1
|
Ahmadi A, Hosseini F, Rostami M, Soukhtanloo M. Anticancer effects of alpha-lipoic acid, a potent organosulfur compound by modulating matrix metalloproteinases and apoptotic markers in osteosarcoma MG-63 cells. J Steroid Biochem Mol Biol 2025; 247:106664. [PMID: 39694075 DOI: 10.1016/j.jsbmb.2024.106664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/11/2024] [Accepted: 12/15/2024] [Indexed: 12/20/2024]
Abstract
Osteosarcoma (OS), an extremely aggressive form of bone tumor primarily affects young adults. Despite significant advancements in clinical trials, the ability of cancer cells to metastasize and resist apoptosis remains a major challenge. To address these issues, novel therapeutic interventions with high specificity for these processes are essential. Alpha-lipoic acid (ALA), an organosulfur compound derived from octanoic acid, possesses a range of pharmacological properties. This study hypothesizes that ALA would inhibit metastasis and induce cell apoptosis in OS. To evaluate the potential of ALA, its effects on the migration, metastasis, and cell cycle of MG-63 OS cells were assessed, along with its ability to trigger apoptosis. To these aims, MG-63 cells were exposed to varying concentrations of ALA, and cell viability was measured using the alamarBlue assay. The impact of ALA on cell cycle progression, apoptosis, migration, and metastasis was analyzed through flow cytometry, scratch assay, and gelatin zymography. After validating the expression of MMP2, MMP9, VEGF, VEGFR, BAX, BCL-2, and P53 by the GEO database, the expression levels of these genes were examined through quantitative PCR (qPCR). Eventually, molecular docking was employed to simulate the interactions between ALA and matrix metalloproteinase (MMPs). The results demonstrated that ALA significantly inhibited cell migration, induced cell cycle arrest, and promoted apoptosis by upregulating P53 and BAX expression while downregulating BCL-2 levels. Furthermore, ALA was found to suppress the activity and expression of MMP2 and MMP9 and reduce the expression of angiogenesis markers. Notably, ALA interacted directly with the active site of MMP2 and MMP9. These findings suggest that ALA has the potential to be a promising agent with anti-cancer effects on MG-63 cells, warranting further preclinical investigations.
Collapse
Affiliation(s)
- Abdolreza Ahmadi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemehsadat Hosseini
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Rostami
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Soukhtanloo
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Shanaida M, Lysiuk R, Mykhailenko O, Hudz N, Abdulsalam A, Gontova T, Oleshchuk O, Ivankiv Y, Shanaida V, Lytkin D, Bjørklund G. Alpha-lipoic Acid: An Antioxidant with Anti-aging Properties for Disease Therapy. Curr Med Chem 2025; 32:23-54. [PMID: 38644711 DOI: 10.2174/0109298673300496240416114827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 04/23/2024]
Abstract
The anti-aging effects of alpha-lipoic acid (αLA), a natural antioxidant synthesized in human tissues, have attracted a growing interest in recent years. αLA is a short- -chain sulfur-containing fatty acid occurring in the mitochondria of all kinds of eukaryotic cells. Both the oxidized disulfide of αLA and its reduced form (dihydrolipoic acid, DHLA) exhibit prominent antioxidant function. The amount of αLA inside the human body gradually decreases with age resulting in various health disorders. Its lack can be compensated by supplying from external sources such as dietary supplements or medicinal dosage forms. The primary objectives of this study were the analysis of updated information on the latest two-decade research regarding the use of αLA from an anti-aging perspective. The information was collected from PubMed, Wiley Online Library, Scopus, ScienceDirect, SpringerLink, Google Scholar, and clinicaltrials.gov. Numerous in silico, in vitro, in vivo, and clinical studies revealed that αLA shows a protective role in biological systems by direct or indirect reactive oxygen/nitrogen species quenching. αLA demonstrated beneficial properties in the prevention and treatment of many age-related disorders such as neurodegeneration, metabolic disorders, different cancers, nephropathy, infertility, and skin senescence. Its preventive effects in case of Alzheimer's and Parkinson's diseases are of particular interest. Further mechanistic and clinical studies are highly recommended to evaluate the wide spectrum of αLA therapeutic potential that could optimize its dietary intake for prevention and alleviation disorders related to aging.
Collapse
Affiliation(s)
- Mariia Shanaida
- I. Horbachevsky Ternopil National Medical University, 46001, Ternopil, Ukraine
- CONEM Ukraine Natural Drugs Research Group, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Roman Lysiuk
- Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
| | - Olha Mykhailenko
- Department of Research National University of Pharmacy, Kharkiv, 61168, Ukraine
- Pharmacognosy and Phytotherapy Group, UCL School of Pharmacy; 29-39 Brunswick Square, WC1N 1AX, London, United Kingdom
- CONEM Ukraine Bromatology and Medicinal Chemistry Group, National University of Pharmacy, Kharkiv, Ukraine
| | - Nataliia Hudz
- Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
- Department of Pharmacy and Ecological Chemistry, University of Opole, 45-052, Opole, Poland
| | | | - Tetiana Gontova
- Department of Research National University of Pharmacy, Kharkiv, 61168, Ukraine
| | | | - Yana Ivankiv
- I. Horbachevsky Ternopil National Medical University, 46001, Ternopil, Ukraine
| | - Volodymyr Shanaida
- CONEM Ukraine Natural Drugs Research Group, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
- Department of Research Ternopil Ivan Puluj National Technical University, Ternopil, 46001, Ukraine
| | - Dmytro Lytkin
- Department of Research National University of Pharmacy, Kharkiv, 61168, Ukraine
| | - Geir Bjørklund
- Department of Research Council for Nutritional and Environmental Medicine, 8610 Mo i Rana, Norway
| |
Collapse
|
3
|
Yan S, Lu J, Chen B, Yuan L, Chen L, Ju L, Cai W, Wu J. The Multifaceted Role of Alpha-Lipoic Acid in Cancer Prevention, Occurrence, and Treatment. Antioxidants (Basel) 2024; 13:897. [PMID: 39199143 PMCID: PMC11351715 DOI: 10.3390/antiox13080897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024] Open
Abstract
Alpha-lipoic acid (ALA) is a naturally occurring compound synthesized by mitochondria and widely distributed in both animal and plant tissues. It primarily influences cellular metabolism and oxidative stress networks through its antioxidant properties and is an important drug for treating metabolic diseases associated with oxidative damage. Nevertheless, research indicates that the mechanism by which ALA affects cancer cells is distinct from that observed in normal cells, exhibiting pro-oxidative properties. Therefore, this review aims to describe the main chemical and biological functions of ALA in the cancer environment, including its mechanisms and effects in tumor prevention and anticancer activity, as well as its role as an adjunctive drug in cancer therapy. We specifically focus on the interactions between ALA and various carcinogenic and anti-carcinogenic pathways and discuss ALA's pro-oxidative capabilities in the unique redox environment of cancer cells. Additionally, we elaborate on ALA's roles in nanomedicine, hypoxia-inducible factors, and cancer stem cell research, proposing hypotheses and potential explanations for currently unresolved issues.
Collapse
Affiliation(s)
- Shuai Yan
- Medical School, Nantong University, Nantong 226300, China; (S.Y.); (J.L.); (B.C.)
| | - Jiajie Lu
- Medical School, Nantong University, Nantong 226300, China; (S.Y.); (J.L.); (B.C.)
| | - Bingqing Chen
- Medical School, Nantong University, Nantong 226300, China; (S.Y.); (J.L.); (B.C.)
| | - Liuxia Yuan
- Institute of Liver Diseases, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226300, China; (L.Y.); (L.C.); (L.J.)
| | - Lin Chen
- Institute of Liver Diseases, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226300, China; (L.Y.); (L.C.); (L.J.)
| | - Linglin Ju
- Institute of Liver Diseases, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226300, China; (L.Y.); (L.C.); (L.J.)
| | - Weihua Cai
- Department of Hepatobiliary Surgery, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226300, China;
| | - Jinzhu Wu
- Medical School, Nantong University, Nantong 226300, China; (S.Y.); (J.L.); (B.C.)
- Department of Hepatobiliary Surgery, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226300, China;
| |
Collapse
|
4
|
Yu Q, Fang Z, Luan S, Wang L, Shi H. Biological applications of lipoic acid-based polymers: an old material with new promise. J Mater Chem B 2024; 12:4574-4583. [PMID: 38683108 DOI: 10.1039/d4tb00581c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Lipoic acid (LA) is a versatile antioxidant that has been used in the treatment of various oxidation-reduction diseases over the past 70 years. Owing to its large five-membered ring tension, the dynamic disulfide bond of LA is highly active, enabling the formation of poly(lipoic acid) (PLA) via ring-opening polymerization (ROP). Herein, we first summarize disulfide-mediated ROP polymerization strategies, providing basic routes for designing and preparing PLA-based materials. PLA, as a biologically derived, low toxic, and easily modified material, possesses dynamic disulfide bonds and universal non-covalent carboxyl groups. We also shed light on the biomedical applications of PLA-based materials based on their biological and structural features and further divide recent works into six categories: antibacterial, anti-inflammation, anticancer, adhesive, flexible electronics, and 3D-printed tissue scaffolds. Finally, the challenges and future prospects associated with the biomedical applications of PLA are discussed.
Collapse
Affiliation(s)
- Qing Yu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Zhiyue Fang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Shifang Luan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Lei Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Hengchong Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
5
|
Önder E, Çil N, Seçme M, Mete GA. Effect of alpha lipoic acid on epithelial mesenchymal transition in SKOV-3 cells. Gene 2024; 892:147880. [PMID: 37813206 DOI: 10.1016/j.gene.2023.147880] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 10/11/2023]
Abstract
BACKGROUND Ovarian cancer is the fifth leading cause of cancer-related death in women. Patients are usually diagnosed with advanced tumor metastass. Epithelial over cancer cells spread from primary tumor by undergoing epithelial mesenchymal transition (EMT). It has been suggested that alpha lipoic acid (ALA), a natural antioxidant lipophilic compound, reduces the oxidative stress by causing apoptosis and inhibition of proliferation of cell in cancer cells. The aim of our study was to establish a transforming growth factor β1 (TGF β1) dependent epithelial mesenchymal transition model in the SKOV-3 ovarian adenocarcinoma cell line which is an epithelial subtype of ovarian cancer and to investigate the effects of alpha lipoic acid on EMT and ovarian cancer migration. METHODS For establish an EMT model, SKOV-3 cells were treated with different dose of TGF β1 and XTT cell viability kit was used to find IC 50 dose of ALA. Four different groups that are control, TGF β1, ALA and ALA + TGF β1 were created. Changes in the expression of genes related to EMT markers that are E-cadherin, vimentin, Snail, Slug, Twist and Zeb were analyzed with quantitative real-time PCR. These proteins were determined with the immunocytochemistry method. The migration capacity was analyzed with wound healing assay. Matrigel invasion capacity test was used to show invasion and colonization test to show colonization. RESULTS The dose of TGF β1 was determined 100 ng/ml at 72 h, the IC50 dose of ALA 219.033 µM at 48 h was determined. EMT markers in the TGF β1 group were compatible with EMT and it was shown to inhibit EMT in the groups given ALA. According to wound healing, colonization and invasion experiments, proliferation and invasion increased in TGF β1 group, but decreased in ALA and combined groups (p < 0.05). CONCLUSION These results indicate that ALA suppresses the metastasis of ovarian cancer cells by regulating EMT, implying that ALA might be a potential therapeutic agent for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Elif Önder
- Department of Histology and Embryology, Faculty of Medicine, Pamukkale University, Pamukkale, Denizli, Turkey.
| | - Nazlı Çil
- Department of Histology and Embryology, Faculty of Medicine, Pamukkale University, Pamukkale, Denizli, Turkey.
| | - Mücahit Seçme
- Ordu University, Department of Medical Biology, Faculty of Medicine, Ordu, Turkey.
| | - Gülçin Abban Mete
- Department of Histology and Embryology, Faculty of Medicine, Pamukkale University, Pamukkale, Denizli, Turkey.
| |
Collapse
|
6
|
Bosso M, Haddad D, Al Madhoun A, Al-Mulla F. Targeting the Metabolic Paradigms in Cancer and Diabetes. Biomedicines 2024; 12:211. [PMID: 38255314 PMCID: PMC10813379 DOI: 10.3390/biomedicines12010211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Dysregulated metabolic dynamics are evident in both cancer and diabetes, with metabolic alterations representing a facet of the myriad changes observed in these conditions. This review delves into the commonalities in metabolism between cancer and type 2 diabetes (T2D), focusing specifically on the contrasting roles of oxidative phosphorylation (OXPHOS) and glycolysis as primary energy-generating pathways within cells. Building on earlier research, we explore how a shift towards one pathway over the other serves as a foundational aspect in the development of cancer and T2D. Unlike previous reviews, we posit that this shift may occur in seemingly opposing yet complementary directions, akin to the Yin and Yang concept. These metabolic fluctuations reveal an intricate network of underlying defective signaling pathways, orchestrating the pathogenesis and progression of each disease. The Warburg phenomenon, characterized by the prevalence of aerobic glycolysis over minimal to no OXPHOS, emerges as the predominant metabolic phenotype in cancer. Conversely, in T2D, the prevailing metabolic paradigm has traditionally been perceived in terms of discrete irregularities rather than an OXPHOS-to-glycolysis shift. Throughout T2D pathogenesis, OXPHOS remains consistently heightened due to chronic hyperglycemia or hyperinsulinemia. In advanced insulin resistance and T2D, the metabolic landscape becomes more complex, featuring differential tissue-specific alterations that affect OXPHOS. Recent findings suggest that addressing the metabolic imbalance in both cancer and diabetes could offer an effective treatment strategy. Numerous pharmaceutical and nutritional modalities exhibiting therapeutic effects in both conditions ultimately modulate the OXPHOS-glycolysis axis. Noteworthy nutritional adjuncts, such as alpha-lipoic acid, flavonoids, and glutamine, demonstrate the ability to reprogram metabolism, exerting anti-tumor and anti-diabetic effects. Similarly, pharmacological agents like metformin exhibit therapeutic efficacy in both T2D and cancer. This review discusses the molecular mechanisms underlying these metabolic shifts and explores promising therapeutic strategies aimed at reversing the metabolic imbalance in both disease scenarios.
Collapse
Affiliation(s)
- Mira Bosso
- Department of Pathology, Faculty of Medicine, Health Science Center, Kuwait University, Safat 13110, Kuwait
| | - Dania Haddad
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (D.H.); (A.A.M.)
| | - Ashraf Al Madhoun
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (D.H.); (A.A.M.)
- Department of Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Fahd Al-Mulla
- Department of Pathology, Faculty of Medicine, Health Science Center, Kuwait University, Safat 13110, Kuwait
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (D.H.); (A.A.M.)
| |
Collapse
|
7
|
Bossio S, Perri A, Gallo R, De Bartolo A, Rago V, La Russa D, Di Dio M, La Vignera S, Calogero AE, Vitale G, Aversa A. Alpha-Lipoic Acid Reduces Cell Growth, Inhibits Autophagy, and Counteracts Prostate Cancer Cell Migration and Invasion: Evidence from In Vitro Studies. Int J Mol Sci 2023; 24:17111. [PMID: 38069431 PMCID: PMC10707055 DOI: 10.3390/ijms242317111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Alpha-lipoic acid (ALA) is a natural antioxidant dithiol compound, exerting antiproliferative and antimetastatic effects in various cancer cell lines. In our study, we demonstrated that ALA reduces the cell growth of prostate cancer cells LNCaP and DU-145. Western blot results revealed that in both cancer cells, ALA, by upregulating pmTOR expression, reduced the protein content of two autophagy initiation markers, Beclin-1 and MAPLC3. Concomitantly, MTT assays showed that chloroquine (CQ) exposure, a well-known autophagy inhibitor, reduced cells' viability. This was more evident for treatment using the combination ALA + CQ, suggesting that ALA can reduce cells' viability by inhibiting autophagy. In addition, in DU-145 cells we observed that ALA affected the oxidative/redox balance system by deregulating the KEAP1/Nrf2/p62 signaling pathway. ALA decreased ROS production, SOD1 and GSTP1 protein expression, and significantly reduced the cytosolic and nuclear content of the transcription factor Nrf2, concomitantly downregulating p62, suggesting that ALA disrupted p62-Nrf2 feedback loop. Conversely, in LNCaP cells, ALA exposure upregulated both SOD1 and p62 protein expression, but did not affect the KEAP1/Nrf2/p62 signaling pathway. In addition, wound-healing, Western blot, and immunofluorescence assays evidenced that ALA significantly reduced the motility of LNCaP and DU-145 cells and downregulated the protein expression of TGFβ1 and vimentin and the deposition of fibronectin. Finally, a soft agar assay revealed that ALA decreased the colony formation of both the prostate cancer cells by affecting the anchorage independent growth. Collectively, our in vitro evidence demonstrated that in prostate cancer cells, ALA reduces cell growth and counteracts both migration and invasion. Further studies are needed in order to achieve a better understanding of the underlined molecular mechanisms.
Collapse
Affiliation(s)
- Sabrina Bossio
- Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Græcia”, 88100 Catanzaro, Italy; (S.B.); (A.P.)
| | - Anna Perri
- Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Græcia”, 88100 Catanzaro, Italy; (S.B.); (A.P.)
| | - Raffaella Gallo
- Laboratory of Immunology, Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Græcia”, 88100 Catanzaro, Italy;
| | - Anna De Bartolo
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, University of Calabria, 87036 Rende, Italy;
| | - Vittoria Rago
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
| | - Daniele La Russa
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy;
| | - Michele Di Dio
- Division of Urology, Department of Surgery, Annunziata Hospital, 87100 Cosenza, Italy;
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy; (S.L.V.); (A.E.C.)
| | - Aldo E. Calogero
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy; (S.L.V.); (A.E.C.)
| | - Giovanni Vitale
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, 20133 Milan, Italy;
- Laboratory of Geriatric and Oncologic Neuroendocrinology Research, IRCCS Istituto Auxologico Italiano, 20145 Milan, Italy
| | - Antonio Aversa
- Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Græcia”, 88100 Catanzaro, Italy; (S.B.); (A.P.)
| |
Collapse
|
8
|
Letafati A, Sakhavarz T, Khosravinia MM, Ardekani OS, Sadeghifar S, Norouzi M, Naseri M, Ghaziasadi A, Jazayeri SM. Exploring the correlation between progression of human papillomavirus infection towards carcinogenesis and nutrition. Microb Pathog 2023; 183:106302. [PMID: 37567326 DOI: 10.1016/j.micpath.2023.106302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/13/2023]
Abstract
Human papillomavirus (HPV) is a common sexually transmitted virus that can lead to the development of various types of cancer. While there are vaccines available to prevent HPV infection, there is also growing interest in the role of nutrition in reducing the risk of HPV-related cancers in HPV positive patients. Diet and nutrition play a critical role in maintaining overall health and preventing various diseases. A healthy diet can strengthen the immune system, which is essential for fighting off infections, including HPV infections, and preventing the growth and spread of cancer cells. Therefore, following a healthy diet and maintaining a healthy weight are important components of HPV and cancer prevention. This article explores the current scientific evidence on the relationship between nutrition and HPV, including the impact of specific nutrients, dietary patterns, and supplements on HPV infection toward cancer progression.
Collapse
Affiliation(s)
- Arash Letafati
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Tannaz Sakhavarz
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran.
| | - Mohammad Mahdi Khosravinia
- Personalized Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Omid Salahi Ardekani
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran.
| | - Samira Sadeghifar
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran.
| | - Mehdi Norouzi
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran.
| | - Mona Naseri
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran.
| | - Azam Ghaziasadi
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran.
| | - Seyed Mohammad Jazayeri
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
9
|
Izadi A, Soukhtanloo M, Mirzavi F, Jalili-Nik M, Sadeghi A. Alpha-Lipoic Acid, Auraptene, and Particularly Their Combination Prevent the Metastasis of U87 Human Glioblastoma Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:8618575. [PMID: 37496822 PMCID: PMC10368506 DOI: 10.1155/2023/8618575] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/10/2023] [Accepted: 07/03/2023] [Indexed: 07/28/2023]
Abstract
Background The primary malignant brain tumor glioblastoma multiforme (GBM) is most commonly detected in individuals over 60 years old. The standard therapeutic approach for GBM is radiotherapy combined with temozolomide. Recently, herbal products, such as alpha-lipoic acid (ALA) and auraptene (AUR), have shown promising anticancer effects on various cancer cells and animal models. However, it is not well understood how ALA, AUR, and their combination in GBM work to combat cancer. Thus, the purpose of this study was to investigate the antimetastatic effects of the ALA-AUR combination on U87 human glioblastoma cells. Methods The inhibitory effects of ALA, AUR, and the ALA/AUR combination on the migration and metastasis of U87 cells were evaluated using a wound healing test and gelatin zymography. The expression levels of matrix metalloproteinase MMP-2 and MMP-9 were assessed at the transcriptional and translational levels using quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting, respectively. Results Our findings revealed that combination therapy reduced cell migration and metastasis, which was indicated by the reduction in MMP-2/-9 expression both at mRNA and protein levels, as well as their enzymatic activity in U87 cells. Conclusion This study demonstrated that the combination of ALA and AUR effectively inhibited the migration and metastasis of U87 cells. Thus, given their safety and favorable specifications, the combination of these drugs can be a promising candidate for GBM treatment as primary or adjuvant therapy.
Collapse
Affiliation(s)
- Azam Izadi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Soukhtanloo
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farshad Mirzavi
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Jalili-Nik
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Asie Sadeghi
- Department of Clinical Biochemistry, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
10
|
Celik A, Bakar-Ates F. Alpha-lipoic acid induced apoptosis of PC3 prostate cancer cells through an alteration on mitochondrial membrane depolarization and MMP-9 mRNA expression. Med Oncol 2023; 40:244. [PMID: 37453954 DOI: 10.1007/s12032-023-02113-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
Cancer has become an important cause of mortality and morbidity in the world. Over the past decades, biomedical research revealed insights into the molecular events and signaling pathways involved in carcinogenesis and cancer progression. Matrix metalloproteinases (MMPs) are a diverse family of enzymes that can degrade various components of the extracellular matrix and are considered as potential diagnostic and prognostic biomarkers for many cancer types and cancer stages. Recently, studies on the role of natural-origin active substances in the prevention of cancer development gained importance. Among them, the α-lipoic acid, which is commonly found in plants, displayed potent anti-proliferative effects on cancer cell lines. However, the effect of the compound on the induction of apoptosis and mRNA expression of MMPs in human prostate cancer cells remains unclear. The present study aimed to evaluate the anti-proliferative and apoptotic activity of α-lipoic acid in human PC3 prostate carcinoma cells considering different concentrations and exposure durations. The findings showed that, α-lipoic acid significantly decreased PC3 cell viability with an IC50 value of 1.71 mM at 48 h (p < 0.05). Additionally, the compound significantly increased Annexin-V binding in cells compared to control and induced a significant alteration in mitochondrial membrane potential and caspase levels (p < 0.05). Furhermore, the RT-PCR analyses have revealed that α-lipoic acid reduced MMP-9 mRNA expression in PC3 cells compared to the control (p < 0.05). In conclusion, this study highlights that α-lipoic acid induced apoptosis in human PC3 prostate cancer cells and inhibited the MMP-9 gene at the mRNA level, which is known to play a role in metastasis development.
Collapse
Affiliation(s)
- Aybuke Celik
- Department of Biochemistry, Faculty of Pharmacy, Ankara University, Anadolu, 06560, Ankara, Turkey
| | - Filiz Bakar-Ates
- Department of Biochemistry, Faculty of Pharmacy, Ankara University, Anadolu, 06560, Ankara, Turkey.
| |
Collapse
|
11
|
Effect of Alpha-Lipoic Acid Supplementation on Low-Grade Squamous Intraepithelial Lesions-Double-Blind, Randomized, Placebo-Controlled Trial. Healthcare (Basel) 2022; 10:healthcare10122434. [PMID: 36553960 PMCID: PMC9778332 DOI: 10.3390/healthcare10122434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/09/2022] Open
Abstract
Low-grade squamous intraepithelial lesion (SIL) is a cytologic diagnosis etiologically related to human papilloma virus (HPV) infection that leads to the release of inflammation mediators, the formation of reactive oxygen species (ROS) and decreased levels of antioxidants in tissues, which is why antioxidants might be considered effective against SIL progression. This randomized double-blind placebo-controlled study aimed to investigate the effectiveness of alpha-lipoic acid (ALA) supplementation (600 mg/day) on the regression of low-grade SIL in 100 patients. Low-grade SIL was determined after the cytological screening, colposcopic examination and targeted biopsy and histological confirmation of cytological−colposcopic diagnosis. Inflammation parameters and the presence of HPV were determined by standard laboratory methods. Dietary and lifestyle habits were investigated using a standardized and validated semi-quantitative food questionnaire (FFQ). ALA supplementation significantly reduced the proportion of patients with low-grade cytological abnormalities, in comparison to placebo. Given the obtained level of significance (p < 0.001), the presented results indicate that short-term ALA supplementation shows a clinically significant effect on cervical cytology. Future studies should focus on the use of innovative formulations of ALA that might induce bioavailability and therapeutic efficiency against HPV infection and the investigation of synergistic effects of concurrent dietary/lifestyle modification and ALA supplementation in both low-grade and high-grade SIL.
Collapse
|
12
|
Dong Y, Zhang Y, Zhang Y, Pan X, Bai J, Chen Y, Zhou Y, Lai Z, Chen Q, Hu S, Zhou Q, Zhang Y, Ma F. Dissecting the process of human neutrophil lineage determination by using alpha-lipoic acid inducing neutrophil deficiency model. Redox Biol 2022; 54:102392. [PMID: 35797799 PMCID: PMC9287745 DOI: 10.1016/j.redox.2022.102392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 12/25/2022] Open
Abstract
Granulocyte-monocyte progenitors (GMPs) differentiate into both neutrophils and monocytes. Recently, uni-potential neutrophil progenitors have been identified both in mice and humans using an array of surface markers. However, how human GMPs commit to neutrophil progenitors and the regulatory mechanisms of fate determination remain incompletely understood. In the present study, we established a human neutrophil deficiency model using the small molecule alpha-lipoic acid. Using this neutrophil deficiency model, we determined that the neutrophil progenitor commitment process from CD371+ CD115– GMPs defined by CD34 and CD15 and discovered that critical signals generated by RNA splicing and rRNA biogenesis regulate the process of early commitment for human early neutrophil progenitors derived from CD371+ CD115– GMPs. These processes were elucidated by single-cell RNA sequencing both in vitro and in vivo derived cells. Sequentially, we identified that the transcription factor ELK1 is essential for human neutrophil lineage commitment using the alpha-lipoic acid (ALA)-inducing neutrophil deficiency model. Finally, we also revealed differential roles for long-ELK1 and short-ELK1, balanced by SF3B1, in the commitment process of neutrophil progenitors. Taken together, we discovered a novel function of ALA in regulating neutrophil lineage specification and identified that the SF3B1-ELK axis regulates the commitment of human neutrophil progenitors from CD371+ CD115– GMPs. ALA completely blocks the differentiation of human neutrophils derived from CD34+ stem cells in ex-vivo culture. CD34 and CD15 could be used to define the early differentiation stages of human neutrophil lineage determination. SF3B1-ELK1 signal axis regulates human neutrophil lineage determination.
Collapse
|
13
|
Chakravarti B, Rajput S, Raza S, Rajak S, Tewari A, Gupta P, Upadhyay A, Chattopadhyay N, Sinha RA. Lipoic acid blocks autophagic flux and impairs cellular bioenergetics in breast cancer and reduces stemness. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166455. [PMID: 35680107 DOI: 10.1016/j.bbadis.2022.166455] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 10/18/2022]
|
14
|
Ozhogin IV, Zolotukhin PV, Mukhanov EL, Rostovtseva IA, Makarova NI, Tkachev VV, Beseda DK, Metelitsa AV, Lukyanov BS. Novel molecular hybrids of indoline spiropyrans and α-lipoic acid as potential photopharmacological agents: Synthesis, structure, photochromic and biological properties. Bioorg Med Chem Lett 2021; 31:127709. [PMID: 33242575 DOI: 10.1016/j.bmcl.2020.127709] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 11/18/2022]
Abstract
Organic photochromic compounds are attracting great interest as photoswitchable components of various bioconjugates for using in photopharmacology, targeted drug delivery and bio-imaging. Here we report on the synthesis of two novel molecular hybrids of indoline spiropyrans and alpha-lipoic acid via an esterification reaction. Preliminary photochemical studies revealed photochromic activity of 5-methoxy-substituted spirocompounds in their acetonitrile solutions. Both hybrid spiropyrans along with their parent substances in the hybrids were tested for the short-term cytotoxicity on HeLa cell cultures. The results of cytotoxicity studies showed unpredictable biocompatibility of the hybrids in comparison with the parent hydroxyl-substituted spiropyrans and α-lipoic acid, especially at the relatively high concentration of 2 mM. Using flow cytometry, we demonstrated that the both hybrids induced antioxidant response in the model cells. After the 24 h treatment, the hybrids administered at lower (500 µM) concentration caused suppressed cytosolic ROS and/or induced cellular thiols. At higher concentration, one of the hybrids demonstrated properties qualitatively similar to alpha-lipoic acid, yet far more strong. Together, flow cytometry results suggested that both hybrids of spiropyrans possess emergent biochemical and signaling antioxidant properties, exceeding those of alpha-lipoic acid.
Collapse
Affiliation(s)
- Ilya V Ozhogin
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka Ave., 344090 Rostov-on-Don, Russian Federation.
| | - Peter V Zolotukhin
- Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachka Ave., 344090 Rostov-on-Don, Russian Federation
| | - Eugene L Mukhanov
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka Ave., 344090 Rostov-on-Don, Russian Federation
| | - Irina A Rostovtseva
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka Ave., 344090 Rostov-on-Don, Russian Federation
| | - Nadezhda I Makarova
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka Ave., 344090 Rostov-on-Don, Russian Federation
| | - Valery V Tkachev
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, 1 Akad. Semenova Ave., 142432 Chernogolovka, Moscow Region, Russian Federation
| | - Darya K Beseda
- Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachka Ave., 344090 Rostov-on-Don, Russian Federation
| | - Anatoly V Metelitsa
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka Ave., 344090 Rostov-on-Don, Russian Federation
| | - Boris S Lukyanov
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka Ave., 344090 Rostov-on-Don, Russian Federation
| |
Collapse
|
15
|
Ajith TA. Alpha-lipoic acid: A possible pharmacological agent for treating dry eye disease and retinopathy in diabetes. Clin Exp Pharmacol Physiol 2020; 47:1883-1890. [PMID: 32621549 DOI: 10.1111/1440-1681.13373] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/22/2020] [Accepted: 06/26/2020] [Indexed: 12/13/2022]
Abstract
Alpha-lipoic acid (ALA) is a naturally occurring dithiol micronutrient which acts as a cofactor for mitochondrial enzyme activity. Due to its potential antioxidant activity, it is considered as "universal antioxidant". Previous studies reported the pharmacological benefits of ALA such as glycaemic control, improved insulin sensitivity and alleviation of diabetic complications such as neuropathy and cardiovascular diseases. Dry eye disease and retinopathy are prevalent in diabetic patients. Experimental studies demonstrated the beneficial effects of ALA in dry eye and diabetic retinopathy. ALA can prevent the dry eye by down regulating the expression of matrix metalloproteinase-9 in the corneal epithelial cells and activating the antioxidant status of the ocular surface. Furthermore, its direct antioxidant effect can also prevent oxidative stress-induced corneal surface erosion and lachrymal gland damage. ALA prevents diabetic retinopathy through inhibition of O-linked β-N-acetylglucosamine transferase and nuclear factor-kappa B activity and alleviation of oxidative stress. It can activate the nuclear factor erythroid-2-related factor 2 and AMP-activated protein kinase in retinal ganglion cells. Clinical trials conducted in pre-retinopathic diabetic patients showed ALA with genistein and vitamins could protect the retinal cells and decline the inflammatory effect in diabetic patients. However, studies are scant to explore its beneficial effects in dry eye disease and diabetic retinopathy. Therefore, this review article discusses an update on the role of ALA in dry eye disease and diabetic retinopathy, two ocular diseases prevalent in diabetic patients.
Collapse
|
16
|
Tripathi RKP, Ayyannan SR. Emerging chemical scaffolds with potential SHP2 phosphatase inhibitory capabilities - A comprehensive review. Chem Biol Drug Des 2020; 97:721-773. [PMID: 33191603 DOI: 10.1111/cbdd.13807] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/30/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022]
Abstract
The drug discovery panorama is cluttered with promising therapeutic targets that have been deserted because of inadequate authentication and screening failures. Molecular targets formerly tagged as "undruggable" are nowadays being more cautiously cross-examined, and whilst they stay intriguing, numerous targets are emerging more accessible. Protein tyrosine phosphatases (PTPs) excellently exemplifies a class of molecular targets that have transpired as druggable, with several small molecules and antibodies recently turned available for further development. In this respect, SHP2, a PTP, has emerged as one of the potential targets in the current pharmacological research, particularly for cancer, due to its critical role in various signalling pathways. Recently, few molecules with excellent potency have entered clinical trials, but none could reach the clinic. Consequently, search for novel, non-toxic, and specific SHP2 inhibitors are on purview. In this review, general aspects of SHP2 including its structure and mechanistic role in carcinogenesis have been presented. It also sheds light on the development of novel molecular architectures belonging to diverse chemical classes that have been proposed as SHP2-specific inhibitors along with their structure-activity relationships (SARs), stemming from chemical, mechanism-based and computer-aided studies reported since January 2015 to July 2020 (excluding patents), focusing on their potency and selectivity. The encyclopedic facts and discussions presented herein will hopefully facilitate researchers to design new ligands with better efficacy and selectivity against SHP2.
Collapse
Affiliation(s)
- Rati Kailash Prasad Tripathi
- Department of Pharmaceutical Science, Sushruta School of Medical and Paramedical Sciences, Assam University (A Central University), Silchar, Assam, India.,Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Senthil Raja Ayyannan
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
17
|
Li Z, Paulin D, Lacolley P, Coletti D, Agbulut O. Vimentin as a target for the treatment of COVID-19. BMJ Open Respir Res 2020; 7:7/1/e000623. [PMID: 32913008 PMCID: PMC7482103 DOI: 10.1136/bmjresp-2020-000623] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/18/2022] Open
Abstract
We and others propose vimentin as a possible cellular target for the treatment of COVID-19. This innovative idea is so recent that it requires further attention and debate. The significant role played by vimentin in virus-induced infection however is well established: (1) vimentin has been reported as a co-receptor and/or attachment site for SARS-CoV; (2) vimentin is involved in viral replication in cells; (3) vimentin plays a fundamental role in both the viral infection and the consequent explosive immune-inflammatory response and (4) a lower vimentin expression is associated with the inhibition of epithelial to mesenchymal transition and fibrosis. Moreover, the absence of vimentin in mice makes them resistant to lung injury. Since vimentin has a twofold role in the disease, not only being involved in the viral infection but also in the associated life-threatening lung inflammation, the use of vimentin-targeted drugs may offer a synergistic advantage as compared with other treatments not targeting vimentin. Consequently, we speculate here that drugs which decrease the expression of vimentin can be used for the treatment of patients with COVID-19 and advise that several Food and Drug Administration-approved drugs be immediately tested in clinical trials against SARS-CoV-2, thus broadening therapeutic options for this type of viral infection.
Collapse
Affiliation(s)
- Zhenlin Li
- Biological Adaptation and Ageing, CNRS UMR 8256, Inserm U1164, Sorbonne Université, Institut de Biologie Paris-Seine, Paris, France
| | - Denise Paulin
- Biological Adaptation and Ageing, CNRS UMR 8256, Inserm U1164, Sorbonne Université, Institut de Biologie Paris-Seine, Paris, France
| | - Patrick Lacolley
- Inserm, UMR_S 1116, DCAC, Université de Lorraine, Nancy, Lorraine, France
| | - Dario Coletti
- Biological Adaptation and Ageing, CNRS UMR 8256, Inserm U1164, Sorbonne Université, Institut de Biologie Paris-Seine, Paris, France.,Department of Anatomy, Histology, Forensic Medicine & Orthopedics, Histology & Medical Embryology Section, Sapienza University of Rome, Roma, Lazio, Italy
| | - Onnik Agbulut
- Biological Adaptation and Ageing, CNRS UMR 8256, Inserm U1164, Sorbonne Université, Institut de Biologie Paris-Seine, Paris, France
| |
Collapse
|
18
|
Protective Effect of Alpha-Lipoic Acid on Salivary Dysfunction in a Mouse Model of Radioiodine Therapy-Induced Sialoadenitis. Int J Mol Sci 2020; 21:ijms21114136. [PMID: 32531940 PMCID: PMC7312690 DOI: 10.3390/ijms21114136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/04/2020] [Accepted: 06/06/2020] [Indexed: 11/17/2022] Open
Abstract
Radioiodine (RI) therapy is known to cause salivary gland (SG) dysfunction. The effects of antioxidants on RI-induced SG damage have not been well described. This study was performed to investigate the radioprotective effects of alpha lipoic acid (ALA) administered prior to RI therapy in a mouse model of RI-induced sialadenitis. Four-week-old female C57BL/6 mice were divided into four groups (n = 10 per group): group I, normal control; group II, ALA alone (100 mg/kg); group III, RI alone (0.01 mCi/g body weight, orally); and group IV, ALA + RI (ALA at 100 mg/kg, 24 h and 30 min before RI exposure at 0.01 mCi/g body weight). The animals in these groups were divided into two subgroups and euthanized at 30 or 90 days post-RI treatment. Changes in salivary 99mTc pertechnetate uptake and excretion were tracked by single-photon emission computed tomography. Salivary histological examinations and TUNEL assays were performed. The 99mTc pertechnetate excretion level recovered in the ALA treatment group. Salivary epithelial (aquaporin 5) cells of the ALA + RI group were protected from RI damage. The ALA + RI group exhibited more mucin-containing parenchyma and less fibrotic tissues than the RI only group. Fewer apoptotic cells were observed in the ALA + RI group compared to the RI only group. Pretreatment with ALA before RI therapy is potentially beneficial in protecting against RI-induced salivary dysfunction.
Collapse
|
19
|
Pibiri M, Sulas P, Camboni T, Leoni VP, Simbula G. α-Lipoic acid induces Endoplasmic Reticulum stress-mediated apoptosis in hepatoma cells. Sci Rep 2020; 10:7139. [PMID: 32345994 PMCID: PMC7189383 DOI: 10.1038/s41598-020-64004-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/06/2020] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common liver cancer and a major cause of adult death. The current treatments for HCC suffer from drug resistance and poor prognosis; therefore, novel therapeutic agents are urgently needed. Phytochemicals have been proposed to treat a range of cancers. Among them, α-lipoic acid (α-LA), a naturally synthesized antioxidant found in various dietary animal and plant sources, prevents oxidant-mediated cell death in normal cells while inducing apoptosis in several cancer cell lines. Previously, we demonstrated that the treatment of hepatoma cells with α-LA induced apoptosis, which was preceded by the generation of reactive oxygen species (ROS) and activation of the p53 protein, a known inducer of mitochondria-mediated apoptosis. Several studies have shown that ROS-induced apoptosis is associated with endoplasmic reticulum (ER) stress and Unfolded Protein Response (UPR) activation. Herein, we investigated if α-LA-induced apoptosis in hepatoma cell lines was ER stress- and UPR-mediated by gene expression profiling analyses. UPR and ER stress pathways were the most up-regulated after treatment with α-LA. This finding, which has been confirmed by expression analyses of ER- and UPR-associated proteins, provides a better understanding of the molecular mechanisms behind the anti-tumoral action of α-LA on hepatoma cells.
Collapse
Affiliation(s)
- Monica Pibiri
- Department of Biomedical Sciences, Unit of Oncology and Molecular Pathology, University of Cagliari, Cagliari, Italy
| | - Pia Sulas
- Department of Biomedical Sciences, Unit of Oncology and Molecular Pathology, University of Cagliari, Cagliari, Italy
| | - Tania Camboni
- National Research Council, Institute of Biomedical Technologies, Segrate, Milano, Italy
| | - Vera Piera Leoni
- Department of Biomedical Sciences, Unit of Oncology and Molecular Pathology, University of Cagliari, Cagliari, Italy
| | - Gabriella Simbula
- Department of Biomedical Sciences, Unit of Oncology and Molecular Pathology, University of Cagliari, Cagliari, Italy.
| |
Collapse
|
20
|
Farhat D, Ghayad SE, Icard P, Le Romancer M, Hussein N, Lincet H. Lipoic acid-induced oxidative stress abrogates IGF-1R maturation by inhibiting the CREB/furin axis in breast cancer cell lines. Oncogene 2020; 39:3604-3610. [PMID: 32060422 DOI: 10.1038/s41388-020-1211-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 12/21/2022]
Abstract
The beneficial effects of lipoic acid (LA) in cancer treatment have been well documented in the last decade. Indeed, LA exerts crucial antiproliferative effects by reducing breast cancer cell viability, cell cycle progression and the epithelial-to-mesenchymal transition (EMT). However, the mechanisms of action (MOA) underlying these antiproliferative effects remain to be elucidated. Recently, we demonstrated that LA decreases breast cancer cell proliferation by inhibiting IGF-1R maturation via the downregulation of the proprotein convertase furin. The aim of the present study was to investigate the MOA by which LA inhibits furin expression in estrogen receptor α (ERα) (+) and (-) breast cancer cell lines. We unveil that LA exerts a pro-oxidant effect on these cell lines, the resulting reactive oxygen species (ROS) generated being responsible for the reduction in the expression of the major (CREB) protein. This transcription factor is overexpressed in many types of cancers and regulates the expression of furin in breast cancer cells independently of ERα, as evidenced herein by the inhibition of furin expression following CREB silencing. Consequently, our findings expose for the first time the complete MOA of LA via the CREB/furin axis leading to inhibition of breast cancer cell proliferation.
Collapse
Affiliation(s)
- Diana Farhat
- Université Lyon 1, Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France.,Lebanese University, Faculty of Sciences, Cancer biology Stem Cells and Molecular Immunology, Hadath-Beirut, Lebanon
| | - Sandra E Ghayad
- Department of Biology, Faculty of Science II, Lebanese University, Fanar, Lebanon
| | - Philippe Icard
- Normandie Univ, UNICAEN, CHU de Caen Normandie, Unité de recherche BioTICLA INSERM U 119, 14000, Caen, France.,Service de chirurgie thoracique, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, Paris, France
| | - Muriel Le Romancer
- Université Lyon 1, Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France
| | - Nader Hussein
- Lebanese University, Faculty of Sciences, Cancer biology Stem Cells and Molecular Immunology, Hadath-Beirut, Lebanon
| | - Hubert Lincet
- Université Lyon 1, Lyon, France. .,Inserm U1052, Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France. .,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France. .,ISPB, Faculté de Pharmacie, Lyon, France.
| |
Collapse
|
21
|
The Antioxidant Alpha-Lipoic Acid Inhibits Proliferation and Invasion of Human Gastric Cancer Cells via Suppression of STAT3-Mediated MUC4 Gene Expression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3643715. [PMID: 31915505 PMCID: PMC6930776 DOI: 10.1155/2019/3643715] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/06/2019] [Accepted: 11/26/2019] [Indexed: 12/24/2022]
Abstract
Background Metastasis and invasion are the main causes of mortality in gastric cancer. To improve the treatment of gastric cancer, the development of effective and innovative antitumor agents toward invasion and proliferation is needed. Alpha-lipoic acid (ALA), a naturally occurring thiol antioxidant, showed antiproliferative and cytotoxic effects on several cancers. So it is feasible to explore whether ALA can be used to inhibit proliferation and invasion in human gastric cancer. Methods The expression of MUC4 in human gastric cancer tissues was assayed by immunohistochemistry. Then, we performed in vitro cell proliferation and invasion analysis to explore the antitumor effect of ALA using AGS, BGC-823, and MKN-28 cells. To further explore the mechanism of ALA-mediated downregulation of MUC4, we cotransfected human gastric cancer cells with STAT3 siRNA and STAT3 overexpression construct. ChIP assays were carried out to find the relationship between MUC4 and STAT3. Results We found that the MUC4 gene was strongly expressed in human gastric cancer tissues. Meanwhile, ALA reduced proliferation and invasion of human gastric cancer cells by suppressing MUC4 expression. We also found that STAT3 was involved in the inhibition of MUC4 by ALA. Mechanistically, ALA suppressed MUC4 expression by inhibiting STAT3 binding to the MUC4 promoter region. Conclusion ALA inhibits both proliferation and invasion of gastric cancer cells by suppression of STAT3-mediated MUC4 gene expression.
Collapse
|
22
|
Farhat D, Lincet H. Lipoic acid a multi-level molecular inhibitor of tumorigenesis. Biochim Biophys Acta Rev Cancer 2019; 1873:188317. [PMID: 31669587 DOI: 10.1016/j.bbcan.2019.188317] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/09/2019] [Accepted: 09/24/2019] [Indexed: 12/27/2022]
Abstract
We discuss how lipoic acid (LA), a natural antioxidant, induces apoptosis and inhibits proliferation, EMT, metastasis and stemness of cancer cells. Furthermore, owing to its ability to reduce chemotherapy-induced side effects and chemoresistance, LA appears to be a promising compound for cancer treatment.
Collapse
Affiliation(s)
- D Farhat
- Université Lyon 1, Lyon, France; Inserm U1052, Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France; CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France; Department of Chemistry-Biochemistry, Laboratory of Cancer Biology and Molecular Immunology, EDST-PRASE, Lebanese University, Faculty of Sciences, Hadath- Beirut, Lebanon
| | - H Lincet
- Université Lyon 1, Lyon, France; Inserm U1052, Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France; CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France; ISPB, Faculté de Pharmacie, Lyon, France.
| |
Collapse
|
23
|
Śmiłowicz D, Slootweg JC, Metzler-Nolte N. Bioconjugation of Cyclometalated Gold(III) Lipoic Acid Fragments to Linear and Cyclic Breast Cancer Targeting Peptides. Mol Pharm 2019; 16:4572-4581. [PMID: 31596097 DOI: 10.1021/acs.molpharmaceut.9b00695] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cell-targeting peptides (CTPs) are increasingly used in the field of cancer research due to their high affinity and specificity to cell or tissue targets. In the search for novel metal-based drug candidates, our research group is particularly focused on bioconjugates by utilizing peptides to increase the selectivity of cytotoxic organometallic compounds. Motivated by the relatively high cytotoxic activity of gold complexes, such as Auranofin (approved to treat rheumatoid arthritis), for the treatment of various diseases, we anticipated that gold peptide bioconjugates would present interesting candidates for novel breast cancer therapies. For this, we investigate the use of the natural compound lipoic acid (Lpa) as a bioconjugation handle to link Au complexes in the oxidation state +III to peptides using the dithiol moiety. Using this strategy, we have synthesized Au(III) complex bioconjugates linked to the linear LTVSPWY peptide and two cyclic DfKRG and KTTHWGFTLG tumor-targeting peptides. Solid-phase peptide synthesis (SPPS) was used to prepare the peptides, with lipoic acid introduced N-terminally as a conjugation handle. After peptide cleavage, the metal complex was introduced in solution by first reducing the internal disulfide bond, followed by reaction with Au(ppy)Cl2 (1, ppy: 2-phenyl-pyridine), to yield the Au(III)-Lpa-peptide bioconjugates. The new bioconjugates were successfully synthesized, purified by semi-preparative HPLC, and characterized by ESI-MS. Au(III)-peptide bioconjugates were tested as cytotoxic agents against two different human breast cancer cell lines (MCF-7 and MDA-MB-231) and normal human fibroblasts cells (GM5657T) and compared to cisplatin, the parent Au(III) dichloride complex, and metal-free peptides. These in vitro data show that the Au(III)-peptide bioconjugate 5, possessing the cyclic integrin-targeting RGD-derived peptide sequence in the structure, exhibits improved activity compared to the parent gold(III) compound Au(ppy)Cl2 (1) as well as to cisplatin or the metal-free peptide. Moreover, the excellent targeting properties of 5 are supported by the fact that a Au(III)-peptide conjugate with the exact same peptide sequence, but a linear rather than the cyclic form of 5 exhibits 10 times lower cytotoxic activity.
Collapse
Affiliation(s)
- Dariusz Śmiłowicz
- Inorganic Chemistry I-Bioinorganic Chemistry , Ruhr-University Bochum , Universitätsstraße 150 , Bochum 44801 , Germany
| | - Jack C Slootweg
- Inorganic Chemistry I-Bioinorganic Chemistry , Ruhr-University Bochum , Universitätsstraße 150 , Bochum 44801 , Germany
| | - Nils Metzler-Nolte
- Inorganic Chemistry I-Bioinorganic Chemistry , Ruhr-University Bochum , Universitätsstraße 150 , Bochum 44801 , Germany
| |
Collapse
|
24
|
Li T, Zhao N, Lu J, Zhu Q, Liu X, Hao F, Jiao X. Epigallocatechin gallate (EGCG) suppresses epithelial-Mesenchymal transition (EMT) and invasion in anaplastic thyroid carcinoma cells through blocking of TGF-β1/Smad signaling pathways. Bioengineered 2019; 10:282-291. [PMID: 31311401 PMCID: PMC6650192 DOI: 10.1080/21655979.2019.1632669] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Transforming growth factor (TGF)-β1 plays a crucial role in the epithelial-to-mesenchymal transition (EMT) in many cancer types and in thyroid cancers. Epigallocatechin-3-gallate (EGCG), the most important ingredient in the green tea, has been reported to possess antioxidant and anticancer activities. However, the cellular and molecular mechanisms explaining its action have not been completely understood. In this study, we found that EGCG significantly suppresses EMT, invasion and migration in anaplastic thyroid carcinoma (ATC) 8505C cells in vitro by regulating the TGF-β/Smad signaling pathways. EGCG significantly inhibited TGF-β1-induced expression of EMT markers (E-cadherin reduction and vimentin induction) in 8505C cells in vitro. Treatment with EGCG completely blocked the phosphorylation of Smad2/3, translocation of Smad4. Taken together, these results suggest that EGCG suppresses EMT and invasion and migration by blocking TGFβ/Smad signaling pathways.
Collapse
Affiliation(s)
- Tingting Li
- a Department of Endocrinology , Linyi Central Hospital, Linyi , Yishui , Shandong , China
| | - Ning Zhao
- b Department of Thyroid Surgery , The Affiliated Hospital of Qingdao University , Qingdao , Shandong , China
| | - Jie Lu
- b Department of Thyroid Surgery , The Affiliated Hospital of Qingdao University , Qingdao , Shandong , China
| | - Qingli Zhu
- b Department of Thyroid Surgery , The Affiliated Hospital of Qingdao University , Qingdao , Shandong , China
| | - Xinfeng Liu
- c Department of Nuclear Medicine , The Affiliated Hospital of Qingdao University , Qingdao , Shandong , China
| | - Fengyun Hao
- d Department of Pathology , The Affiliated Hospital of Qingdao University , Qingdao , Shandong , China
| | - Xuelong Jiao
- e Department of General surgery , The Affiliated Hospital of Qingdao University , Qingdao , Shandong , China
| |
Collapse
|
25
|
Salehi B, Berkay Yılmaz Y, Antika G, Boyunegmez Tumer T, Fawzi Mahomoodally M, Lobine D, Akram M, Riaz M, Capanoglu E, Sharopov F, Martins N, Cho WC, Sharifi-Rad J. Insights on the Use of α-Lipoic Acid for Therapeutic Purposes. Biomolecules 2019; 9:biom9080356. [PMID: 31405030 PMCID: PMC6723188 DOI: 10.3390/biom9080356] [Citation(s) in RCA: 208] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/26/2019] [Accepted: 07/26/2019] [Indexed: 12/22/2022] Open
Abstract
α-lipoic acid (ALA, thioctic acid) is an organosulfur component produced from plants, animals, and humans. It has various properties, among them great antioxidant potential and is widely used as a racemic drug for diabetic polyneuropathy-associated pain and paresthesia. Naturally, ALA is located in mitochondria, where it is used as a cofactor for pyruvate dehydrogenase (PDH) and α-ketoglutarate dehydrogenase complexes. Despite its various potentials, ALA therapeutic efficacy is relatively low due to its pharmacokinetic profile. Data suggests that ALA has a short half-life and bioavailability (about 30%) triggered by its hepatic degradation, reduced solubility as well as instability in the stomach. However, the use of various innovative formulations has greatly improved ALA bioavailability. The R enantiomer of ALA shows better pharmacokinetic parameters, including increased bioavailability as compared to its S enantiomer. Indeed, the use of amphiphilic matrices has capability to improve ALA bioavailability and intestinal absorption. Also, ALA's liquid formulations are associated with greater plasma concentration and bioavailability as compared to its solidified dosage form. Thus, improved formulations can increase both ALA absorption and bioavailability, leading to a raise in therapeutic efficacy. Interestingly, ALA bioavailability will be dependent on age, while no difference has been found for gender. The present review aims to provide an updated on studies from preclinical to clinical trials assessing ALA's usages in diabetic patients with neuropathy, obesity, central nervous system-related diseases and abnormalities in pregnancy.
Collapse
Affiliation(s)
- Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 44340847, Iran
| | - Yakup Berkay Yılmaz
- Graduate Program of Biomolecular Sciences, Institute of Natural and Applied Sciences, Canakkale Onsekiz Mart University, Canakkale 17020, Turkey
| | - Gizem Antika
- Graduate Program of Biomolecular Sciences, Institute of Natural and Applied Sciences, Canakkale Onsekiz Mart University, Canakkale 17020, Turkey
| | - Tugba Boyunegmez Tumer
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Canakkale Onsekiz Mart University, Canakkale 17020, Turkey
| | | | - Devina Lobine
- Department of Health Sciences; Faculty of Science, University of Mauritius, Réduit 80837, Mauritius
| | - Muhammad Akram
- Department of Eastern Medicine, Government College University Faisalabad; Faisalabad 38000, Pakistan
| | - Muhammad Riaz
- Department of Allied Health Sciences, Sargodha Medical College, University of Sargodha, Sargodha 40100, Pakistan
| | - Esra Capanoglu
- Faculty of Chemical & Metallurgical Engineering, Food Engineering Department, Istanbul Technical University, Maslak 34469, Turkey
| | - Farukh Sharopov
- Department of Pharmaceutical Technology, Avicenna Tajik State Medical University, Rudaki 139, Dushanbe 734003, Tajikistan.
| | - Natália Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, 30 Gascoigne Road, Hong Kong.
| | - Javad Sharifi-Rad
- Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol 61615-585, Iran.
| |
Collapse
|
26
|
Lipoic Acid Synergizes with Antineoplastic Drugs in Colorectal Cancer by Targeting p53 for Proteasomal Degradation. Cells 2019; 8:cells8080794. [PMID: 31366086 PMCID: PMC6721634 DOI: 10.3390/cells8080794] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/17/2019] [Accepted: 07/20/2019] [Indexed: 12/14/2022] Open
Abstract
Lipoic acid (LA) is a redox-active disulphide compound, which functions as a pivotal co-factor for mitochondrial oxidative decarboxylation. LA and chemical derivatives were shown to target mitochondria in cancer cells with altered energy metabolism, thereby inducing cell death. In this study, the impact of LA on the tumor suppressor protein p53 was analyzed in various colorectal cancer (CRC) cell lines, with a focus on the mechanisms driving p53 degradation. First, LA was demonstrated to trigger the depletion of both wildtype and mutant p53 protein in all CRC cells tested without influencing its gene expression and preceded LA-triggered cytotoxicity. Depletion of p53 coincided with a moderate, LA-dependent ROS production, but was not rescued by antioxidant treatment. LA induced the autophagy receptor p62 and differentially modulated autophagosome formation in CRC cells. However, p53 degradation was not mediated via autophagy as shown by chemical inhibition and genetic abrogation of autophagy. LA treatment also stabilized and activated the transcription factor Nrf2 in CRC cells, which was however dispensable for p53 degradation. Mechanistically, p53 was found to be readily ubiquitinylated and degraded by the proteasomal machinery following LA treatment, which did not involve the E3 ubiquitin ligase MDM2. Intriguingly, the combination of LA and anticancer drugs (doxorubicin, 5-fluorouracil) attenuated p53-mediated stabilization of p21 and resulted in synergistic killing in CRC cells in a p53-dependant manner.
Collapse
|
27
|
Role of coenzymes in cancer metabolism. Semin Cell Dev Biol 2019; 98:44-53. [PMID: 31176736 DOI: 10.1016/j.semcdb.2019.05.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 01/18/2023]
Abstract
Cancer is a heterogeneous set of diseases characterized by the rewiring of cellular signaling and the reprogramming of metabolic pathways to sustain growth and proliferation. In past decades, studies were focused primarily on the genetic complexity of cancer. Recently, increasing number of studies have discovered several mutations among metabolic enzymes in different tumor cells. Most of the enzymes are regulated by coenzymes, organic cofactors, that function as intermediate carrier of electrons or functional groups that are transferred during the reaction. However, the precise role of cofactors is not well elucidated. In this review, we discuss several metabolic enzymes associated to cancer metabolism rewiring, whose inhibition may represent a therapeutic target. Such enzymes, upon expression or inhibition, may impact also the coenzymes levels, but only in few cases, it was possible to direct correlate coenzymes changes with a specific enzyme. In addition, we also summarize an up-to-date information on biological role of some coenzymes, preclinical and clinical studies, that have been carried out in various cancers and their outputs.
Collapse
|
28
|
Analysis of the PD-1/PD-L1 axis in human autoimmune thyroid disease: Insights into pathogenesis and clues to immunotherapy associated thyroid autoimmunity. J Autoimmun 2019; 103:102285. [PMID: 31182340 DOI: 10.1016/j.jaut.2019.05.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/10/2019] [Accepted: 05/14/2019] [Indexed: 11/20/2022]
Abstract
Autoimmune thyroid diseases (AITDs), i.e., Graves' disease (GD) and Hashimoto thyroiditis (HT), are the most prevalent organ-specific autoimmune diseases, but their pathogenesis is still incompletely understood. The PD-1/PD-L1 pathway is an important mechanism of peripheral tolerance that has not been investigated in AITDs. Here, we report the analysis of the expression of PD-1, PD-L1 and PD-L2 in PBMCs, infiltrating thyroid lymphocytes (ITLs) and in thyroid follicular cells (TFCs) in GD, HT and multinodular goiter (MNG) patients and healthy controls PBMCs (HC). By combining flow cytometry, tissue immunofluorescence and induction experiments on primary and thyroid cell line cultures, we show that: 1) while PD-1+ T cells are moderately expanded in PBMCs from GD vs HC, approximately half of T cells in the infiltrate are PD-1+ including some PD-1hi; 2) PD-L1, but not PD-L2, is expressed by 81% of GD glands and in 25% of non-autoimmune glands; 3) PD-L1, was expressed by TFCs in areas that also contain abundant PD-1 positive T cells but; 4) co-localization in TFCs indicated only partial overlap between the smaller areas of the PD-L1+ and the larger areas of HLA class II+ expression; 5) IFNγ is capable of inducing PD-L1 in >90% of TFCs in primary cultures and cell lines. Collectively these results indicate that the PD-1/PD-L1 axis is operative in AITD glands and may restrain the autoimmune response. Yet the discrepancy between easy induction in vitro and the limited expression in vivo (compared to HLA) suggests that PD-L1 expression in vivo is partially inhibited in GD and HT glands. In conclusions 1) the PD-1/PD-L1 pathway is activated in AITD glands but probably not to the extent to inhibit disease progression and 2) Thyroid autoimmunity arising after PD-1/PD-L1 blocking therapies in cancer patients may result from interfering PD-1/PD-L1 tolerance mechanism in thyroid with minimal (focal) thyroiditis. Finally acting on the PD-1/PD-L1 pathway could be a new approach to treat AITD and other organ-specific autoimmunity in the future.
Collapse
|
29
|
α-Lipoic acid inhibits the migration and invasion of breast cancer cells through inhibition of TGFβ signaling. Life Sci 2018; 207:15-22. [DOI: 10.1016/j.lfs.2018.05.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/19/2018] [Accepted: 05/22/2018] [Indexed: 01/29/2023]
|
30
|
Fayez AM, Zakaria S, Moustafa D. Alpha lipoic acid exerts antioxidant effect via Nrf2/HO-1 pathway activation and suppresses hepatic stellate cells activation induced by methotrexate in rats. Biomed Pharmacother 2018; 105:428-433. [PMID: 29879626 DOI: 10.1016/j.biopha.2018.05.145] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 05/26/2018] [Accepted: 05/28/2018] [Indexed: 12/14/2022] Open
Abstract
Hepatic injury is a major side effect associated with methotrexate (MTX) therapy resulting from inflammatory reactions and oxidative stress induction. Therefore, liver fibrosis incidence is augmented with long-term MTX therapy. Alpha lipoic acid (ALA) is a naturally occurring compound with potent antioxidant activity. This study explored the hepatoprotective mechanisms of ALA against MTX-induced hepatic injury in rats. Hepatic injury was induced in MTX group by 20 mg/kg body weight ip. injection of MTX. ALA group was pretreated with ALA 60 mmol/kg body weight ip. for five days followed by a single dose of MTX in the sixth day. Blood samples and liver tissues were then obtained to assess several biochemical parameters as serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), reduced glutathione (GSH), total antioxidant capacity (TAC) and lipid peroxidation. Nuclear factor E2-related factor 2/heme oxygenase-1 (Nrf2/HO-1) pathway was studied by determining the extent of mRNA Nrf2 expression and the level of HO-1. Hepatic stellate cells (HSCs) activation was evaluated by estimating the expression of α-smooth muscle actin (α-SMA) and hydroxyproline content. Also, tumor necrosis factor alpha (TNF-α), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and caspase-3 were assessed by ELISA in addition to histopathological examination of liver samples. Results showed that ALA pretreatment improved liver function since serum ALT, AST and ALP levels were reduced. Additionally, ALA restored GSH and TAC levels when compared to MTX group and decreased lipid peroxidation. ALA exerted its antioxidant effect via Nrf2/HO-1 pathway as well as it showed anti-inflammatory and antiapoptotic effects by reducing TNF-α, iNOS, COX-2 and caspase-3 levels in liver tissue homogenate. Finally, ALA suppressed HSCs activation by decreasing α-SMA expression and hydroxyproline content in liver. It was concluded that ALA has hepatoprotective effects against MTX-induced hepatic injury mediated by Nrf2/HO-1 pathway as well as anti-inflammatory and antiapoptotic properties.
Collapse
Affiliation(s)
- Ahmed M Fayez
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, MSA University, 6 October City, Giza, Egypt
| | - Soad Zakaria
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October 6 University, 6 October City, Giza, Egypt.
| | - Dina Moustafa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October 6 University, 6 October City, Giza, Egypt
| |
Collapse
|
31
|
Activation of AMPK inhibits TGF-β1-induced airway smooth muscle cells proliferation and its potential mechanisms. Sci Rep 2018; 8:3624. [PMID: 29483552 PMCID: PMC5827654 DOI: 10.1038/s41598-018-21812-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 02/09/2018] [Indexed: 02/08/2023] Open
Abstract
The aims of the present study were to examine signaling mechanisms underlying transforming growth factor β1 (TGF-β1)-induced airway smooth muscle cells (ASMCs) proliferation and to determine the effect of adenosine monophosphate-activated protein kinase (AMPK) activation on TGF-β1-induced ASMCs proliferation and its potential mechanisms. TGF-β1 reduced microRNA-206 (miR-206) level by activating Smad2/3, and this in turn up-regulated histone deacetylase 4 (HDAC4) and consequently increased cyclin D1 protein leading to ASMCs proliferation. Prior incubation of ASMCs with metformin induced AMPK activation and blocked TGF-β1-induced cell proliferation. Activation of AMPK slightly attenuated TGF-β1-induced miR-206 suppression, but dramatically suppressed TGF-β1-caused HDAC4 up-expression and significantly increased HDAC4 phosphorylation finally leading to reduction of up-regulated cyclin D1 protein expression. Our study suggests that activation of AMPK modulates miR-206/HDAC4/cyclin D1 signaling pathway, particularly targeting on HDAC4, to suppress ASMCs proliferation and therefore has a potential value in the prevention and treatment of asthma by alleviating airway remodeling.
Collapse
|
32
|
Yang L, Wen Y, Lv G, Lin Y, Tang J, Lu J, Zhang M, Liu W, Sun X. α-Lipoic acid inhibits human lung cancer cell proliferation through Grb2-mediated EGFR downregulation. Biochem Biophys Res Commun 2017; 494:325-331. [DOI: 10.1016/j.bbrc.2017.10.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 10/05/2017] [Indexed: 11/16/2022]
|
33
|
da Fonseca LM, da Silva VA, Freire-de-Lima L, Previato JO, Mendonça-Previato L, Capella MAM. Glycosylation in Cancer: Interplay between Multidrug Resistance and Epithelial-to-Mesenchymal Transition? Front Oncol 2016; 6:158. [PMID: 27446804 PMCID: PMC4916178 DOI: 10.3389/fonc.2016.00158] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/10/2016] [Indexed: 12/18/2022] Open
Abstract
The expression of unusual glycan structures is a hallmark of cancer progression, and their functional roles in cancer biology have been extensively investigated in epithelial-to-mesenchymal transition (EMT) models. EMT is a physiological process involved in embryonic development and wound healing. It is characterized by loss of epithelial cell polarity and cell adhesion, permitting cell migration, and thus formation of new epithelia. However, this process is unwanted when occurring outside their physiological limit, resulting in fibrosis of organs and progression of cancer and metastasis. Several studies observed that EMT is related to the acquisition of multidrug resistance (MDR) phenotype, a condition in which cancer cells acquire resistance to multiple different drugs, which has virtually nothing in common. However, although some studies suggested interplay between these two apparently distinct phenomena, almost nothing is known about this possible relationship. A common pathway to them is the need for glycosylation, a post-translational modification that can alter biological function. Thus, this review intends to compile the main facts obtained until now in these two areas, as an effort to unravel the relationship between EMT and MDR.
Collapse
Affiliation(s)
- Leonardo Marques da Fonseca
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro, Rio de Janeiro , Brazil
| | - Vanessa Amil da Silva
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro, Rio de Janeiro , Brazil
| | - Leonardo Freire-de-Lima
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro, Rio de Janeiro , Brazil
| | - José Osvaldo Previato
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro, Rio de Janeiro , Brazil
| | - Lucia Mendonça-Previato
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro, Rio de Janeiro , Brazil
| | - Márcia Alves Marques Capella
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil; Laboratório de P&D em Práticas Integrativas e Complementares, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|