1
|
Verma S, Pandey A, Pandey AK, Butler J, Lee JS, Teoh H, Mazer CD, Kosiborod MN, Cosentino F, Anker SD, Connelly KA, Bhatt DL. Aldosterone and aldosterone synthase inhibitors in cardiorenal disease. Am J Physiol Heart Circ Physiol 2024; 326:H670-H688. [PMID: 38133623 DOI: 10.1152/ajpheart.00419.2023] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Modulation of the renin-angiotensin-aldosterone system is a foundation of therapy for cardiovascular and kidney diseases. Excess aldosterone plays an important role in cardiovascular disease, contributing to inflammation, fibrosis, and dysfunction in the heart, kidneys, and vasculature through both genomic and mineralocorticoid receptor (MR)-mediated as well as nongenomic mechanisms. MR antagonists have been a key therapy for attenuating the pathologic effects of aldosterone but are associated with some side effects and may not always adequately attenuate the nongenomic effects of aldosterone. Aldosterone is primarily synthesized by the CYP11B2 aldosterone synthase enzyme, which is very similar in structure to other enzymes involved in steroid biosynthesis including CYP11B1, a key enzyme involved in glucocorticoid production. Lack of specificity for CYP11B2, off-target effects on the hypothalamic-pituitary-adrenal axis, and counterproductive increased levels of bioactive steroid intermediates such as 11-deoxycorticosterone have posed challenges in the development of early aldosterone synthase inhibitors such as osilodrostat. In early-phase clinical trials, newer aldosterone synthase inhibitors demonstrated promise in lowering blood pressure in patients with treatment-resistant and uncontrolled hypertension. It is therefore plausible that these agents offer protection in other disease states including heart failure or chronic kidney disease. Further clinical evaluation will be needed to clarify the role of aldosterone synthase inhibitors, a promising class of agents that represent a potentially major therapeutic advance.
Collapse
Affiliation(s)
- Subodh Verma
- Division of Cardiac Surgery, St. Michael's Hospital-Unity Health Toronto, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Avinash Pandey
- Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Arjun K Pandey
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Javed Butler
- Baylor Scott and White Research Institute, Dallas, Texas, United States
- University of Mississippi, Jackson, Mississippi, United States
| | - John S Lee
- LJ Biosciences, LLC, Rockville, Maryland, United States
- PhaseBio Pharmaceuticals, Malvern, Pennsylvania, United States
| | - Hwee Teoh
- Division of Cardiac Surgery, St. Michael's Hospital-Unity Health Toronto, Toronto, Ontario, Canada
- Division of Endocrinology and Metabolism, St. Michael's Hospital-Unity Health Toronto, Toronto, Ontario, Canada
| | - C David Mazer
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Department of Anesthesia, St. Michael's Hospital-Unity Health Toronto, Toronto, Ontario, Canada
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Mikhail N Kosiborod
- Saint Luke's Mid America Heart Institute, Kansas City, Missouri, United States
- University of Missouri-Kansas City, Kansas City, Missouri, United States
| | | | - Stefan D Anker
- Department of Cardiology and Berlin Institute of Health Center for Regenerative Therapies, German Centre for Cardiovascular Research partner site Berlin, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Kim A Connelly
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Division of Cardiology, St. Michael's Hospital-Unity Health Toronto, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Deepak L Bhatt
- Mount Sinai Fuster Heart, Icahn School of Medicine at Mount Sinai Health System, New York, New York, United States
| |
Collapse
|
2
|
Xu H, Zeng Q, Zou K, Huang H, Chen J, Wang P, Yuan W, Xiao L, Tong P, Jin H. Glucocorticoid-induced activation of NOX/ROS/NF-κB signaling in MSCs contributes to the development of GONFH. Apoptosis 2023; 28:1332-1345. [PMID: 37306805 PMCID: PMC10258081 DOI: 10.1007/s10495-023-01860-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2023] [Indexed: 06/13/2023]
Abstract
BACKGROUND This study aimed to investigate the pathogenic factors of glucocorticoids (GCs)-induced osteonecrosis of the femoral head (GONFH) and its underlying pathogenesis in vivo and in vitro. METHODS Radiographical (µCT) scanning, histopathological, immunohistochemical, reactive oxygen species (ROS) and tunel staining were conducted on GONFH patients and rats. ROS, tunel, flow cytometry, alkaline phosphatase, Oil red O staining, reverse transcription‑quantitative PCR and western blotting were applied to elucidate the exact pathogenesis mechanism. RESULTS Clinical and animal studies demonstrated increased levels of ROS, aggravated oxidative stress (OS) microenvironment, augmented apoptosis and imbalance in osteogenic/lipogenic in the GONFH group compared to the control group. The fate of mesenchymal stem cells (MSCs) directed by GCs is a crucial factor in determining GONFH. In vitro studies further revealed that GCs promote excessive ROS production through the expression of NOX family proteins, leading to a deterioration of the OS microenvironment in MSCs, ultimately resulting in apoptosis and imbalance in osteogenic/lipogenic differentiation. Furthermore, our results confirmed that the NOX inhibitor-diphenyleneiodonium chloride and the NF-κB inhibitor-BAY 11-7082 ameliorated apoptosis and osteogenic/lipogenic differentiation imbalance of MSCs induced by an excess of GCs. CONCLUSION We demonstrated for the first time that the aggravation of the OS microenvironment in MSCs caused by high doses of GCs leading to apoptosis and differentiation imbalance is a crucial factor in the pathogenesis of GONFH, mediated through activating the NOX/ROS/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Huihui Xu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310006 China
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053 China
- Institute of Orthopaedics and Traumatology of Zhejiang Province, Hangzhou, Zhejiang 310053 China
| | - Qinghe Zeng
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310006 China
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053 China
- Institute of Orthopaedics and Traumatology of Zhejiang Province, Hangzhou, Zhejiang 310053 China
| | - Kaiao Zou
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310006 China
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053 China
- Institute of Orthopaedics and Traumatology of Zhejiang Province, Hangzhou, Zhejiang 310053 China
| | - Haipeng Huang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310006 China
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053 China
- Institute of Orthopaedics and Traumatology of Zhejiang Province, Hangzhou, Zhejiang 310053 China
| | - Jiali Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310006 China
- Institute of Orthopaedics and Traumatology of Zhejiang Province, Hangzhou, Zhejiang 310053 China
| | - Pinger Wang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310006 China
- Institute of Orthopaedics and Traumatology of Zhejiang Province, Hangzhou, Zhejiang 310053 China
| | - Wenhua Yuan
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310006 China
- Institute of Orthopaedics and Traumatology of Zhejiang Province, Hangzhou, Zhejiang 310053 China
| | - Luwei Xiao
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310006 China
- Institute of Orthopaedics and Traumatology of Zhejiang Province, Hangzhou, Zhejiang 310053 China
| | - Peijian Tong
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310006 China
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053 China
- Institute of Orthopaedics and Traumatology of Zhejiang Province, Hangzhou, Zhejiang 310053 China
| | - Hongting Jin
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310006 China
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053 China
- Institute of Orthopaedics and Traumatology of Zhejiang Province, Hangzhou, Zhejiang 310053 China
| |
Collapse
|
3
|
Cardiovascular Disease in Obstructive Sleep Apnea: Putative Contributions of Mineralocorticoid Receptors. Int J Mol Sci 2023; 24:ijms24032245. [PMID: 36768567 PMCID: PMC9916750 DOI: 10.3390/ijms24032245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/12/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
Obstructive sleep apnea (OSA) is a chronic and highly prevalent condition that is associated with oxidative stress, inflammation, and fibrosis, leading to endothelial dysfunction, arterial stiffness, and vascular insulin resistance, resulting in increased cardiovascular disease and overall mortality rates. To date, OSA remains vastly underdiagnosed and undertreated, with conventional treatments yielding relatively discouraging results for improving cardiovascular outcomes in OSA patients. As such, a better mechanistic understanding of OSA-associated cardiovascular disease (CVD) and the development of novel adjuvant therapeutic targets are critically needed. It is well-established that inappropriate mineralocorticoid receptor (MR) activation in cardiovascular tissues plays a causal role in a multitude of CVD states. Clinical studies and experimental models of OSA lead to increased secretion of the MR ligand aldosterone and excessive MR activation. Furthermore, MR activation has been associated with worsened OSA prognosis. Despite these documented relationships, there have been no studies exploring the causal involvement of MR signaling in OSA-associated CVD. Further, scarce clinical studies have exclusively assessed the beneficial role of MR antagonists for the treatment of systemic hypertension commonly associated with OSA. Here, we provide a comprehensive overview of overlapping mechanistic pathways recruited in the context of MR activation- and OSA-induced CVD and propose MR-targeted therapy as a potential avenue to abrogate the deleterious cardiovascular consequences of OSA.
Collapse
|
4
|
Luo P, Huang Q, Chen S, Wang Y, Dou H. Asiaticoside ameliorates osteoarthritis progression through activation of Nrf2/HO-1 and inhibition of the NF-κB pathway. Int Immunopharmacol 2022; 108:108864. [PMID: 35623293 DOI: 10.1016/j.intimp.2022.108864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/08/2022] [Accepted: 05/11/2022] [Indexed: 02/08/2023]
Abstract
Osteoarthritis has become the fourth cause of disability in the world and its occurrence and development are caused by apoptosis and extracellular matrix (ECM) degradation of chondrocytes. Asiaticoside (ASI) is a triterpene saponin compound obtained from Centella Asiatica and has anti-inflammatory and anti-apoptotic effects in various diseases. However, its effects on OA are not clear. In this study, we reported that ASI has a protective effect on the occurrence and progression of OA in vivo and in vitro, and demonstrated its potential molecular mechanism. In vitro, ASI treatment inhibited the release of pro-apoptotic factors induced by TBHP and promoted the release of the anti-apoptotic proteins. In addition, ASI promotes the expression of Aggrecan and Collagen II, while inhibiting the expression of thrombospondin motifs 5 (ADAMTS5) and matrix metalloproteinase-13 (MMP-13), which causes extracellular matrix (ECM) degradation. Mechanistically, ASI exerts its anti-apoptotic effect by activating the Nrf2/HO-1 pathway and preventing p65 from binding to DNA. Similarly, in vivo, ASI has been shown to have a protective effect in a mouse OA model. The conclusion is that our research shows that ASI can be used as a potential drug for the treatment of OA.
Collapse
Affiliation(s)
- Peng Luo
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Qishan Huang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Suo Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yinghui Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Haicheng Dou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
5
|
Immunomodulatory Potential of Diuretics. BIOLOGY 2021; 10:biology10121315. [PMID: 34943230 PMCID: PMC8698805 DOI: 10.3390/biology10121315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/25/2021] [Accepted: 12/09/2021] [Indexed: 12/15/2022]
Abstract
In this review, diuretics and their immunomodulatory functions are described. The effects on the immune response of this group of drugs are reported in patients suffering from hypertension and under experimental conditions involving animal models and cell line studies. The pathogenesis of hypertension is strongly connected to chronic inflammation. The vast majority of diuretics modulate the immune response, changing it in favor of the anti-inflammatory response, but depending on the drug, these effects may differ. This topic is significantly important in medical practice regarding the treatment of patients who have coexisting diseases with chronic inflammatory pathogenesis, including hypertension or chronic heart failure. In patients with metabolic syndrome, allergies, or autoimmune disorders, the anti-inflammatory effect is favorable, because of the overstimulation of their immune system. Otherwise, in the geriatric population, it is important to find the proper anti- and pro-inflammatory balance to avoid an enhancement of immune response suppression, which can result in reducing the risk of serious infections that can occur due to the age-diminished function of the immune system. This article is intended to facilitate the selection of an antihypertensive drug that depends on the patient's immune situation.
Collapse
|
6
|
Ferreira NS, Tostes RC, Paradis P, Schiffrin EL. Aldosterone, Inflammation, Immune System, and Hypertension. Am J Hypertens 2021; 34:15-27. [PMID: 32820797 PMCID: PMC7891246 DOI: 10.1093/ajh/hpaa137] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/15/2020] [Accepted: 08/17/2020] [Indexed: 12/23/2022] Open
Abstract
Aldosterone is a mineralocorticoid hormone that controls body fluid and electrolyte balance. Excess aldosterone is associated with cardiovascular and metabolic diseases. Inflammation plays a critical role on vascular damage promoted by aldosterone and aggravates vascular abnormalities, including endothelial dysfunction, vascular remodeling, fibrosis and oxidative stress, and other manifestations of end-organ damage that are associated with hypertension, other forms of cardiovascular disease, and diabetes mellitus and the metabolic syndrome. Over the past few years, many studies have consistently shown that aldosterone activates cells of the innate and adaptive immune systems. Macrophages and T cells accumulate in the kidneys, heart, and vasculature in response to aldosterone, and infiltration of immune cells contributes to end-organ damage in cardiovascular and metabolic diseases. Aldosterone activates various subsets of innate immune cells such as dendritic cells and monocytes/macrophages, as well as adaptive immune cells such as T lymphocytes, and, by activation of mineralocorticoid receptors stimulates proinflammatory transcription factors and the production of adhesion molecules and inflammatory cytokines and chemokines. This review will briefly highlight some of the studies on the involvement of aldosterone in activation of innate and adaptive immune cells and its impact on the cardiovascular system. Since aldosterone plays a key role in many cardiovascular and metabolic diseases, these data will open up promising perspectives for the identification of novel biomarkers and therapeutic targets for prevention and treatment of diseases associated with increased levels of aldosterone, such as arterial hypertension, obesity, the metabolic syndrome, and heart failure.
Collapse
Affiliation(s)
- Nathanne S Ferreira
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - Rita C Tostes
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Pierre Paradis
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - Ernesto L Schiffrin
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montréal, Québec, Canada
- Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montréal, Québec, Canada
| |
Collapse
|
7
|
Biyashev D, Onay UV, Dalal P, Demczuk M, Evans S, Techner JM, Lu KQ. A novel treatment for skin repair using a combination of spironolactone and vitamin D3. Ann N Y Acad Sci 2020; 1480:170-182. [PMID: 32892377 PMCID: PMC7754145 DOI: 10.1111/nyas.14485] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/10/2020] [Accepted: 08/13/2020] [Indexed: 02/06/2023]
Abstract
Injury of the skin from exposure to toxic chemicals leads to the release of inflammatory mediators and the recruitment of immune cells. Nitrogen mustard (NM) and other alkylating agents cause severe cutaneous damage for which there are limited treatment options. Here, we show that combined treatment of vitamin D3 (VD3) and spironolactone (SP), a mineralocorticoid receptor antagonist, significantly improves the resolution of inflammation and accelerates wound healing after NM exposure. SP enhanced the inhibitory effect of VD3 on nuclear factor-kB activity. Combined treatment of NM-exposed mice with VD3 and SP synergistically inhibited the expression of iNOS in the skin and decreased the expression of matrix metallopeptidase-9, C-C motif chemokine ligand 2, interleukin (IL)-1α, and IL-1β. The combined treatment decreased the number of local proinflammatory M1 macrophages resulting in an increase in the M2/M1 ratio in the wound microenvironment. Apoptosis was also decreased in the skin after combined treatment. Together, this creates a proresolution state, resulting in more rapid wound closure. Combined VD3 and SP treatment is effective in modulating the immune response and activating anti-inflammatory pathways in macrophages to facilitate tissue repair. Altogether, these data demonstrate that VD3 and SP may constitute an effective treatment regimen to improve wound healing after NM or other skin chemical injury.
Collapse
Affiliation(s)
- Dauren Biyashev
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Ummiye V Onay
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Prarthana Dalal
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Michael Demczuk
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Spencer Evans
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - José-Marc Techner
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Kurt Q Lu
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
8
|
Curcumin Suppresses Aldosterone-Induced CRP Generation in Rat Vascular Smooth Muscle Cells via Interfering with the ROS-ERK1/2 Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:3245653. [PMID: 32831861 PMCID: PMC7428966 DOI: 10.1155/2020/3245653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 06/07/2020] [Accepted: 07/16/2020] [Indexed: 01/08/2023]
Abstract
Aldosterone regulates the initiation and development of atherosclerosis which is identified as a chronic inflammatory disease by promoting the generation of C-reactive protein in vascular smooth muscle cells. Curcumin is the most active ingredient of turmeric with anti-inflammation and antioxidation effects. Here, the effect of curcumin on aldosterone-induced C-reactive protein generation in vascular smooth muscle and the molecular mechanisms involved were explored. Primary rat vascular smooth muscle cells and hyperaldosteronism model rats were used in this study. The amount of C-reactive protein, reactive oxygen species, and the signaling pathway-related molecules generated were estimated. We found that curcumin inhibited aldosterone-induced C-reactive protein generation in vascular smooth muscle cells by interfering with the reactive oxygen species-ERK1/2 signal pathway. The results provide new evidence for the potential anti-inflammatory and cardiovascular protective effects of curcumin.
Collapse
|
9
|
Pathophysiological and Genetic Aspects of Vascular Calcification. Cardiol Res Pract 2020; 2020:5169069. [PMID: 32411445 PMCID: PMC7201852 DOI: 10.1155/2020/5169069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/17/2020] [Accepted: 03/23/2020] [Indexed: 12/21/2022] Open
Abstract
Recent evidence suggests that vascular calcification is an independent cardiovascular risk factor (CRF) of morbidity and mortality. New studies point out the existence of a complex physiopathological mechanism that involves inflammation, oxidation, the release of chemical mediators, and genetic factors that promote the osteochondrogenic differentiation of vascular smooth muscle cells (VSMC). This review will evaluate the main mechanisms involved in the pathophysiology and genetics modulation of the process of vascular calcification. Objective. A systematic review of the pathophysiology factors involved in vascular calcification and its genetic influence was performed. Methods. A systematic review was conducted in the Medline and PubMed databases and were searched for studies concerning vascular calcification using the keywords and studies published until 2020/01 in English. Inclusion Criteria. Studies in vitro, animal models, and humans. These include cohort (both retrospective and prospective cohort studies), case-control, cross-sectional, and systematic reviews. Exclusion Criteria. Studies before 2003 of the existing literature.
Collapse
|
10
|
Chen Y, Liu Q, Shan Z, Zhao Y, Li M, Wang B, Zheng X, Feng W. The protective effect and mechanism of catalpol on high glucose-induced podocyte injury. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:244. [PMID: 31488111 PMCID: PMC6727542 DOI: 10.1186/s12906-019-2656-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 08/27/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Catalpol, a natural iridoid glycoside in Rehmannia glutinosa, can alleviate proteinuria associated with diabetic nephropathy (DN), however, whether catalpol has a protective effect against podocyte injury in DN remains unclear. METHODS In this study, we used a high glucose (HG)-induced podocyte injury model to evaluate the protective effect and mechanism of catalpol against HG-induced podocyte injury. Cell viability was determined by the 3-(4,5-dimethylthiazolyl-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. The levels of lactate dehydrogenase (LDH), superoxide dismutase (SOD) and malondialdehyde (MDA) were measured by commercial assay kits. Cell apoptosis and reactive oxygen species (ROS) were determined by using flow cytometry. Tumour necrosis factor α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) levels were determined by enzyme-linked immunosorbent assay (ELISA). The protein expression levels of B-cell lymphoma-2 (Bcl-2), Bcl2-associated x (Bax), cleaved caspase-3, nicotinamide adenine dinucleotide phosphate oxidase enzyme 4 (NOX4), toll-like receptor 4 (TLR4), myeloid differentiation primary response gene 88 (MyD88), p38 mitogen-activated protein kinase (p38 MAPK), phosphorylated p38 MAPK (p-p38 MAPK), nuclear factor kappa B inhibitor alpha (IκBα) and phosphorylated IκBα (p-IκBα) were measured by western blotting. In addition, Bcl-2, Bax, caspase-3 and nuclear factor kappa B (NF-κB) levels were determined by immunofluorescence staining. RESULTS Catalpol significantly increased cell viability and decreased LDH release in HG-induced podocyte injury. Catalpol significantly decreased ROS generation, apoptosis, level of MDA, levels of inflammatory cytokine TNF-α, IL-1β, and IL-6 and increased SOD activity in HG-induced podocyte injury. Moreover, catalpol significantly decreased expression of cleaved caspase-3, Bax, NOX4, TLR4, MyD88, p-p38 MAPK, p-IκBα and NF-κB nuclear translocation, as well as increased Bcl-2 expression in HG-induced podocyte injury. CONCLUSION Catalpol can protect against podocyte injury by ameliorating apoptosis and inflammation. These protective effects may be attributed to the inhibition of NOX4, which alleviates ROS generation and suppression of the TLR4/MyD88 and p38 MAPK signaling pathways to prevent NF-κB activation. Therefore, catalpol could be a promising drug for the prevention of DN.
Collapse
Affiliation(s)
- Yan Chen
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People's Republic of China
| | - Qingpu Liu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People's Republic of China
| | - Zengfu Shan
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People's Republic of China
| | - Yingying Zhao
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People's Republic of China
| | - Meng Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People's Republic of China
| | - Baiyan Wang
- College of Basic Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People's Republic of China
| | - Xiaoke Zheng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People's Republic of China.
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Zhengzhou, Henan, 450046, People's Republic of China.
| | - Weisheng Feng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People's Republic of China.
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Zhengzhou, Henan, 450046, People's Republic of China.
| |
Collapse
|
11
|
Henze LA, Luong TT, Boehme B, Masyout J, Schneider MP, Brachs S, Lang F, Pieske B, Pasch A, Eckardt KU, Voelkl J, Alesutan I. Impact of C-reactive protein on osteo-/chondrogenic transdifferentiation and calcification of vascular smooth muscle cells. Aging (Albany NY) 2019; 11:5445-5462. [PMID: 31377747 PMCID: PMC6710049 DOI: 10.18632/aging.102130] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/25/2019] [Indexed: 05/01/2023]
Abstract
Medial vascular calcification occurs during the aging process and is strongly accelerated by chronic kidney disease (CKD). Elevated C-reactive protein (CRP) levels are associated with vascular calcification, cardiovascular events and mortality in CKD patients. CRP is an important promoter of vascular inflammation. Inflammatory processes are critically involved in initiation and progression of vascular calcification. Thus, the present study explored a possible impact of CRP on vascular calcification. We found that CRP promoted osteo-/chondrogenic transdifferentiation and aggravated phosphate-induced osteo-/chondrogenic transdifferentiation and calcification of primary human aortic smooth muscle cells (HAoSMCs). These effects were paralleled by increased cellular oxidative stress and corresponding pro-calcific downstream-signaling. Antioxidants or p38 MAPK inhibition suppressed CRP-induced osteo-/chondrogenic signaling and mineralization. Furthermore, silencing of Fc fragment of IgG receptor IIa (FCGR2A) blunted the pro-calcific effects of CRP. Vascular CRP expression was increased in the klotho-hypomorphic mouse model of aging as well as in HAoSMCs during calcifying conditions. In conclusion, CRP augments osteo-/chondrogenic transdifferentiation of vascular smooth muscle cells through mechanisms involving FCGR2A-dependent induction of oxidative stress. Thus, systemic inflammation may actively contribute to the progression of vascular calcification.
Collapse
MESH Headings
- Aging/metabolism
- Aging/pathology
- Animals
- C-Reactive Protein/metabolism
- Cell Transdifferentiation/physiology
- Cells, Cultured
- Chondrogenesis/physiology
- Disease Models, Animal
- Glucuronidase/genetics
- Glucuronidase/metabolism
- Humans
- Klotho Proteins
- Mice
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Osteogenesis/physiology
- Oxidative Stress
- RNA, Small Interfering/genetics
- Receptors, IgG/antagonists & inhibitors
- Receptors, IgG/genetics
- Receptors, IgG/metabolism
- Renal Insufficiency, Chronic/complications
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/pathology
- Signal Transduction
- Vascular Calcification/etiology
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
Collapse
Affiliation(s)
- Laura A. Henze
- Department of Internal Medicine and Cardiology, Charité – Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin 13353, Germany
| | - Trang T.D. Luong
- Department of Internal Medicine and Cardiology, Charité – Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin 13353, Germany
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz 4040, Austria
| | - Beate Boehme
- Department of Internal Medicine and Cardiology, Charité – Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin 13353, Germany
| | - Jaber Masyout
- Department of Internal Medicine and Cardiology, Charité – Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin 13353, Germany
| | - Markus P. Schneider
- Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Sebastian Brachs
- Department of Endocrinology, Diabetes and Nutrition, Charité - Universitätsmedizin Berlin, Campus Mitte, Berlin 10115, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin 10115, Germany
| | - Florian Lang
- Department of Physiology I, Eberhard-Karls University, Tübingen 72076, Germany
| | - Burkert Pieske
- Department of Internal Medicine and Cardiology, Charité – Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin 13353, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin 10115, Germany
- Berlin Institute of Health (BIH), Berlin 10178, Germany
- Department of Internal Medicine and Cardiology, German Heart Center Berlin (DHZB), Berlin 13353, Germany
| | - Andreas Pasch
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz 4040, Austria
- Calciscon AG, 2560 Nidau-Biel, Switzerland
| | - Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care, Charité – Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Jakob Voelkl
- Department of Internal Medicine and Cardiology, Charité – Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin 13353, Germany
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz 4040, Austria
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin 10115, Germany
- Department of Nephrology and Medical Intensive Care, Charité – Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Ioana Alesutan
- Department of Internal Medicine and Cardiology, Charité – Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin 13353, Germany
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz 4040, Austria
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin 10115, Germany
- Berlin Institute of Health (BIH), Berlin 10178, Germany
| |
Collapse
|
12
|
Lepetsos P, Papavassiliou KA, Papavassiliou AG. Redox and NF-κB signaling in osteoarthritis. Free Radic Biol Med 2019; 132:90-100. [PMID: 30236789 DOI: 10.1016/j.freeradbiomed.2018.09.025] [Citation(s) in RCA: 245] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 09/12/2018] [Accepted: 09/16/2018] [Indexed: 02/07/2023]
Abstract
Human cells have to deal with the constant production of reactive oxygen species (ROS). Although ROS overproduction might be harmful to cell biology, there are plenty of data showing that moderate levels of ROS control gene expression by maintaining redox signaling. Osteoarthritis (OA) is the most common joint disorder with a multi-factorial etiology including overproduction of ROS. ROS overproduction in OA modifies intracellular signaling, chondrocyte life cycle, metabolism of cartilage matrix and contributes to synovial inflammation and dysfunction of the subchondral bone. In arthritic tissues, the NF-κB signaling pathway can be activated by pro-inflammatory cytokines, mechanical stress, and extracellular matrix degradation products. This activation results in regulation of expression of many cytokines, inflammatory mediators, transcription factors, and several matrix-degrading enzymes. Overall, NF-κB signaling affects cartilage matrix remodeling, chondrocyte apoptosis, synovial inflammation, and has indirect stimulatory effects on downstream regulators of terminal chondrocyte differentiation. Interaction between redox signaling and NF-κB transcription factors seems to play a distinctive role in OA pathogenesis.
Collapse
Affiliation(s)
- Panagiotis Lepetsos
- Fourth Department of Orthopaedics & Trauma, 'KAT' General Hospital, Kifissia, 14561 Athens, Greece
| | - Kostas A Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street, 11527 Athens, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street, 11527 Athens, Greece.
| |
Collapse
|
13
|
Yao Y, Mao J, Xu S, Zhao L, Long L, Chen L, Li D, Lu S. Rosmarinic acid inhibits nicotine-induced C-reactive protein generation by inhibiting NLRP3 inflammasome activation in smooth muscle cells. J Cell Physiol 2019; 234:1758-1767. [PMID: 30146678 DOI: 10.1002/jcp.27046] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/25/2018] [Indexed: 12/13/2022]
Abstract
Atherosclerosis is widely known to be a chronic inflammatory disease. C-reactive protein (CRP), an important inflammatory factor, plays an essential role in the pathogenesis of atherosclerosis. Nicotine, the main addictive component of cigarette, has been shown to induce the production of CRP. The aim of this study was to investigate the effect of rosmarinic acid (RA), a polyphenol with antiinflammatory activity, on nicotine-induced elevation of CRP in vascular smooth muscle cells (VSMCs). We found that pretreatment of VSMCs with RA attenuated nicotine-induced expression of CRP in a time- and dose-dependant manner. In addition, RA also inhibited the activation of NLR family pyrin domain containing 3 (NLRP3) inflammasome and reactive oxygen species (ROS) production resulting from nicotine treatment in VSMCs. To confirm these findings in vivo, we constructed a nicotine-induced atherosclerosis rat model. RA did not significantly reduce the serum nicotine level of the rats, whereas it significantly decreased the levels of serum lipids, including concentrations of cholesterol, triglycerides, and low-density lipoprotein cholesterol, and the serum level of CRP. RA also led to diminished nicotine-induced activation of NLRP3 inflammasome and elevation in the CRP level in the aortic tissue of the model rats. The results of this study suggested a protective role of RA in nicotine-induced atherosclerosis by inhibiting the ROS-NLRP3 inflammasome-CRP axial, and RA therefore represented a potential effective therapeutic approach to atherosclerosis, in particular for those who smoke.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents/pharmacology
- Atherosclerosis/chemically induced
- Atherosclerosis/immunology
- Atherosclerosis/metabolism
- Atherosclerosis/prevention & control
- C-Reactive Protein/immunology
- C-Reactive Protein/metabolism
- Cells, Cultured
- Cinnamates/pharmacology
- Depsides/pharmacology
- Disease Models, Animal
- Inflammasomes/antagonists & inhibitors
- Inflammasomes/immunology
- Inflammasomes/metabolism
- Inflammation/chemically induced
- Inflammation/immunology
- Inflammation/metabolism
- Inflammation/prevention & control
- Lipids/blood
- Male
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/immunology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/immunology
- Myocytes, Smooth Muscle/metabolism
- NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors
- NLR Family, Pyrin Domain-Containing 3 Protein/immunology
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- Nicotine
- Rats
- Rats, Sprague-Dawley
- Reactive Oxygen Species/metabolism
- Signal Transduction
- Rosmarinic Acid
Collapse
Affiliation(s)
- Yang Yao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Xi'an, China
- Department of Central Laboratory, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Junjun Mao
- Department of Pharmacology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Shouzhu Xu
- Department of Pharmacology, Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Lei Zhao
- Department of Molecular Physiology and Biophysics, Holden Comprehensive Cancer Center, University of Iowa, Carver College of Medicine, Iowa City, Iowa
| | - Lihui Long
- Department of Pharmacology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Lin Chen
- Department of Pharmacology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Dongmin Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Xi'an, China
| | - Shemin Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Xi'an, China
| |
Collapse
|
14
|
Tapia-Castillo A, Baudrand R, Vaidya A, Campino C, Allende F, Valdivia C, Vecchiola A, Lagos CF, Fuentes CA, Solari S, Martínez-Aguayo A, García H, Carvajal CA, Fardella CE. Clinical, Biochemical, and Genetic Characteristics of "Nonclassic" Apparent Mineralocorticoid Excess Syndrome. J Clin Endocrinol Metab 2019; 104:595-603. [PMID: 30239803 DOI: 10.1210/jc.2018-01197] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/10/2018] [Indexed: 11/19/2022]
Abstract
CONTEXT Classical apparent mineralocorticoid excess (AME) is a rare recessive disorder, caused by severe 11β-hydroxysteroid dehydrogenase type 2 enzyme (11β-HSD2) deficiency. AME manifests as low-renin pediatric hypertension, hypokalemia and high cortisol/cortisone (F/E) ratio. OBJECTIVE To evaluate nonclassic AME (NC-AME) due to partial 11β-HSD2 insufficiency and its association with hypertension, mineralocorticoid receptor (MR) activation, and inflammatory parameters. DESIGN Cross-sectional study. SETTING Primary care cohort. PARTICIPANTS We recruited 127 adolescents and adults. Subjects with secondary hypertension were excluded. We measured clinical, biochemical, renal, vascular, and inflammatory variables. Sequencing of HSD11B2 gene was performed in all subjects. MAIN OUTCOME MEASURE NC-AME. RESULTS Serum F/E ratio was positively associated with systolic blood pressure (BP), microalbuminuria, and high-sensitivity C-reactive protein (hs-CRP). Serum cortisone correlated with MR activation parameters even when adjusted for age, body mass index, and sex: lower cortisone with higher potassium excretion (partial r = -0.29, P = 0.002) and with lower plasma renin activity (PRA) (partial r = 0.29, P = 0.001). Consistently, we identified 9 in 127 subjects (7.1%) with high F/E ratios (first quartile) and low cortisone (last quartile), suggestive of NC-AME. These subjects had higher systolic BP, 141.4 ± 25.7 mm Hg vs 127.3 ± 18.1 mm Hg, P = 0.03; lower PRA, 0.36 ± 0.19 ng/L*s vs 0.64 ± 0.47 ng/L*s, P < 0.0001; and greater potassium excretion, microalbuminuria, hs-CRP, and plasminogen activator inhibitor. We only found in 2 out of 9 subjects with NC-AME heterozygous mutations in the HSD11B2 gene. CONCLUSIONS These findings suggest a spectrum of partial 11β-HSD2 insufficiency in a primary care cohort without the classic phenotype and genotype of AME. NC-AME may represent a phenotype of MR activation and cardiovascular risk, suggesting that these subjects could be treated with MR antagonists.
Collapse
Affiliation(s)
- Alejandra Tapia-Castillo
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Center for Genetics and Genomics, School of Medicine, Clínica Alemana-Universidad del Desarrollo, Lo Barnechea, Chile
- Millennium Institute on Immunology and Immunotherapy (IMII), Santiago, Chile
| | - Rene Baudrand
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Anand Vaidya
- Center for Adrenal Disorders, Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Carmen Campino
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy (IMII), Santiago, Chile
| | - Fidel Allende
- Department of Clinical Laboratories, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carolina Valdivia
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Andrea Vecchiola
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy (IMII), Santiago, Chile
| | - Carlos F Lagos
- Millennium Institute on Immunology and Immunotherapy (IMII), Santiago, Chile
- Department of Clinical Laboratories, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cristóbal A Fuentes
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sandra Solari
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Campus Los Leones, Santiago, Chile
| | - Alejandro Martínez-Aguayo
- Endocrinology Pediatrics Division, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Hernán García
- Endocrinology Pediatrics Division, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cristian A Carvajal
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy (IMII), Santiago, Chile
| | - Carlos E Fardella
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy (IMII), Santiago, Chile
| |
Collapse
|
15
|
Zhao J, Yang M, Wu X, Yang Z, Jia P, Sun Y, Li G, Xie L, Liu B, Liu H. Effects of paclitaxel intervention on pulmonary vascular remodeling in rats with pulmonary hypertension. Exp Ther Med 2019; 17:1163-1170. [PMID: 30679989 PMCID: PMC6327549 DOI: 10.3892/etm.2018.7045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 03/23/2018] [Indexed: 12/18/2022] Open
Abstract
The aim of the present study was to investigate the effects of paclitaxel (PTX), at a non-cytotoxic concentration, on pulmonary vascular remodeling (PVR) in rats with pulmonary hypertension (PAH), and to explore the mechanisms underlying the PTX-mediated reversal of PVR in PAH. A total of 36 rats were divided into control group (n=12), model group (n=12) receiving a subcutaneous injection of monocrotaline (60 mg/kg) in the back on day 7 following left pneumonectomy and PTX group (n=12) with PTX (2 mg/kg) injection via the caudal vein 3 weeks following establishing the model. The degree of PVR among all groups, as well as the expression levels of Ki67, p27Kip1 and cyclin B1, were compared. The mean pulmonary artery pressure, right ventricular hypertrophy index [right ventricle/(left ventricle + septum) ratio] and the thickness of the pulmonary arterial tunica media in the model group were 58.34±2.01 mmHg, 0.64±0.046 and 65.3±3.3%, respectively, which were significantly higher when compared with 23.30±1.14 mmHg, 0.32±0.028 and 16.2±1.3% in the control group, respectively (P<0.01). The mean pulmonary artery pressure, right ventricular hypertrophy index and thickness of the pulmonary arterial tunica media in the PTX group were 42.35±1.53 mmHg, 0.44±0.029 and 40.5±2.6%, respectively, which were significantly lower when compared with the model group (P<0.01). Compared with the control group, the expression levels of Ki67 and cyclin B1 in the model group were significantly increased (P<0.01), while p27Kip1 expression was significantly reduced (P<0.01). Following PTX intervention, the expression levels of Ki67 and cyclin B1 were significantly reduced when compared with the model group (P<0.01), while p27Kip1 expression was significantly increased (P<0.01). The results of the present study suggest that PTX, administered at a non-cytotoxic concentration, may reduce PAH in rats, and prevent the effects of PVR in PAH. These effects of PTX may be associated with increased expression of p27Kip1 and decreased expression of cyclin B1.
Collapse
Affiliation(s)
- Jian Zhao
- Department of Pediatric Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Meifang Yang
- School of Nursing, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xindan Wu
- Department of Pediatrics, Chengdu Women and Children's Central Hospital, Chengdu, Sichuan 610091, P.R. China
| | - Zhangya Yang
- Department of Pediatrics, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Peng Jia
- Department of Pediatric Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yuqin Sun
- Department of Pediatric Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Gang Li
- Department of Pediatric Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Liang Xie
- Department of Pediatric Cardiology, West China Second University Hospital, Chengdu, Sichuan 610041, P.R. China
| | - Bin Liu
- Department of Pediatric Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Hanmin Liu
- Department of Pediatric Cardiology, West China Second University Hospital, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
16
|
Berends AMA, Buitenwerf E, Gruppen EG, Sluiter WJ, Bakker SJL, Connelly MA, Kerstens MN, Dullaart RPF. Primary aldosteronism is associated with decreased low-density and high-density lipoprotein particle concentrations and increased GlycA, a pro-inflammatory glycoprotein biomarker. Clin Endocrinol (Oxf) 2019; 90:79-87. [PMID: 30372543 DOI: 10.1111/cen.13891] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/17/2018] [Accepted: 10/23/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Primary aldosteronism (PA) may confer increased cardiovascular risk beyond effects on systemic blood pressure, but contributing mechanisms remain incompletely understood. We compared plasma (apo)lipoproteins and lipoprotein particle characteristics, GlycA, a pro-inflammatory glycoprotein biomarker of enhanced chronic inflammation, and plasma total branched-chain amino acids (BCAA), measured using nuclear magnetic resonance (NMR) spectroscopy, between patients with PA, control subjects without hypertension, subjects with untreated hypertension and subjects with treated hypertension. METHODS Twenty PA patients were individually matched with 2819 control subjects without hypertension, 501 subjects with untreated hypertension and 878 subjects with treated hypertension participating in the PREVEND (Prevention of Renal and Vascular End-Stage Disease) cohort study with respect to age, sex, body mass index, smoking and statin use. The Vantera® Clinical Analyzer was used to determine NMR-based laboratory parameters. RESULTS Total cholesterol, low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), apolipoprotein (apo) B, apolipoprotein A-I (apoA-I), LDL particle and HDL particle concentrations were all decreased in PA subjects vs control subjects and subjects with untreated hypertension (P < 0.016). Triglycerides (TG) and triglyceride-rich lipoprotein (TRL) concentrations were lower in PA subjects vs subjects with (untreated) hypertension. GlycA was increased in PA vs the three comparator groups (P < 0.016). Total BCAA concentrations were unaltered in PA. CONCLUSIONS Primary aldosteronism is associated with lower concentrations of LDL and HDL particles and to some extent also with lower TG and TRL particle concentrations. PA is also characterized by increased GlycA levels, indicating enhanced low-grade chronic inflammation. Low HDL particle concentrations and increased GlycA could contribute to accelerated cardiovascular disease development in PA.
Collapse
Affiliation(s)
- Annika M A Berends
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Edward Buitenwerf
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Eke G Gruppen
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Wim J Sluiter
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Stephan J L Bakker
- Department of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Margery A Connelly
- Laboratory Corporation of America® Holdings (LabCorp), Raleigh, North Carolina
| | - Michiel N Kerstens
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Robin P F Dullaart
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
17
|
Serum Romo1 is significantly associated with disease severity in patients with obstructive sleep apnea syndrome. Sleep Breath 2018; 22:743-748. [PMID: 29302924 DOI: 10.1007/s11325-017-1606-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 11/23/2017] [Accepted: 12/12/2017] [Indexed: 01/11/2023]
Abstract
PURPOSE We aim to evaluate reactive oxygen species modulator 1 (Romo1) levels in obstructive sleep apnea syndrome (OSAS) and analyze its possible relationships to OSAS severity, reactive oxygen species (ROS), and C-reactive protein (CRP). Additionally, we also investigated the effects of nasal continuous positive airway pressure (nCPAP) on serum Romo1. METHODS One hundred and five patients diagnosed with OSAS were classified into the OSAS group, and 41 subjects without OSAS were recruited for the control group. The OSAS group was further divided into mild, moderate, and severe OSAS subgroups. Fifteen patients with moderate and severe OSAS were treated with nCPAP. Serum levels of Romo1, ROS, and CRP were also measured. RESULTS Serum Romo1, ROS, and CRP were the lowest in normal subjects and increased across OSAS severities (P < 0.05). Univariate analysis showed that serum Romo1 was positively correlated with apnea-hypopnea index (AHI), oxygen desaturation index (ODI), time spent below 90% oxygen saturation (Ts90%), arousal index, ROS, and CRP, and was negatively correlated with minimal oxygen saturation (miniSaO2) (all P < 0.05). Multiple linear regression analysis showed that serum Romo1 level was significantly associated with AHI and ODI, after adjusting for age, gender, BMI, and CRP. After 6 months of nCPAP therapy, serum Romo1, ROS, and CRP were significantly decreased (P < 0.05). CONCLUSIONS The increase of serum Romo1 in OSAS patients was positively correlated with disease severity. Serum Romo1 may be an important parameter for monitoring the severity of OSAS and treatment efficiency.
Collapse
|
18
|
Zhang BF, Jiang H, Chen J, Guo X, Hu Q, Yang S. KDM3A inhibition attenuates high concentration insulin‑induced vascular smooth muscle cell injury by suppressing MAPK/NF‑κB pathways. Int J Mol Med 2017; 41:1265-1274. [PMID: 29286083 PMCID: PMC5819917 DOI: 10.3892/ijmm.2017.3351] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/13/2017] [Indexed: 12/25/2022] Open
Abstract
Previous studies have indicated that lysine (K)-specific demethylase 3A (KDM3A) is associated with diverse diabetes-associated cardiovascular complications in response to high glucose levels. However, the effects of KDM3A on the pathological progression of cardiovascular injuries in response to high insulin levels remain unknown. The present study aimed to explore whether KDM3A knockdown may attenuate high insulin-induced vascular smooth muscle cell (VSMC) dysfunction, and to further investigate the underlying mechanisms. Primary VSMCs were isolated from the thoracic aorta of Sprague-Dawley rats. Lentiviral vectors encoding control-small interfering (si)RNA or KDM3A-siRNA were transduced into VSMCs for 72 h, and cells were subsequently incubated in medium containing 100 nM insulin for a further 5 days. Cellular proli feration, migration and apoptosis were measured by Cell Counting kit-8, Transwell chamber assay and flow cytometry, respectively. Reactive oxygen species (ROS) were detected using the dihydroethidium fluorescent probe. The mRNA expression levels of interleukin-6 and monocyte chemotactic protein-1 were measured by reverse transcription-quantitative polymerase chain reaction. Furthermore, the protein expression levels of KDM3A, mitogen-activated protein kinases (MAPKs), nuclear factor (NF)-κB/p65, B-cell lymphoma 2 (Bcl-2)-associated X protein and Bcl-2 were evaluated by western blotting. Lentivirus transduction with KDM3A-siRNA markedly reduced the elevated expression of KDM3A induced by high insulin stimulation in VSMCs. In addition, inhibition of KDM3A significantly ameliorated insulin-induced VSMC proliferation and migration, which was accompanied by decreased ROS levels, cell apoptosis and inflammatory cytokine levels. Furthermore, KDM3A gene silencing mitigated phosphorylation of MAPKs and NF-κB/p65 activation. In conclusion, KDM3A inhibition may exert numerous protective effects on high insulin-stimulated VSMCs, and the underlying mechanisms may be partly associated with inactivation of MAPK/NF-κB signaling pathways.
Collapse
Affiliation(s)
- Bo-Fang Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, Hubei 430060, P.R. China
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, Hubei 430060, P.R. China
| | - Jing Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, Hubei 430060, P.R. China
| | - Xin Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, Hubei 430060, P.R. China
| | - Qi Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, Hubei 430060, P.R. China
| | - Shuo Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
19
|
Zhang X, Liu J, Pang X, Zhao J, Xu S, Zhao J. Eplerenone inhibits aldosterone-induced CRP generation in rat vascular smooth muscle cells by regulating the MR-ROS-ERK1/2 signal pathway. EUR J INFLAMM 2017. [DOI: 10.1177/1721727x17735261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease in the vessel wall. As a representative inflammatory cytokine, C-reactive protein (CRP) participates in the formation and development of atherosclerosis. It is demonstrated that aldosterone induces CRP generation in vascular smooth muscle cells (VSMCs). This study explored the inhibitory effect of eplerenone on aldosterone-induced CRP expression in VSMCs and mechanism. In the in vitro experiments, rat VSMCs were cultured and aldosterone (10 nM) was used as a stimulant for CRP generation. VSMCs were pretreated with eplerenone for 1 h prior to the stimulation. Messenger RNA (mRNA) and protein expression were identified by reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blot, respectively. The production of reactive oxygen species (ROS) was observed by a fluorescence microscope. In the in vivo experiment, a model of hyperaldosteronism was established by the subcutaneous administration of aldosterone to rats with the osmotic minipumps for 4 weeks. Serum aldosterone and CRP levels were determined with a radioimmunoassay and ELISA (enzyme-linked immunosorbent assay), respectively. The results showed that eplerenone inhibited aldosterone-induced mRNA and protein expression of CRP in VSMCs in vitro and in vivo, and decreased the circulating CRP level of hyperaldosteronism rats. Meanwhile, eplerenone reduced aldosterone-stimulated ROS generation and aldosterone-activated ERK1/2 phosphorylation in VSMCs. In summary, eplerenone inhibits aldosterone-induced CRP generation in VSMCs by regulating the MR-ROS-ERK1/2 signal pathway. These results provide new evidence for the potential anti-inflammatory effect of eplerenone.
Collapse
Affiliation(s)
- Xiaolu Zhang
- Department of Pharmacology, School of Medicine, Xi’an Jiaotong University, Xi’an, China
- Department of Basic Medicine, Hebei University of Traditional Chinese Medicine, Shijiazhuang, China
| | - Juntian Liu
- Department of Pharmacology, School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Xiaoming Pang
- Department of Pharmacology, School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Jingjing Zhao
- Department of Pharmacology, School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Shouzhu Xu
- Department of Pharmacology, School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Jing Zhao
- Department of Pharmacology, School of Medicine, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
20
|
Tang L, Xu Y, Wei Y, He X. Uric acid induces the expression of TNF-α via the ROS-MAPK-NF-κB signaling pathway in rat vascular smooth muscle cells. Mol Med Rep 2017; 16:6928-6933. [DOI: 10.3892/mmr.2017.7405] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 07/13/2017] [Indexed: 11/05/2022] Open
|
21
|
Li Y, Yang G, Yang X, Wang W, Zhang J, He Y, Zhang W, Jing T, Lin R. Nicotinic acid inhibits NLRP3 inflammasome activation via SIRT1 in vascular endothelial cells. Int Immunopharmacol 2016; 40:211-218. [PMID: 27614220 DOI: 10.1016/j.intimp.2016.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 08/11/2016] [Accepted: 09/02/2016] [Indexed: 02/03/2023]
Abstract
Emerging evidences indicated that NLRP3 inflammasome initiates inflammatory response involved in cardiovascular disease. Nicotinic acid (NA) has been known to possess potential anti-inflammatory property. The aim of this study was to investigate the effect of NA on the activation of NLRP3 inflammasome and the underlying mechanisms. It was found that lipopolysaccharide (LPS) and adenosine triphosphate (ATP) triggered the activation of NLRP3 inflammasome in human umbilical vein endothelial cells (HUVECs). NA inhibited NLRP3 inflammasome activation and subsequent caspase-1 cleavage as well as interleukin (IL)-1β secretion. Moreover, NA administration up-regulated SIRT1 expression in HUVECs stimulated with LPS plus ATP. Importantly, knockdown of SIRT1 reversed the inhibitory effect of NA on the activation of NLRP3 inflammasome. Further study revealed that NA also decreased the generation of reactive oxygen species (ROS) in HUVECs. In addition, NA inhibited NLRP3 inflammasome activation partly through suppression of ROS. Taken together, these findings indicate that NA is able to regulate the activation of NLRP3 inflammasome in HUVECs, which may be partly mediated by SIRT1 and ROS.
Collapse
Affiliation(s)
- Yanxiang Li
- Department of Pharmacology, Xi'an Jiaotong University, Health Science Center, Xi'an, Shaanxi 710061, China; Taizhou Polytechnic College, Taizhou, Jiangsu 225300, China
| | - Guangde Yang
- School of Pharmacy, Xi'an Jiaotong University, Health Science Center, Xi'an, Shaanxi 710061, China
| | - Xiaofeng Yang
- Department of Pharmacology, Xi'an Jiaotong University, Health Science Center, Xi'an, Shaanxi 710061, China
| | - Weirong Wang
- Laboratory Animal Center, Xi'an Jiaotong University, Health Science Center, Xi'an, Shaanxi 710061, China
| | - Jiye Zhang
- School of Pharmacy, Xi'an Jiaotong University, Health Science Center, Xi'an, Shaanxi 710061, China
| | - Yanhao He
- Department of Pharmacology, Xi'an Jiaotong University, Health Science Center, Xi'an, Shaanxi 710061, China
| | - Wei Zhang
- Department of Pharmacology, Xi'an Jiaotong University, Health Science Center, Xi'an, Shaanxi 710061, China
| | - Ting Jing
- Department of Pharmacology, Xi'an Jiaotong University, Health Science Center, Xi'an, Shaanxi 710061, China
| | - Rong Lin
- Department of Pharmacology, Xi'an Jiaotong University, Health Science Center, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
22
|
Wang X, Hai C. Novel insights into redox system and the mechanism of redox regulation. Mol Biol Rep 2016; 43:607-28. [DOI: 10.1007/s11033-016-4022-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 05/26/2016] [Indexed: 12/20/2022]
|
23
|
Silva MAB, Bruder-Nascimento T, Cau SBA, Lopes RAM, Mestriner FLAC, Fais RS, Touyz RM, Tostes RC. Spironolactone treatment attenuates vascular dysfunction in type 2 diabetic mice by decreasing oxidative stress and restoring NO/GC signaling. Front Physiol 2015; 6:269. [PMID: 26500555 PMCID: PMC4593519 DOI: 10.3389/fphys.2015.00269] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/14/2015] [Indexed: 01/26/2023] Open
Abstract
Type 2 diabetes (DM2) increases the risk of cardiovascular disease. Aldosterone, which has pro-oxidative and pro-inflammatory effects in the cardiovascular system, is positively regulated in DM2. We assessed whether blockade of mineralocorticoid receptors (MR) with spironolactone decreases reactive oxygen species (ROS)-associated vascular dysfunction and improves vascular nitric oxide (NO) signaling in diabetes. Leptin receptor knockout [LepR(db)/LepR(db) (db/db)] mice, a model of DM2, and their counterpart controls [LepR(db)/LepR(+), (db/+) mice] received spironolactone (50 mg/kg body weight/day) or vehicle (ethanol 1%) via oral per gavage for 6 weeks. Spironolactone treatment abolished endothelial dysfunction and increased endothelial nitric oxide synthase (eNOS) phosphorylation (Ser(1177)) in arteries from db/db mice, determined by acetylcholine-induced relaxation and Western Blot analysis, respectively. MR antagonist therapy also abrogated augmented ROS-generation in aorta from diabetic mice, determined by lucigenin luminescence assay. Spironolactone treatment increased superoxide dismutase-1 and catalase expression, improved sodium nitroprusside and BAY 41-2272-induced relaxation, and increased soluble guanylyl cyclase (sGC) β subunit expression in arteries from db/db mice. Our results demonstrate that spironolactone decreases diabetes-associated vascular oxidative stress and prevents vascular dysfunction through processes involving increased expression of antioxidant enzymes and sGC. These findings further elucidate redox-sensitive mechanisms whereby spironolactone protects against vascular injury in diabetes.
Collapse
Affiliation(s)
- Marcondes A B Silva
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo Ribeirão Preto, Brazil
| | - Thiago Bruder-Nascimento
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo Ribeirão Preto, Brazil
| | - Stefany B A Cau
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo Ribeirão Preto, Brazil
| | - Rheure A M Lopes
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo Ribeirão Preto, Brazil
| | - Fabiola L A C Mestriner
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo Ribeirão Preto, Brazil
| | - Rafael S Fais
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo Ribeirão Preto, Brazil
| | - Rhian M Touyz
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical sciences, University of Glasgow Glasgow, UK
| | - Rita C Tostes
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo Ribeirão Preto, Brazil
| |
Collapse
|
24
|
Aldosterone induces clonal β-cell failure through glucocorticoid receptor. Sci Rep 2015; 5:13215. [PMID: 26287126 PMCID: PMC4541150 DOI: 10.1038/srep13215] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 07/20/2015] [Indexed: 12/21/2022] Open
Abstract
Aldosterone excess causes insulin resistance in peripheral tissues and directly impairs the function of clonal β-cell. The aim of this study was to investigate the molecular mechanisms involved in the aldosterone-induced impairment of clonal β-cells. As expected, aldosterone induced apoptosis and β-cell dysfunction, including impairment of insulin synthesis and secretion, which were reversed by Glucocorticoid receptor (GR) antagonists or GR-specific siRNA. However, mineralocorticoid receptor (MR) antagonists or MR-specific siRNA had no effect on impairment of clonal β-cells induced by aldosterone. Besides, aldosterone significantly decreased expression and activity of MafA, while activated JNK and p38 MAPK in a GR-dependent manner. In addition, JNK inhibitors (SP600125) and/or p38 inhibitors (SB203580) could abolish the effect of aldosterone on MafA expression and activity. Importantly, overexpression of JNK1 or p38 reversed the protective effect of a GR antagonist on the decrease of MafA expression and activity. Furthermore, aldosterone inhibits MafA expression at the transcriptional and post-transcriptional level through activation of JNK and p38, respectively. Consequently, overexpression of MafA increased synthesis and secretion of insulin, and decreased apoptosis in clonal β-cells exposed to aldosterone. These findings identified aldosterone as an inducer of clonal β-cell failure that operates through the GR-MAPK-MafA signaling pathway.
Collapse
|
25
|
Celik G, Yilmaz S, Kebapcilar L, Gundogdu A. Central arterial characteristics of gout patients with chronic kidney diseases. Int J Rheum Dis 2015; 20:628-638. [DOI: 10.1111/1756-185x.12689] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Gulperi Celik
- Division of Nephrology; Department of Internal Medicine; Faculty of Medicine; Selcuk University; Konya Turkey
| | - Sema Yilmaz
- Division of Rheumatology; Department of Internal Medicine; Faculty of Medicine; Selcuk University; Konya Turkey
| | - Levent Kebapcilar
- Division of Endocrinology; Department of Internal Medicine; Faculty of Medicine; Selcuk University; Konya Turkey
| | - Ali Gundogdu
- Department of Internal Medicine; Faculty of Medicine, Selcuk University; Konya Turkey
| |
Collapse
|
26
|
da Silva AR, Fraga-Silva RA, Stergiopulos N, Montecucco F, Mach F. Update on the role of angiotensin in the pathophysiology of coronary atherothrombosis. Eur J Clin Invest 2015; 45:274-87. [PMID: 25586671 DOI: 10.1111/eci.12401] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/10/2015] [Indexed: 12/17/2022]
Abstract
BACKGROUND Coronary atherothrombosis due to atherosclerotic plaque rupture or erosion is frequently associated with acute coronary syndromes (ACS). Significant efforts have been made to elucidate the pathophysiological mechanisms underlying acute coronary events. MATERIALS AND METHODS This narrative review is based on the material searched for and obtained via PubMed up to August 2014. The search terms we used were as follows: 'angiotensin, acute coronary syndromes, acute myocardial infarction' in combination with 'atherosclerosis, vulnerability, clinical trial, ACE inhibitors, inflammation'. RESULTS Among several regulatory components, the renin-angiotensin system (RAS) was shown as a key pathway modulating coronary atherosclerotic plaque vulnerability. Indeed, these molecules are involved in all stages of atherogenesis. Classically, the RAS is composed by a series of enzymatic reactions leading to the angiotensin (Ang) II generation and activity. However, the knowledge of RAS has expanded and become more complex. The discovery of novel components and their functions has revealed additional pathways that contribute to or counterbalance the actions of Ang II. In this review, we discussed on recent findings concerning the role of different angiotensin peptides in the pathophysiology of ACS and coronary atherothrombosis, exploring the link between these molecules and atherosclerotic plaque vulnerability. CONCLUSIONS Treatments selectively targeting angiotensins (including Mas and AT2 agonists, ACE2 recombinant, or Ang-(1-7) and almandine in oral formulations) have been tested in animal studies or in small human subgroups, expanding the perspective in the ACS prevention. These novel strategies, especially in the counter-regulatory axis ACE2/Ang-(1-7)/Mas, might be promising to reduce plaque vulnerability and inflammation.
Collapse
Affiliation(s)
- Analina R da Silva
- Division of Cardiology, Foundation for Medical Researches, Department of Medical Specialties, University of Geneva, Geneva, Switzerland
| | | | | | | | | |
Collapse
|