population Sciences, and Greehey Children's Cancer Research InstituteUniversity of Texas Health San AntonioSan AntonioTXUSA
| | - Gangadhara R. Sareddy
- Department of Obstetrics and GynecologyUniversity of Texas Health San AntonioTXUSA
- Mays Cancer CenterUniversity of Texas Health San AntonioTXUSA
| | | | - Edward R. Kost
- Department of Obstetrics and GynecologyUniversity of Texas Health San AntonioTXUSA
| | - Suryavathi Viswanadhapalli
- Department of Obstetrics and GynecologyUniversity of Texas Health San AntonioTXUSA
- Mays Cancer CenterUniversity of Texas Health San AntonioTXUSA
| | - Ratna K. Vadlamudi
- Department of Obstetrics and GynecologyUniversity of Texas Health San AntonioTXUSA
- Mays Cancer CenterUniversity of Texas Health San AntonioTXUSA
- Audie L. Murphy DivisionSouth Texas Veterans Health Care SystemSan AntonioTXUSA
| |
Collapse
|
3
|
Miziak P, Baran M, Błaszczak E, Przybyszewska-Podstawka A, Kałafut J, Smok-Kalwat J, Dmoszyńska-Graniczka M, Kiełbus M, Stepulak A. Estrogen Receptor Signaling in Breast Cancer. Cancers (Basel) 2023; 15:4689. [PMID: 37835383 PMCID: PMC10572081 DOI: 10.3390/cancers15194689] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Estrogen receptor (ER) signaling is a critical regulator of cell proliferation, differentiation, and survival in breast cancer (BC) and other hormone-sensitive cancers. In this review, we explore the mechanism of ER-dependent downstream signaling in BC and the role of estrogens as growth factors necessary for cancer invasion and dissemination. The significance of the clinical implications of ER signaling in BC, including the potential of endocrine therapies that target estrogens' synthesis and ER-dependent signal transmission, such as aromatase inhibitors or selective estrogen receptor modulators, is discussed. As a consequence, the challenges associated with the resistance to these therapies resulting from acquired ER mutations and potential strategies to overcome them are the critical point for the new treatment strategies' development.
Collapse
Affiliation(s)
- Paulina Miziak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Marzena Baran
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Ewa Błaszczak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Alicja Przybyszewska-Podstawka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Joanna Kałafut
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Jolanta Smok-Kalwat
- Department of Clinical Oncology, Holy Cross Cancer Centre, 3 Artwinskiego Street, 25-734 Kielce, Poland;
| | - Magdalena Dmoszyńska-Graniczka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Michał Kiełbus
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| |
Collapse
|
4
|
Altwegg KA, Pratap UP, Liu Z, Liu J, Sanchez JR, Yang X, Ebrahimi B, Panneerdoss DM, Li X, Sareddy GR, Viswanadhapalli S, Rao MK, Vadlamudi RK. Targeting PELP1 oncogenic signaling in TNBC with the small molecule inhibitor SMIP34. Breast Cancer Res Treat 2023; 200:151-162. [PMID: 37199805 PMCID: PMC10224866 DOI: 10.1007/s10549-023-06958-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/21/2023] [Indexed: 05/19/2023]
Abstract
PURPOSE Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer. Oncogenic PELP1 is frequently overexpressed in TNBC, and it has been demonstrated that PELP1 signaling is essential for TNBC progression. The therapeutic utility of targeting PELP1 in TNBC, however, remains unknown. In this study, we investigated the effectiveness of SMIP34, a recently developed PELP1 inhibitor for the treatment of TNBC. METHODS To ascertain the impact of SMIP34 treatment, we used seven different TNBC models for testing cell viability, colony formation, invasion, apoptosis, and cell cycle analysis. Western blotting and RT-qPCR were used to determine the mechanistic insights of SMIP34 action. Using xenograft and PDX tumors, the ability of SMIP34 in suppressing proliferation was examined both ex vivo and in vivo. RESULTS TNBC cells' viability, colony formation, and invasiveness were all decreased by SMIP34 in in vitro cell-based assays, while apoptosis was increased. SMIP34 treatment promoted the degradation of PELP1 through the proteasome pathway. RT-qPCR analyses confirmed that SMIP34 treatment downregulated PELP1 target genes. Further, SMIP34 treatment substantially downregulated PELP1 mediated extranuclear signaling including ERK, mTOR, S6 and 4EBP1. Mechanistic studies confirmed downregulation of PELP1 mediated ribosomal biogenesis functions including downregulation of cMyc and Rix complex proteins LAS1L, TEX-10, and SENP3. The proliferation of TNBC tumor tissues was decreased in explant experiments by SMIP34. Additionally, SMIP34 treatment markedly decreased tumor progression in both TNBC xenograft and PDX models. CONCLUSIONS Together, these findings from in vitro, ex vivo, and in vivo models show that SMIP34 may be a useful therapeutic agent for inhibiting PELP1 signaling in TNBC.
Collapse
Affiliation(s)
- Kristin A Altwegg
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Uday P Pratap
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Zexuan Liu
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Junhao Liu
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - John R Sanchez
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Xue Yang
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Department of Obstetrics and Gynecology, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Behnam Ebrahimi
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Durga Meenakshi Panneerdoss
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Xiaonan Li
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Gangadhara R Sareddy
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Suryavathi Viswanadhapalli
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Manjeet K Rao
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Ratna K Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.
- Audie L. Murphy Division, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA.
| |
Collapse
|
5
|
Xiao Y, Liu P, Wei J, Zhang X, Guo J, Lin Y. Recent progress in targeted therapy for non-small cell lung cancer. Front Pharmacol 2023; 14:1125547. [PMID: 36909198 PMCID: PMC9994183 DOI: 10.3389/fphar.2023.1125547] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/10/2023] [Indexed: 02/24/2023] Open
Abstract
The high morbidity and mortality of non-small cell lung cancer (NSCLC) have always been major threats to people's health. With the identification of carcinogenic drivers in non-small cell lung cancer and the clinical application of targeted drugs, the prognosis of non-small cell lung cancer patients has greatly improved. However, in a large number of non-small cell lung cancer cases, the carcinogenic driver is unknown. Identifying genetic alterations is critical for effective individualized therapy in NSCLC. Moreover, targeted drugs are difficult to apply in the clinic. Cancer drug resistance is an unavoidable obstacle limiting the efficacy and application of targeted drugs. This review describes the mechanisms of targeted-drug resistance and newly identified non-small cell lung cancer targets (e.g., KRAS G12C, NGRs, DDRs, CLIP1-LTK, PELP1, STK11/LKB1, NFE2L2/KEAP1, RICTOR, PTEN, RASGRF1, LINE-1, and SphK1). Research into these mechanisms and targets will drive individualized treatment of non-small cell lung cancer to generate better outcomes.
Collapse
Affiliation(s)
- Yanxia Xiao
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital, National Center of Gerontology of National Health Commission, Beijing, China
| | - Pu Liu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital, National Center of Gerontology of National Health Commission, Beijing, China
| | - Jie Wei
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital, National Center of Gerontology of National Health Commission, Beijing, China
| | - Xin Zhang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital, National Center of Gerontology of National Health Commission, Beijing, China
| | - Jun Guo
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital, National Center of Gerontology of National Health Commission, Beijing, China
| | - Yajun Lin
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital, National Center of Gerontology of National Health Commission, Beijing, China.,Peking University Fifth School of Clinical Medicine, Beijing, China
| |
Collapse
|
6
|
Cryo-EM reveals the architecture of the PELP1-WDR18 molecular scaffold. Nat Commun 2022; 13:6783. [PMID: 36351913 PMCID: PMC9646879 DOI: 10.1038/s41467-022-34610-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022] Open
Abstract
PELP1 (Proline-, Glutamic acid-, Leucine-rich protein 1) is a large scaffolding protein that functions in many cellular pathways including steroid receptor (SR) coactivation, heterochromatin maintenance, and ribosome biogenesis. PELP1 is a proto-oncogene whose expression is upregulated in many human cancers, but how the PELP1 scaffold coordinates its diverse cellular functions is poorly understood. Here we show that PELP1 serves as the central scaffold for the human Rix1 complex whose members include WDR18, TEX10, and SENP3. We reconstitute the mammalian Rix1 complex and identified a stable sub-complex comprised of the conserved PELP1 Rix1 domain and WDR18. We determine a 2.7 Å cryo-EM structure of the subcomplex revealing an interconnected tetrameric assembly and the architecture of PELP1's signaling motifs, including eleven LxxLL motifs previously implicated in SR signaling and coactivation of Estrogen Receptor alpha (ERα) mediated transcription. However, the structure shows that none of these motifs is in a conformation that would support SR binding. Together this work establishes that PELP1 scaffolds the Rix1 complex, and association with WDR18 may direct PELP1's activity away from SR coactivation.
Collapse
|
7
|
Altwegg KA, Viswanadhapalli S, Mann M, Chakravarty D, Krishnan S, Liu Z, Liu J, Pratap UP, Ebrahimi B, Sanchez JR, Li X, Ma S, Park BH, Santhamma B, Chen Y, Lai Z, Raj GV, Yuan Y, Zhou D, Sareddy GR, Tekmal RR, McHardy S, Huang THM, Rao MK, Vankayalapati H, Vadlamudi RK. A First-in-Class Inhibitor of ER Coregulator PELP1 Targets ER+ Breast Cancer. Cancer Res 2022; 82:3830-3844. [PMID: 35950923 PMCID: PMC9588738 DOI: 10.1158/0008-5472.can-22-0698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/21/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022]
Abstract
Most patients with estrogen receptor alpha-positive (ER+) breast cancers initially respond to treatment but eventually develop therapy resistance with disease progression. Overexpression of oncogenic ER coregulators, including proline, glutamic acid, and leucine-rich protein 1 (PELP1), are implicated in breast cancer progression. The lack of small molecules that inhibits PELP1 represents a major knowledge gap. Here, using a yeast-two-hybrid screen, we identified novel peptide inhibitors of PELP1 (PIP). Biochemical assays demonstrated that one of these peptides, PIP1, directly interacted with PELP1 to block PELP1 oncogenic functions. Computational modeling of PIP1 revealed key residues contributing to its activity and facilitated the development of a small-molecule inhibitor of PELP1, SMIP34, and further analyses confirmed that SMIP34 directly bound to PELP1. In breast cancer cells, SMIP34 reduced cell growth in a dose-dependent manner. SMIP34 inhibited proliferation of not only wild-type (WT) but also mutant (MT) ER+ and therapy-resistant breast cancer cells, in part by inducing PELP1 degradation via the proteasome pathway. RNA sequencing analyses showed that SMIP34 treatment altered the expression of genes associated with estrogen response, cell cycle, and apoptosis pathways. In cell line-derived and patient-derived xenografts of both WT and MT ER+ breast cancer models, SMIP34 reduced proliferation and significantly suppressed tumor progression. Collectively, these results demonstrate SMIP34 as a first-in-class inhibitor of oncogenic PELP1 signaling in advanced breast cancer. SIGNIFICANCE Development of a novel inhibitor of oncogenic PELP1 provides potential therapeutic avenues for treating therapy-resistant, advanced ER+ breast cancer.
Collapse
Affiliation(s)
- Kristin A. Altwegg
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, TX 78229
- Mays Cancer Center, UT Health San Antonio, San Antonio, TX 78229
| | - Suryavathi Viswanadhapalli
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, TX 78229
- Mays Cancer Center, UT Health San Antonio, San Antonio, TX 78229
| | - Monica Mann
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, TX 78229
| | | | - Samaya Krishnan
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, TX 78229
| | - Zexuan Liu
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, TX 78229
- Department of Oncology, Xiangya Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, P.R. China
| | - Junhao Liu
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, TX 78229
- Department of Oncology, Xiangya Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, P.R. China
| | - Uday P. Pratap
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, TX 78229
- Mays Cancer Center, UT Health San Antonio, San Antonio, TX 78229
| | - Behnam Ebrahimi
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, TX 78229
- Mays Cancer Center, UT Health San Antonio, San Antonio, TX 78229
| | - John R. Sanchez
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, TX 78229
| | - Xiaonan Li
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, TX 78229
| | - Shihong Ma
- Department of Urology, UT Southwestern Medical Center, Dallas, TX
| | - Ben H. Park
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN
| | | | - Yidong Chen
- Department of Population Health Sciences, UT Health San Antonio, San Antonio, TX 78229
- Greehey Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229
| | - Zhao Lai
- Department of Molecular Medicine, UT Health San Antonio, San Antonio, TX 78229
- Greehey Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229
| | - Ganesh V. Raj
- Department of Urology, UT Southwestern Medical Center, Dallas, TX
| | - Yaxia Yuan
- Department of Biochemistry and Structural Biology, and Center for Innovative Drug Discovery, UT Health San Antonio, San Antonio, TX 78229
| | - Daohong Zhou
- Department of Biochemistry and Structural Biology, and Center for Innovative Drug Discovery, UT Health San Antonio, San Antonio, TX 78229
| | - Gangadhara R. Sareddy
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, TX 78229
- Mays Cancer Center, UT Health San Antonio, San Antonio, TX 78229
| | - Rajeshwar R. Tekmal
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, TX 78229
- Mays Cancer Center, UT Health San Antonio, San Antonio, TX 78229
| | - Stan McHardy
- Department of Chemistry, University of Texas San Antonio, San Antonio, Texas, USA
| | - Tim H. -M. Huang
- Department of Molecular Medicine, UT Health San Antonio, San Antonio, TX 78229
- Mays Cancer Center, UT Health San Antonio, San Antonio, TX 78229
| | - Manjeet K. Rao
- Mays Cancer Center, UT Health San Antonio, San Antonio, TX 78229
- Greehey Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229
| | | | - Ratna K. Vadlamudi
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, TX 78229
- Mays Cancer Center, UT Health San Antonio, San Antonio, TX 78229
- Audie L. Murphy South Texas Veterans Health Care System, San Antonio, TX
| |
Collapse
|
8
|
PELP1 is overexpressed in lung cancer and promotes tumor cell malignancy and resistance to tyrosine kinase inhibitor drug. Pathol Res Pract 2022; 237:154065. [PMID: 35969940 DOI: 10.1016/j.prp.2022.154065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/04/2022] [Accepted: 08/07/2022] [Indexed: 12/24/2022]
Abstract
Proline, glutamate, and leucine-rich protein 1 (PELP1) are involved in several cancers, but little is known about PELP1 in lung cancer. In this study, PELP1 expression was evaluated in 305 lung cancer (NSCLC) specimens to explore the role of PELP1 in lung cancer. After silencing PELP1, the proliferation, migration, invasion of tumor cells, PELP1 in relation to cell cycle and signaling pathways were evaluated, and whole-genome exons were analyzed. PELP1 is overexpressed in lung cancer, PELP1 expression correlated with squamous carcinoma, smoking, and wild-type EGFR status (all Ps<0.001) but associated with lung cancer-specific survival (P > 0.05). Silencing significantly inhibited lung cancer cell proliferation, migration, and invasion (P < 0.05) and promoted high sensitivity of lung cancer cells to tyrosine kinase inhibitor (TKI) gefitinib. PELP1-silenced cells showed downregulated phosphorylated MAPK, cyclinD1, CDK2, and upregulated RB (P < 0.05) but no change in AKT. In PELP1-silenced lung cancer cells, 140 genes were upregulated, and 143 genes were downregulated. Furthermore, the number of T regulatory cell was higher in lung adenocarcinoma with pelp1 high-expression and pelp1 expression was negatively correlated with CD274 (PDL-1) and CTLA4. Therefore, PELP1 plays an important role in the malignant behavior of NSCLC and could be a potential therapeutic target.
Collapse
|
9
|
Moustafa M, Ismael M, Mohamed S, Hafez AM. Value of Proline, Glutamic Acid, and Leucine-Rich Protein 1 and GATA Binding Protein 3 Expression in Breast Cancer: An Immunohistochemical study. Indian J Surg 2022. [DOI: 10.1007/s12262-022-03535-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
AbstractGATA binding protein 3 was more sensitive than traditional markers such as gross cystic disease fluid protein 15 and mammaglobin for identifying primary and metastatic breast carcinomas, but its significance decreased in triple-negative breast cancer. Recent studies showed a high expression rate of proline glutamic acid and leucine-rich protein in breast cancer and their superiority over GATA3 in triple-negative breast cancer. Our study provided new insights into the diagnostic and prognostic roles of PELP1 and GATA3 in primary and metastatic breast cancer. An immunohistochemical assay was carried out using PELP1 and GATA3 in 60 cases of primary breast cancer and 15 metastatic. Invasive carcinoma of no special type was the predominant type (80%). The majority of cases were grade 3 (68.3%). GATA3 expression was 83.3% positive in primary breast carcinomas and 73.5% positive in metastatic breast carcinomas. In comparison, PELP1 had a 96.7% positive expression rate in primary breast carcinomas and an 86.7% positive expression rate in metastasis. There was a statistically significant agreement between GATA3 and PELP1 in the diagnosis of the cases. PELP1 is a significantly higher proportion of both primary and metastatic breast carcinomas than GATA3. In breast cancer, there was a strong association between favorable prognostic factors and GATA3 expression, with evidence of an inverse association with Ki-67 overexpression.
Collapse
|
10
|
Copy Number Variations Contribute to Intramuscular Fat Content Differences by Affecting the Expression of PELP1 Alternative Splices in Pigs. Animals (Basel) 2022; 12:ani12111382. [PMID: 35681846 PMCID: PMC9179479 DOI: 10.3390/ani12111382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Copy number variation (CNV) is a type of variant that may influence meat quality of, for example intramuscular fat (IMF). In this study, a genome-wide association study (GWAS) was then performed between CNVs and IMF in a pig F2 resource population. A total of 19 CNVRs were found to be significantly associated with IMF. RNA-seq and qPCR validation results indicated that CNV150, which is located on the 3′UTR end of the proline, as well as glutamate and the leucine rich protein 1 (PELP1) gene may affect the expression of PELP1 alternative splices. We infer that the CNVR may influence IMF content by regulating the alternative splicing of the PELP1 gene and ultimately affects the structure of the PELP1 protein. These findings suggest a novel mechanistic approach for meat quality improvement in animals and the potential treatment of insulin resistance in human beings. Abstract Intramuscular fat (IMF) is a key meat quality trait. Research on the genetic mechanisms of IMF decomposition is valuable for both pork quality improvement and the treatment of obesity and type 2 diabetes. Copy number variations (CNVs) are a type of variant that may influence meat quality. In this study, a total of 1185 CNV regions (CNVRs) including 393 duplicated CNVRs, 432 deleted CNVRs, and 361 CNVRs with both duplicated and deleted status were identified in a pig F2 resource population using next-generation sequencing data. A genome-wide association study (GWAS) was then performed between CNVs and IMF, and a total of 19 CNVRs were found to be significantly associated with IMF. QTL colocation analysis indicated that 3 of the 19 CNVRs overlapped with known QTLs. RNA-seq and qPCR validation results indicated that CNV150, which is located on the 3′UTR end of the proline, as well as glutamate and the leucine rich protein 1 (PELP1) gene may affect the expression of PELP1 alternative splices. Sequence alignment and Alphafold2 structure prediction results indicated that the two alternative splices of PELP1 have a 23 AA sequence variation and a helix-fold structure variation. This region is located in the region of interaction between PELP1 and other proteins which have been reported to be significantly associated with fat deposition or insulin resistance. We infer that the CNVR may influence IMF content by regulating the alternative splicing of the PELP1 gene and ultimately affects the structure of the PELP1 protein. In conclusion, we found some CNVRs, especially CNV150, located in PELP1 that affect IMF. These findings suggest a novel mechanistic approach for meat quality improvement in animals and the potential treatment of insulin resistance in human beings.
Collapse
|
11
|
Liu Z, Liu J, Ebrahimi B, Pratap UP, He Y, Altwegg KA, Tang W, Li X, Lai Z, Chen Y, Shen L, Sareddy GR, Viswanadhapalli S, Tekmal RR, Rao MK, Vadlamudi RK. SETDB1 interactions with PELP1 contributes to breast cancer endocrine therapy resistance. Breast Cancer Res 2022; 24:26. [PMID: 35395812 PMCID: PMC8991965 DOI: 10.1186/s13058-022-01520-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 03/17/2022] [Indexed: 11/28/2022] Open
Abstract
Background Methyltransferase SETDB1 is highly expressed in breast cancer (BC), however, the mechanisms by which SETDB1 promotes BC progression to endocrine therapy resistance remains elusive. In this study, we examined the mechanisms by which SETDB1 contribute to BC endocrine therapy resistance. Methods We utilized therapy sensitive (MCF7 and ZR75), therapy resistant (MCF7-TamR, MCF7-FR, MCF7-PELP1cyto, MCF7-SETDB1) estrogen receptor alpha positive (ER+)BC models and conducted in vitro cell viability, colony formation, 3-dimensional cell growth assays to investigate the role of SETDB1 in endocrine resistance. RNA-seq of parental and SETDB1 knock down ER+ BC cells was used to identify unique pathways. SETDB1 interaction with PELP1 was identified by yeast-two hybrid screen and confirmed by immunoprecipitation and GST-pull down assays. Mechanistic studies were conducted using Western blotting, reporter gene assays, RT-qPCR, and in vitro methylation assays. Xenograft assays were used to establish the role of PELP1 in SETDB1 mediated BC progression. Results RNA-seq analyses showed that SETDB1 regulates expression of a subset of estrogen receptor (ER) and Akt target genes that contribute to endocrine therapy resistance. Importantly, using yeast-two hybrid screen, we identified ER coregulator PELP1 as a novel interacting protein of SETDB1. Biochemical analyses confirmed SETDB1 and PELP1 interactions in multiple BC cells. Mechanistic studies confirmed that PELP1 is necessary for SETDB1 mediated Akt methylation and phosphorylation. Further, SETDB1 overexpression promotes tamoxifen resistance in BC cells, and PELP1 knockdown abolished these effects. Using xenograft model, we provided genetic evidence that PELP1 is essential for SETDB1 mediated BC progression in vivo. Analyses of TCGA datasets revealed SETDB1 expression is positively correlated with PELP1 expression in ER+ BC patients. Conclusions This study suggests that the PELP1/SETDB1 axis play an important role in aberrant Akt activation and serves as a novel target for treating endocrine therapy resistance in breast cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s13058-022-01520-4.
Collapse
Affiliation(s)
- Zexuan Liu
- Division of Reproductive Research, Department of Obstetrics and Gynecology, University of Texas Health San Antonio, 7703 Floyd Curl Drive, Mail Code 7836, San Antonio, TX, 78229-3900, USA.,Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Junhao Liu
- Division of Reproductive Research, Department of Obstetrics and Gynecology, University of Texas Health San Antonio, 7703 Floyd Curl Drive, Mail Code 7836, San Antonio, TX, 78229-3900, USA.,Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Behnam Ebrahimi
- Division of Reproductive Research, Department of Obstetrics and Gynecology, University of Texas Health San Antonio, 7703 Floyd Curl Drive, Mail Code 7836, San Antonio, TX, 78229-3900, USA
| | - Uday P Pratap
- Division of Reproductive Research, Department of Obstetrics and Gynecology, University of Texas Health San Antonio, 7703 Floyd Curl Drive, Mail Code 7836, San Antonio, TX, 78229-3900, USA
| | - Yi He
- Division of Reproductive Research, Department of Obstetrics and Gynecology, University of Texas Health San Antonio, 7703 Floyd Curl Drive, Mail Code 7836, San Antonio, TX, 78229-3900, USA.,Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Kristin A Altwegg
- Division of Reproductive Research, Department of Obstetrics and Gynecology, University of Texas Health San Antonio, 7703 Floyd Curl Drive, Mail Code 7836, San Antonio, TX, 78229-3900, USA.,Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Weiwei Tang
- Division of Reproductive Research, Department of Obstetrics and Gynecology, University of Texas Health San Antonio, 7703 Floyd Curl Drive, Mail Code 7836, San Antonio, TX, 78229-3900, USA.,Department of Obstetrics and Gynecology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, People's Republic of China
| | - Xiaonan Li
- Division of Reproductive Research, Department of Obstetrics and Gynecology, University of Texas Health San Antonio, 7703 Floyd Curl Drive, Mail Code 7836, San Antonio, TX, 78229-3900, USA
| | - Zhao Lai
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Yidong Chen
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.,Dept of Population Health Sciences, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Liangfang Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Gangadhara R Sareddy
- Division of Reproductive Research, Department of Obstetrics and Gynecology, University of Texas Health San Antonio, 7703 Floyd Curl Drive, Mail Code 7836, San Antonio, TX, 78229-3900, USA.,Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Suryavathi Viswanadhapalli
- Division of Reproductive Research, Department of Obstetrics and Gynecology, University of Texas Health San Antonio, 7703 Floyd Curl Drive, Mail Code 7836, San Antonio, TX, 78229-3900, USA.,Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Rajeshwar R Tekmal
- Division of Reproductive Research, Department of Obstetrics and Gynecology, University of Texas Health San Antonio, 7703 Floyd Curl Drive, Mail Code 7836, San Antonio, TX, 78229-3900, USA.,Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Manjeet K Rao
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.,Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Ratna K Vadlamudi
- Division of Reproductive Research, Department of Obstetrics and Gynecology, University of Texas Health San Antonio, 7703 Floyd Curl Drive, Mail Code 7836, San Antonio, TX, 78229-3900, USA. .,Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, 78229, USA. .,Audie L. Murphy Division, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA.
| |
Collapse
|
12
|
Vuttaradhi VK, Ezhil I, Ramani D, Kanumuri R, Raghavan S, Balasubramanian V, Saravanan R, Kanakarajan A, Joseph LD, Pitani RS, Sundaram S, Sjolander A, Venkatraman G, Rayala SK. Inflammation-induced PELP1 expression promotes tumorigenesis by activating GM-CSF paracrine secretion in the tumor microenvironment. J Biol Chem 2022; 298:101406. [PMID: 34774800 PMCID: PMC8671644 DOI: 10.1016/j.jbc.2021.101406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 10/13/2021] [Accepted: 11/09/2021] [Indexed: 01/15/2023] Open
Abstract
The inflammatory tumor microenvironment has been implicated as a major player fueling tumor progression and an enabling characteristic of cancer, proline, glutamic acid, and leucine-rich protein 1 (PELP1) is a novel nuclear receptor coregulator that signals across diverse signaling networks, and its expression is altered in several cancers. However, investigations to find the role of PELP1 in inflammation-driven oncogenesis are limited. Molecular studies here, utilizing macrophage cell lines and animal models upon stimulation with lipopolysaccharide (LPS) or necrotic cells, showed that PELP1 is an inflammation-inducible gene. Studies on the PELP1 promoter and its mutant identified potential binding of c-Rel, an NF-κB transcription factor subunit, to PELP1 promoter upon LPS stimulation in macrophages. Recruitment of c-Rel onto the PELP1 promoter was validated by chromatin immunoprecipitation, further confirming LPS mediated PELP1 expression through c-Rel-specific transcriptional regulation. Macrophages that overexpress PELP1 induces granulocyte-macrophage colony-stimulating factor secretion, which mediates cancer progression in a paracrine manner. Results from preclinical studies with normal-inflammatory-tumor progression models demonstrated a progressive increase in the PELP1 expression, supporting this link between inflammation and cancer. In addition, animal studies demonstrated the connection of PELP1 in inflammation-directed cancer progression. Taken together, our findings provide the first report on c-Rel-specific transcriptional regulation of PELP1 in inflammation and possible granulocyte-macrophage colony-stimulating factor-mediated transformation potential of activated macrophages on epithelial cells in the inflammatory tumor microenvironment, reiterating the link between PELP1 and inflammation-induced oncogenesis. Understanding the regulatory mechanisms of PELP1 may help in designing better therapeutics to cure various inflammation-associated malignancies.
Collapse
Affiliation(s)
- Veena Kumari Vuttaradhi
- Molecular Oncology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Inemai Ezhil
- Molecular Oncology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Divya Ramani
- Molecular Oncology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India; Department of Human Genetics, Sri Ramachandra Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Rahul Kanumuri
- Molecular Oncology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India; Department of Human Genetics, Sri Ramachandra Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Swetha Raghavan
- Molecular Oncology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Vaishnavi Balasubramanian
- Department of Human Genetics, Sri Ramachandra Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Roshni Saravanan
- Department of Human Genetics, Sri Ramachandra Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Archana Kanakarajan
- Department of Pathology, Sri Ramachandra Medical College, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Leena Dennis Joseph
- Department of Pathology, Sri Ramachandra Medical College, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Ravi Shankar Pitani
- Department of Community Medicine, Sri Ramachandra Medical College, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Sandhya Sundaram
- Department of Pathology, Sri Ramachandra Medical College, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Anita Sjolander
- Cell Pathology, Department of Translational Medicine, Clinical Research Centre, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Ganesh Venkatraman
- Department of Human Genetics, Sri Ramachandra Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India.
| | - Suresh Kumar Rayala
- Molecular Oncology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India.
| |
Collapse
|
13
|
Altwegg KA, Vadlamudi RK. Role of estrogen receptor coregulators in endocrine resistant breast cancer. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2021; 2:385-400. [PMID: 34528025 PMCID: PMC8439438 DOI: 10.37349/etat.2021.00052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Breast cancer (BC) is the most ubiquitous cancer in women. Approximately 70–80% of BC diagnoses are positive for estrogen receptor (ER) alpha (ERα). The steroid hormone estrogen [17β-estradiol (E2)] plays a vital role both in the initiation and progression of BC. The E2-ERα mediated actions involve genomic signaling and non-genomic signaling. The specificity and magnitude of ERα signaling are mediated by interactions between ERα and several coregulator proteins called coactivators or corepressors. Alterations in the levels of coregulators are common during BC progression and they enhance ligand-dependent and ligand-independent ERα signaling which drives BC growth, progression, and endocrine therapy resistance. Many ERα coregulator proteins function as scaffolding proteins and some have intrinsic or associated enzymatic activities, thus the targeting of coregulators for blocking BC progression is a challenging task. Emerging data from in vitro and in vivo studies suggest that targeting coregulators to inhibit BC progression to therapy resistance is feasible. This review explores the current state of ERα coregulator signaling and the utility of targeting the ERα coregulator axis in treating advanced BC.
Collapse
Affiliation(s)
- Kristin A Altwegg
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA.,Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Ratna K Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA.,Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
14
|
Truong TH, Benner EA, Hagen KM, Temiz NA, Kerkvliet CP, Wang Y, Cortes-Sanchez E, Yang CH, Trousdell MC, Pengo T, Guillen KP, Welm BE, Dos Santos CO, Telang S, Lange CA, Ostrander JH. PELP1/SRC-3-dependent regulation of metabolic PFKFB kinases drives therapy resistant ER + breast cancer. Oncogene 2021; 40:4384-4397. [PMID: 34103681 PMCID: PMC8238912 DOI: 10.1038/s41388-021-01871-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 05/13/2021] [Accepted: 05/26/2021] [Indexed: 02/05/2023]
Abstract
Recurrence of metastatic breast cancer stemming from acquired endocrine and chemotherapy resistance remains a health burden for women with luminal (ER+) breast cancer. Disseminated ER+ tumor cells can remain viable but quiescent for years to decades. Contributing factors to metastatic spread include the maintenance and expansion of breast cancer stem cells (CSCs). Breast CSCs frequently exist as a minority population in therapy resistant tumors. In this study, we show that cytoplasmic complexes composed of steroid receptor (SR) co-activators, PELP1 and SRC-3, modulate breast CSC expansion through upregulation of the HIF-activated metabolic target genes PFKFB3 and PFKFB4. Seahorse metabolic assays demonstrated that cytoplasmic PELP1 influences cellular metabolism by increasing both glycolysis and mitochondrial respiration. PELP1 interacts with PFKFB3 and PFKFB4 proteins, and inhibition of PFKFB3 and PFKFB4 kinase activity blocks PELP1-induced tumorspheres and protein-protein interactions with SRC-3. PFKFB4 knockdown inhibited in vivo emergence of circulating tumor cell (CTC) populations in mammary intraductal (MIND) models. Application of PFKFB inhibitors in combination with ER targeted therapies blocked tumorsphere formation in multiple models of advanced breast cancer including tamoxifen (TamR) and paclitaxel (TaxR) resistant models, murine tumor cells, and ER+ patient-derived organoids (PDxO). Together, our data suggest that PELP1, SRC-3, and PFKFBs cooperate to drive ER+ tumor cell populations that include CSCs and CTCs. Identifying non-ER pharmacological targets offers a useful approach to blocking metastatic escape from standard of care ER/estrogen (E2)-targeted strategies to overcome endocrine and chemotherapy resistance.
Collapse
Affiliation(s)
- Thu H Truong
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | | | - Kyla M Hagen
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Nuri A Temiz
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA
| | | | - Ying Wang
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Emilio Cortes-Sanchez
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Chieh-Hsiang Yang
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | | | - Thomas Pengo
- University of Minnesota Informatics Institute, University of Minnesota, Minneapolis, MN, USA
| | - Katrin P Guillen
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Bryan E Welm
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Surgery, University of Utah, Salt Lake City, UT, USA
| | | | - Sucheta Telang
- James Graham Brown Cancer Center, Department of Medicine (Division of Medical Oncology and Hematology), University of Louisville, Louisville, KY, USA
| | - Carol A Lange
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
- Department of Medicine (Division of Hematology, Oncology, and Transplantation), University of Minnesota, Minneapolis, MN, USA.
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA.
| | - Julie H Ostrander
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
- Department of Medicine (Division of Hematology, Oncology, and Transplantation), University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
15
|
Zhang D, Dai J, Pan Y, Wang X, Qiao J, Sasano H, Zhao B, McNamara KM, Guan X, Liu L, Zhang Y, Chan MSM, Cao S, Liu M, Song S, Wang L. Overexpression of PELP1 in Lung Adenocarcinoma Promoted E 2 Induced Proliferation, Migration and Invasion of the Tumor Cells and Predicted a Worse Outcome of the Patients. Pathol Oncol Res 2021; 27:582443. [PMID: 34257530 PMCID: PMC8262236 DOI: 10.3389/pore.2021.582443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 02/10/2021] [Indexed: 11/13/2022]
Abstract
The expression of Proline-, glutamic acid-, and leucine-rich protein 1 (PELP1) has been reported to be dysregulated in non-small cell lung carcinoma, especially in lung adenocarcinoma (LUAD). Therefore, we aimed to investigate the functional and prognostic roles of PELP1 in LUAD in this study. We first immunolocalized PELP1 in 76 cases of LUAD and 17 non-pathological or tumorous lung (NTL) tissue specimens and correlated the findings with the clinicopathological parameters of the patients. We then performed in vitro analysis including MTT, flow cytometry, wound healing, and transwell assays in order to further explore the biological roles of PELP1 in 17-β-estradiol (E2) induced cell proliferation, migration, and invasion of LUAD cells. We subsequently evaluated the prognostic significance of PELP1 in LUAD patients using the online survival analysis tool Kaplan-Meier Plotter. The status of PELP1 immunoreactivity in LUAD was significantly higher than that in the NTL tissues and significantly positively correlated with less differentiated features of carcinoma cells, positive lymph node metastasis, higher clinical stage as well as the status of ERα, ERβ, and PCNA. In vitro study did reveal that E2 promoted cell proliferation and migration and elevated PELP1 protein level in PELP1-high A549 and H1975 cells but not in PELP1-low H-1299 cells. Knock down of PELP1 significantly attenuated E2 induced cell proliferation, colony formation, cell cycle progress as well as migration and invasion of A549 and H1975 cells. Kaplan-Meier Plotter revealed that LUAD cases harboring higher PELP1 expression had significantly shorter overall survival. In summary, PELP1 played a pivotal role in the estrogen-induced aggressive transformation of LUAD and could represent adverse clinical outcome of the LUAD patients.
Collapse
Affiliation(s)
- Dongmei Zhang
- Department of Pathology, Harbin Medical University-Daqing, Daqing, China
| | - Jiali Dai
- Department of Pathology, Harbin Medical University-Daqing, Daqing, China.,Traditional Psychological Unit, The Third Hospital of Daqing, Daqing, China
| | - Yu Pan
- Department of Pathology, Harbin Medical University-Daqing, Daqing, China
| | - Xiuli Wang
- Department of Pathology, Harbin Medical University-Daqing, Daqing, China
| | - Juanjuan Qiao
- Department of Pathology, Harbin Medical University-Daqing, Daqing, China
| | - Hironobu Sasano
- Department of Pathology, Tohoku University School of Medicine, Sendai, Japan
| | - Baoshan Zhao
- Department of Pathology, Harbin Medical University-Daqing, Daqing, China
| | - Keely M McNamara
- Department of Pathology, Tohoku University School of Medicine, Sendai, Japan
| | - Xue Guan
- Department of Pathology, Harbin Medical University-Daqing, Daqing, China
| | - Lili Liu
- Department of Pathology, Harbin Medical University-Daqing, Daqing, China
| | - Yanzhi Zhang
- Department of Pathology, Harbin Medical University-Daqing, Daqing, China
| | - Monica S M Chan
- Department of Pathology, Tohoku University School of Medicine, Sendai, Japan
| | - Shuwen Cao
- Department of Pathology, Daqing Oilfield General Hospital, Daqing, China
| | - Ming Liu
- Department of Pathology, Harbin Medical University-Daqing, Daqing, China.,Department of Pathology, The Fifth Affiliated Hospital of Harbin Medical University, Daqing, China
| | - Sihang Song
- Department of Pathology, Harbin Medical University-Daqing, Daqing, China
| | - Lin Wang
- Department of Pathology, Harbin Medical University-Daqing, Daqing, China
| |
Collapse
|
16
|
Liu J, Liu Z, Li M, Tang W, Pratap UP, Luo Y, Altwegg KA, Li X, Zou Y, Zhu H, Sareddy GR, Viswanadhapalli S, Vadlamudi RK. Interaction of transcription factor AP-2 gamma with proto-oncogene PELP1 promotes tumorigenesis by enhancing RET signaling. Mol Oncol 2021; 15:1146-1161. [PMID: 33269540 PMCID: PMC8024722 DOI: 10.1002/1878-0261.12871] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/10/2020] [Accepted: 11/30/2020] [Indexed: 01/15/2023] Open
Abstract
A significant proportion of estrogen receptor-positive (ER+) breast cancer (BC) initially responds to endocrine therapy but eventually evolves into therapy-resistant BC. Transcription factor AP-2 gamma (TFAP2C) is a known regulator of ER activity, and high expression of TFAP2C is associated with a decreased response to endocrine therapies. PELP1 is a nuclear receptor coregulator, commonly overexpressed in BC, and its levels are correlated with poorer survival. In this study, we identified PELP1 as a novel interacting protein of TFAP2C. RNA-seq analysis of PELP1 knockdown BC cells followed by transcription factor motif prediction pointed to TFAP2C being enriched in PELP1-regulated genes. Gene set enrichment analysis (GSEA) revealed that the TFAP2C-PELP1 axis induced a subset of common genes. Reporter gene assays confirmed PELP1 functions as a coactivator of TFAP2C. Mechanistic studies showed that PELP1-mediated changes in histone methylation contributed to increased expression of the TFAP2C target gene RET. Furthermore, the TFAP2C-PELP1 axis promoted the activation of the RET signaling pathway, which contributed to downstream activation of AKT and ERK pathways in ER+ BC cells. Concomitantly, knockdown of PELP1 attenuated these effects mediated by TFAP2C. Overexpression of TFAP2C contributed to increased cell proliferation and therapy resistance in ER+ BC models, while knockdown of PELP1 mitigated these effects. Utilizing ZR75-TFAP2C xenografts with or without PELP1 knockdown, we provided genetic evidence that endogenous PELP1 is essential for TFAP2C-driven BC progression in vivo. Collectively, our studies demonstrated that PELP1 plays a critical role in TFAP2C transcriptional and tumorigenic functions in BC and blocking the PELP1-TFAP2C axis could have utility for treating therapy resistance.
Collapse
Affiliation(s)
- Junhao Liu
- UT Health San Antonio Long School of MedicineDepartment of Obstetrics and GynecologyUT Health San AntonioTXUSA
- Department of OncologyXiangya HospitalCentral South UniversityHunanChina
| | - Zexuan Liu
- UT Health San Antonio Long School of MedicineDepartment of Obstetrics and GynecologyUT Health San AntonioTXUSA
- Department of OncologyXiangya HospitalCentral South UniversityHunanChina
| | - Mengxing Li
- UT Health San Antonio Long School of MedicineDepartment of Obstetrics and GynecologyUT Health San AntonioTXUSA
- Department of Respiratory MedicineXiangya HospitalCentral South UniversityHunanChina
| | - Weiwei Tang
- UT Health San Antonio Long School of MedicineDepartment of Obstetrics and GynecologyUT Health San AntonioTXUSA
- Department of Obstetrics and GynecologyAffiliated Hospital of Integrated Traditional Chinese and Western MedicineNanjing University of Chinese MedicineChina
| | - Uday P. Pratap
- UT Health San Antonio Long School of MedicineDepartment of Obstetrics and GynecologyUT Health San AntonioTXUSA
| | - Yiliao Luo
- UT Health San Antonio Long School of MedicineDepartment of Obstetrics and GynecologyUT Health San AntonioTXUSA
- Department of General SurgeryXiangya HospitalCentral South UniversityHunanChina
| | - Kristin A. Altwegg
- UT Health San Antonio Long School of MedicineDepartment of Obstetrics and GynecologyUT Health San AntonioTXUSA
- UT Health San Antonio Mays Cancer Center‐ MD Anderson Cancer CenterUT Health San AntonioTXUSA
| | - Xiaonan Li
- UT Health San Antonio Long School of MedicineDepartment of Obstetrics and GynecologyUT Health San AntonioTXUSA
| | - Yi Zou
- Greehey Children's Cancer Research InstituteUT Health San AntonioTXUSA
| | - Hong Zhu
- Department of OncologyXiangya HospitalCentral South UniversityHunanChina
| | - Gangadhara R. Sareddy
- UT Health San Antonio Long School of MedicineDepartment of Obstetrics and GynecologyUT Health San AntonioTXUSA
- UT Health San Antonio Mays Cancer Center‐ MD Anderson Cancer CenterUT Health San AntonioTXUSA
| | - Suryavathi Viswanadhapalli
- UT Health San Antonio Long School of MedicineDepartment of Obstetrics and GynecologyUT Health San AntonioTXUSA
- UT Health San Antonio Mays Cancer Center‐ MD Anderson Cancer CenterUT Health San AntonioTXUSA
| | - Ratna K. Vadlamudi
- UT Health San Antonio Long School of MedicineDepartment of Obstetrics and GynecologyUT Health San AntonioTXUSA
- UT Health San Antonio Mays Cancer Center‐ MD Anderson Cancer CenterUT Health San AntonioTXUSA
| |
Collapse
|
17
|
Kołat D, Kałuzińska Ż, Bednarek AK, Płuciennik E. Fragile Gene WWOX Guides TFAP2A/ TFAP2C-Dependent Actions Against Tumor Progression in Grade II Bladder Cancer. Front Oncol 2021; 11:621060. [PMID: 33718178 PMCID: PMC7947623 DOI: 10.3389/fonc.2021.621060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 01/18/2021] [Indexed: 02/05/2023] Open
Abstract
INTRODUCTION The presence of common fragile sites is associated with no-accidental chromosomal instability which occurs prior to carcinogenesis. The WWOX gene spans the second most active fragile site: FRA16D. Chromosomal breakage at this site is more common in bladder cancer patients who are tobacco smokers which suggests the importance of WWOX gene loss regarding bladder carcinogenesis. Tryptophan domains of WWOX are known to recognize motifs of other proteins such as AP-2α and AP-2γ allowing protein-protein interactions. While the roles of both AP-2 transcription factors are important for bladder carcinogenesis, their nature is different. Based on the literature, AP-2γ appears to be oncogenic, whereas AP-2α mainly exhibits tumor suppressor character. Presumably, the interaction between WWOX and both transcription factors regulates thousands of genes, hence the aim of the present study was to determine WWOX, AP-2α, and AP-2γ function in modulating biological processes of bladder cancer. METHODS RT-112 cell line (grade II bladder cancer) was subjected to two stable lentiviral transductions. Overall, this resulted in six variants to investigate distinct WWOX, AP-2α, or AP-2γ function as well as WWOX in collaboration with a particular transcription factor. Cellular models were examined with immunocytochemical staining and in terms of differences in biological processes using assays investigating cell viability, proliferation, apoptosis, adhesion, clonogenicity, migration, activity of metalloproteinases and 3D culture growth. RESULTS WWOX overexpression increased apoptosis but decreased cell viability, migration and large spatial colonies. AP-2α overexpression decreased tumor cell viability, migratory potential, matrix metalloproteinase-2 activity and clonogenicity. AP-2γ overexpression decreased matrix metalloproteinase-2 activity but increased wound healing, adhesion, clonogenicity and spatial colony formation. WWOX and AP-2α overexpression induced apoptosis but decreased cell viability, adhesion, matrix metalloproteinase-2 activity, overall number of cultured colonies and migration rate. WWOX and AP-2γ overexpression decreased tumor cell viability, proliferation potential, adhesion, clonogenicity and the ability to create spatial structures, but also increased apoptosis or migration rate. CONCLUSION Co-overexpression of WWOX with AP-2α or WWOX with AP-2γ resulted in a net anti-tumor effect. However, considering this research findings and the difference between AP-2α and AP-2γ, we suggest that this similarity is due to a divergent behavior of WWOX.
Collapse
|
18
|
Rees M, Smith C, Barrett-Lee P, Hiscox S. PELP-1 regulates adverse responses to endocrine therapy in Estrogen Receptor (ER) positive breast cancer. Oncotarget 2020; 11:4722-4734. [PMID: 33473257 PMCID: PMC7771710 DOI: 10.18632/oncotarget.27846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/20/2020] [Indexed: 11/30/2022] Open
Abstract
Introduction: Endocrine therapy has played an important role in the management of ER positive breast cancer over recent decades. Despite this, not all patients respond equally to endocrine intervention, which can lead to resistance, associated disease relapse and progression. Previous reports suggest that endocrine agents themselves may induce an invasive phenotype in ER positive breast cancers with low/aberrant expression of E-cadherin. Here we investigate this phenomenon further and provide data supporting a role for the ER co-receptor, PELP-1, in mediating an adverse response to endocrine agents. Materials and Methods: The effects of tamoxifen, fulvestrant and estrogen withdrawal (as a model for aromatase inhibitor therapy) on the invasive and migratory capacity of endocrine-sensitive MCF-7 and T47D cells, in the presence or absence of functional E-cadherin and/or PELP-1 (using siRNA knockdown), was assessed via Matrigel invasion and Boyden chamber migration assays. The effects of these endocrine therapies alongside E-cadherin/PELP-1 modulation on cell proliferation were further assessed by MTT assay. Western blotting using phospho-specific antibodies was performed to investigate signalling pathway changes associated with endocrine-induced changes in invasion and migration. Results: Both tamoxifen and fulvestrant induced a pro-invasive and pro-migratory phenotype in ER positive breast cancer cells displaying a high basal expression of PELP-1, which was augmented in the context of poor cell-cell contact. This process occurred in a Src-dependent manner with Src inhibition reversing endocrine induced invasion/migration. While this adverse response was observed using both tamoxifen and fulvestrant therapy, it was not observed under conditions of estrogen withdrawal. Conclusions: Our data confirms previous reports that anti-estrogens induce an adverse cell phenotype in ER+ breast cancer, particularly in the absence of homotypic cell contact. These results implicate E-cadherin and PELP-1 as potential biomarkers when deciding upon optimum adjuvant endocrine therapy, whereby tumours with high PELP-1/low E-cadherin expression may benefit from estrogen withdrawal therapy via aromatase inhibition, as opposed to ER modulation/antagonism.
Collapse
Affiliation(s)
- Michael Rees
- Breast Cancer Molecular Pharmacology Group, School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK.,Velindre Cancer Centre, Cardiff, UK
| | - Chris Smith
- Breast Cancer Molecular Pharmacology Group, School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | | | - Steve Hiscox
- Breast Cancer Molecular Pharmacology Group, School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| |
Collapse
|
19
|
Long X, Zhao B, Lu W, Chen X, Yang X, Huang J, Zhang Y, An S, Qin Y, Xing Z, Shen Y, Wu H, Qi Y. The Critical Roles of the SUMO-Specific Protease SENP3 in Human Diseases and Clinical Implications. Front Physiol 2020; 11:558220. [PMID: 33192553 PMCID: PMC7662461 DOI: 10.3389/fphys.2020.558220] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 10/07/2020] [Indexed: 11/23/2022] Open
Abstract
Post-translational modification by SUMO (small ubiquitin-like modifier) proteins has been shown to regulate a variety of functions of proteins, including protein stability, chromatin organization, transcription, DNA repair, subcellular localization, protein–protein interactions, and protein homeostasis. SENP (sentrin/SUMO-specific protease) regulates precursor processing and deconjugation of SUMO to control cellular mechanisms. SENP3, which is one of the SENP family members, deconjugates target proteins to alter protein modification. The effect of modification via SUMO and SENP3 is crucial to maintain the balance of SUMOylation and guarantee normal protein function and cellular activities. SENP3 acts as an oxidative stress-responsive molecule under physiological conditions. Under pathological conditions, if the SUMOylation process of proteins is affected by variations in SENP3 levels, it will cause a cellular reaction and ultimately lead to abnormal cellular activities and the occurrence and development of human diseases, including cardiovascular diseases, neurological diseases, and various cancers. In this review, we summarized the most recent advances concerning the critical roles of SENP3 in normal physiological and pathological conditions as well as the potential clinical implications in various diseases. Targeting SENP3 alone or in combination with current therapies might provide powerful targeted therapeutic strategies for the treatment of these diseases.
Collapse
Affiliation(s)
- Xiaojun Long
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Biying Zhao
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Wenbin Lu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xu Chen
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xinyi Yang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Jifang Huang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yuhong Zhang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Siming An
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yuanyuan Qin
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Zhengcao Xing
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yajie Shen
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Hongmei Wu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yitao Qi
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
20
|
Ma C, Miao C, Wang C, Song F, Luo M. PELP1 is a novel oncogene in gastric tumorigenesis and negatively regulated by miR-15 family microRNAs. Cancer Biomark 2020; 26:1-9. [PMID: 31322541 DOI: 10.3233/cbm-182279] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUD Gastric cancer (GC) is one of the leading causes of cancer-related death in East Asia and some South American countries, but its mechanism has not been clarified clearly. Proline-, glutamic acid-, and leucine-rich protein-1 (PELP1), a co-regulatory molecule of estrogen receptor α (ER α), is up-regulated in series of cancers such as endometrial carcinoma, ovarian cancer, colorectal cancer, breast cancer, and non-small cell lung cancer. However, PELP1's role in GC is still obscure, and its aberrant expression in cancers also remains to be explained. METHODS Immunohistochemical staining and Real-time PCR were used to compare the expression level of PELP1 in GC tissues and adjacent tissues. Western blot was used to detect the expression of PELP1 in cell lines. Kaplan-meier analysis and chi-square test were applied to evaluate the potential of PELP1 to function as a cancer biomarker. RNA interference was used to inhibit PELP1 expression in GC cells, followed by detecting cell proliferation, apoptosis, migration and invasion. Luciferase assay was conducted to validate whether miR-15 family members can directly target PELP1. RESULTS In this study, we validated that PELP1 was significantly up-regulated in GC samples and cell lines. It was also demonstrated that the up-regulation of PELP1 was associated with several clinicopathologic features such as tumor diameter (P< 0.001), serum CEA level (P= 0.034), and lymphatic metastasis (P= 0.0009) of GC patients, and its high expression was correlated with shorter disease-free survival and overall survival of the patients. Knockdown of PELP1 remarkably arrested the proliferationï¼ migration and invasion, while promoted apoptosis. We also confirmed that miR-15 family microRNAs, most of which were down-regulated and tumor suppressor in cancers, were posttranscriptional regulators of PELP1. CONCLUSION In conclusion, we demonstrated that PELP1 was an oncogene of GC associated with patients' prognosis and miR-15 family members contributed to its aberrant expression in cancers.
Collapse
|
21
|
Viswanadhapalli S, Ma S, Sareddy GR, Lee TK, Li M, Gilbreath C, Liu X, Luo Y, Pratap UP, Zhou M, Blatt EB, Kassees K, Arteaga C, Alluri P, Rao M, Weintraub ST, Tekmal RR, Ahn JM, Raj GV, Vadlamudi RK. Estrogen receptor coregulator binding modulator (ERX-11) enhances the activity of CDK4/6 inhibitors against estrogen receptor-positive breast cancers. Breast Cancer Res 2019; 21:150. [PMID: 31878959 PMCID: PMC6933697 DOI: 10.1186/s13058-019-1227-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 11/13/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND CDK4/6 inhibitors in combination with endocrine therapy (AE/AI/SERDs) are approved for the treatment of ER+ advanced breast cancer (BCa). However, not all patients benefit from CDK4/6 inhibitors therapy. We previously reported a novel therapeutic agent, ERX-11, that binds to the estrogen receptor (ER) and modulates ER-coregulator interactions. Here, we tested if the combination of ERX-11 with agents approved for ER+ BCa would be more potent. METHODS We tested the effect of combination therapy using BCa cell line models, including those that have acquired resistance to tamoxifen, letrozole, or CDK4/6 inhibitors or have been engineered to express mutant forms of the ER. In vitro activity was tested using Cell Titer-Glo, MTT, and apoptosis assays. Mechanistic studies were conducted using western blot, reporter gene assays, RT-qPCR, and mass spectrometry approaches. Xenograft, patient-derived explants (PDEs), and xenograft-derived explants (XDE) were used for preclinical evaluation and toxicity. RESULTS ERX-11 inhibited the proliferation of therapy-resistant BCa cells in a dose-dependent manner, including ribociclib resistance. The combination of ERX-11 and CDK4/6 inhibitor was synergistic in decreasing the proliferation of both endocrine therapy-sensitive and endocrine therapy-resistant BCa cells, in vitro, in xenograft models in vivo, xenograft-derived explants ex vivo, and in primary patient-derived explants ex vivo. Importantly, the combination caused xenograft tumor regression in vivo. Unbiased global mass spectrometry studies demonstrated profound decreases in proliferation markers with combination therapy and indicated global proteomic changes in E2F1, ER, and ER coregulators. Mechanistically, the combination of ERX-11 and CDK4/6 inhibitor decreased the interaction between ER and its coregulators, as evidenced by immunoprecipitation followed by mass spectrometry studies. Biochemical studies confirmed that the combination therapy significantly altered the expression of proteins involved in E2F1 and ER signaling, and this is primarily driven by a transcriptional shift, as noted in gene expression studies. CONCLUSIONS Our results suggest that ERX-11 inhibited the proliferation of BCa cells resistant to both endocrine therapy and CDK4/6 inhibitors in a dose-dependent manner and that the combination of ERX-11 with a CDK4/6 inhibitor may represent a viable therapeutic approach.
Collapse
Affiliation(s)
| | - Shihong Ma
- Departments of Urology and Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA
| | - Gangadhara Reddy Sareddy
- Department of Obstetrics and Gynecology, University of Texas Health, San Antonio, TX, 78229, USA
- CDP Program, University of Texas Health Cancer Center, San Antonio, TX, 78229, USA
| | - Tae-Kyung Lee
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Mengxing Li
- Department of Obstetrics and Gynecology, University of Texas Health, San Antonio, TX, 78229, USA
| | - Collin Gilbreath
- Departments of Urology and Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA
| | - Xihui Liu
- Departments of Urology and Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA
| | - Yiliao Luo
- Department of Obstetrics and Gynecology, University of Texas Health, San Antonio, TX, 78229, USA
| | - Uday P Pratap
- Department of Obstetrics and Gynecology, University of Texas Health, San Antonio, TX, 78229, USA
| | - Mei Zhou
- Department of Obstetrics and Gynecology, University of Texas Health, San Antonio, TX, 78229, USA
| | - Eliot B Blatt
- Departments of Urology and Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA
| | - Kara Kassees
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Carlos Arteaga
- Simmons Cancer Center, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA
| | - Prasanna Alluri
- Department of Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA
| | - Manjeet Rao
- Department of Cell Systems and Anatomy, University of Texas Health, San Antonio, TX, 78229, USA
| | - Susan T Weintraub
- Department of Biochemistry and Structural Biology, University of Texas Health, San Antonio, TX, 78229, USA
| | - Rajeshwar Rao Tekmal
- Department of Obstetrics and Gynecology, University of Texas Health, San Antonio, TX, 78229, USA
| | - Jung-Mo Ahn
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, 75080, USA.
| | - Ganesh V Raj
- Departments of Urology and Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA.
- Simmons Cancer Center, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA.
| | - Ratna K Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health, San Antonio, TX, 78229, USA.
- CDP Program, University of Texas Health Cancer Center, San Antonio, TX, 78229, USA.
| |
Collapse
|
22
|
Luo Y, Li M, Pratap UP, Viswanadhapalli S, Liu J, Venkata PP, Altwegg KA, Palacios BE, Li X, Chen Y, Rao MK, Brenner AJ, Sareddy GR, Vadlamudi RK. PELP1 signaling contributes to medulloblastoma progression by regulating the NF-κB pathway. Mol Carcinog 2019; 59:281-292. [PMID: 31872914 DOI: 10.1002/mc.23152] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/03/2019] [Accepted: 12/14/2019] [Indexed: 12/20/2022]
Abstract
Medulloblastoma (MB) is the most common and deadliest brain tumor in children. Proline-, glutamic acid-, and leucine-rich protein 1 (PELP1) is a scaffolding protein and its oncogenic signaling is implicated in the progression of several cancers. However, the role of PELP1 in the progression of MB remains unknown. The objective of this study is to examine the role of PELP1 in the progression of MB. Immunohistochemical analysis of MB tissue microarrays revealed that PELP1 is overexpressed in the MB specimens compared to normal brain. Knockdown of PELP1 reduced cell proliferation, cell survival, and cell invasion of MB cell lines. The RNA-sequencing analysis revealed that PELP1 knockdown significantly downregulated the pathways related to inflammation and extracellular matrix. Gene set enrichment analysis confirmed that the PELP1-regulated genes were negatively correlated with nuclear factor-κB (NF-κB), extracellular matrix, and angiogenesis gene sets. Interestingly, PELP1 knockdown reduced the expression of NF-κB target genes, NF-κB reporter activity, and inhibited the nuclear translocation of p65. Importantly, the knockdown of PELP1 significantly reduced in vivo MB progression in orthotopic models and improved the overall mice survival. Collectively, these results suggest that PELP1 could be a novel target for therapeutic intervention in MB.
Collapse
Affiliation(s)
- Yiliao Luo
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas.,Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Neurosurgery, The Second Xiangya Hospital, Xiangya School of Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mengxing Li
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas.,Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Uday P Pratap
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas
| | | | - Junhao Liu
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas.,Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Prabhakar P Venkata
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas
| | - Kristin A Altwegg
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas.,Mays Cancer Center, Cancer Development and Progression Program, University of Texas Health San Antonio, San Antonio, Texas
| | - Bridgitte E Palacios
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas
| | - Xiaonan Li
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas
| | - Yihong Chen
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas.,Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Manjeet K Rao
- Mays Cancer Center, Cancer Development and Progression Program, University of Texas Health San Antonio, San Antonio, Texas.,Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas
| | - Andrew J Brenner
- Mays Cancer Center, Cancer Development and Progression Program, University of Texas Health San Antonio, San Antonio, Texas.,Department of Hematology and Oncology, University of Texas Health San Antonio, San Antonio, Texas
| | - Gangadhara R Sareddy
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas.,Mays Cancer Center, Cancer Development and Progression Program, University of Texas Health San Antonio, San Antonio, Texas
| | - Ratna K Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas.,Mays Cancer Center, Cancer Development and Progression Program, University of Texas Health San Antonio, San Antonio, Texas
| |
Collapse
|
23
|
Sareddy GR, Pratap UP, Viswanadhapalli S, Venkata PP, Nair BC, Krishnan SR, Zheng S, Gilbert AR, Brenner AJ, Brann DW, Vadlamudi RK. PELP1 promotes glioblastoma progression by enhancing Wnt/β-catenin signaling. Neurooncol Adv 2019; 1:vdz042. [PMID: 32309805 PMCID: PMC7147719 DOI: 10.1093/noajnl/vdz042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background Glioblastoma (GBM) is a deadly neoplasm of the central nervous system. The molecular mechanisms and players that contribute to GBM development is incompletely understood. Methods The expression of PELP1 in different grades of glioma and normal brain tissues was analyzed using immunohistochemistry on a tumor tissue array. PELP1 expression in established and primary GBM cell lines was analyzed by Western blotting. The effect of PELP1 knockdown was studied using cell proliferation, colony formation, migration, and invasion assays. Mechanistic studies were conducted using RNA-seq, RT-qPCR, immunoprecipitation, reporter gene assays, and signaling analysis. Mouse orthotopic models were used for preclinical evaluation of PELP1 knock down. Results Nuclear receptor coregulator PELP1 is highly expressed in gliomas compared to normal brain tissues, with the highest expression in GBM. PELP1 expression was elevated in established and patient-derived GBM cell lines compared to normal astrocytes. Knockdown of PELP1 resulted in a significant decrease in cell viability, survival, migration, and invasion. Global RNA-sequencing studies demonstrated that PELP1 knockdown significantly reduced the expression of genes involved in the Wnt/β-catenin pathway. Mechanistic studies demonstrated that PELP1 interacts with and functions as a coactivator of β-catenin. Knockdown of PELP1 resulted in a significant increase in survival of mice implanted with U87 and GBM PDX models. Conclusions PELP1 expression is upregulated in GBM and PELP1 signaling via β-catenin axis contributes to GBM progression. Thus, PELP1 could be a potential target for the development of therapeutic intervention in GBM.
Collapse
Affiliation(s)
- Gangadhara R Sareddy
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas.,Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas
| | - Uday P Pratap
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas
| | | | - Prabhakar Pitta Venkata
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas
| | - Binoj C Nair
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas
| | | | - Siyuan Zheng
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, Texas.,Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas
| | - Andrea R Gilbert
- Department of Pathology and Laboratory Medicine, University of Texas Health San Antonio, San Antonio, Texas
| | - Andrew J Brenner
- Hematology & Oncology, University of Texas Health San Antonio, San Antonio, Texas.,Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas
| | - Darrell W Brann
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Ratna K Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas.,Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas
| |
Collapse
|
24
|
Skibinska I, Andrusiewicz M, Soin M, Jendraszak M, Urbaniak P, Jedrzejczak P, Kotwicka M. Increased expression of PELP1 in human sperm is correlated with decreased semen quality. Asian J Androl 2019; 20:425-431. [PMID: 29676290 PMCID: PMC6116689 DOI: 10.4103/aja.aja_11_18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Proline-, glutamic acid-, and leucine-rich protein 1 (PELP1) is a scaffolding protein involved in both genomic and nongenomic estrogen signal transduction pathways. To date, the role of PELP1 protein has yet to be characterized in human sperm and has not been associated with sperm parameters. To confirm the presence of PELP1 in human sperm, fresh semen samples were obtained from 178 donors. The study was designed to establish both mRNA and protein presence, and protein cellular localization. Additionally, the number of PELP1-positive spermatozoa was analyzed in men with normal and abnormal semen parameters. Sperm parameters were assessed according to the World Health Organization (WHO) 2010 standards. The presence of PELP1 in spermatozoa was investigated using four precise, independent techniques. The qualitative presence of transcripts and protein was assessed using reverse transcription-polymerase chain reaction (RT-PCR) and western blot protocols, respectively. The cellular localization of PELP1 was investigated by immunocytochemistry. Quantitative analysis of PELP1-positive cells was done by flow cytometry. PELP1 mRNA and protein was confirmed in spermatozoa. Immunocytochemical analysis identified the presence of PELP1 in the midpieces of human sperm irrespective of sperm parameters. Becton Dickinson fluorescence-activated cell sorting (FACSCalibur™) analysis revealed a significantly lower number of PELP1-positive cells in males with normal semen parameters versus abnormal samples (42.78% ± 11.77% vs 61.05% ± 21.70%, respectively; P = 0.014). The assessment of PELP1 may be a time-saving method used to obtain information about sperm quality. The results of our study suggest that PEPL1 may be utilized as an indicator of sperm quality; thereby, PELP1 may be an additional biomarker useful in the evaluation of male infertility.
Collapse
Affiliation(s)
- Izabela Skibinska
- Department of Cell Biology, Faculty of Health Sciences, Poznan University of Medical Sciences, Rokietnicka 5D, Poznan 60-806, Poland
| | - Miroslaw Andrusiewicz
- Department of Cell Biology, Faculty of Health Sciences, Poznan University of Medical Sciences, Rokietnicka 5D, Poznan 60-806, Poland
| | - Michal Soin
- Department of Cell Biology, Faculty of Health Sciences, Poznan University of Medical Sciences, Rokietnicka 5D, Poznan 60-806, Poland
| | - Magdalena Jendraszak
- Department of Cell Biology, Faculty of Health Sciences, Poznan University of Medical Sciences, Rokietnicka 5D, Poznan 60-806, Poland
| | - Paulina Urbaniak
- Department of Cell Biology, Faculty of Health Sciences, Poznan University of Medical Sciences, Rokietnicka 5D, Poznan 60-806, Poland
| | - Piotr Jedrzejczak
- Division of Infertility and Reproductive Endocrinology, Faculty of Medicine I, Poznan University of Medical Sciences, Polna 33, Poznan 60-535, Poland
| | - Malgorzata Kotwicka
- Department of Cell Biology, Faculty of Health Sciences, Poznan University of Medical Sciences, Rokietnicka 5D, Poznan 60-806, Poland
| |
Collapse
|
25
|
Zarrabi K, Paroya A, Wu S. Emerging therapeutic agents for genitourinary cancers. J Hematol Oncol 2019; 12:89. [PMID: 31484560 PMCID: PMC6727406 DOI: 10.1186/s13045-019-0780-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 08/21/2019] [Indexed: 12/11/2022] Open
Abstract
The treatment of genitourinary malignancies has dramatically evolved over recent years. Renal cell carcinoma, urothelial carcinoma of the bladder, and prostate adenocarcinoma are the most commonly encountered genitourinary malignancies and represent a heterogeneous population of cancers, in both histology and approach to treatment. However, all three cancers have undergone paradigm shifts in their respective therapeutic landscapes due to a greater understanding of their underlying molecular mechanisms and oncogenic drivers. The advance that has gained the most recent traction has been the advent of immunotherapies, particularly immune checkpoint inhibitors. Immunotherapy has increased overall survival and even provided durable responses in the metastatic setting in some patients. The early success of immune checkpoint inhibitors has led to further drug development with the emergence of novel agents which modulate the immune system within the tumor microenvironment. Notwithstanding immunotherapy, investigators are also developing novel agents tailored to a variety of targets including small-molecule tyrosine kinase inhibitors, mTOR inhibitors, and novel fusion proteins to name a few. Erdafitinib has become the first targeted therapy approved for metastatic bladder cancer. Moreover, the combination therapy of immune checkpoint inhibitors with targeted agents such as pembrolizumab or avelumab with axitinib has demonstrated both safety and efficacy and just received FDA approval for their use. We are in an era of rapid progression in drug development with multiple exciting trials and ongoing pre-clinical studies. We highlight many of the promising new emerging therapies that will likely continue to improve outcomes in patients with genitourinary malignancies.
Collapse
Affiliation(s)
- Kevin Zarrabi
- Department of Medicine, Stony Brook University Hospital, 9447 SUNY, Stony Brook, NY 11794-9447 USA
| | - Azzam Paroya
- Department of Medicine, Stony Brook University Hospital, 9447 SUNY, Stony Brook, NY 11794-9447 USA
| | - Shenhong Wu
- Department of Medicine, Stony Brook University Hospital, 9447 SUNY, Stony Brook, NY 11794-9447 USA
- Division of Hematology/Oncology, Department of Medicine, Northport VA Medical Center, Northport, NY USA
| |
Collapse
|
26
|
Vps11 and Vps18 of Vps-C membrane traffic complexes are E3 ubiquitin ligases and fine-tune signalling. Nat Commun 2019; 10:1833. [PMID: 31015428 PMCID: PMC6478910 DOI: 10.1038/s41467-019-09800-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 04/02/2019] [Indexed: 12/11/2022] Open
Abstract
In response to extracellular signals, many signalling proteins associated with the plasma membrane are sorted into endosomes. This involves endosomal fusion, which depends on the complexes HOPS and CORVET. Whether and how their subunits themselves modulate signal transduction is unknown. We show that Vps11 and Vps18 (Vps11/18), two common subunits of the HOPS/CORVET complexes, are E3 ubiquitin ligases. Upon overexpression of Vps11/Vps18, we find perturbations of ubiquitination in signal transduction pathways. We specifically demonstrate that Vps11/18 regulate several signalling factors and pathways, including Wnt, estrogen receptor α (ERα), and NFκB. For ERα, we demonstrate that the Vps11/18-mediated ubiquitination of the scaffold protein PELP1 impairs the activation of ERα by c-Src. Thus, proteins involved in membrane traffic, in addition to performing their well-described role in endosomal fusion, fine-tune signalling in several different ways, including through ubiquitination.
Collapse
|
27
|
Sugawara T, Baumgart SJ, Nevedomskaya E, Reichert K, Steuber H, Lejeune P, Mumberg D, Haendler B. Darolutamide is a potent androgen receptor antagonist with strong efficacy in prostate cancer models. Int J Cancer 2019; 145:1382-1394. [PMID: 30828788 PMCID: PMC6766977 DOI: 10.1002/ijc.32242] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/28/2019] [Accepted: 02/21/2019] [Indexed: 12/11/2022]
Abstract
Darolutamide is a novel androgen receptor (AR) antagonist with a distinct chemical structure compared to other AR antagonists and currently in clinical Phase 3 trials for prostate cancer. Using cell‐based transactivation assays, we demonstrate that darolutamide, its diastereomers and its main metabolite keto‐darolutamide are strong, competitive antagonists for AR wild type, and also for several mutants identified in prostate cancer patients for which other AR antagonists show reduced antagonism or even agonism. Darolutamide, its two diastereomers and main metabolite are also strong antagonists in assays measuring AR N/C interaction and homodimerization. Molecular modeling suggests that the flexibility of darolutamide allows accommodation in the W742C/L mutated AR ligand‐binding pocket while for enzalutamide the loss of the important hydrophobic interaction with W742 leads to reduced AR interaction. This correlates with an antagonistic pattern profile of coregulator recruitment for darolutamide. In vitro efficacy studies performed with androgen‐dependent prostate cancer cell lines show that darolutamide strongly reduces cell viability and potently inhibits spheroid formation. Also, a marked down‐regulation of androgen target genes paralleled by decreased AR binding to gene regulatory regions is seen. In vivo studies reveal that oral dosing of darolutamide markedly reduces growth of the LAPC‐4 cell line‐derived xenograft and of the KuCaP‐1 patient‐derived xenograft. Altogether, these results substantiate a unique antagonistic profile of darolutamide and support further development as a prostate cancer drug. What's new? Comparison of genomic landscapes from primary prostate cancer and metastatic tumor shows that resistance mechanisms are centered on androgen signaling and increased synthesis. Here, the novel androgen receptor (AR) antagonist darolutamide shows strong in vitro and in vivo efficacy in different prostate cancer models. Darolutamide retains its antagonistic properties at elevated androgen levels and for several AR mutants identified in therapy‐resistant patients. A unique binding profile inside the AR ligand‐binding domain linked to the flexibility of darolutamide is proposed. Altogether, these results substantiate a unique antagonistic profile of darolutamide and support further development as a prostate cancer drug.
Collapse
Affiliation(s)
- Tatsuo Sugawara
- Oncology II, Preclinical Research, Research and Development, Pharmaceuticals, Bayer AG, Berlin, Germany
| | - Simon J Baumgart
- Oncology II, Preclinical Research, Research and Development, Pharmaceuticals, Bayer AG, Berlin, Germany
| | - Ekaterina Nevedomskaya
- Oncology II, Preclinical Research, Research and Development, Pharmaceuticals, Bayer AG, Berlin, Germany
| | - Kristin Reichert
- Oncology II, Preclinical Research, Research and Development, Pharmaceuticals, Bayer AG, Berlin, Germany
| | - Holger Steuber
- Structural Biology, Lead Discovery Berlin, Small Molecule Innovation, Research and Development, Pharmaceuticals, Bayer AG, Berlin, Germany
| | - Pascale Lejeune
- Oncology II, Preclinical Research, Research and Development, Pharmaceuticals, Bayer AG, Berlin, Germany
| | - Dominik Mumberg
- Oncology II, Preclinical Research, Research and Development, Pharmaceuticals, Bayer AG, Berlin, Germany
| | - Bernard Haendler
- Oncology II, Preclinical Research, Research and Development, Pharmaceuticals, Bayer AG, Berlin, Germany
| |
Collapse
|
28
|
Wang X, Tsang JYS, Lee MA, Ni YB, Tong JH, Chan SK, Cheung SY, To KF, Tse GM. The Clinical Value of PELP1 for Breast Cancer: A Comparison with Multiple Cancers and Analysis in Breast Cancer Subtypes. Cancer Res Treat 2018; 51:706-717. [PMID: 30134648 PMCID: PMC6473277 DOI: 10.4143/crt.2018.316] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/21/2018] [Indexed: 12/27/2022] Open
Abstract
Purpose Proline, glutamic acid, and leucine-rich protein 1 (PELP1), a novel nuclear receptor (NR) co-regulator, is highly expressed in breast cancer. We investigated its expression in breast cancer subtypes, in comparison with other breast markers as well as cancers from different sites. Its prognostic relevance with different subtypes and other NR expression was also examined in breast cancers. Methods Immunohistochemical analysis was performed on totally 1,944 cancers from six different organs. Results PELP1 expression rate was the highest in breast cancers (70.5%) among different cancers. Compared to GATA3, mammaglobin and gross cystic disease fluid protein 15, PELP1 was less sensitive than GATA3 for luminal cancers, but was the most sensitive for non-luminal cancers. PELP1 has low expression rate (<20%) in colorectal cancers, gastric cancers and renal cell carcinomas, but higher in lung cancers (49.1%) and ovarian cancers (42.3%). In breast cancer, PELP1 expression was an independent adverse prognostic factor for non-luminal cancers (disease-free survival [DFS]: hazard ratio [HR], 1.403; p=0.012 and breast cancer specific survival [BCSS]: HR, 1.443; p=0.015). Interestingly, its expression affected the prognostication of androgen receptor (AR). ARposPELP1lo luminal cancer showed the best DFS (log-rank=8.563, p=0.036) while ARnegPELP1hi non-luminal cancers showed the worst DFS (log-rank=9.536, p=0.023). Conclusion PELP1 is a sensitive marker for breast cancer, particularly non-luminal cases. However, its considerable expression in lung and ovarian cancers may limit its utility in differential diagnosis in some scenarios. PELP1 expression was associated with poor outcome in non-luminal cancers and modified the prognostic effects of AR, suggesting the potential significance of NR co-regulator in prognostication.
Collapse
Affiliation(s)
- Xingen Wang
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Julia Y S Tsang
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | - Michelle A Lee
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | - Yun-Bi Ni
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | - Joanna H Tong
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | - Siu-Ki Chan
- Department of Pathology, Kwong Wah Hospital, Hong Kong
| | | | - Ka Fai To
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | - Gary M Tse
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
29
|
Truong TH, Hu H, Temiz NA, Hagen KM, Girard BJ, Brady NJ, Schwertfeger KL, Lange CA, Ostrander JH. Cancer Stem Cell Phenotypes in ER + Breast Cancer Models Are Promoted by PELP1/AIB1 Complexes. Mol Cancer Res 2018; 16:707-719. [PMID: 29348189 PMCID: PMC5882512 DOI: 10.1158/1541-7786.mcr-17-0598] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/13/2017] [Accepted: 01/11/2018] [Indexed: 02/06/2023]
Abstract
Proline, glutamic acid, leucine-rich protein 1 (PELP1) is overexpressed in approximately 80% of invasive breast tumors. PELP1 dynamically shuttles between the nucleus and cytoplasm, but is primarily nuclear in normal breast tissue. However, altered localization of PELP1 to the cytoplasm is an oncogenic event that promotes breast cancer initiation and progression. Herein, interacting partners unique to cytoplasmic PELP1 and the mechanisms by which these interactions promote oncogenic PELP1 signaling were sought. AIB1 (amplified in breast cancer 1; also known as SRC-3 or NCOA3) was identified as a novel binding partner of cytoplasmic PELP1 in both estrogen receptor-positive (ER+) and ER-negative cell lines. Cytoplasmic PELP1 expression elevated basal phosphorylation levels (i.e., activation) of AIB1 at Thr24, enhanced ALDH+ tumorsphere formation, and upregulated specific target genes independently of hormone stimulation. Direct manipulation of AIB1 levels using shRNA abrogated cytoplasmic PELP1-induced tumorsphere formation and downregulated cytoplasmic PELP1-specific target genes. SI-2, an AIB1 inhibitor, limited the PELP1/AIB1 interaction and decreased cytoplasmic PELP1-induced tumorsphere formation. Similar results were observed in a murine-derived MMTV-AIB1 tumor cell line. Furthermore, in vivo syngeneic tumor studies revealed that PELP1 knockdown resulted in increased survival of tumor-bearing mice as compared with mice injected with control cells.Implications: These data demonstrate that cytoplasmic PELP1/AIB1-containing complexes function to promote advanced cancer phenotypes, including outgrowth of stem-like cells, associated with estrogen-independent breast cancer progression. Mol Cancer Res; 16(4); 707-19. ©2018 AACR.
Collapse
Affiliation(s)
- Thu H Truong
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Hsiangyu Hu
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Nuri A Temiz
- Masonic Cancer Center, Institute for Health Informatics, University of Minnesota, Minneapolis, Minnesota
| | - Kyla M Hagen
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Brian J Girard
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Nicholas J Brady
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Kathryn L Schwertfeger
- Department of Laboratory Medicine and Pathology, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Carol A Lange
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.
- Department of Pharmacology, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Julie H Ostrander
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
30
|
|
31
|
Role of Scaffold Protein Proline-, Glutamic Acid-, and Leucine-Rich Protein 1 (PELP1) in the Modulation of Adrenocortical Cancer Cell Growth. Cells 2017; 6:cells6040042. [PMID: 29112114 PMCID: PMC5755500 DOI: 10.3390/cells6040042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 11/02/2017] [Accepted: 11/03/2017] [Indexed: 12/13/2022] Open
Abstract
PELP1 acts as an estrogen receptor (ER) coactivator that exerts an essential role in the ER's functions. ER coregulators have a critical role in the progression and response to hormonal treatment of estrogen-dependent tumors. We previously demonstrated that, in adrenocortical carcinoma (ACC), ERα is upregulated and that estradiol activates the IGF-II/IGF1R signaling pathways defining the role of this functional cross-talk in H295R ACC cell proliferation. The aim of this study was to determine if PELP1 is expressed in ACC and may play a role in promoting the interaction between ERα and IGF1R allowing the activation of pathways important for ACC cell growth. The expression of PELP1 was detected by Western blot analysis in ACC tissues and in H295R cells. H295R cell proliferation decrease was assessed by A3-(4,5-Dimethylthiaoly)-2,5-diphenyltetrazolium bromide (MTT) assay and [3H] thymidine incorporation. PELP1 is expressed in ACC tissues and in H295R cells. Moreover, treatment of H295R with E2 or IGF-II induced a multiprotein complex formation consisting of PELP1, IGF1R, ERα, and Src that is involved in ERK1/2 rapid activation. PELP1/ER/IGF1R/c-Src complex identification as part of E2- and IGF-II-dependent signaling in ACC suggests PELP1 is a novel and more efficient potential target to reduce ACC growth.
Collapse
|
32
|
Raj GV, Sareddy GR, Ma S, Lee TK, Viswanadhapalli S, Li R, Liu X, Murakami S, Chen CC, Lee WR, Mann M, Krishnan SR, Manandhar B, Gonugunta VK, Strand D, Tekmal RR, Ahn JM, Vadlamudi RK. Estrogen receptor coregulator binding modulators (ERXs) effectively target estrogen receptor positive human breast cancers. eLife 2017; 6. [PMID: 28786813 PMCID: PMC5548489 DOI: 10.7554/elife.26857] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/05/2017] [Indexed: 12/22/2022] Open
Abstract
The majority of human breast cancer is estrogen receptor alpha (ER) positive. While anti-estrogens/aromatase inhibitors are initially effective, resistance to these drugs commonly develops. Therapy-resistant tumors often retain ER signaling, via interaction with critical oncogenic coregulator proteins. To address these mechanisms of resistance, we have developed a novel ER coregulator binding modulator, ERX-11. ERX-11 interacts directly with ER and blocks the interaction between a subset of coregulators with both native and mutant forms of ER. ERX-11 effectively blocks ER-mediated oncogenic signaling and has potent anti-proliferative activity against therapy-sensitive and therapy-resistant human breast cancer cells. ERX-11 is orally bioavailable, with no overt signs of toxicity and potent activity in both murine xenograft and patient-derived breast tumor explant models. This first-in-class agent, with its novel mechanism of action of disrupting critical protein-protein interactions, overcomes the limitations of current therapies and may be clinically translatable for patients with therapy-sensitive and therapy-resistant breast cancers. DOI:http://dx.doi.org/10.7554/eLife.26857.001 Around 70% of breast cancers in women need one or both of the female hormones (estrogen and progesterone) to grow. To treat these 'hormone-dependent' cancers, patients receive drugs that either block the production of estrogen or directly target a receptor protein that senses estrogen in the cancer cells. Unfortunately, many breast cancers develop resistance to these drugs. This resistance is often caused by genetic mutations that alter the estrogen receptor; for example, the receptor may develop the ability to interact with other proteins in the cell known as coregulators to promote tumor growth. Developing new drugs that prevent estrogen receptors from interacting with coregulators may provide more options for treating hormone-dependent breast cancers. Here, Raj et al. developed a new small molecule named ERX-11 that is able to inhibit the growth of human breast cancer cells that are sensitive to existing drugs as well as cells that have become drug-resistant. For the experiments, hormone-dependent breast cancer cells from humans were transplanted into mice. This procedure usually causes the mice to develop tumors, but giving the mice ERX-11 by mouth stopped estrogen receptors from interacting with coregulators and blocked the growth of tumors. Furthermore, ERX-11 does not appear to have any toxic effects on the mice, indicating that it may also be safe for humans. The findings of Raj et al. suggest that ERX-11 is a promising new drug candidate for treating some breast cancers. The next steps are to examine the effects of ERX-11 on mice and other animals in more detail before deciding whether this molecule is suitable for clinical trials. In the longer term, molecules similar to ERX-11 could also be developed into drugs to treat other types of cancer that are also caused by abnormal interactions of coregulator proteins. DOI:http://dx.doi.org/10.7554/eLife.26857.002
Collapse
Affiliation(s)
- Ganesh V Raj
- Departments of Urology and Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, United States
| | - Gangadhara Reddy Sareddy
- Department of Obstetrics and Gynecology, University of Texas Health Science Center, San Antonio, United States.,CDP program, University of Texas Health Cancer Center, San Antonio, United States
| | - Shihong Ma
- Departments of Urology and Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, United States
| | - Tae-Kyung Lee
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, United States
| | - Suryavathi Viswanadhapalli
- Department of Obstetrics and Gynecology, University of Texas Health Science Center, San Antonio, United States
| | - Rui Li
- Departments of Urology and Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, United States
| | - Xihui Liu
- Departments of Urology and Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, United States
| | - Shino Murakami
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, United States.,Laboratory of Signaling and Gene Regulation, Cecil H and Ida Green Center for Reproductive Biology Sciences and Division of Basic Reproductive Biology Research, University of Texas Southwestern Medical Center, Dallas, United States
| | - Chien-Cheng Chen
- Departments of Urology and Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, United States
| | - Wan-Ru Lee
- Departments of Urology and Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, United States
| | - Monica Mann
- Department of Obstetrics and Gynecology, University of Texas Health Science Center, San Antonio, United States
| | - Samaya Rajeshwari Krishnan
- Department of Obstetrics and Gynecology, University of Texas Health Science Center, San Antonio, United States
| | - Bikash Manandhar
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, United States
| | - Vijay K Gonugunta
- Department of Obstetrics and Gynecology, University of Texas Health Science Center, San Antonio, United States
| | - Douglas Strand
- Departments of Urology and Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, United States
| | - Rajeshwar Rao Tekmal
- Department of Obstetrics and Gynecology, University of Texas Health Science Center, San Antonio, United States.,CDP program, University of Texas Health Cancer Center, San Antonio, United States
| | - Jung-Mo Ahn
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, United States
| | - Ratna K Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health Science Center, San Antonio, United States.,CDP program, University of Texas Health Cancer Center, San Antonio, United States
| |
Collapse
|
33
|
Crow MS, Cristea IM. Human Antiviral Protein IFIX Suppresses Viral Gene Expression during Herpes Simplex Virus 1 (HSV-1) Infection and Is Counteracted by Virus-induced Proteasomal Degradation. Mol Cell Proteomics 2017; 16:S200-S214. [PMID: 28077445 DOI: 10.1074/mcp.m116.064741] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 01/11/2017] [Indexed: 01/05/2023] Open
Abstract
The interferon-inducible protein X (IFIX), a member of the PYHIN family, was recently recognized as an antiviral factor against infection with herpes simplex virus 1 (HSV-1). IFIX binds viral DNA upon infection and promotes expression of antiviral cytokines. How IFIX exerts its host defense functions and whether it is inhibited by the virus remain unknown. Here, we integrated live cell microscopy, proteomics, IFIX domain characterization, and molecular virology to investigate IFIX regulation and antiviral functions during HSV-1 infection. We find that IFIX has a dynamic localization during infection that changes from diffuse nuclear and nucleoli distribution in uninfected cells to discrete nuclear puncta early in infection. This is rapidly followed by a reduction in IFIX protein levels. Indeed, using immunoaffinity purification and mass spectrometry, we define IFIX interactions during HSV-1 infection, finding an association with a proteasome subunit and proteins involved in ubiquitin-proteasome processes. Using synchronized HSV-1 infection, microscopy, and proteasome-inhibition experiments, we demonstrate that IFIX co-localizes with nuclear proteasome puncta shortly after 3 h of infection and that its pyrin domain is rapidly degraded in a proteasome-dependent manner. We further demonstrate that, in contrast to several other host defense factors, IFIX degradation is not dependent on the E3 ubiquitin ligase activity of the viral protein ICP0. However, we show IFIX degradation requires immediate-early viral gene expression, suggesting a viral host suppression mechanism. The IFIX interactome also demonstrated its association with transcriptional regulatory proteins, including the 5FMC complex. We validate this interaction using microscopy and reciprocal isolations and determine it is mediated by the IFIX HIN domain. Finally, we show IFIX suppresses immediate-early and early viral gene expression during infection. Altogether, our study demonstrates that IFIX antiviral functions work in part via viral transcriptional suppression and that HSV-1 has acquired mechanisms to block its functions via proteasome-dependent degradation.
Collapse
Affiliation(s)
- Marni S Crow
- From the Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544
| | - Ileana M Cristea
- From the Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544
| |
Collapse
|
34
|
Corrêa S, Panis C, Binato R, Herrera AC, Pizzatti L, Abdelhay E. Identifying potential markers in Breast Cancer subtypes using plasma label-free proteomics. J Proteomics 2017; 151:33-42. [DOI: 10.1016/j.jprot.2016.07.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 07/17/2016] [Accepted: 07/27/2016] [Indexed: 02/07/2023]
|
35
|
Girard BJ, Knutson TP, Kuker B, McDowell L, Schwertfeger KL, Ostrander JH. Cytoplasmic Localization of Proline, Glutamic Acid, Leucine-rich Protein 1 (PELP1) Induces Breast Epithelial Cell Migration through Up-regulation of Inhibitor of κB Kinase ϵ and Inflammatory Cross-talk with Macrophages. J Biol Chem 2016; 292:339-350. [PMID: 27881676 DOI: 10.1074/jbc.m116.739847] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 11/22/2016] [Indexed: 01/06/2023] Open
Abstract
Cytoplasmic localization of proline, glutamic acid, leucine-rich protein 1 (PELP1) is observed in ∼40% of women with invasive breast cancer. In mouse models, PELP1 overexpression in the mammary gland leads to premalignant lesions and eventually mammary tumors. In preliminary clinical studies, cytoplasmic localization of PELP1 was seen in 36% of women at high risk of developing breast cancer. Here, we investigated whether cytoplasmic PELP1 signaling promotes breast cancer initiation in models of immortalized human mammary epithelial cells (HMECs). Global gene expression analysis was performed on HMEC lines expressing vector control, PELP1-wt, or mutant PELP1 in which the nuclear localization sequence was altered, resulting in cytoplasmic localization of PELP1 (PELP1-cyto). Global gene expression analysis identified that PELP1-cyto expression in HMECs induced NF-κB signaling pathways. Western blotting analysis of PELP1-cyto HMECs showed up-regulation of inhibitor of κB kinase ϵ (IKKϵ) and increased phosphorylation of the NF-κB subunit RelB. To determine whether secreted factors produced by PELP1-cyto HMECs promote macrophage activation, THP-1 macrophages were treated with HMEC-conditioned medium (CM). PELP1-cyto CM induced changes in THP-1 gene expression as compared with control cell CM. Double conditioned medium (DCM) from the activated THP-1 cells was then applied to HMECs to determine whether paracrine signaling from PELP1-cyto-activated macrophages could in turn promote migration of HMECs. PELP1-cyto DCM induced robust HMEC migration, which was reduced in DCM from PELP1-cyto HMECs expressing IKKϵ shRNA. Our findings suggest that cytoplasmic localization of PELP1 up-regulates pro-tumorigenic IKKϵ and secreted inflammatory signals, which through paracrine macrophage activation regulates the migratory phenotype associated with breast cancer initiation.
Collapse
Affiliation(s)
| | | | | | | | - Kathryn L Schwertfeger
- From the Masonic Cancer Center and.,Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota 55455
| | | |
Collapse
|
36
|
Skibinska I, Tomaszewski M, Andrusiewicz M, Urbaniak P, Czarnecka-Klos R, Shadi M, Kotwicki T, Kotwicka M. Expression of Estrogen Receptor Coactivator Proline-, Glutamic Acid- and Leucine-Rich Protein 1 within Paraspinal Muscles in Adolescents with Idiopathic Scoliosis. PLoS One 2016; 11:e0152286. [PMID: 27045366 PMCID: PMC4821488 DOI: 10.1371/journal.pone.0152286] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 03/12/2016] [Indexed: 11/17/2022] Open
Abstract
Purpose The aim of this study was to detect and assess the estrogen receptor (ESR) coactivator PELP1 expression within human paraspinal skeletal muscles in patients suffering from idiopathic scoliosis. Methods During surgical correction of scoliosis the muscle biopsies harvested in 29 females. Presence of PELP1, ESR1 and ESR2 genes transcripts was studied using RT-qPCR technique while immunohistochemistry and western blot methods were used to detect the PEPL1 protein presence. Results PELP1 expression in deep paraspinal muscles revealed higher than in superficial back muscles (p = 0.005). Positive immunohistochemical staining for PELP1 was observed in the nuclei of the paraspinal muscle cells. Western blot revealed PELP1 protein in all samples. No significant difference in PELP1 expression between the convex and the concave scoliosis side (p>0.05) was found. In deep paraspinal back muscles, a significant correlation between the PELP1 expression level on the concave side and the Cobb angle (r = 0.4; p<0.05) was noted as well as between the PELP1 and ESR1 expression level (r = 0.7; p<0.05) while no correlation between PELP1 and ESR2 expression level was found. Conclusion To our knowledge, three techniques for the first time demonstrated the presence of the PELP1 in paraspinal muscles of patients with idiopathic scoliosis. The PELP1 potential regulatory impact on back muscle function is to be further investigated.
Collapse
Affiliation(s)
- Izabela Skibinska
- Department of Cell Biology, Health Sciences Faculty, University of Medical Sciences, Poznan, Poland
| | - Marek Tomaszewski
- Spine Disorders and Pediatric Orthopedics Department, Faculty of Medicine I, University of Medical Sciences, Poznan, Poland
| | - Miroslaw Andrusiewicz
- Department of Cell Biology, Health Sciences Faculty, University of Medical Sciences, Poznan, Poland
| | - Paulina Urbaniak
- Department of Cell Biology, Health Sciences Faculty, University of Medical Sciences, Poznan, Poland
| | - Roza Czarnecka-Klos
- Department of Cell Biology, Health Sciences Faculty, University of Medical Sciences, Poznan, Poland
| | - Milud Shadi
- Spine Disorders and Pediatric Orthopedics Department, Faculty of Medicine I, University of Medical Sciences, Poznan, Poland
| | - Tomasz Kotwicki
- Spine Disorders and Pediatric Orthopedics Department, Faculty of Medicine I, University of Medical Sciences, Poznan, Poland
| | - Malgorzata Kotwicka
- Department of Cell Biology, Health Sciences Faculty, University of Medical Sciences, Poznan, Poland
| |
Collapse
|
37
|
PELP1: Structure, biological function and clinical significance. Gene 2016; 585:128-134. [PMID: 26997260 DOI: 10.1016/j.gene.2016.03.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 03/05/2016] [Accepted: 03/08/2016] [Indexed: 01/10/2023]
Abstract
Proline-, glutamic acid-, and leucine-rich protein 1 (PELP1) is a scaffolding protein that functions as a coregulator of several transcription factors and nuclear receptors. Notably, the PELP1 protein has a histone-binding domain, recognizes histone modifications and interacts with several chromatin-modifying complexes. PELP1 serves as a substrate of multitude of kinases, and phosphorylation regulates its functions in various complexes. Further, PELP1 plays essential roles in several pathways including hormonal signaling, cell cycle progression, ribosomal biogenesis, and the DNA damage response. PELP1 expression is upregulated in several cancers, its deregulation contributes to therapy resistance, and it is a prognostic biomarker for breast cancer survival. Recent evidence suggests that PELP1 represents a novel therapeutic target for many hormonal cancers. In this review, we summarized the emerging biological properties and functions of PELP1.
Collapse
|
38
|
Proline-, glutamic acid-, and leucine-rich protein 1 mediates estrogen rapid signaling and neuroprotection in the brain. Proc Natl Acad Sci U S A 2015; 112:E6673-82. [PMID: 26627258 DOI: 10.1073/pnas.1516729112] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
17-β estradiol (E2) has been implicated as neuroprotective in a variety of neurodegenerative disorders. However, the underlying mechanism remains unknown. Here, we provide genetic evidence, using forebrain-specific knockout (FBKO) mice, that proline-, glutamic acid-, and leucine-rich protein 1 (PELP1), an estrogen receptor coregulator protein, is essential for the extranuclear signaling and neuroprotective actions of E2 in the hippocampal CA1 region after global cerebral ischemia (GCI). E2-mediated extranuclear signaling (including activation of extracellular signal-regulated kinase and Akt) and antiapoptotic effects [such as attenuation of JNK signaling and increase in phosphorylation of glycogen synthase kinase-3β (GSK3β)] after GCI were compromised in PELP1 FBKO mice. Mechanistic studies revealed that PELP1 interacts with GSK3β, E2 modulates interaction of PELP1 with GSK3β, and PELP1 is a novel substrate for GSK3β. RNA-seq analysis of control and PELP1 FBKO mice after ischemia demonstrated alterations in several genes related to inflammation, metabolism, and survival in PELP1 FBKO mice, as well as a significant reduction in the activation of the Wnt/β-catenin signaling pathway. In addition, PELP1 FBKO studies revealed that PELP1 is required for E2-mediated neuroprotection and for E2-mediated preservation of cognitive function after GCI. Collectively, our data provide the first direct in vivo evidence, to our knowledge, of an essential role for PELP1 in E2-mediated rapid extranuclear signaling, neuroprotection, and cognitive function in the brain.
Collapse
|
39
|
Tarulli GA, Laven-Law G, Shakya R, Tilley WD, Hickey TE. Hormone-sensing mammary epithelial progenitors: emerging identity and hormonal regulation. J Mammary Gland Biol Neoplasia 2015; 20:75-91. [PMID: 26390871 DOI: 10.1007/s10911-015-9344-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 09/07/2015] [Indexed: 12/13/2022] Open
Abstract
The hormone-sensing mammary epithelial cell (HS-MEC-expressing oestrogen receptor-alpha (ERα) and progesterone receptor (PGR)) is often represented as being terminally differentiated and lacking significant progenitor activity after puberty. Therefore while able to profoundly influence the proliferation and function of other MEC populations, HS-MECs are purported not to respond to sex hormone signals by engaging in significant cell proliferation during adulthood. This is a convenient and practical simplification that overshadows the sublime, and potentially critical, phenotypic plasticity found within the adult HS-MEC population. This concept is exemplified by the large proportion (~80 %) of human breast cancers expressing PGR and/or ERα, demonstrating that HS-MECs clearly proliferate in the context of breast cancer. Understanding how HS-MEC proliferation and differentiation is driven could be key to unraveling the mechanisms behind uncontrolled HS-MEC proliferation associated with ERα- and/or PGR-positive breast cancers. Herein we review evidence for the existence of a HS-MEC progenitor and the emerging plasticity of the HS-MEC population in general. This is followed by an analysis of hormones other than oestrogen and progesterone that are able to influence HS-MEC proliferation and differentiation: androgens, prolactin and transforming growth factor-beta1.
Collapse
Affiliation(s)
- Gerard A Tarulli
- Dame Roma Mitchell Cancer Research Laboratories (DRMCRL), School of Medicine, Faculty of Health Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia.
| | - Geraldine Laven-Law
- Dame Roma Mitchell Cancer Research Laboratories (DRMCRL), School of Medicine, Faculty of Health Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Reshma Shakya
- Breast Cancer Genetics Laboratory, Centre for Personalised Cancer Medicine, School of Medicine, Faculty of Health Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Wayne D Tilley
- Dame Roma Mitchell Cancer Research Laboratories (DRMCRL), School of Medicine, Faculty of Health Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Theresa E Hickey
- Dame Roma Mitchell Cancer Research Laboratories (DRMCRL), School of Medicine, Faculty of Health Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
40
|
Słowikowski BK, Gałęcki B, Dyszkiewicz W, Jagodziński PP. Increased expression of proline-, glutamic acid- and leucine-rich protein PELP1 in non-small cell lung cancer. Biomed Pharmacother 2015. [PMID: 26211588 DOI: 10.1016/j.biopha.2015.05.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
It has been demonstrated that estrogens are able to enhance lung tumorigenesis by estrogen receptor (ER) pathway. ER signaling is a highly complex process that requires a number of different coactivators, including proline-, glutamic acid- and leucine-rich protein-1 (PELP1). We studied PELP1 transcript and protein levels in cancerous and histopathologically unchanged lung tissues obtained from 73 patients diagnosed with non-small cell lung cancer (NSCLC). We observed increased levels of PELP1 transcript (P=0.00001) and protein (P=0.00001) in tumor tissues compared to adjacent histopathologically unchanged tissues. Significant increase of PELP1 transcript/protein level was found in all patients, regardless of gender (males: P=0.0003/P=0.000003; females: P=0.0005/P=0.02), age (≤ 60 patients: P=0.042/P=0.016; >60 patients: P=0.00001/P=0.00001) or histopathological type of tumor (adenocarcinoma [ADC]: P=0.004/P=0.0006; squamous cell carcinoma [SSC]: P=0.0009/P=0.0008). Increased PELP1 transcript/protein levels were also correlated with some lung cancer stage (1a: P=0.07/P=0.02; 1b: P=0.001/P=0.03; 2a: P=0.012/P=0.001), tumor size (T2a: P=0.0006/P=0.001) and lymph node metastasis (N0: P=0.0003/P=0.0006; N1: P=0.017/P=0.003). Moreover, significant increase in PELP1 transcript level in cancer stage 1a (P=0.02) was observed. PELP1 protein content was higher in tumor tissues of patients with cancer stage 3a (P=0.04) and in T1a tumor size (P=0.03). Our studies demonstrate significantly higher amounts of PELP1 transcript and protein in tumor tissues in patients with NSCLC. Moreover, we also determined the association of PELP1 transcript and protein level with some clinicopathological features of NSCLC.
Collapse
Affiliation(s)
- Bartosz Kazimierz Słowikowski
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, 6, Święcickiego Street, 60-781 Poznań, Poland
| | - Bartłomiej Gałęcki
- Department of Thoracic Surgery, Poznań University of Medical Sciences, 62, Szamarzewskiego Street, 60-569 Poznań, Poland
| | - Wojciech Dyszkiewicz
- Department of Thoracic Surgery, Poznań University of Medical Sciences, 62, Szamarzewskiego Street, 60-569 Poznań, Poland
| | - Paweł Piotr Jagodziński
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, 6, Święcickiego Street, 60-781 Poznań, Poland.
| |
Collapse
|
41
|
Cytoplasmic PELP1 and ERRgamma protect human mammary epithelial cells from Tam-induced cell death. PLoS One 2015; 10:e0121206. [PMID: 25789479 PMCID: PMC4366195 DOI: 10.1371/journal.pone.0121206] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 01/28/2015] [Indexed: 01/24/2023] Open
Abstract
Tamoxifen (Tam) is the only FDA-approved chemoprevention agent for pre-menopausal women at high risk for developing breast cancer. While Tam reduces a woman's risk of developing estrogen receptor positive (ER+) breast cancer, the molecular mechanisms associated with risk reduction are poorly understood. Prior studies have shown that cytoplasmic proline, glutamic acid and leucine rich protein 1 (PELP1) promotes Tam resistance in breast cancer cell lines. Herein, we tested for PELP1 localization in breast epithelial cells from women at high risk for developing breast cancer and found that PELP1 was localized to the cytoplasm in 36% of samples. In vitro, immortalized HMECs expressing a nuclear localization signal (NLS) mutant of PELP1 (PELP1-cyto) were resistant to Tam-induced death. Furthermore, PELP1-cyto signaling through estrogen-related receptor gamma (ERRγ) promoted cell survival in the presence of Tam. Overexpression of ERRγ in immortalized HMECs protected cells from Tam-induced death, while knockdown of ERRγ sensitized PELP1-cyto expressing HMECs to Tam. Moreover, Tam-induced HMEC cell death was independent of apoptosis and involved accumulation of the autophagy marker LC3-II. Expression of PELP1-cyto and ERRγ reduced Tam-induced LC3-II accumulation, and knockdown of ERRγ increased LC3-II levels in response to Tam. Additionally, PELP1-cyto expression led to the upregulation of MMP-3 and MAOB, known PELP1 and ERRγ target genes, respectively. Our data indicate that cytoplasmic PELP1 induces signaling pathways that converge on ERRγ to promote cell survival in the presence of Tam. These data suggest that PELP1 localization and/or ERRγ activation could be developed as tissue biomarkers for Tam responsiveness.
Collapse
|
42
|
Krishnan SR, Nair BC, Sareddy GR, Roy SS, Natarajan M, Suzuki T, Peng Y, Raj G, Vadlamudi RK. Novel role of PELP1 in regulating chemotherapy response in mutant p53-expressing triple negative breast cancer cells. Breast Cancer Res Treat 2015; 150:487-99. [PMID: 25788226 DOI: 10.1007/s10549-015-3339-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/10/2015] [Indexed: 12/31/2022]
Abstract
Triple-negative breast cancer (TNBC), the most aggressive breast cancer subtype, occurs in younger women and is associated with poor prognosis. Gain-of-function mutations in TP53 are a frequent occurrence in TNBC and have been demonstrated to repress apoptosis and up-regulate cell cycle progression. Even though TNBC responds to initial chemotherapy, resistance to chemotherapy develops and is a major clinical problem. Tumor recurrence eventually occurs and most patients die from their disease. An urgent need exists to identify molecular-targeted therapies that can enhance chemotherapy response. In the present study, we report that targeting PELP1, an oncogenic co-regulator molecule, could enhance the chemotherapeutic response of TNBC through the inhibition of cell cycle progression and activation of apoptosis. We demonstrate that PELP1 interacts with MTp53, regulates its recruitment, and alters epigenetic marks at the target gene promoters. PELP1 knockdown reduced MTp53 target gene expression, resulting in decreased cell survival and increased apoptosis upon genotoxic stress. Mechanistic studies revealed that PELP1 depletion contributes to increased stability of E2F1, a transcription factor that regulates both cell cycle and apoptosis in a context-dependent manner. Further, PELP1 regulates E2F1 stability in a KDM1A-dependent manner, and PELP1 phosphorylation at the S1033 residue plays an important role in mediating its oncogenic functions in TNBC cells. Accordingly, depletion of PELP1 increased the expression of E2F1 target genes and reduced TNBC cell survival in response to genotoxic agents. PELP1 phosphorylation was significantly greater in the TNBC tumors than in the other subtypes of breast cancer and in the normal tissues. These findings suggest that PELP1 is an important molecular target in TNBC, and that PELP1-targeted therapies may enhance response to chemotherapies.
Collapse
Affiliation(s)
- Samaya R Krishnan
- Department of Cellular and Structural Biology, UTHSCSA, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Cortez V, Samayoa C, Zamora A, Martinez L, Tekmal RR, Vadlamudi RK. PELP1 overexpression in the mouse mammary gland results in the development of hyperplasia and carcinoma. Cancer Res 2014; 74:7395-405. [PMID: 25377474 DOI: 10.1158/0008-5472.can-14-0993] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Estrogen receptor (ER) coregulator overexpression promotes carcinogenesis and/or progression of endocrine related-cancers in which steroid hormones are powerful mitogenic agents. Recent studies in our laboratory, as well as others, demonstrated that the estrogen receptor coregulator PELP1 is a proto-oncogene. PELP1 interactions with histone demethylase KDM1 play a critical role in its oncogenic functions and PELP1 is a prognostic indicator of decreased survival in patients with breast cancer. However, the in vivo significance of PELP1 deregulation during initiation and progression of breast cancer remains unknown. We generated an inducible, mammary gland-specific PELP1-expressing transgenic (Tg) mouse (MMTVrtTA-TetOPELP1). We found more proliferation, extensive side branching, and precocious differentiation in PELP1-overexpressing mammary glands than in control glands. Aged MMTVrtTA-TetOPELP1 Tg mice had hyperplasia and preneoplastic changes as early as 12 weeks, and ER-positive mammary tumors occurred at a latency of 14 to 16 months. Mechanistic studies revealed that PELP1 deregulation altered expression of a number of known ER target genes involved in cellular proliferation (cyclin D1, CDKs) and morphogenesis (EGFR, MMPs) and such changes facilitated altered mammary gland morphogenesis and tumor progression. Furthermore, PELP1 was hyper-phosphorylated at its CDK phosphorylation site, suggesting an autocrine loop involving the CDK-cyclin D1-PELP1 axis in promoting mammary tumorigenesis. Treatment of PELP1 Tg mice with a KDM1 inhibitor significantly reduced PELP1-driven hyperbranching, reversed alterations in cyclin D1 expression levels, and reduced CDK-driven PELP1 phosphorylation. These results further support the hypothesis that PELP1 deregulation has the potential to promote breast tumorigenesis in vivo and represent a novel model for future investigation into molecular mechanisms of PELP1-mediated tumorigenesis.
Collapse
Affiliation(s)
- Valerie Cortez
- Department of Obstetrics and Gynecology, UT Health Science Center, San Antonio, Texas. Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, Texas
| | - Cathy Samayoa
- Department of Obstetrics and Gynecology, UT Health Science Center, San Antonio, Texas. Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, Texas
| | - Andrea Zamora
- Department of Obstetrics and Gynecology, UT Health Science Center, San Antonio, Texas
| | - Lizatte Martinez
- Department of Obstetrics and Gynecology, UT Health Science Center, San Antonio, Texas
| | - Rajeshwar R Tekmal
- Department of Obstetrics and Gynecology, UT Health Science Center, San Antonio, Texas. Cancer Therapy and Research Center, UT Health Science Center, San Antonio, Texas
| | - Ratna K Vadlamudi
- Department of Obstetrics and Gynecology, UT Health Science Center, San Antonio, Texas. Cancer Therapy and Research Center, UT Health Science Center, San Antonio, Texas.
| |
Collapse
|
44
|
PELP1 suppression inhibits colorectal cancer through c-Src downregulation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:193523. [PMID: 24967003 PMCID: PMC4055551 DOI: 10.1155/2014/193523] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 04/20/2014] [Indexed: 01/16/2023]
Abstract
Proline-, glutamic acid-, and leucine-rich protein 1 (PELP1), a coregulator of estrogen receptors alpha and beta, is a potential protooncogene implicated in several human cancers, including sexual hormone-responsive or sexual hormone-nonresponsive cancers. However, the functions of PELP1 in colorectal cancer remain unclear. In this study, western blot and bioinformatics revealed that PELP1 expression was higher in several colorectal cancer cell lines than in immortalized normal colorectal epithelium. PELP1 silencing by short hairpin RNA promoted the senescence and inhibited the proliferation, colony formation, migration, invasion, and xenograft tumor formation of the CRC cell line HT-29. Moreover, PELP1 silencing was accompanied by c-Src downregulation. c-Src upregulation partly alleviated the damage in HT-29 malignant behavior induced by PELP1 RNA interference. In conclusion, PELP1 exhibits an oncogenic function in colorectal cancer through c-Src upregulation.
Collapse
|
45
|
Nair BC, Krishnan SR, Sareddy GR, Mann M, Xu B, Natarajan M, Hasty P, Brann D, Tekmal RR, Vadlamudi RK. Proline, glutamic acid and leucine-rich protein-1 is essential for optimal p53-mediated DNA damage response. Cell Death Differ 2014; 21:1409-18. [PMID: 24786831 DOI: 10.1038/cdd.2014.55] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 02/21/2014] [Accepted: 03/17/2014] [Indexed: 12/19/2022] Open
Abstract
Proline-, glutamic acid- and leucine-rich protein-1 (PELP1) is a scaffolding oncogenic protein that functions as a coregulator for a number of nuclear receptors. p53 is an important transcription factor and tumor suppressor that has a critical role in DNA damage response (DDR) including cell cycle arrest, repair or apoptosis. In this study, we found an unexpected role for PELP1 in modulating p53-mediated DDR. PELP1 is phosphorylated at Serine1033 by various DDR kinases like ataxia-telangiectasia mutated, ataxia telangiectasia and Rad3-related or DNAPKc and this phosphorylation of PELP1 is important for p53 coactivation functions. PELP1-depleted p53 (wild-type) breast cancer cells were less sensitive to various genotoxic agents including etoposide, camptothecin or γ-radiation. PELP1 interacts with p53, functions as p53-coactivator and is required for optimal activation of p53 target genes under genomic stress. Overall, these studies established a new role of PELP1 in DDRs and these findings will have future implications in our understanding of PELP1's role in cancer progression.
Collapse
Affiliation(s)
- B C Nair
- University of Texas Health Science Center, and Cancer Therapy and Research Center, San Antonio, TX, USA
| | - S R Krishnan
- University of Texas Health Science Center, and Cancer Therapy and Research Center, San Antonio, TX, USA
| | - G R Sareddy
- University of Texas Health Science Center, and Cancer Therapy and Research Center, San Antonio, TX, USA
| | - M Mann
- University of Texas Health Science Center, and Cancer Therapy and Research Center, San Antonio, TX, USA
| | - B Xu
- Molecular Radiation Biology Laboratory, Research Institute, South Birmingham, AL, USA
| | - M Natarajan
- University of Texas Health Science Center, and Cancer Therapy and Research Center, San Antonio, TX, USA
| | - P Hasty
- University of Texas Health Science Center, and Cancer Therapy and Research Center, San Antonio, TX, USA
| | - D Brann
- Institute of Molecular Medicine and Genetics, Georgia Reagents University, Augusta, GA, USA
| | - R R Tekmal
- University of Texas Health Science Center, and Cancer Therapy and Research Center, San Antonio, TX, USA
| | - R K Vadlamudi
- University of Texas Health Science Center, and Cancer Therapy and Research Center, San Antonio, TX, USA
| |
Collapse
|
46
|
Gonugunta VK, Sareddy GR, Krishnan SR, Cortez V, Roy SS, Tekmal RR, Vadlamudi RK. Inhibition of mTOR signaling reduces PELP1-mediated tumor growth and therapy resistance. Mol Cancer Ther 2014; 13:1578-88. [PMID: 24688046 DOI: 10.1158/1535-7163.mct-13-0877] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Proline, Glutamic acid-, and Leucine-rich Protein 1 (PELP1) is a proto-oncogene that modulates estrogen receptor (ER) signaling. PELP1 expression is upregulated in breast cancer, contributes to therapy resistance, and is a prognostic marker of poor survival. In a subset of breast tumors, PELP1 is predominantly localized in the cytoplasm and PELP1 participates in extranuclear signaling by facilitating ER interactions with Src and phosphoinositide 3-kinase (PI3K). However, the mechanism by which PELP1 extranuclear actions contributes to cancer progression and therapy resistance remains unclear. In this study, we discovered that PELP1 cross-talked with the serine/threonine protein kinase mTOR and modulated mTOR signaling. PELP1 knockdown significantly reduced the activation of mTOR downstream signaling components. Conversely, PELP1 overexpression excessively activated mTOR signaling components. We detected the presence of the mTOR signaling complex proteins in PELP1 immunoprecipitates. mTOR-targeting drugs (rapamycin and AZD8055) significantly reduced proliferation of PELP1-overexpressed breast cancer cells in both in vitro and in vivo xenograft tumor models. MCF7 cells that uniquely retain PELP1 in the cytoplasm showed resistance to hormonal therapy and mTOR inhibitors sensitized PELP1cyto cells to hormonal therapy in xenograft assays. Notably, immunohistochemical studies using xenograft tumors derived from PELP1 overexpression model cells showed increased mTOR signaling and inhibition of mTOR rendered PELP1-driven tumors to be highly sensitive to therapeutic inhibition. Collectively, our data identified the PELP1-mTOR axis as a novel component of PELP1 oncogenic functions and suggest that mTOR inhibitor(s) will be effective chemotherapeutic agents for downregulating PELP1 oncogenic functions.
Collapse
Affiliation(s)
- Vijay K Gonugunta
- Authors' Affiliation: Department of Obstetrics and Gynecology, University of Texas Health Sciences Center at San Antonio, San Antonio, Texas
| | - Gangadhara R Sareddy
- Authors' Affiliation: Department of Obstetrics and Gynecology, University of Texas Health Sciences Center at San Antonio, San Antonio, Texas
| | - Samaya Rajeshwari Krishnan
- Authors' Affiliation: Department of Obstetrics and Gynecology, University of Texas Health Sciences Center at San Antonio, San Antonio, Texas
| | - Valerie Cortez
- Authors' Affiliation: Department of Obstetrics and Gynecology, University of Texas Health Sciences Center at San Antonio, San Antonio, Texas
| | - Sudipa Saha Roy
- Authors' Affiliation: Department of Obstetrics and Gynecology, University of Texas Health Sciences Center at San Antonio, San Antonio, Texas
| | - Rajeshwar Rao Tekmal
- Authors' Affiliation: Department of Obstetrics and Gynecology, University of Texas Health Sciences Center at San Antonio, San Antonio, Texas
| | - Ratna K Vadlamudi
- Authors' Affiliation: Department of Obstetrics and Gynecology, University of Texas Health Sciences Center at San Antonio, San Antonio, Texas
| |
Collapse
|
47
|
Mann M, Zou Y, Chen Y, Brann D, Vadlamudi R. PELP1 oncogenic functions involve alternative splicing via PRMT6. Mol Oncol 2014; 8:389-400. [PMID: 24447537 PMCID: PMC3943689 DOI: 10.1016/j.molonc.2013.12.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 12/06/2013] [Accepted: 12/18/2013] [Indexed: 10/25/2022] Open
Abstract
Proline-, glutamic acid-, and leucine-rich protein 1 (PELP1) is a proto-oncogene that functions as coactivator of the estrogen receptor and is an independent prognostic predictor of shorter survival of breast cancer patients. The dysregulation of PELP1 in breast cancer has been implicated in oncogenesis, metastasis, and therapy resistance. Although several aspects of PELP1 have been studied, a complete list of PELP1 target genes remains unknown, and the molecular mechanisms of PELP1 mediated oncogenesis remain elusive. In this study, we have performed a whole genome analysis to profile the PELP1 transcriptome by RNA-sequencing and identified 318 genes as PELP1 regulated genes. Pathway analysis revealed that PELP1 modulates several pathways including the molecular mechanisms of cancer, estrogen signaling, and breast cancer progression. Interestingly, RNA-seq analysis also revealed that PELP1 regulates the expression of several genes involved in alternative splicing. Accordingly, the PELP1 regulated genome includes several uniquely spliced isoforms. Mechanistic studies show that PELP1 binds RNA with a preference to poly-C, co-localizes with the splicing factor SC35 at nuclear speckles, and participates in alternative splicing. Further, PELP1 interacts with the arginine methyltransferase PRMT6 and modifies PRMT6 functions. Inhibition of PRMT6 reduced PELP1-mediated estrogen receptor activation, cellular proliferation, and colony formation. PELP1 and PRMT6 are co-recruited to estrogen receptor target genes, PELP1 knockdown affects the enrichment of histone H3R2 di-methylation, and PELP1 and PRMT6 coordinate to regulate the alternative splicing of genes involved in cancer. Collectively, our data suggest that PELP1 oncogenic functions involve alternative splicing leading to the activation of unique pathways that support tumor progression and that the PELP1-PRMT6 axis may be a potential target for breast cancer therapy.
Collapse
Affiliation(s)
- Monica Mann
- The Department of Cellular and Structural Biology, San Antonio, TX 78229, USA; The Department of Obstetrics and Gynecology, San Antonio, TX 78229, USA.
| | - Yi Zou
- Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| | - Yidong Chen
- Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| | - Darrell Brann
- Institute of Molecular Medicine and Genetics, Georgia Regents University, Augusta, GA 30912, USA.
| | - Ratna Vadlamudi
- The Department of Obstetrics and Gynecology, San Antonio, TX 78229, USA; Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|