1
|
El-Tahan RA, Oriquat GA, Sorour I, Salem SM, Kamel MA, Michel TN, Abu-Samra N. The circulatory levels and bone expression of MIR21, 34a, 155 and their target genes in a section of Egyptian Population. Sci Rep 2024; 14:27779. [PMID: 39537688 PMCID: PMC11561067 DOI: 10.1038/s41598-024-77643-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Bone tissue is constantly regenerated and repaired through a finely balanced process known as bone remodeling. Many miRNAs act as regulators of the signaling pathways involved in bone metabolic processes to maintain tissue homeostasis. This study aimed to assess the circulating levels of MIR21, MIR34a, and MIR155 in human serum and their bone expression, and the expression of bone turnover-related genes which can reflect the bone quality. This prospective study was conducted on 60 patients (30 males and 30 females) indicated for surgical interventions for neural decompression +/- fixation. Relative quantification of expression of MIR21, miR34a, and MIR155 and bone related genes was assayed using PCR. The serum levels of osteocalcin and Serum Bone Alkaline Phosphatase (sBAP) were assayed using a human ELISA kit. The main finding of the present work was the strong positive association between the circulating levels of only miR21 and MIR155 and their bone expression in the population under study and with bone markers and target genes Also, a positive association was found between both bone expression and circulating MIR21 levels with age and sBAP. These results suggest that the circulating levels of these microRNAs as early markers for the predication of bone quality.
Collapse
Affiliation(s)
- Rasha A El-Tahan
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria, 21561, Egypt
| | - Ghaleb A Oriquat
- Department of Medical Laboratory, Amman University, Faculty of Allied Medical Sciences, Amman, 19328, Jordan
| | - Islam Sorour
- Department of Neurosurgery, Faculty of Medicine, Alexandria University, Alexandria, 21131, Egypt
| | - Sherif M Salem
- Department of Neurosurgery, Faculty of Medicine, Alexandria University, Alexandria, 21131, Egypt
| | - Maher A Kamel
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria, 21561, Egypt
- Research Projects Unit, Pharos University in Alexandria, Alexandria, 21648, Egypt
| | - Trez N Michel
- Department of Physiology, Medical Research Institute, Alexandria University, Alexandria, 21561, Egypt
| | - Nehal Abu-Samra
- Department of Basic Sciences, Faculty of Physical Therapy, Pharos University in Alexandria, Alexandria, 21648, Egypt.
| |
Collapse
|
2
|
Saranya I, Akshaya R, Gomathi K, Mohanapriya R, He Z, Partridge N, Selvamurugan N. Circ_ST6GAL1-mediated competing endogenous RNA network regulates TGF-β1-stimulated matrix Metalloproteinase-13 expression via Runx2 acetylation in osteoblasts. Noncoding RNA Res 2024; 9:153-164. [PMID: 38035043 PMCID: PMC10686813 DOI: 10.1016/j.ncrna.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 12/02/2023] Open
Abstract
Transforming growth factor-beta1 (TGF-β1) stimulates matrix metalloproteinase-13 (MMP-13, a bone-remodeling gene) expression, and this effect requires p300-mediated Runx2 (Runt-related transcription factor 2) acetylation in osteoblasts. p300 and Runx2 are transcriptional coactivator and bone transcription factor, respectively, which play key roles in the regulation of bone-remodeling genes. Non-coding ribonucleic acids (ncRNAs), such as long ncRNAs (lncRNAs) and microRNAs (miRNAs), have been linked to both physiological and pathological bone states. In this study, we proposed that TGF-β1-mediated stimulation of MMP-13 expression is due to the downregulation of p300 targeting miRNAs in osteoblasts. We identified miR-130b-5p as one of the miRNAs downregulated by TGF-β1 in osteoblasts. Forced expression of miR-130b-5p decreased p300 expression, Runx2 acetylation, and MMP-13 expression in these cells. Furthermore, TGF-β1 upregulated circ_ST6GAL1, (a circular lncRNA) in osteoblasts; circRNA directly targeted miR-130b-5p. Antisense-mediated knockdown of circ_ST6GAL1 restored the function of miR-130b-5p, resulting in downregulation of p300, Runx2, and MMP-13 in these cells. Hence, our results suggest that TGF-β1 influences circ_ST6GAL1 to sponge and degrade miR-130b-5p, thereby promoting p300-mediated Runx2 acetylation for MMP-13 expression in osteoblasts. Thus, the circ_ST6GAL1/miR-130b-5p/p300 axis has potential significance in the treatment of bone and bone-related disorders.
Collapse
Affiliation(s)
- I. Saranya
- Biotechnology, School of Bioengineering, SRMIST, Kattankulathur, India
| | - R.L. Akshaya
- Biotechnology, School of Bioengineering, SRMIST, Kattankulathur, India
| | - K. Gomathi
- Biotechnology, School of Bioengineering, SRMIST, Kattankulathur, India
| | - R. Mohanapriya
- Biotechnology, School of Bioengineering, SRMIST, Kattankulathur, India
| | - Z. He
- Molecular Pathobiology, New York University College of Dentistry, New York, USA
| | - N.C. Partridge
- Molecular Pathobiology, New York University College of Dentistry, New York, USA
| | - N. Selvamurugan
- Biotechnology, School of Bioengineering, SRMIST, Kattankulathur, India
| |
Collapse
|
3
|
Xing X, She Y, Yuan G, Yang G. piR-368 promotes odontoblastic differentiation of dental papilla cells via the Smad1/5 signaling pathway by targeting Smurf1. Connect Tissue Res 2024; 65:53-62. [PMID: 37978579 DOI: 10.1080/03008207.2023.2281319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 10/24/2023] [Indexed: 11/19/2023]
Abstract
PURPOSE The important role of non-coding RNAs in odontoblastic differentiation of dental tissue-derived stem cells has been widely demonstrated; however, whether piRNA (a subclass of non-coding RNA) involved in the course of odontoblastic differentiation is not yet available. This study aimed to investigate the expression profile of piRNA during odontogenic differentiation of mDPCs and the potential molecular mechanism in vitro. MATERIALS AND METHODS The primary mouse dental papilla cells (mDPCs) were isolated from the first molars of 1-day postnatal Kunming mice. Then, they were cultured in odontogenic medium for 9 days. The expression profile of piRNA was detected by Small RNA sequencing. RT-qPCR was used to verify the elevation of piR-368. The mRNA and protein levels of mineralization markers were examined by qRT-PCR and Western blot analysis. Alkaline phosphatase (ALP) activity and alizarin red S staining were conducted to assess the odontoblastic differentiation ability. RESULTS We validated piR-368 was significantly upregulated and interference with piR-368 markedly inhibited the odontogenic differentiation of mDPCs. In addition, the relationship between Smad1/5 signaling pathway and piR-368-induced odontoblastic differentiation has been discovered. Finally, we demonstrated Smurf1 as a target gene of piR-368 using dual-luciferase assays. CONCLUSION This study was the first to illustrate the participation of piRNA in odontoblastic differentiation. We proved that piR-368 promoted odontoblastic differentiation of mouse dental papilla cells via the Smad1/5 signaling pathway by targeting Smurf1.
Collapse
Affiliation(s)
- Xinhui Xing
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yawei She
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Guohua Yuan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Guobin Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
4
|
Anwar A, Sapra L, Gupta N, Ojha RP, Verma B, Srivastava RK. Fine-tuning osteoclastogenesis: An insight into the cellular and molecular regulation of osteoclastogenesis. J Cell Physiol 2023. [PMID: 37183350 DOI: 10.1002/jcp.31036] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/16/2023]
Abstract
Osteoclasts, the bone-resorbing cells, are essential for the bone remodeling process and are involved in the pathophysiology of several bone-related diseases. The extensive corpus of in vitro research and crucial mouse model studies in the 1990s demonstrated the key roles of monocyte/macrophage colony-stimulating factor, receptor activator of nuclear factor kappa B ligand (RANKL) and integrin αvβ3 in osteoclast biology. Our knowledge of the molecular mechanisms by which these variables control osteoclast differentiation and function has significantly advanced in the first decade of this century. Recent developments have revealed a number of novel insights into the fundamental mechanisms governing the differentiation and functional activity of osteoclasts; however, these mechanisms have not yet been adequately documented. Thus, in the present review, we discuss various regulatory factors including local and hormonal factors, innate as well as adaptive immune cells, noncoding RNAs (ncRNAs), etc., in the molecular regulation of the intricate and tightly regulated process of osteoclastogenesis. ncRNAs have a critical role as epigenetic controllers of osteoclast physiologic activities, including differentiation and bone resorption. The primary ncRNAs, which include micro-RNAs, circular RNAs, and long noncoding RNAs, form a complex network that affects gene transcription activities associated with osteoclast biological activity. Greater knowledge of the involvement of ncRNAs in osteoclast biological activities will contribute to the treatment and management of several skeletal diseases such as osteoporosis, osteoarthritis, rheumatoid arthritis, etc. Moreover, we further outline potential therapies targeting these regulatory pathways of osteoclastogenesis in distinct bone pathologies.
Collapse
Affiliation(s)
- Aleena Anwar
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Leena Sapra
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Navita Gupta
- Department of Allied Health Sciences, Chitkara School of Health Sciences, Chitkara University, Chandigarh, Punjab, India
| | - Rudra P Ojha
- Department of Zoology, Nehru Gram Bharati University, Prayagraj, Uttar Pradesh, India
| | - Bhupendra Verma
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Rupesh K Srivastava
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| |
Collapse
|
5
|
An F, Meng X, Yuan L, Niu Y, Deng J, Li Z, Liu Y, Xia R, Liu S, Yan C. Network regulatory mechanism of ncRNA on the Wnt signaling pathway in osteoporosis. Cell Div 2023; 18:3. [PMID: 36879309 PMCID: PMC9990358 DOI: 10.1186/s13008-023-00086-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/24/2023] [Indexed: 03/08/2023] Open
Abstract
Non-coding RNA (ncRNA) is a type of non-protein-coding RNA molecule transcribed from the genome which performs broad regulation of a variety of biological functions in human cells. The Wnt signaling pathway is highly conserved in multicellular organisms, playing an important role in their growth and development. Increasing evidence suggests that ncRNA can regulate cell biological function, enhance bone metabolism, and maintain normal bone homeostasis by interacting with the Wnt pathway. Studies have also demonstrated that the association of ncRNA with the Wnt pathway may be a potential biomarker for the diagnosis, evaluation of prognosis, and treatment of osteoporosis. The interaction of ncRNA with Wnt also performs an important regulatory role in the occurrence and development of osteoporosis. Targeted therapy of the ncRNA/Wnt axis may ultimately be the preferred choice for the treatment of osteoporosis in the future. The current article reviews the mechanism of the ncRNA/Wnt axis in osteoporosis and reveals the relationship between ncRNA and Wnt, thereby exploring novel molecular targets for the treatment of osteoporosis and providing theoretical scientific guidance for its clinical treatment.
Collapse
Affiliation(s)
- Fangyu An
- Teaching Experiment Training Center, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Xiangrui Meng
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Lingqing Yuan
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Yanqiang Niu
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Jie Deng
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Zhaohui Li
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Yongqi Liu
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China.
| | - Ruoliu Xia
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Shiqing Liu
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Chunlu Yan
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
6
|
Meng D, Chen W, Pan C, Yang K, Guan Y, Wang J, Moro A, Wei Q, Jiang H. Exploration of microRNA-106b-5p as a therapeutic target in intervertebral disc degeneration: a preclinical study. Apoptosis 2023; 28:199-209. [PMID: 36308623 DOI: 10.1007/s10495-022-01773-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2022] [Indexed: 11/28/2022]
Abstract
MicroRNA (miRNA) has emerge as a vital regulator in the pathogenesis of intervertebral disc degeneration (IDD). However, miR-106b-5p expression in the human nucleus pulposus (NP) and potential mechanisms remain to be elucidated. In this study, the aim was to verify the potential therapeutic mechanisms of miR-106b-5p for IDD. Key miRNAs were screened for in degenerative and normal human intervertebral disc samples. qRT-PCR and fluorescence in situ hybridization (FISH) were used to verify the miR-106b-5p differential expression. The targeting link between miR-106b-5p and Sirtuin 2 (SIRT2) was identified using the luciferase reporter assay and bioinformatics. Flow cytometry, EdU method, and cell scratching were all performed to determine the NP cell function and IDD models were constructed for in vivo experiments. SIRT2, MMP13, ADAMTS5, Col II, Aggrecan, Ras, ERK1/2, and p-ERK1/2 protein levels were assayed by western blotting. Overexpression of miR-106b-5p in NP cells decreased cell growth, induced apoptosis, hindered extracellular matrix formation, and increased the expression of matrix-degrading enzymes through the SIRT2/MAPK/ERK signaling pathway. Importantly, intradiscal delivery of antagomiR-106b-5p significantly attenuated IDD development. Our findings demonstrate that targeting miR-106b-5p in intervertebral disc has therapeutic effects on IDD.
Collapse
Affiliation(s)
- Dihua Meng
- Division of Spine Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, 530021, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Weiyou Chen
- Division of Spine Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, 530021, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Cheng Pan
- Division of Spine Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, 530021, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Kunxue Yang
- Division of Spine Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, 530021, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yewen Guan
- Division of Spine Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, 530021, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Jiaqi Wang
- Division of Spine Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, 530021, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Abu Moro
- Division of Spine Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, 530021, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Qingjun Wei
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Guangxi Medical University, 530021, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Hua Jiang
- Division of Spine Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, 530021, Nanning, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
7
|
Ji L, Li X, He S, Chen S. Regulation of osteoclast-mediated bone resorption by microRNA. Cell Mol Life Sci 2022; 79:287. [PMID: 35536437 PMCID: PMC11071904 DOI: 10.1007/s00018-022-04298-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/15/2022] [Accepted: 04/08/2022] [Indexed: 02/08/2023]
Abstract
Osteoclast-mediated bone resorption is responsible for bone metabolic diseases, negatively impacting people's health and life. It has been demonstrated that microRNA influences the differentiation of osteoclasts by regulating the signaling pathways during osteoclast-mediated bone resorption. So far, the involved mechanisms have not been fully elucidated. This review introduced the pathways involved in osteoclastogenesis and summarized the related microRNAs binding to their specific targets to mediate the downstream pathways in osteoclast-mediated bone resorption. We also discuss the clinical potential of targeting microRNAs to treat osteoclast-mediated bone resorption as well as the challenges of avoiding potential side effects and producing efficient delivery methods.
Collapse
Affiliation(s)
- Ling Ji
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xinyi Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Shushu He
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| | - Song Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
8
|
Dai Y, Jian C, Wang X, Dai X. Comprehensive expression profiles of mRNAs, lncRNAs and miRNAs in Kashin-Beck disease identified by RNA-sequencing. Mol Omics 2021; 18:154-166. [PMID: 34913457 DOI: 10.1039/d1mo00370d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Kashin-Beck disease (KBD) is a chronic, endemic and deforming osteochondropathy, whose basic pathological alterations include apoptosis and necrosis of chondrocytes in articular cartilage and growth plates and imbalanced extracellular matrix metabolism. Numerous studies have reported that long noncoding RNAs (lncRNAs) and microRNA (miRNAs) are aberrantly expressed in KBD. Our study was comprised of 5 KBD patients and 5 healthy individuals and we compared the expression profiles of mRNAs, lncRNAs and miRNAs through RNA-sequencing (RNA-seq). Bioinformatic analysis of GO and KEGG was employed to conduct functional annotation and pathway enriched analysis. In total, 3194 mRNAs, 4103 lncRNAs and 1550 miRNAs were detected to be differentially expressed by RNA-seq (P < 0.05; |log2FC| ≥1). The lysosome pathway, Wnt signaling pathway, TNF signaling pathway, endocytosis and mTOR signaling pathway were identified to be involved in the KBD development according to the result of the KEGG analysis. In addition, a ceRNA network based on lncRNA-miRNA-mRNA was constructed to probe the intricate regulatory mechanism and interaction between transcripts, which was visualized using the Cytoscape software. The ce-lncRNAs of four aberrantly expressed genes, FOSB, EGR3, BCAM and SOX6, were determined through the network. Among the identified DElncRNAs, we selected 8 differentially expressed lncRNAs to confirm the reliability of RNA-seq data by qRT-PCR in 11 KBD patients and 11 healthy individuals. We aimed to provide a comprehensive understanding ofmRNA, lncRNA and miRNA alterations between KBD patients and healthy individuals, and meanwhile reveal several potential causative molecular and signaling pathways involved in KBD.
Collapse
Affiliation(s)
- Yu Dai
- School of Public Health, Xi'an Jiaotong University Health Science Center, No. 76 Yanta West Road, Xi'an, Shaanxi 710061, China
| | - Can Jian
- School of Public Health, Xi'an Jiaotong University Health Science Center, No. 76 Yanta West Road, Xi'an, Shaanxi 710061, China
| | - Xiaofeng Wang
- School of Public Health, Xi'an Jiaotong University Health Science Center, No. 76 Yanta West Road, Xi'an, Shaanxi 710061, China
| | - Xiaoxia Dai
- School of Public Health, Xi'an Jiaotong University Health Science Center, No. 76 Yanta West Road, Xi'an, Shaanxi 710061, China.,Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People's Republic of China, No. 76 Yanta West Road, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
9
|
Gadepalli A, Akhilesh, Uniyal A, Modi A, Chouhan D, Ummadisetty O, Khanna S, Solanki S, Allani M, Tiwari V. Multifarious Targets and Recent Developments in the Therapeutics for the Management of Bone Cancer Pain. ACS Chem Neurosci 2021; 12:4195-4208. [PMID: 34723483 DOI: 10.1021/acschemneuro.1c00414] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Bone cancer pain (BCP) is a distinct pain state showing characteristics of both neuropathic and inflammatory pain. On average, almost 46% of cancer patients exhibit BCP with numbers flaring up to as high as 76% for terminally ill patients. Patients suffering from BCP experience a compromised quality of life, and the unavailability of effective therapeutics makes this a more devastating condition. In every individual cancer patient, the pain is driven by different mechanisms at different sites. The mechanisms behind the manifestation of BCP are very complex and poorly understood, which creates a substantial barrier to drug development. Nevertheless, some of the key mechanisms involved have been identified and are being explored further to develop targeted molecules. Developing a multitarget approach might be beneficial in this case as the underlying mechanism is not fixed and usually a number of these pathways are simultaneously dysregulated. In this review, we have discussed the role of recently identified novel modulators and mechanisms involved in the development of BCP. They include ion channels and receptors involved in sensing alteration of temperature and acidic microenvironment, immune system activation, sodium channels, endothelins, protease-activated receptors, neurotrophins, motor proteins mediated trafficking of glutamate receptor, and some bone-specific mechanisms. Apart from this, we have also discussed some of the novel approaches under preclinical and clinical development for the treatment of bone cancer pain.
Collapse
Affiliation(s)
- Anagha Gadepalli
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh India
| | - Akhilesh
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh India
| | - Ankit Uniyal
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh India
| | - Ajay Modi
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh India
| | - Deepak Chouhan
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh India
| | - Obulapathi Ummadisetty
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh India
| | - Shreya Khanna
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh India
| | - Shreya Solanki
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh India
| | - Meghana Allani
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh India
| | - Vinod Tiwari
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh India
| |
Collapse
|
10
|
Chen C, Liu YM, Fu BL, Xu LL, Wang B. MicroRNA-21: An Emerging Player in Bone Diseases. Front Pharmacol 2021; 12:722804. [PMID: 34557095 PMCID: PMC8452984 DOI: 10.3389/fphar.2021.722804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/24/2021] [Indexed: 01/08/2023] Open
Abstract
MicroRNAs (MiRNAs) are small endogenous non-coding RNAs that bind to the 3′-untranslated region of target genes and promote their degradation or inhibit translation, thereby regulating gene expression. MiRNAs are ubiquitous in biology and are involved in many biological processes, playing an important role in a variety of physiological and pathological processes. MiRNA-21 (miR-21) is one of them. In recent years, miR-21 has received a lot of attention from researchers as an emerging player in orthopedic diseases. MiR-21 is closely associated with the occurrence, development, treatment, and prevention of orthopedic diseases through a variety of mechanisms. This review summarizes its effects on osteoblasts, osteoclasts and their relationship with osteoporosis, fracture, osteoarthritis (OA), osteonecrosis, providing a new way of thinking for the diagnosis, treatment and prevention of these bone diseases.
Collapse
Affiliation(s)
- Chen Chen
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China.,Laboratory of Orthopaedics and Traumatology, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ya-Mei Liu
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bin-Lan Fu
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liang-Liang Xu
- Laboratory of Orthopaedics and Traumatology, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bin Wang
- Department of Traumatology, the Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
11
|
Andrée L, Yang F, Brock R, Leeuwenburgh SCG. Designing biomaterials for the delivery of RNA therapeutics to stimulate bone healing. Mater Today Bio 2021; 10:100105. [PMID: 33912824 PMCID: PMC8063862 DOI: 10.1016/j.mtbio.2021.100105] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/18/2021] [Accepted: 02/27/2021] [Indexed: 12/11/2022] Open
Abstract
Ribonucleic acids (small interfering RNA, microRNA, and messenger RNA) have been emerging as a promising new class of therapeutics for bone regeneration. So far, however, research has mostly focused on stability and complexation of these oligonucleotides for systemic delivery. By comparison, delivery of RNA nanocomplexes from biomaterial carriers can facilitate a spatiotemporally controlled local delivery of osteogenic oligonucleotides. This review provides an overview of the state-of-the-art in the design of biomaterials which allow for temporal and spatial control over RNA delivery. We correlate this concept of spatiotemporally controlled RNA delivery to the most relevant events that govern bone regeneration to evaluate to which extent tuning of release kinetics is required. In addition, inspired by the physiological principles of bone regeneration, potential new RNA targets are presented. Finally, considerations for clinical translation and upscaled production are summarized to stimulate the design of clinically relevant RNA-releasing biomaterials.
Collapse
Affiliation(s)
- L Andrée
- Department of Dentistry - Regenerative Biomaterials, Radboud Institute for Molecular Life Sciences, Radboudumc, Philips van Leydenlaan 25, Nijmegen, 6525 EX, the Netherlands
| | - F Yang
- Department of Dentistry - Regenerative Biomaterials, Radboud Institute for Molecular Life Sciences, Radboudumc, Philips van Leydenlaan 25, Nijmegen, 6525 EX, the Netherlands
| | - R Brock
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboudumc, Geert Grooteplein 28, Nijmegen, 6525 GA, the Netherlands
| | - S C G Leeuwenburgh
- Department of Dentistry - Regenerative Biomaterials, Radboud Institute for Molecular Life Sciences, Radboudumc, Philips van Leydenlaan 25, Nijmegen, 6525 EX, the Netherlands
| |
Collapse
|
12
|
De Martinis M, Sirufo MM, Ginaldi L. Osteoporosis: Current and Emerging Therapies Targeted to Immunological Checkpoints. Curr Med Chem 2021; 27:6356-6372. [PMID: 31362684 PMCID: PMC8206194 DOI: 10.2174/0929867326666190730113123] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/12/2019] [Accepted: 07/17/2019] [Indexed: 12/17/2022]
Abstract
Osteoporosis is a skeletal pathology characterized by compromised bone strength leading to increased risk of fracture, mainly the spine and hip fractures. Osteoporosis affects more than 200 million people worldwide and because of the skeletal fractures it causes, represents a major cause of morbidity, disability and mortality in older people. Recently, the new discoveries of osteoimmunology have clarified many of the pathogenetic mechanisms of osteoporosis, helping to identify new immunological targets for its treatment opening the way for new and effective therapies with biological drugs. Currently, there are basically two monoclonal antibodies for osteoporosis therapy: denosumab and romosozumab. Here, we focus on the modern approach to the osteoporosis management and in particular, on current and developing biologic drugs targeted to new immunological checkpoints, in the landscape of osteoimmunology.
Collapse
Affiliation(s)
- Massimo De Martinis
- Department of Life, Health, & Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Maria Maddalena Sirufo
- Department of Life, Health, & Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Lia Ginaldi
- Department of Life, Health, & Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
13
|
Biological strategies for osteoarthritis: from early diagnosis to treatment. INTERNATIONAL ORTHOPAEDICS 2020; 45:335-344. [PMID: 33078204 DOI: 10.1007/s00264-020-04838-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/28/2020] [Indexed: 12/20/2022]
Abstract
PURPOSE To provide an updated review of the literature on the use of orthobiologics as a potential treatment option to alleviate symptoms associated with osteoarthritis (OA), slow the progression of the disease, and aid in cartilage regeneration. METHODS A comprehensive review of the literature was performed to identify basic science and clinical studies examining the role of orthobiologics in the diagnosis and management of osteoarthritis. RESULTS Certain molecules (such as interleukin-6 (IL-6), interleukin-8 (IL-8), matrix metalloproteinase (MMPs), cartilage oligomeric matrix protein (COMP), and tumor necrosis factor (TNF), microRNAs, growth differentiation factor 11 (GDF-11)) have been recognized as biomarkers that are implicated in the pathogenesis and progression of degenerative joint disease (DJD). These biomarkers have been used to develop newer diagnostic applications and targeted biologic therapies for DJD. Local injection therapy with biologic agents such as platelet-rich plasma or stem cell-based preparations has been associated with significant improvement in joint pain and function in patients with OA and has increased in popularity during the last decade. The combination of PRP with kartogenin or TGF-b3 may also enhance its biologic effect. The mesenchymal stem cell secretome has been recognized as a potential target for the development of OA therapies due to its role in mediating the chondroprotective effects of these cells. Recent experiments have also suggested the modification of gut microbiome as a newer method to prevent OA or alter the progression of the disease. CONCLUSIONS The application of orthobiologics for the diagnosis and treatment of DJD is a rapidly evolving field that will continue to expand. The identification of OA-specific and joint-specific biomarker molecules for early diagnosis of OA would be extremely useful for the development of preventive and therapeutic protocols. Local injection therapies with HA, PRP, BMAC, and other stem cell-based preparations are currently being used to improve pain and function in patients with early OA or those with progressed disease who are not surgical candidates. Although the clinical outcomes of these therapies seem to be promising in clinical studies, future research will determine the true role of orthobiologic applications in the field of DJS.
Collapse
|
14
|
Ren Y, Song X, Tan L, Guo C, Wang M, Liu H, Cao Z, Li Y, Peng C. A Review of the Pharmacological Properties of Psoralen. Front Pharmacol 2020; 11:571535. [PMID: 33013413 PMCID: PMC7500444 DOI: 10.3389/fphar.2020.571535] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/19/2020] [Indexed: 12/13/2022] Open
Abstract
Psoralen is the principal bioactive component in the dried fruits of Cullen corylifolium (L.) Medik (syn. Psoralea corylifolia L), termed "Buguzhi" in traditional Chinese medicine (TCM). Recent studies have demonstrated that psoralen displays multiple bioactive properties, beneficial for the treatment of osteoporosis, tumors, viruses, bacteria, and inflammation. The present review focuses on the research evidence relating to the properties of psoralen gathered over recent years. Firstly, multiple studies have demonstrated that psoralen exerts strong anti-osteoporotic effects via regulation of osteoblast/osteoclast/chondrocyte differentiation or activation due to the participation in multiple molecular mechanisms of the wnt/β-catenin, bone morphogenetic protein (BMP), inositol-requiring enzyme 1 (IRE1)/apoptosis signaling kinase 1 (ASK1)/c-jun N-terminal kinase (JNK) and the Protein Kinase B(AKT)/activator protein-1 (AP-1) axis, and the expression of miR-488, peroxisome proliferators-activated receptor-gamma (PPARγ), and matrix metalloproteinases (MMPs). In addition, the antitumor properties of psoralen are associated with the induction of ER stress-related cell death via enhancement of PERK: Pancreatic Endoplasmic Reticulum Kinase (PERK)/activating transcription factor (ATF), 78kD glucose-regulated protein (GRP78)/C/EBP homologous protein (CHOP), and 94kD glucose-regulated protein (GRP94)/CHOP signaling, and inhibition of P-glycoprotein (P-gp) or ATPase that overcomes multidrug resistance. Furthermore, multiple articles have shown that the antibacterial, anti-inflammatory and neuroprotective effects of psoralen are a result of its interaction with viral polymerase (Pol), destroying the formation of biofilm, and regulating the activation of tumor necrosis factor alpha (TNF-α), transforming growth factor beta (TGF-β), interleukin 4/5/6/8/12/13 (IL-4/5/6/8/12/13), GATA-3, acetylcholinesterase (AChE), and the hypothalamic-pituitary-adrenal (HPA) axis. Finally, the toxic effects and mechanisms of action of psoralen have also been reviewed.
Collapse
Affiliation(s)
- Yali Ren
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| | - Xiaominting Song
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| | - Lu Tan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| | - Chuanjie Guo
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| | - Miao Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| | - Hui Liu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China, Pharmaceutical University, Nanjing, China
| | - Zhixing Cao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| | - Yuzhi Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| | - Cheng Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, China
| |
Collapse
|
15
|
Zhang H, Ding W, Ji F, Wu D. MicroRNA-410 participates in the pathological process of postmenopausal osteoporosis by downregulating bone morphogenetic protein-2. Exp Ther Med 2019; 18:3659-3666. [PMID: 31602244 DOI: 10.3892/etm.2019.7996] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 01/11/2019] [Indexed: 12/22/2022] Open
Abstract
The present study aimed to investigate bone morphogenetic protein (BMP)-2 and microRNA (miR)-410 expression and the mechanism of regulation in serum and CD14+ peripheral blood mononuclear cells (PBMCs) from postmenopausal osteoporosis patients and model mice. A total of 26 patients with postmenopausal osteoporosis were included in the experimental group and 29 age-matched healthy subjects were included in the control group. A total of 60 mice were divided into sham and ovariectomized (OVX) groups. Following surgery, 28 mice remained in the sham and 25 mice remained in OVX group. BMP-2 protein expression in serum and CD14+ PBMCs from patients and model mice was determined using ELISA and western blotting, respectively. Reverse transcription-quantitative polymerase chain reaction assays were performed to determine miR-410 and BMP-2 mRNA levels in serum and CD14+ PBMCs from patients and model mice. Dual luciferase reporter assays were used to identify direct interactions between miR-410 and BMP-2 mRNA. Compared with the control group, BMP-2 mRNA and protein expression in serum and CD14+ PBMCs from patients with postmenopausal osteoporosis and model mice were significantly decreased. miR-410 levels in serum and CD14+ PBMCs from patients with postmenopausal osteoporosis and model mice were significantly increased when compared with the control group. Dual luciferase reporter assays revealed that BMP-2 was a target gene of miR-410. The current study demonstrated that decreased BMP-2 expression in serum and CD14+ PBMCs from patients with postmenopausal osteoporosis was associated with the upregulation of miR-410. These results suggest that miR-410 may participate in the pathological process of postmenopausal osteoporosis by downregulating BMP-2.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Traumatic Orthopedics, Changhai Hospital, Shanghai 200433, P.R. China
| | - Wenbin Ding
- Department of Traumatic Orthopedics, Changhai Hospital, Shanghai 200433, P.R. China
| | - Fang Ji
- Department of Traumatic Orthopedics, Changhai Hospital, Shanghai 200433, P.R. China
| | - Dajiang Wu
- Department of Traumatic Orthopedics, Changhai Hospital, Shanghai 200433, P.R. China
| |
Collapse
|
16
|
Lozano C, Duroux-Richard I, Firat H, Schordan E, Apparailly F. MicroRNAs: Key Regulators to Understand Osteoclast Differentiation? Front Immunol 2019; 10:375. [PMID: 30899258 PMCID: PMC6416164 DOI: 10.3389/fimmu.2019.00375] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 02/14/2019] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding single-stranded RNAs that represent important posttranscriptional regulators of protein-encoding genes. In particular, miRNAs play key roles in regulating cellular processes such as proliferation, migration, and cell differentiation. Recently, miRNAs emerged as critical regulators of osteoclasts (OCs) biology and have been involved in OCs pathogenic role in several disorders. OCs are multinucleated cells generated from myeloid precursors in the bone marrow, specialized in bone resorption. While there is a growing number of information on the cytokines and signaling pathways that are critical to control the differentiation of osteoclast precursors (OCPs) into mature OCs, the connection between OC differentiation steps and miRNAs is less well-understood. The present review will first summarize our current understanding of the miRNA-regulated pathways in the sequential steps required for OC formation, from the motility and migration of OCPs to the cell-cell fusion and the final formation of the actin ring and ruffled border in the functionally resorbing multinucleated OCs. Then, considering the difficulty of working on primary OCs and on the generation of robust data we will give an update on the most recent advances in the detection technologies for miRNAs quantification and how these are of particular interest for the understanding of OC biology and their use as potential biomarkers.
Collapse
Affiliation(s)
- Claire Lozano
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, Montpellier, France.,Immunology Department, CHU Montpellier, Montpellier, France
| | | | | | | | | |
Collapse
|
17
|
van Meurs JB, Boer CG, Lopez-Delgado L, Riancho JA. Role of Epigenomics in Bone and Cartilage Disease. J Bone Miner Res 2019; 34:215-230. [PMID: 30715766 DOI: 10.1002/jbmr.3662] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 12/03/2018] [Accepted: 01/02/2019] [Indexed: 12/14/2022]
Abstract
Phenotypic variation in skeletal traits and diseases is the product of genetic and environmental factors. Epigenetic mechanisms include information-containing factors, other than DNA sequence, that cause stable changes in gene expression and are maintained during cell divisions. They represent a link between environmental influences, genome features, and the resulting phenotype. The main epigenetic factors are DNA methylation, posttranslational changes of histones, and higher-order chromatin structure. Sometimes non-coding RNAs, such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), are also included in the broad term of epigenetic factors. There is rapidly expanding experimental evidence for a role of epigenetic factors in the differentiation of bone cells and the pathogenesis of skeletal disorders, such as osteoporosis and osteoarthritis. However, different from genetic factors, epigenetic signatures are cell- and tissue-specific and can change with time. Thus, elucidating their role has particular difficulties, especially in human studies. Nevertheless, epigenomewide association studies are beginning to disclose some disease-specific patterns that help to understand skeletal cell biology and may lead to development of new epigenetic-based biomarkers, as well as new drug targets useful for treating diffuse and localized disorders. Here we provide an overview and update of recent advances on the role of epigenomics in bone and cartilage diseases. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
| | - Cindy G Boer
- Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Laura Lopez-Delgado
- Department of Internal Medicine, Hospital U M Valdecilla, University of Cantabria, IDIVAL, Santander, Spain
| | - Jose A Riancho
- Department of Internal Medicine, Hospital U M Valdecilla, University of Cantabria, IDIVAL, Santander, Spain
| |
Collapse
|
18
|
Pan BL, Tong ZW, Li SD, Wu L, Liao JL, Yang YX, Li HH, Dai YJ, Li JE, Pan L. Decreased microRNA-182-5p helps alendronate promote osteoblast proliferation and differentiation in osteoporosis via the Rap1/MAPK pathway. Biosci Rep 2018; 38:BSR20180696. [PMID: 30413613 PMCID: PMC6435538 DOI: 10.1042/bsr20180696] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 10/16/2018] [Accepted: 11/06/2018] [Indexed: 12/21/2022] Open
Abstract
Osteoporosis (OP) is a serious health problem that contributes to osteoporotic structural damage and bone fragility. MicroRNAs (miRNAs) can exert important functions over bone endocrinology. Therefore, it is of substantial significance to clarify the expression and function of miRNAs in bone endocrine physiology and pathology to improve the potential therapeutic value for metabolism-related bone diseases. We explored the effect of microRNA-182-5p (miR-182-5p) on osteoblast proliferation and differentiation in OP rats after alendronate (ALN) treatment by targeting adenylyl cyclase isoform 6 (ADCY6) through the Rap1/mitogen-activated protein kinase (MAPK) signaling pathway. Rat models of OP were established to observe the effect of ALN on OP, and the expression of miR-182-5p, ADCY6 and the Rap1/MAPK signaling pathway-related genes was determined. To determine the roles of miR-182-5p and ADCY6 in OP after ALN treatment, the relationship between miR-182 and ADCY6 was initially verified. Osteoblasts were subsequently extracted and transfected with a miR-182-5p inhibitor, miR-182-5p mimic, si-ADCY6 and the MAPK signaling pathway inhibitor U0126. Cell proliferation, apoptosis and differentiation were also determined. ALN treatment was able to ease the symptoms of OP. miR-182-5p negatively targeted ADCY6 to inhibit the Rap1/MAPK signaling pathway. Cells transfected with miR-182 inhibitor decreased the expression of ALP, BGP and COL I, which indicated that the down-regulation of miR-182-5p promoted cell differentiation and cell proliferation and inhibited cell apoptosis. In conclusion, the present study shows that down-regulated miR-182-5p promotes the proliferation and differentiation of osteoblasts in OP rats through Rap1/MAPK signaling pathway activation by up-regulating ADCY6, which may represent a novel target for OP treatment.
Collapse
Affiliation(s)
- Bao-Long Pan
- Department of Laboratory, People's Hospital of Yuxi City, Yuxi 653100, P.R. China
| | - Zong-Wu Tong
- Department of Nephrology, People's Hospital of Yuxi City, Yuxi 653100, P.R. China
| | - Shu-De Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Kunming Medical University, Kunming 650500, P.R. China
| | - Ling Wu
- Department of Quality Management, Central Blood Station of Yuxi City, Yuxi 653100, P.R. China
| | - Jun-Long Liao
- Department of Rehabilitation Medicine, People's Hospital of Yuxi City, Yuxi 653100, P.R. China
| | - Yu-Xi Yang
- Department of Laboratory, People's Hospital of Yuxi City, Yuxi 653100, P.R. China
| | - Hu-Huan Li
- Department of Laboratory, People's Hospital of Yuxi City, Yuxi 653100, P.R. China
| | - Yan-Juan Dai
- Department of Laboratory, People's Hospital of Yuxi City, Yuxi 653100, P.R. China
| | - Jun-E Li
- Department of Laboratory, People's Hospital of Yuxi City, Yuxi 653100, P.R. China
| | - Li Pan
- Department of Laboratory, People's Hospital of Yuxi City, Yuxi 653100, P.R. China
| |
Collapse
|
19
|
Arumugam B, Vishal M, Shreya S, Malavika D, Rajpriya V, He Z, Partridge NC, Selvamurugan N. Parathyroid hormone-stimulation of Runx2 during osteoblast differentiation via the regulation of lnc-SUPT3H-1:16 (RUNX2-AS1:32) and miR-6797-5p. Biochimie 2018; 158:43-52. [PMID: 30562548 DOI: 10.1016/j.biochi.2018.12.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/13/2018] [Indexed: 12/21/2022]
Abstract
Parathyroid hormone (PTH) acts as a regulator of calcium homeostasis and bone remodeling. Runx2, an essential transcription factor in bone, is required for osteoblast differentiation. Noncoding RNAs such as long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) play crucial roles in regulating gene expression in osteoblasts. In this study, we investigated the effects of PTH on osteoblast differentiation via Runx2, lncRNA, and miRNA expression in human bone marrow stromal cells (hBMSCs) and human osteoblastic cells (MG63). PTH-treatment of hBMSCs for 24 h, 7 days, and 14 days stimulated Runx2 mRNA expression. Using bioinformatics tools, we identified 17 lncRNAs originating from human Runx2 gene. Among these, lnc-SUPT3H-1:16 (RUNX2-AS1:32) expression was highly up-regulated by the 7 d PTH-treatment in hBMSCs. We also identified miR-6797-5p as the putative target of lnc-SUPT3H-1:16 and Runx2 using bioinformatics tools. PTH-treatment increased the expression of miR-6797-5p in hBMSCs, and overexpression of miR-6797-5p decreased osteoblast differentiation in MG63 cells, suggesting a role for lnc-SUPT3H-1:16 as sponge molecule. A luciferase gene reporter assay identified direct targeting of miR-6797-5p with lnc-SUPT3H-1:16 and 3'UTR Runx2 in MG63 cells. Thus, PTH stimulated the expression of lnc-SUPT3H-1:16, miR-6797-5p and Runx2, and due to the sponging mechanism of lnc- SUPT3H-1:16 towards miR-6797-5p, Runx2 was protected, resulting in the promotion of osteoblast differentiation.
Collapse
Affiliation(s)
- B Arumugam
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - M Vishal
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - S Shreya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - D Malavika
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - V Rajpriya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Z He
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York University, NY, USA
| | - N C Partridge
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York University, NY, USA
| | - N Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India.
| |
Collapse
|