1
|
Yin Y, Zhang Y, Hua Z, Wu A, Pan X, Yang J, Wang X. Muscle transcriptome analysis provides new insights into the growth gap between fast- and slow-growing Sinocyclocheilus grahami. Front Genet 2023; 14:1217952. [PMID: 37538358 PMCID: PMC10394708 DOI: 10.3389/fgene.2023.1217952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/06/2023] [Indexed: 08/05/2023] Open
Abstract
Sinocyclocheilus grahami is an economically valuable and famous fish in Yunnan Province, China. However, given its slow growth (40 g/2 years) and large growth differences among individuals, its growth performance needs to be improved for sustainable future use, in which molecular breeding technology can play an important role. In the current study, we conducted muscle transcriptomic analysis to investigate the growth gaps among individuals and the mechanism underlying growth within 14 fast- and 14 slow-growth S. grahami. In total, 1,647 differentially expressed genes (DEGs) were obtained, including 947 up-regulated and 700 down-regulated DEGs in fast-growth group. Most DEGs were significantly enriched in ECM-receptor interaction, starch and sucrose metabolism, glycolysis/gluconeogenesis, pyruvate metabolism, amino acids biosynthesis and metabolism, peroxisome, and PPAR signaling pathway. Some genes related to glycogen degradation, glucose transport, and glycolysis (e.g., adipoq, prkag1, slc2a1, agl, pygm, pgm1, pfkm, gapdh, aldoa, pgk1, pgam2, bpgm, and eno3) were up-regulated, while some genes related to fatty acid degradation and transport (e.g., acox1, acaa1, fabp1b.1, slc27a1, and slc27a2) and amino acid metabolism (e.g., agxt, shmt1, glula, and cth) were down-regulated in the fast-growth group. Weighted gene co-expression network analysis identified col1a1, col1a2, col5a1, col6a2, col10a1, col26a1, bglap, and krt15 as crucial genes for S. grahami growth. Several genes related to bone and muscle growth (e.g., bmp2, bmp3, tgfb1, tgfb2, gdf10, and myog) were also up-regulated in the fast-growth group. These results suggest that fast-growth fish may uptake adequate energy (e.g., glucose, fatty acid, and amino acids) from fodder, with excess energy substances used to synthesize collagen to accelerate bone and muscle growth after normal life activities are maintained. Moreover, energy uptake may be the root cause, while collagen synthesis may be the direct reason for the growth gap between fast- and slow-growth fish. Hence, improving food intake and collagen synthesis may be crucial for accelerating S. grahami growth, and further research is required to fully understand and confirm these associations.
Collapse
Affiliation(s)
- Yanhui Yin
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory of Plateau Fish Breeding, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Engineering Research Center for Plateau-Lake Health and Restoration, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yuanwei Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory of Plateau Fish Breeding, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Engineering Research Center for Plateau-Lake Health and Restoration, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Zexiang Hua
- Fishery Technology Extension Station of Yunnan, Kunming, Yunnan, China
| | - Anli Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory of Plateau Fish Breeding, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Engineering Research Center for Plateau-Lake Health and Restoration, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xiaofu Pan
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory of Plateau Fish Breeding, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Engineering Research Center for Plateau-Lake Health and Restoration, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Junxing Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory of Plateau Fish Breeding, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Engineering Research Center for Plateau-Lake Health and Restoration, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xiaoai Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory of Plateau Fish Breeding, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Engineering Research Center for Plateau-Lake Health and Restoration, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
2
|
Camila A, Mariano GC, Alejandra LM. Prejuveniles of Mugil liza (Actinopterygii; Fam. Mugilidae) show digestive and metabolic flexibility upon different postprandial times and refeeding. J Comp Physiol B 2022; 192:561-573. [PMID: 35513525 DOI: 10.1007/s00360-022-01438-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 03/30/2022] [Accepted: 04/11/2022] [Indexed: 11/28/2022]
Abstract
Many animals face periods of feeding restrictions implying fasting and refeeding. The determination of digestive/metabolic and body condition parameters at different times of food deprivation and after refeeding allows to evaluate the postprandial dynamics, the transition from feeding to fasting and the capacity to reverse digestive and metabolic alterations. In spite of its physiological importance, studies on estuarine-dependent detritivore fish are lacking. We determined total mass (TM), relative intestine length (RIL), hepatosomatic index (HSI), digestive enzymes activities in the intestine and energy reserves in liver and muscle at 0, 24, 72, 144 and 240 h after feeding and at 72 h after refeeding in prejuveniles of Mugil liza (Mugilidae) as a model species. After feeding, a decrease occurred in: TM (144 h, 25%), RIL (144 h, 23%); amylase and maltase (72 h, 45 and 35%), sucrase (24 h, 40%) and lipase (24 h, 70%) in intestine; glycogen and free glucose (72 h, 90 and 92%) in liver. In muscle, glycogen (72-144 h) and free glucose (144 h) (170% and 165%, respectively) peak increased; triglycerides decreased at 24-240 h (50%). After refeeding TM, RIL, carbohydrases activities in intestine, glycogen and free glucose in liver were recovered. In muscle, glycogen and free glucose were similar to 0 h; lipase activity and triglycerides were not recovered. Trypsin and APN in intestine, triglycerides in liver, protein in liver and muscle and HSI did not change. The differential modulation of key components of carbohydrates and lipid metabolism after feeding/refeeding would allow to face fasting and recover body condition. Our results improve lacking knowledge about digestive and metabolic physiology of detritivore fish.
Collapse
Affiliation(s)
- Albanesi Camila
- Grupo Fisiología Bioquímica, Integrativa y Adaptativa, Instituto de Investigaciones Marinas y Costeras (IIMyC), Universidad Nacional de Mar del Plata CONICET-FCEyN, Funes 3250, 7600, Mar del Plata, Argentina
| | - González-Castro Mariano
- Grupo Fisiología Bioquímica, Integrativa y Adaptativa, Instituto de Investigaciones Marinas y Costeras (IIMyC), Universidad Nacional de Mar del Plata CONICET-FCEyN, Funes 3250, 7600, Mar del Plata, Argentina
| | - López-Mañanes Alejandra
- Grupo Fisiología Bioquímica, Integrativa y Adaptativa, Instituto de Investigaciones Marinas y Costeras (IIMyC), Universidad Nacional de Mar del Plata CONICET-FCEyN, Funes 3250, 7600, Mar del Plata, Argentina.
| |
Collapse
|
3
|
Mardones O, Oyarzún-Salazar R, Labbé BS, Miguez JM, Vargas-Chacoff L, Muñoz JLP. Intestinal variation of serotonin, melatonin, and digestive enzymes activities along food passage time through GIT in Salmo salar fed with supplemented diets with tryptophan and melatonin. Comp Biochem Physiol A Mol Integr Physiol 2022; 266:111159. [PMID: 35114387 DOI: 10.1016/j.cbpa.2022.111159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 12/22/2022]
Abstract
In teleosts, peripheral serotonin (5-HT) and melatonin (MEL) are synthesised in the gastrointestinal tract (GIT) and regulate secretion and motility processes. Their production is regulated by diet and the passage of food through the GIT. This study aimed to evaluate how intestinal 5-HT, melatonin, and the activity of digestive enzymes varied with food passage time through GIT in Atlantic salmon (Salmo salar). We fed fish diets supplemented with tryptophan and melatonin (L-Trp 2.5% and MEL 0.01%) and measured the activity of digestive enzymes (amylase, lipase, and total protease) in the pyloric caeca, midgut, and hindgut at different times after feeding. 5-HT levels increased in all GIT portions and diets at 120 min post-intake and were highest in the pyloric caeca. Intestinal enzymatic activity was varied with diet, post-intake time and in different intestinal portions. In conclusion, food passage time directly affects GIT 5-HT secretion and digestive enzyme activity in S. salar, and diet composition regulates S. salar GIT function.
Collapse
Affiliation(s)
- O Mardones
- Centro de Investigación y Desarrollo i~mar, Universidad de los Lagos, Puerto Montt, Chile
| | - R Oyarzún-Salazar
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Centro Fondap-IDEAL, Universidad Austral de Chile, Valdivia, Chile
| | - B S Labbé
- Centro de Investigación y Desarrollo i~mar, Universidad de los Lagos, Puerto Montt, Chile; Programa de Magister en Ciencias, mención manejo, Producción, Manejo y Conservación de Recursos Naturales, Universidad de Los Lagos, Puerto Montt, Chile
| | - J M Miguez
- Laboratorio de Fisiología de Peces, Facultad de Biología, Universidade Vigo, Vigo, Spain
| | - L Vargas-Chacoff
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Centro Fondap-IDEAL, Universidad Austral de Chile, Valdivia, Chile; Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems, BASE, University Austral of Chile, Valdivia, Chile.
| | - J L P Muñoz
- Centro de Investigación y Desarrollo i~mar, Universidad de los Lagos, Puerto Montt, Chile.
| |
Collapse
|
4
|
Chen X, Dong J, Jiao Q, Du X, Bi M, Jiang H. "Sibling" battle or harmony: crosstalk between nesfatin-1 and ghrelin. Cell Mol Life Sci 2022; 79:169. [PMID: 35239020 PMCID: PMC11072372 DOI: 10.1007/s00018-022-04193-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 12/17/2022]
Abstract
Ghrelin was first identified as an endogenous ligand of the growth hormone secretagogue receptor (GHSR) in 1999, with the function of stimulating the release of growth hormone (GH), while nesfatin-1 was identified in 2006. Both peptides are secreted by the same kind of endocrine cells, X/A-like cells in the stomach. Compared with ghrelin, nesfatin-1 exerts opposite effects on energy metabolism, glucose metabolism, gastrointestinal functions and regulation of blood pressure, but exerts similar effects on anti-inflammation and neuroprotection. Up to now, nesfatin-1 remains as an orphan ligand because its receptor has not been identified. Several studies have shown the effects of nesfatin-1 are dependent on the receptor of ghrelin. We herein compare the effects of nesfatin-1 and ghrelin in several aspects and explore the possibility of their interactions.
Collapse
Affiliation(s)
- Xi Chen
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Jing Dong
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Qian Jiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Xixun Du
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Mingxia Bi
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Hong Jiang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, People's Republic of China.
| |
Collapse
|
5
|
Padeniya U, Larson ET, Septriani S, Pataueg A, Kafui AR, Hasan E, Mmaduakonam OS, Kim GD, Kiddane AT, Brown CL. Probiotic Treatment Enhances Pre-feeding Larval Development and Early Survival in Zebrafish Danio rerio. JOURNAL OF AQUATIC ANIMAL HEALTH 2022; 34:3-11. [PMID: 35315145 DOI: 10.1002/aah.10148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/03/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
The growth and development of healthy culture subjects are essential in increasing productivity in the aquaculture industry. A primary determinant of aquatic animal productivity is the ambient microbial population. If an aquatic animal's microbiome is diverse, with bacteria favoring beneficial over pathogenic species, the health and growth of the animal (i.e., fish or crustacean) can be substantially improved. Embryonic and newly hatched Zebrafish Danio rerio larvae were reared in the presence of (1) water from the broodstock culture tank as a control, (2) a probiotic solution containing 19 strains of live lactic acid bacteria (LAB), or (3) an antibiotic (AB) solution with amoxycillin. Developmental parameters were monitored until 10 d postfertilization. Bacteria present in the water and larvae were cultured and identified by sequencing the V4 hypervariable region of bacterial 16S ribosomal RNA. Probiotic-treated larvae showed significant increases in every measured morphological parameter and in survival compared to the controls and AB-treated larvae, including TL, eye development, and swim bladder development before first feeding. Staining with DASPEI (2-(4-[dimethylamino]styryl)-N-ethylpyridinium iodide) produced fluorescence, revealing increased mitochondrial activity in the gastrointestinal tracts of probiotic-treated larvae and reflecting advancement of initial metabolic function. Probiotic-treated larvae showed accelerated yolk absorption, resulting in increased nutrient mobilization and growth. Microbial analyses revealed a greater concentration of bacteria in larvae in response to the probiotic treatment compared to the other two treatments. Species identified in all three treatments included Pseudomonas spp. and Aeromonas spp. (Proteobacteria). The second most diverse and abundant microbiome was seen in controls, whereas AB-treated larvae had the least diverse microbiome. All treatments revealed the presence of proteobacteria, but an AB-resistant pathogenic bacterium (Stenotrophomonas maltophilia) was identified in the AB group. These results reveal that the presence of LAB and other bacteria favorably influenced early larval growth, development, digestive function, and survival in Zebrafish even before the onset of feeding.
Collapse
Affiliation(s)
- Uthpala Padeniya
- Food and Agriculture Organization of the United Nations, World Fisheries University Pilot Programme, Pukyong National University, Busan, 48547, South Korea
| | - Earl T Larson
- Department of Biological Sciences, St. Johns River State College, Orange Park, Florida, 32065, USA
| | - Shafira Septriani
- Food and Agriculture Organization of the United Nations, World Fisheries University Pilot Programme, Pukyong National University, Busan, 48547, South Korea
| | - Arjay Pataueg
- Food and Agriculture Organization of the United Nations, World Fisheries University Pilot Programme, Pukyong National University, Busan, 48547, South Korea
| | - Akpoh Rhoda Kafui
- Food and Agriculture Organization of the United Nations, World Fisheries University Pilot Programme, Pukyong National University, Busan, 48547, South Korea
| | - Ekramul Hasan
- Food and Agriculture Organization of the United Nations, World Fisheries University Pilot Programme, Pukyong National University, Busan, 48547, South Korea
| | - Obodoefuna Somadina Mmaduakonam
- Food and Agriculture Organization of the United Nations, World Fisheries University Pilot Programme, Pukyong National University, Busan, 48547, South Korea
| | - Gun-Do Kim
- Lab of Cell Signaling, Department of Microbiology, College of Natural Science, Pukyong National University, Busan, 48547, South Korea
| | - Anley Teferra Kiddane
- Lab of Cell Signaling, Department of Microbiology, College of Natural Science, Pukyong National University, Busan, 48547, South Korea
| | - Christopher L Brown
- Food and Agriculture Organization of the United Nations, World Fisheries University Pilot Programme, Pukyong National University, Busan, 48547, South Korea
| |
Collapse
|
6
|
Fu Y, Liang X, Li D, Gao H, Wang Y, Li W, Xu K, Hu F. Effect of Dietary Tryptophan on Growth, Intestinal Microbiota, and Intestinal Gene Expression in an Improved Triploid Crucian Carp. Front Nutr 2021; 8:676035. [PMID: 34222302 PMCID: PMC8247481 DOI: 10.3389/fnut.2021.676035] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/20/2021] [Indexed: 12/13/2022] Open
Abstract
Tryptophan (Trp) has received increasing attention in the maintenance of intestinal function. In this study, improved triploid crucian carp (ITCC) fed diets containing 6.35 g kg−1 Trp had higher average daily gain (ADG) and improved villus height (VH) and crypt depth (CD) in the intestine compared to the control group. To elucidate the potential mechanisms, we used RNA sequencing (RNA-seq) to investigate changes in the intestinal transcriptome and 16S rRNA gene sequencing to measure the intestinal microbiota in response to 6.35 g kg−1 Trp feeding in ITCC. Dietary Trp altered intestinal gene expression involved in nutrient transport and metabolism. Differentially expressed transcripts (DETs) were highly enriched in key pathways containing protein digestion and absorption and the AMPK signaling pathway. 16S rRNA sequencing showed that 6.35 g kg−1 Trp significantly increased the abundance of the genus Cetobacterium, and the Firmicutes/Bacteroidetes ratio at the phylum level (P < 0.05). In addition, bacterial richness indices (Simpson index) significantly increased (P < 0.05) community evenness in response to 6.35 g kg−1 Trp. In conclusion, appropriate dietary Trp improves the growth performance, and influences the intestinal flora of ITCC. This study might be helpful to guide the supply of dietary exogenous Trp in ITCC breeding.
Collapse
Affiliation(s)
- Yawei Fu
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Xiaoxiao Liang
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Donghua Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Hu Gao
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yadong Wang
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Wenting Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Kang Xu
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Fangzhou Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|
7
|
First evidence for the presence of amino acid sensing mechanisms in the fish gastrointestinal tract. Sci Rep 2021; 11:4933. [PMID: 33654150 PMCID: PMC7925595 DOI: 10.1038/s41598-021-84303-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 02/08/2021] [Indexed: 12/15/2022] Open
Abstract
This study aimed to characterize amino acid sensing systems in the gastrointestinal tract (GIT) of the carnivorous fish model species rainbow trout. We observed that the trout GIT expresses mRNAs encoding some amino acid receptors described in mammals [calcium-sensing receptor (CaSR), G protein-coupled receptor family C group 6 member A (GPRC6A), and taste receptors type 1 members 1 and 2 (T1r1, T1r2)], while others [taste receptor type 1 member 3 (T1r3) and metabotropic glutamate receptors 1 and 4 (mGlur1, mGlur4)] could not be found. Then, we characterized the response of such receptors, as well as that of intracellular signaling mechanisms, to the intragastric administration of l-leucine, l-valine, l-proline or l-glutamate. Results demonstrated that casr, gprc6a, tas1r1 and tas1r2 mRNAs are modulated by amino acids in the stomach and proximal intestine, with important differences with respect to mammals. Likewise, gut amino acid receptors triggered signaling pathways likely mediated, at least partly, by phospholipase C β3 and β4. Finally, the luminal presence of amino acids led to important changes in ghrelin, cholecystokinin, peptide YY and proglucagon mRNAs and/or protein levels. Present results offer the first set of evidence in favor of the existence of amino acid sensing mechanisms within the fish GIT.
Collapse
|
8
|
Canosa LF, Bertucci JI. Nutrient regulation of somatic growth in teleost fish. The interaction between somatic growth, feeding and metabolism. Mol Cell Endocrinol 2020; 518:111029. [PMID: 32941926 DOI: 10.1016/j.mce.2020.111029] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 07/03/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022]
Abstract
This review covers the current knowledge on the regulation of the somatic growth axis and its interaction with metabolism and feeding regulation. The main endocrine and neuroendocrine factors regulating both the growth axis and feeding behavior will be briefly summarized. Recently discovered neuropeptides and peptide hormones will be mentioned in relation to feeding control as well as growth hormone regulation. In addition, the influence of nutrient and nutrient sensing mechanisms on growth axis will be highlighted. We expect that in this process gaps of knowledge will be exposed, stimulating future research in those areas.
Collapse
Affiliation(s)
- Luis Fabián Canosa
- Instituto Tecnológico de Chascomús (INTECH), CONICET-UNSAM, Chascomús, Buenos Aires, Argentina.
| | | |
Collapse
|
9
|
Blanco AM, Bertucci JI, Hatef A, Unniappan S. Feeding and food availability modulate brain-derived neurotrophic factor, an orexigen with metabolic roles in zebrafish. Sci Rep 2020; 10:10727. [PMID: 32612127 PMCID: PMC7329848 DOI: 10.1038/s41598-020-67535-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 06/10/2020] [Indexed: 12/13/2022] Open
Abstract
Emerging findings point to a role for brain-derived neurotrophic factor (BDNF) on feeding in mammals. However, its role on energy balance is unclear. Moreover, whether BDNF regulates energy homeostasis in non-mammals remain unknown. This research aimed to determine whether BDNF is a metabolic peptide in zebrafish. Our results demonstrate that BDNF mRNAs and protein, as well as mRNAs encoding its receptors trkb2, p75ntra and p75ntrb, are detectable in the zebrafish brain, foregut and liver. Intraperitoneal injection of BDNF increased food intake at 1, 2 and 6 h post-administration, and caused an upregulation of brain npy, agrp and orexin, foregut ghrelin, and hepatic leptin mRNAs, and a reduction in brain nucb2. Fasting for 7 days increased bdnf and p75ntrb mRNAs in the foregut, while decreased bdnf, trkb2, p75ntra and p75ntrb mRNAs in the brain and liver. Additionally, the expression of bdnf and its receptors increased preprandially, and decreased after a meal in the foregut and liver. Finally, we observed BDNF-induced changes in the expression and/or activity of enzymes involved in glucose and lipid metabolism in the liver. Overall, present results indicate that BDNF is a novel regulator of appetite and metabolism in fish, which is modulated by energy intake and food availability.
Collapse
Affiliation(s)
- Ayelén Melisa Blanco
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Pontevedra, Spain
| | - Juan Ignacio Bertucci
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Azadeh Hatef
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada.
| |
Collapse
|
10
|
Blanco AM, Bertucci JI, Soengas JL, Unniappan S. In vitro insulin treatment reverses changes elicited by nutrients in cellular metabolic processes that regulate food intake in fish. J Exp Biol 2020; 223:jeb213454. [PMID: 32179544 DOI: 10.1242/jeb.213454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 03/09/2020] [Indexed: 12/13/2022]
Abstract
This research assessed the direct effects of insulin on nutrient-sensing mechanisms in the brain of rainbow trout (Oncorhynchus mykiss) using an in vitro approach. Cultured hypothalamus and hindbrain were exposed to 1 µmol l-1 insulin for 3 h, and signals involved in appetite regulation and nutrient-sensing mechanisms were measured. Additionally, the involvement of the phosphatidylinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway in the actions of insulin was studied by using the inhibitor wortmannin. Treatment with insulin alone did not elicit many changes in the appetite regulators and nutrient-sensing-related genes and enzymes tested in the hypothalamus and hindbrain. However, we found that, when insulin and nutrients were added together, insulin reversed most of the effects exerted by nutrients alone, suggesting that insulin changes responsiveness to nutrients at the central level. Effects reversed by insulin included expression levels of genes related to the sensing of both glucose (slc2a2, slc5a1, gck, pck1, pklr, g6pcb, gys1, tas1r3 and nr1h3 in the hindbrain, and slc2a2, pklr and pck1 in the hypothalamus) and fatty acid (cd36 in the hindbrain, and cd36 and acly in the hypothalamus). Nutrient-induced changes in the activity of Acly and Cpt-1 in the hindbrain and of Pepck, Acly, Fas and Hoad in the hypothalamus were also reversed by insulin. Most of the insulin effects disappeared in the presence of wortmannin, suggesting the PI3K/Akt pathway is a mediator of the effects of insulin reported here. This study adds new information to our knowledge of the mechanisms regulating nutrient sensing in fish.
Collapse
Affiliation(s)
- Ayelén M Blanco
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5B4
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña-CIM, Universidade de Vigo, 36330 Vigo, Pontevedra, Spain
| | - Juan I Bertucci
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5B4
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5B3
| | - José L Soengas
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña-CIM, Universidade de Vigo, 36330 Vigo, Pontevedra, Spain
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5B4
| |
Collapse
|
11
|
Blanco AM, Bertucci JI, Velasco C, Unniappan S. Growth differentiation factor 15 (GDF-15) is a novel orexigen in fish. Mol Cell Endocrinol 2020; 505:110720. [PMID: 31991159 DOI: 10.1016/j.mce.2020.110720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/14/2020] [Accepted: 01/14/2020] [Indexed: 01/18/2023]
Abstract
Growth differentiation factor 15 (GDF-15), an anti-inflammatory and anti-tumorigenic cytokine, has been emerging as a regulator of appetite and energy homeostasis in mammals. In fish, the physiological role of this peptide remains to be elucidated. This research aimed to determine the possible role of GDF-15 on food intake in goldfish (Carassius auratus). To achieve our objectives, we first obtained a 595 bp gdf-15 cDNA sequence from goldfish tissues, and examined the tissue expression profile of mRNAs encoding both GDF-15 and its receptor (GFRAL). Both mRNAs were detected in several goldfish tissues, including the hypothalamus, foregut and liver (main tissues regulating appetite and energy balance). Food deprivation for 3 and 7 days significantly upregulated gdf-15 mRNAs in the foregut, but downregulated them in the liver. Our in vivo study using diets with varying amounts of carbohydrates, proteins and fats, and our in vitro study exposing goldfish tissues to different macronutrients revealed that gdf-15 mRNAs are importantly modulated by macronutrients. In general terms, we found an increase in gdf-15 mRNA levels in the goldfish foregut and liver in response to all macronutrients tested. Finally, our in vivo study testing the effects of GDF-15 on appetite levels demonstrated an important dose-dependent orexigenic role for this peptide in goldfish. Results from this study described GDF-15 as a novel regulator of appetite in fish, importantly modulated by food availability and diet composition.
Collapse
Affiliation(s)
- Ayelén Melisa Blanco
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Pontevedra, Spain
| | - Juan Ignacio Bertucci
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Cristina Velasco
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Pontevedra, Spain
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
12
|
Blanco AM, Bertucci JI, Unniappan S. Goldfish adipocytes are pancreatic beta cell-like, glucose-responsive insulin-producing cells. J Cell Physiol 2020; 235:6875-6886. [PMID: 31989646 DOI: 10.1002/jcp.29581] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/16/2020] [Indexed: 11/10/2022]
Abstract
Glucose homeostasis plays a key role in maintaining stable physiological conditions, and its dysfunction causes severe chronic health issues including diabetes. In this study, we have characterized goldfish adipocytes as cells with properties similar to that of pancreatic β-cells: they express considerable high levels of preproinsulin mRNAs, possess the necessary machinery for processing preproinsulin (prohormone convertases 1 and 2, carboxypeptidase E and trypsin) and responding to extracellular glucose (glucokinase and the glucose transporters 1, 2, and 4), produce insulin in a glucose-responsive manner and express key transcription factors typically involved in pancreas development (Pdx1, Neurogenin3, Nkx2.2, Pax6, and FOXO1A). These findings reinforce the feature of fish adipocytes as alternate sources of active insulin, holding the promise that they could eventually be developed as transplantable sources of this vital hormone.
Collapse
Affiliation(s)
- Ayelén Melisa Blanco
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.,Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro Singular de Investigación Mariña-ECIMAT, Universidade de Vigo, Campus Universitario Lagoas-Marcosende, Vigo, Spain
| | - Juan Ignacio Bertucci
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.,Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
13
|
Zhao Y, Wu XY, Xu SX, Xie JY, Xiang KW, Feng L, Liu Y, Jiang WD, Wu P, Zhao J, Zhou XQ, Jiang J. Dietary tryptophan affects growth performance, digestive and absorptive enzyme activities, intestinal antioxidant capacity, and appetite and GH-IGF axis-related gene expression of hybrid catfish (Pelteobagrus vachelli♀ × Leiocassis longirostris♂). FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:1627-1647. [PMID: 31161532 DOI: 10.1007/s10695-019-00651-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 04/26/2019] [Indexed: 06/09/2023]
Abstract
The 56-day feeding trial was carried out to investigate the effects of dietary tryptophan (Trp) on growth performance, digestive and absorptive enzyme activities, intestinal antioxidant capacity, and appetite and GH-IGF axis-related genes expression of hybrid catfish (Pelteobagrus vachelli♀ × Leiocassis longirostris♂). A total of 864 hybrid catfish (21.82 ± 0.14 g) were fed six different experimental diets containing graded levels of Trp at 2.6, 3.1, 3.7, 4.2, 4.7, and 5.6 g kg-1 diet. The results indicated that dietary Trp increased (P < 0.05) (1) final body weight, percent weight gain, specific growth rate, feed intake, feed efficiency, and protein efficiency ratio; (2) fish body protein, lipid and ash contents, protein, and ash production values; (3) stomach weight, stomach somatic index, liver weight, intestinal weight, length and somatic index, and relative gut length; and (4) activities of pepsin in the stomach; trypsin, chymotrypsin, lipase, and amylase in the pancreas and intestine; and γ-glutamyl transpeptidase, Na+, K+-ATPase, and alkaline phosphatase in the intestine. Dietary Trp decreased malondialdehyde content, increased antioxidant enzyme activities and glutathione content, but downregulated Keap1 mRNA expression, and upregulated the expression of NPY, ghrelin, GH, GHR, IGF1, IGF2, IGF1R, PIK3Ca, AKT1, TOR, 4EBP1, and S6K1 genes. These results indicated that Trp improved hybrid catfish growth performance, digestive and absorptive ability, antioxidant status, and appetite and GH-IGF axis-related gene expression. Based on the quadratic regression analysis of PWG, SGR, and FI, the dietary Trp requirement of hybrid catfish (21.82-39.64 g) was recommended between 3.96 and 4.08 g kg-1 diet (9.4-9.7 g kg-1 of dietary protein).
Collapse
Affiliation(s)
- Ye Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiao-Yun Wu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, 625014, China
| | - Shang-Xiao Xu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, 625014, China
| | - Jia-Yuan Xie
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Kai-Wen Xiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, 625014, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, 625014, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, 625014, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, 625014, China
| | - Juan Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, 625014, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China.
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, 625014, China.
| | - Jun Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China.
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, 625014, China.
| |
Collapse
|
14
|
Rajeswari JJ, Hatef A, Golshan M, Alavi SMH, Unniappan S. Metabolic stress leads to divergent changes in the ghrelinergic system in goldfish (Carassius auratus) gonads. Comp Biochem Physiol A Mol Integr Physiol 2019; 235:112-120. [PMID: 31158494 DOI: 10.1016/j.cbpa.2019.05.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 05/28/2019] [Accepted: 05/28/2019] [Indexed: 12/12/2022]
Abstract
Various endocrine factors that regulate energy homeostasis are also implicated in the reproductive physiology of mammals. However, the hormonal link between metabolism and reproduction in fish is poorly understood. Ghrelin is a multifunctional hormone with both metabolic and reproductive roles in vertebrates. Post-translational acylation by ghrelin-O-acyltransferase (GOAT) is critical for its biological actions. The expression of ghrelin, ghrelin or growth hormone secretagogue receptor (GHSR), and GOAT (which forms the ghrelinergic system) in fish under metabolic stress remains unclear. In this research, we used RT-qPCR and Western blot analysis to determine the expression of the ghrelinergic system in goldfish (during the reproductively active phase) hypothalamus and gonads under 7 and 28 days of fasting. We found a significant increase in preproghrelin mRNA expresson in the ovary, and GOAT mRNA expression in the testis of goldfish deprived of food for 7 days. In fish deprived of food for 28 days, preproghrelin, GHSR and GOAT mRNA expression was significantly increased in the hypothalamus of male goldfish. Such differences were not observed in the hypothalamus of female fish, and in the testis of 28 days fasted fish. Meanwhile, preproghrelin, GHSR, and GOAT expression (both mRNA and protein) was significantly increased in the ovary of female fish fasted for 28 days. Ghrelin has been shown to suppress oocyte maturation in fish. The upregulation of a system that has ovarian inbititory roles suggests a role for ghrelin in maintaining reduced reproductive capability during metabolically challenging periods.
Collapse
Affiliation(s)
- Jithine Jayakumar Rajeswari
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, S7N 5B4, Canada
| | - Azadeh Hatef
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, S7N 5B4, Canada
| | - Mahdi Golshan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, S7N 5B4, Canada; Iranian Fisheries Science Research Institute, Agricultural Research, Education and Extension Organization, Tehran, Iran; South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Vodňany 389 25, Czech Republic
| | - Sayyed Mohammad Hadi Alavi
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Vodňany 389 25, Czech Republic; School of Biology, College of Science, University of Tehran, P.O.Box: 14155-6455, Tehran, Iran
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, S7N 5B4, Canada.
| |
Collapse
|
15
|
Kitazawa T, Kaiya H. Regulation of Gastrointestinal Motility by Motilin and Ghrelin in Vertebrates. Front Endocrinol (Lausanne) 2019; 10:278. [PMID: 31156548 PMCID: PMC6533539 DOI: 10.3389/fendo.2019.00278] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/16/2019] [Indexed: 12/14/2022] Open
Abstract
The energy balance of vertebrates is regulated by the difference in energy input and energy expenditure. Generally, most vertebrates obtain their energy from nutrients of foods through the gastrointestinal (GI) tract. Therefore, food intake and following food digestion, including motility of the GI tract, secretion and absorption, are crucial physiological events for energy homeostasis. GI motility changes depending on feeding, and GI motility is divided into fasting (interdigestive) and postprandial (digestive) contraction patterns. GI motility is controlled by contractility of smooth muscles of the GI tract, extrinsic and intrinsic neurons (motor and sensory) and some hormones. In mammals, ghrelin (GHRL) and motilin (MLN) stimulate appetite and GI motility and contribute to the regulation of energy homeostasis. GHRL and MLN are produced in the mucosal layer of the stomach and upper small intestine, respectively. GHRL is a multifunctional peptide and is involved in glucose metabolism, endocrine/exocrine functions and cardiovascular and reproductive functions, in addition to feeding and GI motility in mammals. On the other hand, the action of MLN is restricted and species such as rodentia, including mice and rats, lack MLN peptide and its receptor. From a phylogenetic point of view, GHRL and its receptor GHS-R1a have been identified in various vertebrates, and their structural features and various physiological functions have been revealed. On the other hand, MLN or MLN-like peptide (MLN-LP) and its receptors have been found only in some fish, birds and mammals. Here, we review the actions of GHRL and MLN with a focus on contractility of the GI tract of species from fish to mammals.
Collapse
Affiliation(s)
- Takio Kitazawa
- Comparative Animal Pharmacology, Department of Veterinary Science, Rakuno Gakuen University, Ebetsu, Japan
- *Correspondence: Takio Kitazawa
| | - Hiroyuki Kaiya
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| |
Collapse
|
16
|
Bertucci JI, Blanco AM, Sánchez‐Bretaño A, Unniappan S, Canosa LF. Ghrelin and NUCB2/Nesfatin‐1 Co‐Localization With Digestive Enzymes in the Intestine of Pejerrey (
Odontesthes bonariensis
). Anat Rec (Hoboken) 2018; 302:973-982. [DOI: 10.1002/ar.24012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 07/30/2018] [Accepted: 09/11/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Juan Ignacio Bertucci
- Instituto Tecnológico de Chascomús (INTECH), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)‐Universidad Nacional de San Martín (UNSAM) Buenos Aires Argentina
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical SciencesWestern College of Veterinary Medicine, University of Saskatchewan Saskatoon Saskatchewan Canada
| | - Ayelén Melisa Blanco
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical SciencesWestern College of Veterinary Medicine, University of Saskatchewan Saskatoon Saskatchewan Canada
- Departamento de Fisiología (Fisiología Animal II), Facultad de BiologíaUniversidad Complutense de Madrid Madrid Spain
| | - Aida Sánchez‐Bretaño
- Department of Pharmacology and Toxicology, and Neuroscience InstituteMorehouse School of Medicine 720 Westview Drive, GA, 30310 Atlanta Georgia
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical SciencesWestern College of Veterinary Medicine, University of Saskatchewan Saskatoon Saskatchewan Canada
| | - Luis Fabián Canosa
- Instituto Tecnológico de Chascomús (INTECH), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)‐Universidad Nacional de San Martín (UNSAM) Buenos Aires Argentina
| |
Collapse
|
17
|
Blanco AM, Velasco C, Bertucci JI, Soengas JL, Unniappan S. Nesfatin-1 Regulates Feeding, Glucosensing and Lipid Metabolism in Rainbow Trout. Front Endocrinol (Lausanne) 2018; 9:484. [PMID: 30210451 PMCID: PMC6121026 DOI: 10.3389/fendo.2018.00484] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 08/06/2018] [Indexed: 12/21/2022] Open
Abstract
Nesfatin-1 is an 82 amino acid peptide that has been involved in a wide variety of physiological functions in both mammals and fish. This study aimed to elucidate the role of nesfatin-1 on rainbow trout food intake, and its putative effects on glucose and fatty acid sensing systems. Intracerebroventricular administration of 25 ng/g nesfatin-1 resulted in a significant inhibition of appetite, likely mediated by the activation of central POMC and CART. Nesfatin-1 stimulated the glucosensing machinery (changes in sglt1, g6pase, gsase, and gnat3 mRNA expression) in the hindbrain and hypothalamus. Central fatty acid sensing mechanisms were unaltered by nesfatin-1, but this peptide altered the expression of mRNAs encoding factors regulating lipid metabolism (fat/cd36, acly, mcd, fas, lpl, pparα, and pparγ), suggesting that nesfatin-1 promotes lipid accumulation in neurons. In the liver, intracerebroventricular nesfatin-1 treatment resulted in decreased capacity for glucose use and lipogenesis, and increased the potential of fatty acid oxidation. Altogether, the present results demonstrate that nesfatin-1 is involved in the homeostatic regulation of food intake and metabolism in fish.
Collapse
Affiliation(s)
- Ayelén M. Blanco
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Cristina Velasco
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Juan I. Bertucci
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús, Chascomús, Argentina
| | - José L. Soengas
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
- *Correspondence: Suraj Unniappan
| |
Collapse
|
18
|
Bertucci JI, Blanco AM, Canosa LF, Unniappan S. Glucose, amino acids and fatty acids directly regulate ghrelin and NUCB2/nesfatin-1 in the intestine and hepatopancreas of goldfish (Carassius auratus) in vitro. Comp Biochem Physiol A Mol Integr Physiol 2017; 206:24-35. [PMID: 28089858 DOI: 10.1016/j.cbpa.2017.01.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 01/10/2017] [Accepted: 01/11/2017] [Indexed: 02/07/2023]
Abstract
Ghrelin and nesfatin-1 are two peptidyl hormones primarily involved in food intake regulation. We previously reported that the amount of dietary carbohydrates, protein and lipids modulates the expression of these peptides in goldfish in vivo. In the present work, we aimed to characterize the effects of single nutrients on ghrelin and nesfatin-1 in the intestine and hepatopancreas. First, immunolocalization of ghrelin and NUCB2/nesfatin-1 in goldfish hepatopancreas cells was studied by immunohistochemistry. Second, the effects of 2 and 4hour-long exposures of cultured intestine and hepatopancreas sections to glucose, l-tryptophan, oleic acid, linolenic acid (LNA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on ghrelin and nesfatin-1 gene and protein expression were studied. Co-localization of ghrelin and NUCB2/nesfatin-1 in the cytoplasm of goldfish hepatocytes was found. Exposure to glucose led to an upregulation of preproghrelin and a downregulation of nucb2/nesfatin-1 in the intestine. l-Tryptophan mainly decreased the expression of both peptides in the intestine and hepatopancreas. Fatty acids, in general, downregulated NUCB2/nesfatin-1 in the intestine, but only the longer and highly unsaturated fatty acids inhibited preproghrelin. EPA exposure led to a decrease in preproghrelin, and an increase in nucb2/nesfatin-1 expression in hepatopancreas after 2h. These results show that macronutrients exert a dose- and time-dependent, direct regulation of ghrelin and nesfatin-1 in the intestine and hepatopancreas, and suggest a role for these hormones in the digestive process and nutrient metabolism.
Collapse
Affiliation(s)
- Juan Ignacio Bertucci
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús, Av. Intendente Marino Km 8.2, CC 164 (7130) Chascomús, Prov. de Buenos Aires, Argentina.
| | - Ayelén Melisa Blanco
- Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense de Madrid, Calle José Antonio Nováis 12, 28040 Madrid, Spain.
| | - Luis Fabián Canosa
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús, Av. Intendente Marino Km 8.2, CC 164 (7130) Chascomús, Prov. de Buenos Aires, Argentina.
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan S7N 5B4, Canada.
| |
Collapse
|