1
|
Nkechika V, Zhang N, Belsham DD. The Involvement of the microRNAs miR-466c and miR-340 in the Palmitate-Mediated Dysregulation of Gonadotropin-Releasing Hormone Gene Expression. Genes (Basel) 2024; 15:397. [PMID: 38674332 PMCID: PMC11048885 DOI: 10.3390/genes15040397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Diets high in saturated fatty acids are associated with obesity and infertility. Palmitate, the most prevalent circulating saturated fatty acid, is sensed by hypothalamic neurons, contributing to homeostatic dysregulation. Notably, palmitate elevates the mRNA levels of gonadotropin-releasing hormone (Gnrh) mRNA and its activating transcription factor, GATA binding protein 4 (Gata4). GATA4 is essential for basal Gnrh expression by binding to its enhancer region, with Oct-1 (Oct1) and CEBP-β (Cebpb) playing regulatory roles. The pre- and post-transcriptional control of Gnrh by palmitate have not been investigated. Given the ability of palmitate to alter microRNAs (miRNAs), we hypothesized that palmitate-mediated dysregulation of Gnrh mRNA involves specific miRNAs. In the mHypoA-GnRH/GFP neurons, palmitate significantly downregulated six miRNAs (miR-125a, miR-181b, miR-340, miR-351, miR-466c and miR-503), and the repression was attenuated by co-treatment with 100 μM of oleate. Subsequent mimic transfections revealed that miR-466c significantly downregulates Gnrh, Gata4, and Chop mRNA and increases Per2, whereas miR-340 upregulates Gnrh, Gata4, Oct1, Cebpb, and Per2 mRNA. Our findings suggest that palmitate may indirectly regulate Gnrh at both the pre- and post-transcriptional levels by altering miR-466c and miR-340, which in turn regulate transcription factor expression levels. In summary, palmitate-mediated dysregulation of Gnrh and, consequently, reproductive function involves parallel transcriptional mechanisms.
Collapse
Affiliation(s)
- Vanessa Nkechika
- Department of Physiology, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada; (V.N.); (N.Z.)
| | - Ningtong Zhang
- Department of Physiology, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada; (V.N.); (N.Z.)
| | - Denise D. Belsham
- Department of Physiology, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada; (V.N.); (N.Z.)
- Department of Medicine, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
2
|
Ruiz-Cruz M, Torres-Granados C, Tena-Sempere M, Roa J. Central and peripheral mechanisms involved in the control of GnRH neuronal function by metabolic factors. Curr Opin Pharmacol 2023; 71:102382. [PMID: 37307655 DOI: 10.1016/j.coph.2023.102382] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 06/14/2023]
Abstract
Gonadotropin-releasing hormone (GnRH) neurons are the final output pathway for the brain control of reproduction. The activity of this neuronal population, mainly located at the preoptic area of the hypothalamus, is controlled by a plethora of metabolic signals. However, it has been documented that most of these signal impact on GnRH neurons through indirect neuronal circuits, Kiss1, proopiomelanocortin, and neuropeptide Y/agouti-related peptide neurons being some of the most prominent mediators. In this context, compelling evidence has been gathered in recent years on the role of a large range of neuropeptides and energy sensors in the regulation of GnRH neuronal activity through both direct and indirect mechanisms. The present review summarizes some of the most prominent recent advances in our understanding of the peripheral factors and central mechanisms involved in the metabolic control of GnRH neurons.
Collapse
Affiliation(s)
- Miguel Ruiz-Cruz
- Instituto Maimónides de Investigación Biomédica de Córdoba, Department of Cell Biology, Physiology and Immunology, University of Córdoba; Hospital Universitario Reina Sofia (IMIBIC/HURS), 14004 Córdoba, Spain
| | - Carmen Torres-Granados
- Instituto Maimónides de Investigación Biomédica de Córdoba, Department of Cell Biology, Physiology and Immunology, University of Córdoba; Hospital Universitario Reina Sofia (IMIBIC/HURS), 14004 Córdoba, Spain
| | - Manuel Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Córdoba, Department of Cell Biology, Physiology and Immunology, University of Córdoba; Hospital Universitario Reina Sofia (IMIBIC/HURS), 14004 Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004 Córdoba, Spain
| | - Juan Roa
- Instituto Maimónides de Investigación Biomédica de Córdoba, Department of Cell Biology, Physiology and Immunology, University of Córdoba; Hospital Universitario Reina Sofia (IMIBIC/HURS), 14004 Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004 Córdoba, Spain.
| |
Collapse
|
3
|
Salsinha AS, Socodato R, Rodrigues A, Vale-Silva R, Relvas JB, Pintado M, Rodríguez-Alcalá LM. Potential of omega-3 and conjugated fatty acids to control microglia inflammatory imbalance elicited by obesogenic nutrients. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159331. [PMID: 37172801 DOI: 10.1016/j.bbalip.2023.159331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/05/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023]
Abstract
High-fat diet-induced obesity detrimentally affects brain function by inducing chronic low-grade inflammation. This neuroinflammation is, at least in part, likely to be mediated by microglia, which are the main immune cell population in the brain. Microglia express a wide range of lipid-sensitive receptors and their activity can be modulated by fatty acids that cross the blood-brain barrier. Here, by combining live cell imaging and FRET technology we assessed how different fatty acids modulate microglia activity. We demonstrate that the combined action of fructose and palmitic acid induce Ikβα degradation and nuclear translocation of the p65 subunit nuclear factor kB (NF-κB) in HCM3 human microglia. Such obesogenic nutrients also lead to reactive oxygen species production and LynSrc activation (critical regulators of microglia inflammation). Importantly, short-time exposure to omega-3 (EPA and DHA), CLA and CLNA are sufficient to abolish NF-κB pathway activation, suggesting a potential neuroprotective role. Omega-3 and CLA also show an antioxidant potential by inhibiting reactive oxygen species production, and the activation of LynSrc in microglia. Furthermore, using chemical agonists (TUG-891) and antagonists (AH7614) of GPR120/FFA4, we demonstrated that omega-3, CLA and CLNA inhibition of the NF-κB pathway is mediated by this receptor, while omega-3 and CLA antioxidant potential occurs through different signaling mechanisms.
Collapse
Affiliation(s)
- A S Salsinha
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal; Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal; Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - R Socodato
- Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal; Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - A Rodrigues
- Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal; Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - R Vale-Silva
- Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal; Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal.; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal
| | - J B Relvas
- Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal; Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - M Pintado
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal.
| | - L M Rodríguez-Alcalá
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal.
| |
Collapse
|
4
|
Vesga-Jiménez DJ, Martin C, Barreto GE, Aristizábal-Pachón AF, Pinzón A, González J. Fatty Acids: An Insight into the Pathogenesis of Neurodegenerative Diseases and Therapeutic Potential. Int J Mol Sci 2022; 23:2577. [PMID: 35269720 PMCID: PMC8910658 DOI: 10.3390/ijms23052577] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/12/2022] [Accepted: 01/20/2022] [Indexed: 12/13/2022] Open
Abstract
One of the most common lipids in the human body is palmitic acid (PA), a saturated fatty acid with essential functions in brain cells. PA is used by cells as an energy source, besides being a precursor of signaling molecules and protein tilting across the membrane. Although PA plays physiological functions in the brain, its excessive accumulation leads to detrimental effects on brain cells, causing lipotoxicity. This mechanism involves the activation of toll-like receptors (TLR) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathways, with the consequent release of pro-inflammatory cytokines, increased production of reactive oxygen species (ROS), endoplasmic reticulum (ER) stress, and autophagy impairment. Importantly, some of the cellular changes induced by PA lead to an augmented susceptibility to the development of Alzheimer's and Parkinson´s diseases. Considering the complexity of the response to PA and the intrinsic differences of the brain, in this review, we provide an overview of the molecular and cellular effects of PA on different brain cells and their possible relationships with neurodegenerative diseases (NDs). Furthermore, we propose the use of other fatty acids, such as oleic acid or linoleic acid, as potential therapeutic approaches against NDs, as these fatty acids can counteract PA's negative effects on cells.
Collapse
Affiliation(s)
- Diego Julián Vesga-Jiménez
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogota 110231, Colombia; (D.J.V.-J.); (A.F.A.-P.)
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA 30329, USA;
| | - Cynthia Martin
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA 30329, USA;
| | - George E. Barreto
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland;
- Health Research Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Andrés Felipe Aristizábal-Pachón
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogota 110231, Colombia; (D.J.V.-J.); (A.F.A.-P.)
| | - Andrés Pinzón
- Laboratorio de Bioinformática y Biología de Sistemas, Universidad Nacional de Colombia, Bogota 111321, Colombia;
| | - Janneth González
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogota 110231, Colombia; (D.J.V.-J.); (A.F.A.-P.)
| |
Collapse
|
5
|
Kohn SA, Fought AJ, Kuhn K, Jones Slogett K, Bradford AP, Santoro N, Schauer I. Heparin Effects on Serum Gonadotropins. J Endocr Soc 2022; 6:bvab178. [PMID: 35024539 PMCID: PMC8739648 DOI: 10.1210/jendso/bvab178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Introduction Studies using lipid infusions to raise fatty acid levels require heparin to release lipoprotein lipase (LPL), thus calling into question the appropriate control infusion for this type of study: saline alone or saline plus heparin. We aimed to evaluate whether the addition of heparin alone, in doses needed to release LPL, would alter circulating free fatty acids (FFAs) and/or affect gonadotropins. Materials and Methods This was a secondary analysis using combined data from eumenorrheic normal-weight women subjected to "control" conditions in 1 of 2 separate studies. In 1 study, participants received saline alone (group 1) as a control, and in the other study participants received saline alone and/or saline plus heparin (groups 2-3) as a control. Both studies performed early follicular phase, frequent blood sampling. FSH and LH were compared across groups and in conditions with and without heparin. Linear mixed models were used to analyze the data. Results LH did not differ across any of the 3 groups. Estimated means (SE) for FSH differed between groups but this difference was marginal (P = .05) after adjusting for anti-Mullerian hormone and unrelated to heparin infusion (group 1: 4.47 IU/L [SE 1.19], group 2: 8.01 IU/L [SE 1.14], group 3: 7.94 IU/L [SE 1.13]). Conclusions Heparin does not exert major effects on gonadotropins when infused in quantities sufficient to release LPL. However, because it can release other vascular membrane-bound proteins, heparin should be considered part of the control infusions in lipid infusion studies where increased FFA levels are the goal.
Collapse
Affiliation(s)
- Sarah A Kohn
- Department of Obstetrics, University of Colorado School of Medicine, Aurora, CO 80045, USA.,Department of Gynecology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Angela J Fought
- Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO 80045, USA
| | - Katherine Kuhn
- Department of Obstetrics, University of Colorado School of Medicine, Aurora, CO 80045, USA.,Department of Gynecology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Kelsey Jones Slogett
- Department of Obstetrics, University of Colorado School of Medicine, Aurora, CO 80045, USA.,Department of Gynecology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Andrew P Bradford
- Department of Obstetrics, University of Colorado School of Medicine, Aurora, CO 80045, USA.,Department of Gynecology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Nanette Santoro
- Department of Obstetrics, University of Colorado School of Medicine, Aurora, CO 80045, USA.,Department of Gynecology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Irene Schauer
- Department of Medicine (Endocrinology) University of Colorado School of Medicine and Department of Medicine, Aurora, CO 80045, USA.,Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
| |
Collapse
|
6
|
Lieu CV, Loganathan N, Belsham DD. Mechanisms Driving Palmitate-Mediated Neuronal Dysregulation in the Hypothalamus. Cells 2021; 10:3120. [PMID: 34831343 PMCID: PMC8617942 DOI: 10.3390/cells10113120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 12/17/2022] Open
Abstract
The hypothalamus maintains whole-body homeostasis by integrating information from circulating hormones, nutrients and signaling molecules. Distinct neuronal subpopulations that express and secrete unique neuropeptides execute the individual functions of the hypothalamus, including, but not limited to, the regulation of energy homeostasis, reproduction and circadian rhythms. Alterations at the hypothalamic level can lead to a myriad of diseases, such as type 2 diabetes mellitus, obesity, and infertility. The excessive consumption of saturated fatty acids can induce neuroinflammation, endoplasmic reticulum stress, and resistance to peripheral signals, ultimately leading to hyperphagia, obesity, impaired reproductive function and disturbed circadian rhythms. This review focuses on the how the changes in the underlying molecular mechanisms caused by palmitate exposure, the most commonly consumed saturated fatty acid, and the potential involvement of microRNAs, a class of non-coding RNA molecules that regulate gene expression post-transcriptionally, can result in detrimental alterations in protein expression and content. Studying the involvement of microRNAs in hypothalamic function holds immense potential, as these molecular markers are quickly proving to be valuable tools in the diagnosis and treatment of metabolic disease.
Collapse
Affiliation(s)
- Calvin V. Lieu
- Department of Physiology, University of Toronto, Medical Sciences Building 3247A, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada; (C.V.L.); (N.L.)
| | - Neruja Loganathan
- Department of Physiology, University of Toronto, Medical Sciences Building 3247A, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada; (C.V.L.); (N.L.)
| | - Denise D. Belsham
- Department of Physiology, University of Toronto, Medical Sciences Building 3247A, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada; (C.V.L.); (N.L.)
- Departments of Obstetrics/Gynecology and Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
7
|
Spexin: Its role, regulation, and therapeutic potential in the hypothalamus. Pharmacol Ther 2021; 233:108033. [PMID: 34763011 DOI: 10.1016/j.pharmthera.2021.108033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 12/14/2022]
Abstract
Spexin is the most recently discovered member of the galanin/kisspeptin/spexin family of peptides. This 14-amino acid peptide is highly conserved and is implicated in homeostatic functions including, but not limited to, metabolism, energy homeostasis, and reproduction. Spexin is expressed by neurons in the hypothalamus, which coordinate energy homeostasis and reproduction. Critically, levels of spexin appear to be altered in disorders related to energy homeostasis and reproduction, such as obesity, diabetes, and polycystic ovarian syndrome. In this review, we discuss the evidence for the involvement of spexin in the hypothalamic control of energy homeostasis and reproduction. The anorexigenic properties of spexin have been attributed to its effects on the energy-regulating neuropeptide Y/agouti-related peptide neurons and proopiomelanocortin neurons. While the role of spexin in reproduction remains unclear, there is evidence that gonadotropin-releasing hormone expressing neurons may produce and respond to spexin. Furthermore, we discuss the disorders and concomitant treatments, which have been reported to alter spexin expression, as well as the underlying signaling mechanisms that may be involved. Finally, we discuss the biochemical basis of spexin, its interaction with its cognate receptors, and how this information can be adapted to develop therapeutics for disorders related to the alteration of energy homeostasis and reproduction.
Collapse
|
8
|
Tran A, He W, Chen JTC, Wellhauser L, Hopperton KE, Bazinet RP, Belsham DD. Palmitate-mediated induction of neuropeptide Y expression occurs through intracellular metabolites and not direct exposure to proinflammatory cytokines. J Neurochem 2021; 159:574-589. [PMID: 34482548 DOI: 10.1111/jnc.15504] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/19/2021] [Accepted: 08/28/2021] [Indexed: 12/11/2022]
Abstract
A contributing factor to the development of obesity is the consumption of a diet high in saturated fatty acids, such as palmitate. These fats induce hypothalamic neuroinflammation, which dysregulates neuronal function and induces orexigenic neuropeptide Y (Npy) to promote food intake. An inflammatory cytokine array identified multiple candidates that could mediate palmitate-induced up-regulation of Npy mRNA levels. Of these, visfatin or nicotinamide phosphoribosyltransferase (NAMPT), macrophage migratory inhibitory factor (MIF), and IL-17F were chosen for further study. Direct treatment of the neuropeptide Y/agouti-related peptide (NPY/AgRP)-expressing mHypoE-46 neuronal cell line with the aforementioned cytokines demonstrated that visfatin could directly induce Npy mRNA expression. Preventing the intracellular metabolism of palmitate through long-chain acyl-CoA synthetase (ACSL) inhibition was sufficient to block the palmitate-mediated increase in Npy gene expression. Furthermore, thin-layer chromatography revealed that in neurons, palmitate is readily incorporated into ceramides and defined species of phospholipids. Exogenous C16 ceramide, dipalmitoyl-phosphatidylcholine, and dipalmitoyl-phosphatidylethanolamine were sufficient to significantly induce Npy expression. This study suggests that the intracellular metabolism of palmitate and elevation of metabolites, including ceramide and phospholipids, are responsible for the palmitate-mediated induction of the potent orexigen Npy. Furthermore, this suggests that the regulation of Npy expression is less reliant on inflammatory cytokines per se than palmitate metabolites in a model of NPY/AgRP neurons. These lipid species likely induce detrimental downstream cellular signaling events ultimately causing an increase in feeding, resulting in an overweight phenotype and/or obesity.
Collapse
Affiliation(s)
- Andy Tran
- Department of Physiology, University of Toronto, Ontario, Canada
| | - Wenyuan He
- Department of Physiology, University of Toronto, Ontario, Canada
| | - Jim T C Chen
- Department of Physiology, University of Toronto, Ontario, Canada
| | - Leigh Wellhauser
- Department of Physiology, University of Toronto, Ontario, Canada
| | | | | | - Denise D Belsham
- Department of Physiology, University of Toronto, Ontario, Canada.,Medicine, University of Toronto, Ontario, Canada.,Obstetrics and Gynaecology, University of Toronto, Ontario, Canada
| |
Collapse
|
9
|
Ma WQ, Zhao DH, Cheng HZ, Wang SB, Yang J, Cui HX, Lu MY, Wu HZ, Xu L, Liu GJ. Effects of dietary Enteromorpha powder on reproduction-related hormones and genes during the late laying period of Zi geese. Anim Biosci 2021; 34:457-462. [PMID: 32898960 PMCID: PMC7961191 DOI: 10.5713/ajas.20.0368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/13/2020] [Accepted: 08/16/2020] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE The aim of this study was to investigate the effects of Enteromorpha powder supplementation on reproduction-related hormones and genes in the late laying period of Zi geese. METHODS A total of 312 (1-year-old) Zi geese with similar laying rate were randomly divided into 2 groups with 6 replicates each, each with 21 female geese and 5 male geese. The control group was fed with a basal diet and the test group was fed with a diet containing 3% Enteromorpha powder. The trial period lasted for 7 weeks. RESULTS Our results showed that the laying rate was improved in the test group at each week of trial (p<0.01), and the levels of estradiol in serum and prolactin in ovary were increased compared with the control group (p<0.05). CONCLUSION Based on above results, Enteromorpha powder supplementation at 3% could promote reproductive performance during the late laying period of Zi geese.
Collapse
Affiliation(s)
- Wei Qing Ma
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030,
China
| | - Dan Hua Zhao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030,
China
| | - Huang Zuo Cheng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030,
China
| | - Si Bo Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030,
China
| | - Ji Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030,
China
| | - Hong Xia Cui
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030,
China
| | - Ming Yuan Lu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030,
China
| | - Hong Zhi Wu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030,
China
| | - Li Xu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030,
China
| | - Guo Jun Liu
- Institute of Animal Husbandry of Heilongjiang Academy of Agricultural Sciences, Harbin 150086,
China
| |
Collapse
|
10
|
Morelli S, Piscioneri A, Guarnieri G, Morelli A, Drioli E, De Bartolo L. Anti-neuroinflammatory effect of daidzein in human hypothalamic GnRH neurons in an in vitro membrane-based model. Biofactors 2021; 47:93-111. [PMID: 33350001 DOI: 10.1002/biof.1701] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022]
Abstract
Phytoestrogens can control high-fat diet-induced hypothalamic inflammation that is associated with severe consequences, including obesity, type 2 diabetes, cardiovascular and neurodegenerative diseases. However, the phytoestrogen anti-neuroinflammatory action is poorly understood. In this study, we explored the neuroprotection mediated by daidzein in hypothalamic neurons by using a membrane-based model of obesity-related neuroinflammation. To test the daidzein therapeutic potential a biohybrid membrane system, consisting of hfHypo GnRH-neurons in culture on PLGA membranes, was set up. It served as reliable in vitro tool capable to recapitulate the in vivo structure and function of GnRH hypothalamic tissue. Our findings highlighted the neuroprotective role of daidzein, being able to counteract the palmitate induced neuroinflammation. Daidzein protected hfHypo GnRH cells by downregulating cell death, proinflammatory processes, oxidative stress, and apoptosis. It also restored the proper cell morphology and functionality through a mechanism which probably involves the activation of ERβ and GPR30 receptors along with the expression of GnRH peptide and KISS1R.
Collapse
Affiliation(s)
- Sabrina Morelli
- Institute on Membrane Technology, National Research Council of Italy, ITM-CNR, Rende, Italy
| | - Antonella Piscioneri
- Institute on Membrane Technology, National Research Council of Italy, ITM-CNR, Rende, Italy
| | - Giulia Guarnieri
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Annamaria Morelli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Enrico Drioli
- Institute on Membrane Technology, National Research Council of Italy, ITM-CNR, Rende, Italy
- WCU Energy Engineering Department, Hanyang University, Seoul, Republic of Korea
| | - Loredana De Bartolo
- Institute on Membrane Technology, National Research Council of Italy, ITM-CNR, Rende, Italy
| |
Collapse
|
11
|
McIlwraith EK, Belsham DD. Hypothalamic reproductive neurons communicate through signal transduction to control reproduction. Mol Cell Endocrinol 2020; 518:110971. [PMID: 32750397 DOI: 10.1016/j.mce.2020.110971] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/11/2020] [Accepted: 07/28/2020] [Indexed: 12/11/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) neurons in the hypothalamus coordinate fertility and puberty. In order to achieve successful reproductive capacity, they receive signals from the periphery and from other hypothalamic neurons that coordinate energy homeostasis. Hormones, such as estradiol, insulin, leptin, and adiponectin, act directly or indirectly on GnRH and its associated reproductive neurons. Nutrients like glucose and fatty acids can also affect reproductive neurons to signal nutrient availability. Additionally, acute and chronic inflammation is reported to detrimentally affect GnRH and kisspeptin expression. All of these cues activate signal transduction pathways within neurons that lead to the changes in GnRH neuronal function. The signalling pathways can also be dysregulated by endocrine disrupting chemicals, which impair fertility by misappropriating common signalling pathways. The complex mechanisms controlling the levels of GnRH during the reproductive cycle rely on a carefully orchestrated set of signal transduction events to regulate the positive and negative feedback arms of the hypothalamic-pituitary-gonadal axis. If these signalling events are dysregulated, this will result is a downregulatory event leading to hypogonadal hypogonadism with decreased or absent fertility. Therefore, an understanding of the mechanisms involved in distinct neuronal signalling could provide an advantage to inform therapeutic interventions for infertility and reproductive disorders.
Collapse
Affiliation(s)
- Emma K McIlwraith
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Denise D Belsham
- Department of Physiology, University of Toronto, Toronto, ON, Canada; Obstetrics and Gynaecology and Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
12
|
Wang L, Tran A, Lee J, Belsham DD. Palmitate differentially regulates Spexin, and its receptors Galr2 and Galr3, in GnRH neurons through mechanisms involving PKC, MAPKs, and TLR4. Mol Cell Endocrinol 2020; 518:110991. [PMID: 32841709 DOI: 10.1016/j.mce.2020.110991] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/03/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023]
Abstract
The function of the gonadotropin-releasing hormone (GnRH) neuron is critical to maintain reproductive function and a significant decrease in GnRH can lead to disorders affecting fertility, including hypogonadotropic hypogonadism. Spexin (SPX) is a novel hypothalamic neuropeptide that exerts inhibitory effects on reproduction and feeding by acting through galanin receptor 2 (GALR2) and galanin receptor 3 (GALR3). Fatty acids can act as nutritional signals that regulate the hypothalamic-pituitary-gonadal (HPG) axis, and elevated levels of circulating saturated fatty acids associated with high fat diet (HFD)-feeding have been shown to induce neuroinflammation, endoplasmic reticulum stress and hormonal resistance in the hypothalamus, as well as alter neuropeptide expression. We previously demonstrated that palmitate, the most common saturated fatty acid in a HFD, elevates the expression of Spx, Galr2 and Galr3 mRNA in a model of appetite-regulating neuropeptide Y hypothalamic neurons. Here, we found that Spx, Galr2 and Galr3 mRNA were also significantly induced by palmitate in a model of reproductive GnRH neurons, mHypoA-GnRH/GFP. As a follow-up to our previous report, we examined the molecular pathways by which Spx and galanin receptor mRNA was regulated in this cell line. Furthermore, we performed inhibitor studies, which revealed that the effect of palmitate on Spx and Galr3 mRNA involved activation of the innate immune receptor TLR4, and we detected differential regulation of the three genes by the protein kinases PKC, JNK, ERK, and p38. However, the intracellular metabolism of palmitate to ceramide did not appear to be involved in the palmitate-mediated gene regulation. Overall, this suggests that SPX may play a role in reproduction at the level of the hypothalamus and the pathways by which Spx, Galr2 and Galr3 are altered by fatty acids could provide insight into the mechanisms underlying reproductive dysfunction in obesity.
Collapse
Affiliation(s)
- Lu Wang
- Departments of Physiology, Faculty of Medicine, University of Toronto, Ontario, Canada
| | - Andy Tran
- Departments of Physiology, Faculty of Medicine, University of Toronto, Ontario, Canada
| | - Juliette Lee
- Departments of Physiology, Faculty of Medicine, University of Toronto, Ontario, Canada
| | - Denise D Belsham
- Departments of Physiology, Faculty of Medicine, University of Toronto, Ontario, Canada; Medicine, Faculty of Medicine, University of Toronto, Ontario, Canada; Obstetrics and Gynecology, Faculty of Medicine, University of Toronto, Ontario, Canada.
| |
Collapse
|
13
|
Tran A, Loganathan N, McIlwraith EK, Belsham DD. Palmitate and Nitric Oxide Regulate the Expression of Spexin and Galanin Receptors 2 and 3 in Hypothalamic Neurons. Neuroscience 2020; 447:41-52. [DOI: 10.1016/j.neuroscience.2019.10.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/14/2019] [Accepted: 10/16/2019] [Indexed: 12/13/2022]
|
14
|
Schooling CM, Zhao JV, Au Yeung SL, Leung GM. Investigating pleiotropic effects of statins on ischemic heart disease in the UK Biobank using Mendelian randomisation. eLife 2020; 9:e58567. [PMID: 32838838 PMCID: PMC7449694 DOI: 10.7554/elife.58567] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/13/2020] [Indexed: 12/11/2022] Open
Abstract
We examined whether specifically statins, of the major lipid modifiers (statins, proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors and ezetimibe) have pleiotropic effects on ischemic heart disease (IHD) via testosterone in men or women. As a validation, we similarly assessed whether a drug that unexpectedly likely increases IHD also operates via testosterone. Using previously published genetic instruments we conducted a sex-specific univariable and multivariable Mendelian randomization study in the UK Biobank, including 179918 men with 25410 IHD cases and 212080 women with 12511 IHD cases. Of these three lipid modifiers, only genetically mimicking the effects of statins in men affected testosterone, which partly mediated effects on IHD. Correspondingly, genetically mimicking effects of anakinra on testosterone and IHD presented a reverse pattern to that for statins. These insights may facilitate the development of new interventions for cardiovascular diseases as well as highlighting the importance of sex-specific explanations, investigations, prevention and treatment.
Collapse
Affiliation(s)
- CM Schooling
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong KongHong KongChina
- City University of New York, Graduate School of Public Health and Health PolicyNew YorkUnited States
| | - JV Zhao
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong KongHong KongChina
| | - SL Au Yeung
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong KongHong KongChina
| | - GM Leung
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong KongHong KongChina
| |
Collapse
|
15
|
Jiang P, Xia L, Jin Z, Ali S, Wang M, Li X, Yang R, Fang X, Zhao Z. New function of the CD44 gene: Lipid metabolism regulation in bovine mammary epithelial cells. J Dairy Sci 2020; 103:6661-6671. [DOI: 10.3168/jds.2019-17415] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 02/24/2020] [Indexed: 12/11/2022]
|
16
|
Benzler M, Benzler J, Stoehr S, Hempp C, Rizwan MZ, Heyward P, Tups A. "Insulin-like" effects of palmitate compromise insulin signalling in hypothalamic neurons. J Comp Physiol B 2019; 189:413-424. [PMID: 31123821 DOI: 10.1007/s00360-019-01220-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 04/16/2019] [Accepted: 05/05/2019] [Indexed: 12/22/2022]
Abstract
Saturated fatty acids are implicated in the development of metabolic diseases, including obesity and type 2 diabetes. There is evidence, however, that polyunsaturated fatty acids can counteract the pathogenic effects of saturated fatty acids. To gain insight into the early molecular mechanisms by which fatty acids influence hypothalamic inflammation and insulin signalling, we performed time-course experiments in a hypothalamic cell line, using different durations of treatment with the saturated fatty acid palmitate, and the omega-3 polyunsaturated fatty acid, docosahexaenoic acid (DHA). Western blot analysis revealed that palmitate elevated the protein levels of phospho(p)AKT in a time-dependent manner. This effect is involved in the pathogenicity of palmitate, as temporary inhibition of the PI3K/AKT pathway by selective PI3K inhibitors prevented the palmitate-induced attenuation of insulin signalling. Similar to palmitate, DHA also increased levels of pAKT, but to a weaker extent. Co-administration of DHA with palmitate decreased pAKT close to the basal level after 8 h, and prevented the palmitate-induced reduction of insulin signalling after 12 h. The monounsaturated fatty acid oleate had a similar effect on the palmitate-induced attenuation of insulin signalling, the polyunsaturated fatty acid linoleate had no effect. Measurement of the inflammatory markers pJNK and pNFκB-p65 revealed tonic elevation of both markers in the presence of palmitate alone. DHA alone transiently induced elevation of pJNK, returning to basal levels by 12 h treatment. Co-administration of DHA with palmitate prevented palmitate-induced inflammation after 12 h, but not at earlier timepoints.
Collapse
Affiliation(s)
- Martin Benzler
- Department of Animal Physiology, Faculty of Biology, Philipps University Marburg, Marburg, Germany
| | - Jonas Benzler
- Department of Animal Physiology, Faculty of Biology, Philipps University Marburg, Marburg, Germany
| | - Sigrid Stoehr
- Department of Animal Physiology, Faculty of Biology, Philipps University Marburg, Marburg, Germany
| | - Cindy Hempp
- Department of Animal Physiology, Faculty of Biology, Philipps University Marburg, Marburg, Germany
| | - Mohammed Z Rizwan
- Centre for Neuroendocrinology and Brain Health Research Centre, Department of Physiology, School of Medical Sciences, University of Otago, Dunedin, 9054, New Zealand
| | - Phil Heyward
- Brain Health Research Centre, Department of Physiology, School of Medical Sciences, University of Otago, Dunedin, 9054, New Zealand
| | - Alexander Tups
- Department of Animal Physiology, Faculty of Biology, Philipps University Marburg, Marburg, Germany. .,Centre for Neuroendocrinology and Brain Health Research Centre, Department of Physiology, School of Medical Sciences, University of Otago, Dunedin, 9054, New Zealand.
| |
Collapse
|
17
|
McIlwraith EK, Loganathan N, Belsham DD. Regulation of Gpr173 expression, a putative phoenixin receptor, by saturated fatty acid palmitate and endocrine-disrupting chemical bisphenol A through a p38-mediated mechanism in immortalized hypothalamic neurons. Mol Cell Endocrinol 2019; 485:54-60. [PMID: 30716364 DOI: 10.1016/j.mce.2019.01.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/31/2019] [Accepted: 01/31/2019] [Indexed: 12/13/2022]
Abstract
GPR173 is a highly conserved G protein coupled receptor associated with the hypothalamic-pituitary-gonadal reproductive axis. It is expressed in the brain and ovaries, however considerable knowledge about its function remains unknown. One putative ligand for this receptor is phoenixin (PNX), a newly identified reproductive peptide involved in hypothalamic coordination of the estrous cycle. In order to characterize GPR173, it is vital to determine how Gpr173 is regulated in the hypothalamus. Since the hypothalamus senses compounds from the blood, such as nutrients and chemicals, we examined the effect of palmitate, a saturated fatty acid, and bisphenol A (BPA), an endocrine disrupting chemical, on Gpr173 gene expression. Immortalized hypothalamic neurons were treated with palmitate or BPA for 2-24 h and Gpr173 mRNA levels were assessed with RT-qPCR. Palmitate and BPA both reduced Gpr173 mRNA levels, in part through the mitogen-activated protein kinase (MAPK), p38. Pre-treatment with palmitate for 24 h blocked the PNX-induction of phosphorylated cAMP response element-binding protein (CREB) levels. In conclusion, nutrition levels and environmental chemicals may influence reproductive function through modulation of Gpr173 expression, which may prove to be a future therapeutic target in reproductive health.
Collapse
Affiliation(s)
- Emma K McIlwraith
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Neruja Loganathan
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Denise D Belsham
- Department of Physiology, University of Toronto, Toronto, ON, Canada; Departments of Obstetrics and Gynaecology and Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
18
|
Olmo I, Teuber S, Larrazabal C, Alarcon P, Raipane F, Burgos RA, Hidalgo MA. Docosahexaenoic acid and TUG-891 activate free fatty acid-4 receptor in bovine neutrophils. Vet Immunol Immunopathol 2019; 209:53-60. [PMID: 30885306 DOI: 10.1016/j.vetimm.2019.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 02/20/2019] [Accepted: 02/23/2019] [Indexed: 12/18/2022]
Abstract
Fatty acids are well known metabolic intermediaries but also have a role in the immune response. Long-chain fatty acids such as omega-6 and -9 activate neutrophil function through free fatty acid (FFA)-1 receptor in bovines. Although omega-3 has also been suggested to influence neutrophil function, the details remain unclear. The goal of this study was to determine the presence of the bovine FFA4 receptor and its effect on neutrophil responses. We treated bovine neutrophils with the natural and synthetic agonists of FFA4 receptor docosahexaenoic acid (DHA) and TUG-891, respectively, and assessed oxidative and no oxidative response. We detected protein and mRNA FFA4 receptor expression through immunofluorescence, immunoblot, and RT-PCR analysis. DHA and TUG-891 both increased intracellular calcium mobilisation in bovine neutrophils, with 50% effective concentrations of 99 μM and 73 μM, respectively, which was partially reduced after treatment with the FFA4 antagonist AH7614. Furthermore, DHA and TUG-891 increased matrix metalloproteinase (MMP)-9 granules release and superoxide production. AH7614 and the intracellular calcium chelator BAPTA-AM decreased the superoxide production induced by TUG-891 and by both DHA and TUG-891, respectively, suggesting a key role of intracellular calcium in FFA4 agonists-induced superoxide production. These results highlight an important mechanism of bovine neutrophil responses mediated via FFA4 receptor, which can further inform the development of new formulations for DHA-enriched feed supplements to enhance innate immunity in dairy cattle.
Collapse
Affiliation(s)
- Ivan Olmo
- Laboratory of Molecular Pharmacology, Institute of Pharmacology, Faculty of Veterinary Science, Universidad Austral de Chile, Valdivia, Chile
| | - Stefanie Teuber
- Laboratory of Molecular Pharmacology, Institute of Pharmacology, Faculty of Veterinary Science, Universidad Austral de Chile, Valdivia, Chile
| | - Camilo Larrazabal
- Laboratory of Molecular Pharmacology, Institute of Pharmacology, Faculty of Veterinary Science, Universidad Austral de Chile, Valdivia, Chile
| | - Pablo Alarcon
- Laboratory of Molecular Pharmacology, Institute of Pharmacology, Faculty of Veterinary Science, Universidad Austral de Chile, Valdivia, Chile
| | - Fernanda Raipane
- Laboratory of Molecular Pharmacology, Institute of Pharmacology, Faculty of Veterinary Science, Universidad Austral de Chile, Valdivia, Chile
| | - Rafael A Burgos
- Laboratory of Molecular Pharmacology, Institute of Pharmacology, Faculty of Veterinary Science, Universidad Austral de Chile, Valdivia, Chile.
| | - Maria A Hidalgo
- Laboratory of Molecular Pharmacology, Institute of Pharmacology, Faculty of Veterinary Science, Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
19
|
Hill JW, Elias CF. Neuroanatomical Framework of the Metabolic Control of Reproduction. Physiol Rev 2019; 98:2349-2380. [PMID: 30109817 DOI: 10.1152/physrev.00033.2017] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A minimum amount of energy is required for basic physiological processes, such as protein biosynthesis, thermoregulation, locomotion, cardiovascular function, and digestion. However, for reproductive function and survival of the species, extra energy stores are necessary. Production of sex hormones and gametes, pubertal development, pregnancy, lactation, and parental care all require energy reserves. Thus the physiological systems that control energy homeostasis and reproductive function coevolved in mammals to support both individual health and species subsistence. In this review, we aim to gather scientific knowledge produced by laboratories around the world on the role of the brain in integrating metabolism and reproduction. We describe essential neuronal networks, highlighting key nodes and potential downstream targets. Novel animal models and genetic tools have produced substantial advances, but critical gaps remain. In times of soaring worldwide obesity and metabolic dysfunction, understanding the mechanisms by which metabolic stress alters reproductive physiology has become crucial for human health.
Collapse
Affiliation(s)
- Jennifer W Hill
- Center for Diabetes and Endocrine Research, Departments of Physiology and Pharmacology and of Obstetrics and Gynecology, University of Toledo College of Medicine , Toledo, Ohio ; and Departments of Molecular and Integrative Physiology and of Obstetrics and Gynecology, University of Michigan , Ann Arbor, Michigan
| | - Carol F Elias
- Center for Diabetes and Endocrine Research, Departments of Physiology and Pharmacology and of Obstetrics and Gynecology, University of Toledo College of Medicine , Toledo, Ohio ; and Departments of Molecular and Integrative Physiology and of Obstetrics and Gynecology, University of Michigan , Ann Arbor, Michigan
| |
Collapse
|
20
|
Levi NJ, Wilson CW, Redweik GAJ, Gray NW, Grzybowski CW, Lenkey JA, Moseman AW, Bertsch AD, Dao N, Walsh HE. Obesity-related cellular stressors regulate gonadotropin releasing hormone gene expression via c-Fos/AP-1. Mol Cell Endocrinol 2018; 478:97-105. [PMID: 30063946 DOI: 10.1016/j.mce.2018.07.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 07/14/2018] [Accepted: 07/25/2018] [Indexed: 12/15/2022]
Abstract
Obesity is a risk factor for infertility, but mechanisms underlying this risk are unclear. Fertility is regulated by hypothalamic gonadotropin-releasing hormone, encoded by the Gnrh1 gene. Because obesity promotes endoplasmic reticulum (ER) stress, we sought to determine how tunicamycin-induced ER stress affected Gnrh1 gene expression in the mouse hypothalamic cell line GT1-7. Tunicamycin repressed expression of Gnrh1 in a PKC- and JNK-dependent manner, while upregulating expression of a known Gnrh1 repressor, Fos. Obesity is associated with increased circulating free fatty acids, and exposure to palmitate promoted ER stress and inflammation. Fos expression increased with palmitate dose, but Gnrh1 expression was upregulated with low-dose palmitate and repressed with high-dose palmitate. Using a small molecule inhibitor, we determined that AP-1 was required for Gnrh1 repression by high-dose palmitate or tunicamycin-induced ER stress. These findings suggest that hypogonadism driven by decreased hypothalamic GnRH may be a component of obesity-related infertility.
Collapse
Affiliation(s)
- Noah J Levi
- Department of Biology, Wabash College, PO Box 352, Crawfordsville, IN, 47933, USA
| | - Christopher W Wilson
- Department of Biology, Wabash College, PO Box 352, Crawfordsville, IN, 47933, USA
| | - Graham A J Redweik
- Department of Biology, Wabash College, PO Box 352, Crawfordsville, IN, 47933, USA
| | - Nathan W Gray
- Department of Biology, Wabash College, PO Box 352, Crawfordsville, IN, 47933, USA
| | - Cody W Grzybowski
- Department of Biology, Wabash College, PO Box 352, Crawfordsville, IN, 47933, USA
| | - Joseph A Lenkey
- Department of Biology, Wabash College, PO Box 352, Crawfordsville, IN, 47933, USA
| | - Anthony W Moseman
- Department of Biology, Wabash College, PO Box 352, Crawfordsville, IN, 47933, USA
| | - Alec D Bertsch
- Department of Biology, Wabash College, PO Box 352, Crawfordsville, IN, 47933, USA
| | - Nhien Dao
- Department of Biology, Wabash College, PO Box 352, Crawfordsville, IN, 47933, USA
| | - Heidi E Walsh
- Department of Biology, Wabash College, PO Box 352, Crawfordsville, IN, 47933, USA.
| |
Collapse
|
21
|
McIlwraith EK, Loganathan N, Belsham DD. Phoenixin Expression Is Regulated by the Fatty Acids Palmitate, Docosahexaenoic Acid and Oleate, and the Endocrine Disrupting Chemical Bisphenol A in Immortalized Hypothalamic Neurons. Front Neurosci 2018; 12:838. [PMID: 30524225 PMCID: PMC6262291 DOI: 10.3389/fnins.2018.00838] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 10/29/2018] [Indexed: 01/22/2023] Open
Abstract
Phoenixin (PNX) is a newly identified reproductive peptide required for the estrous cycle. It is most highly expressed in the hypothalamus, where it is a positive regulator of gonadotropin-releasing hormone (GnRH) and kisspeptin. However, it is unknown what signals lie upstream of Pnx to coordinate its effects on GnRH and kisspeptin. We investigated the effects of the hormones, estrogen and leptin; the fatty acids, palmitate, docosahexaenoic acid (DHA), oleate and palmitoleate; and the endocrine disrupting chemical BPA on Pnx mRNA levels. We also examined whether the signaling pathways of nitric oxide, lipopolysaccharide, cAMP and protein kinase C could alter Pnx expression. Immortalized hypothalamic neurons were treated from 2 to 24 h with these compounds and Pnx mRNA levels were measured with RT-qPCR. Unexpectedly, only BPA as well as the fatty acids, palmitate, DHA and oleate, could alter Pnx expression; therefore suggesting that Pnx may fulfill a nutrient-sensing role in the hypothalamus. Our study is the first to delineate potential regulators of this novel neuropeptide, and our findings provide some insight into the functional role of PNX in the hypothalamus.
Collapse
Affiliation(s)
- Emma K McIlwraith
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Neruja Loganathan
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Denise D Belsham
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Department of Obstetrics and Gynaecology, University of Toronto, Toronto, ON, Canada.,Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
22
|
Mcilwraith EK, Belsham DD. Phoenixin: uncovering its receptor, signaling and functions. Acta Pharmacol Sin 2018; 39:774-778. [PMID: 29671415 PMCID: PMC5943909 DOI: 10.1038/aps.2018.13] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 02/28/2018] [Indexed: 12/12/2022] Open
Abstract
Phoenixin (PNX) is a newly discovered peptide that has been linked to reproductive function, both in the hypothalamus and pituitary. This review will focus on the most recent discoveries related to this novel neuropeptide. Initially, it was found that PNX increased gonadotropin releasing hormone (GnRH)-stimulated luteinizing hormone (LH) release from pituitary cells. Importantly, knockdown of PNX in female rats extended the estrous cycle by 2.3 days. Using novel hypothalamic cell lines, we found that PNX has a stimulatory role on kisspeptin (Kiss) and GnRH gene expression and secretion. The PNX receptor was uncovered using siRNA knockdown of GPR173, an orphan receptor postulated to bind PNX. We have found that the PNX-R signaling through protein kinase A (PKA) in hypothalamic neurons. Althuogh a number of studies demonstrate that PNX plays an important role in reproductive function, there is also evidence that it may have other functions, regulating the heart, feeding, memory, and anxiety, both in the brain and the periphery.
Collapse
Affiliation(s)
| | - Denise D Belsham
- Departments of Physiology
- Obstetrics and Gynaecology and Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
23
|
Kim SM, McIlwraith EK, Chalmers JA, Belsham DD. Palmitate Induces an Anti-Inflammatory Response in Immortalized Microglial BV-2 and IMG Cell Lines that Decreases TNFα Levels in mHypoE-46 Hypothalamic Neurons in Co-Culture. Neuroendocrinology 2018; 107:387-399. [PMID: 30352432 DOI: 10.1159/000494759] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/23/2018] [Indexed: 11/19/2022]
Abstract
BACKGROUND AND OBJECTIVES Elevated levels of saturated fatty acids (SFA) induce a state of neuroinflammation in the hypothalamus. It has been suggested that microglia sense palmitate, a prevalent circulating SFA, and act as mediators of this inflammatory process by communicating with neurons, particularly those involved in appetite regulation. In this study, we examined the inflammatory response to palmitate in immortalized microglial cell lines, BV-2 and IMG, and the subsequent effects on inflammatory gene expression in a model of NPY/AgRP neurons, mHypoE-46. METHODS The BV-2 cells were treated with 50 µM palmitate for 4 and 24 h, and the transcriptional regulation of markers for inflammation and cellular stress was assessed using an RT2 Profiler PCR Array. Select genes were verified with qRT-PCR. The BV-2 and IMG cells were then co-cultured using 1.0-µm cell culture inserts with an immortalized hypothalamic cell line, mHypoE-46, to investigate potential intercellular communication between microglia and neurons. RESULTS We found that palmitate increased the mRNA levels of specific inflammatory genes, and a general anti-inflammatory profile was revealed in the microglia cells. The mRNA changes in TNFα at 4 and 24 h in BV-2 cells were abrogated with the toll-like receptor 4 (TLR4) inhibitor, TAK-242, indicating the involvement of TLR4. Co-culture of mHypoE-46 neurons with microglia pre-treated with palmitate resulted in repression of TNFα expression in the hypothalamic neurons. As palmitate significantly increased IL-13 expression in microglia, the effect of this cytokine was tested in mHypoE-46 neurons. The addition of IL-13 to neuronal cultures normalized the palmitate-mediated increase in IL-6 and AgRP expression, suggesting that microglia may protect surrounding neurons, at least in part, through the release of IL-13. CONCLUSIONS These results suggest a potential anti-inflammatory role of microglia towards the palmitate-induced neuroinflammation, and potentially energy homeostasis, in hypothalamic neurons.
Collapse
Affiliation(s)
- Stephanie M Kim
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Emma K McIlwraith
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Jennifer A Chalmers
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Denise D Belsham
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario,
- Departments of Medicine and Obstetrics and Gynaecology, Faculty of Medicine, University of Toronto, Toronto, Ontario,
| |
Collapse
|
24
|
Milligan G, Alvarez-Curto E, Hudson BD, Prihandoko R, Tobin AB. FFA4/GPR120: Pharmacology and Therapeutic Opportunities. Trends Pharmacol Sci 2017; 38:809-821. [PMID: 28734639 PMCID: PMC5582618 DOI: 10.1016/j.tips.2017.06.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/14/2017] [Accepted: 06/19/2017] [Indexed: 01/02/2023]
Abstract
Free Fatty Acid receptor 4 (FFA4), also known as GPR120, is a G-protein-coupled receptor (GPCR) responsive to long-chain fatty acids that is attracting considerable attention as a potential novel therapeutic target for the treatment of type 2 diabetes mellitus (T2DM). Although no clinical studies have yet been initiated to assess efficacy in this indication, a significant number of primary publications and patents have highlighted the ability of agonists with potency at FFA4 to improve glucose disposition and enhance insulin sensitivity in animal models. However, the distribution pattern of the receptor suggests that targeting FFA4 may also be useful in other conditions, ranging from cancer to lung function. Here, we discuss and contextualise the basis for these ideas and the results to support these conclusions. Substantial focus on the therapeutic potential of FFA4/GPR120 is currently directed towards type 2 diabetes. Progress in the identification and characterisation of FFA4/GPR120 agonist ligands is apparent in both the primary scientific and patent literatures. In models of glucose handling, FFA4/GPR120 agonists appear highly effective. Recent indications provide support for consideration of FFA4/GPR120 ligands in areas of cancer treatment. High levels of expression of FFA4/GPR120 in the lung suggest utility in analysis of the potential therapeutic roles of FFA4/GPR120 ligands in both acute and chronic airway inflammatory conditions.
Collapse
Affiliation(s)
- Graeme Milligan
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Elisa Alvarez-Curto
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Brian D Hudson
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Rudi Prihandoko
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Andrew B Tobin
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
25
|
Abstract
In addition to their bioenergetic intracellular function, several classical metabolites act as extracellular signaling molecules activating cell-surface G-protein-coupled receptors (GPCRs), similar to hormones and neurotransmitters. "Signaling metabolites" generated from nutrients or by gut microbiota target primarily enteroendocrine, neuronal, and immune cells in the lamina propria of the gut mucosa and the liver and, through these tissues, the rest of the body. In contrast, metabolites from the intermediary metabolism act mainly as metabolic stress-induced autocrine and paracrine signals in adipose tissue, the liver, and the endocrine pancreas. Importantly, distinct metabolite GPCRs act as efficient pro- and anti-inflammatory regulators of key immune cells, and signaling metabolites may thus function as important drivers of the low-grade inflammation associated with insulin resistance and obesity. The concept of key metabolites as ligands for specific GPCRs has broadened our understanding of metabolic signaling significantly and provides a number of novel potential drug targets.
Collapse
Affiliation(s)
- Anna Sofie Husted
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Mette Trauelsen
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Olga Rudenko
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Siv A Hjorth
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark; Laboratory for Molecular Pharmacology, Department for Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Thue W Schwartz
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark; Laboratory for Molecular Pharmacology, Department for Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
26
|
Insulinotropic effects of GPR120 agonists are altered in obese diabetic and obese non-diabetic states. Clin Sci (Lond) 2016; 131:247-260. [PMID: 27980130 DOI: 10.1042/cs20160545] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 12/13/2016] [Accepted: 12/15/2016] [Indexed: 02/06/2023]
Abstract
G-protein-coupled receptor 120 (GPR120) is a putative target for obesity and diabetes therapies. However, it remains controversial whether resident GPR120 plays a direct regulatory role in islet β-cell insulin secretion. The present study examined this issue in isolated rodent islets and rat β-cell line INS-1E, and assessed the role of GPR120 in islet insulin secretion in obese non-diabetic (OND) and diabetic states. GPR120 expression was detected in rodent islet β-cells. Docosahexaenoic acid (DHA) and synthetic GPR120 agonist GSK137647 (GSK) augmented insulin release from rat/mouse islets and INS-1E; DHA effects were partially mediated by GPR40. GPR120 knockdown and overexpression attenuated and enhanced DHA effects in INS-1E respectively. DHA and GSK improved postprandial hyperglycaemia of diabetic mice. Inhibition of calcium signalling in INS-1E reduced GPR120 activation-induced insulinotropic effects. The insulinotropic effects of DHA/GSK were amplified in OND rat islets, but diminished in diabetic rat islets. GPR120 and peroxisome proliferator-activated receptor γ (PPARγ) expression were elevated in OND islets and palmitic acid (PA)-treated INS-1E, but reduced in diabetic islets and high glucose-treated INS-1E. PPARγ activation increased GPR120 expression in rat islets and INS-1E. DHA and GSK induced protein kinase B (Akt)/extracellular signal-regulated kinase (ERK) phosphorylation in rodent islets and INS-1E, and these effects were altered in OND and diabetic states. Taken together, the present study indicates that (i) GPR120 activation has an insulinotropic influence on β-cells with the involvement of calcium signalling; (ii) GPR120 expression in β-cells and GPR120-mediated insulinotropic effects are altered in OND and diabetic states in distinct ways, and these alterations may be mediated by PPARγ.
Collapse
|
27
|
Tran DQ, Tse EK, Kim MH, Belsham DD. Diet-induced cellular neuroinflammation in the hypothalamus: Mechanistic insights from investigation of neurons and microglia. Mol Cell Endocrinol 2016; 438:18-26. [PMID: 27208620 DOI: 10.1016/j.mce.2016.05.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 05/17/2016] [Indexed: 12/31/2022]
Abstract
Diet-induced obesity can lead to detrimental chronic disorders. The severity of this global epidemic has encouraged ongoing research to characterize the mechanisms underlying obesity and its comorbidities. Recent evidence suggests that saturated fatty acids (SFA) in high-fat diets rapidly generate inflammation in the arcuate nucleus of the hypothalamus (ARC), which centrally regulates whole-body energy homeostasis. Herein, we will review the roles of hypothalamic neurons and resident microglia in the initiation of SFA-induced hypothalamic inflammation. Particularly, we focus on neuronal and microglial free fatty acid-sensing and capacity to produce inflammatory signaling. We also outline a potential role of peripherally-derived monocytes in this inflammation. And finally, we explore synaptic plasticity as a mechanism through which hypothalamic inflammation can modulate ARC circuitry, and thus disrupt energy homeostasis.
Collapse
Affiliation(s)
- Dean Q Tran
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Erika K Tse
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Mun Heui Kim
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Denise D Belsham
- Department of Physiology, University of Toronto, Toronto, ON, Canada; Department of Obstetrics and Gynaecology, University of Toronto, Toronto, ON, Canada; Department of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
28
|
Loganathan N, Belsham DD. Nutrient-sensing mechanisms in hypothalamic cell models: neuropeptide regulation and neuroinflammation in male- and female-derived cell lines. Am J Physiol Regul Integr Comp Physiol 2016; 311:R217-21. [PMID: 27306829 DOI: 10.1152/ajpregu.00168.2016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/08/2016] [Indexed: 11/22/2022]
Abstract
The hypothalamus is responsible for the control of many of our physiological responses, including energy homeostasis. Of interest, there are a number of instances of sexual dimorphism documented with regard to metabolic processes. This review will discuss the necessity of utilizing both male and female models when studying the mechanisms underlying energy homeostasis, particularly those originating at the level of the hypothalamus. Because obesity often results in central neuroinflammation, we describe markers that could be used to study differences between male and female models, both the whole organism and also at the cellular level. Our laboratory has generated a wide array of immortalized hypothalamic cell models, originating from male and female rodents that we suggest could be beneficial for these types of studies. It is imperative that both sexes are considered before any recommendations for therapeutic interventions are considered.
Collapse
Affiliation(s)
| | - Denise D Belsham
- Department of Physiology, Obstetrics and Gynaecology and Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|