1
|
Grigio V, Silva SB, Ruiz TFR, Castro NFDC, Calmon MDF, Rahal P, Taboga SR, Vilamaior PSL. Effects of androgenic modulation on the morphophysiology of the adrenal cortex of male gerbils. Mol Cell Endocrinol 2024; 592:112332. [PMID: 39048028 DOI: 10.1016/j.mce.2024.112332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
The study aimed to investigate the repercussions of androgen modulation on the adrenal cortex of male gerbils, focusing on the morphophysiology, proliferation, and cell death, as well as the expression of hormone receptors and steroidogenic enzymes. Mongolian gerbils (Meriones unguiculatus) were divided into three experimental groups: Control (C), Testosterone (T), animals received injections of testosterone cypionate and Castrated (Ct), animals underwent orchiectomy. The results showed that castration increased the zona fasciculata and promoted cell hypertrophy in all zones. Testosterone supplementation increased cell proliferation and cell death. Androgen modulation promoted an increase in AR, Erα, and ERβ. Castration promoted an increase in the CYP19, while decreasing 17βHSD enzymes. Testosterone supplementation, on the other hand, reduced CYP17 and increased CYP19 and 3βHSD enzymes. By analyzing the effects of androgen supplementation and deprivation, it can be concluded that testosterone is responsible for tissue remodeling in the cortex, regulating the rate of cell proliferation and death, as well as cell hypertrophy. Testosterone also modulate steroid hormone receptors and steroidogenic enzymes, consequently affecting the regulation, hormone synthesis and homeostasis of this endocrine gland.
Collapse
Affiliation(s)
- Vitor Grigio
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São Paulo, Brazil
| | - Stella Bicalho Silva
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São Paulo, Brazil
| | | | - Nayara Fernanda da Costa Castro
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São Paulo, Brazil
| | - Marilia de Freitas Calmon
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São Paulo, Brazil
| | - Paula Rahal
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São Paulo, Brazil
| | - Sebastião Roberto Taboga
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São Paulo, Brazil; Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Patrícia Simone Leite Vilamaior
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São Paulo, Brazil.
| |
Collapse
|
2
|
Borges KS, Little DW, Magalhães TDA, Ribeiro C, Dumontet T, Lapensee C, Basham KJ, Seth A, Azova S, Guagliardo NA, Barrett PQ, Berber M, O'Connell AE, Turcu AF, Lerario AM, Mohan DR, Rainey W, Carlone DL, Hirschhorn JN, Salic A, Breault DT, Hammer GD. Non-canonical Wnt signaling triggered by WNT2B drives adrenal aldosterone production. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.23.609423. [PMID: 39229119 PMCID: PMC11370552 DOI: 10.1101/2024.08.23.609423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The steroid hormone aldosterone, produced by the zona glomerulosa (zG) of the adrenal gland, is a master regulator of plasma electrolytes and blood pressure. While aldosterone control by the renin-angiotensin system is well understood, other key regulatory factors have remained elusive. Here, we replicated a prior association between a non-coding variant in WNT2B and an increased risk of primary aldosteronism, a prevalent and debilitating disease caused by excessive aldosterone production. We further show that in both mice and humans, WNT2B is expressed in the mesenchymal capsule surrounding the adrenal cortex, in close proximity to the zG. Global loss of Wnt2b in the mouse results in a dysmorphic and hypocellular zG, with impaired aldosterone production. Similarly, humans harboring WNT2B loss-of-function mutations develop a novel form of Familial Hyperreninemic Hypoaldosteronism, designated here as Type 4. Additionally, we demonstrate that WNT2B signals by activating the non-canonical Wnt/planar cell polarity pathway. Our findings identify WNT2B as a key regulator of zG function and aldosterone production with important clinical implications.
Collapse
Affiliation(s)
- Kleiton S Borges
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Donald W Little
- Doctoral Program in Cancer Biology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | - Claudio Ribeiro
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Typhanie Dumontet
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Chris Lapensee
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kaitlin J Basham
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA
| | - Aishwarya Seth
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge MA, 02142
| | - Svetlana Azova
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Nick A Guagliardo
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908-0735, USA
| | - Paula Q Barrett
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908-0735, USA
| | - Mesut Berber
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Amy E O'Connell
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Adina F Turcu
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Antonio Marcondes Lerario
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Dipika R Mohan
- Doctoral Program in Cancer Biology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, 48109, USA
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - William Rainey
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Diana L Carlone
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
| | - Joel N Hirschhorn
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge MA, 02142
| | - Adrian Salic
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - David T Breault
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge MA, 02142
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
| | - Gary D Hammer
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, 48109, USA
- Endocrine Oncology Program, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
3
|
Kremer JL, Sanchez Ortega H, Souza-Siqueira T, Blanes Angeli C, Kei Iwai L, Palmisano G, Ferini Pacicco Lotfi C. Proteomic profiling of the extracellular matrix in the human adrenal cortex. Matrix Biol Plus 2024; 23:100158. [PMID: 39188294 PMCID: PMC11345916 DOI: 10.1016/j.mbplus.2024.100158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/09/2024] [Accepted: 07/25/2024] [Indexed: 08/28/2024] Open
Abstract
The extracellular matrix (ECM) comprises macromolecules that shape a complex three-dimensional network. Filling the intercellular space and playing a crucial role in the structure and function of tissues, ECM regulates essential cellular processes such as adhesion, differentiation, and cell signaling. In the human adrenal gland, composed of cortex and medulla surrounded by a capsule, the ECM has not yet been directly described, although its impact on the processes of proliferation and steroidogenesis of the adrenal cortex is recognized. This study analyzes the ECM of the adult human adrenal cortex, which was separated into outer fraction (OF) and inner fraction (IF), by comparing their proteomic profiles. The study discusses the composition, spatial distribution, and relevance of differentially expressed ECM signatures of the adrenal cortex matrisome on adrenal structure and function. The findings were validated through database analysis (cross-validation), histochemical, and immunohistochemical approaches. A total of 121 ECM proteins were identified and categorized into glycoproteins, collagens, ECM regulators, proteoglycans, ECM-affiliated proteins, and secreted factors. Thirty-one ECM proteins were identified only in OF, nine only in IF, and 81 were identified in common with both fractions. Additionally, 106 ECM proteins were reported in the Human matrisome DB 2.0, and the proteins differentially expressed in OF and IF, were identified. This study provides significant insights into the composition and regulation of the ECM in the human adrenal cortex, shedding light on the adrenal microenvironment and its role in the functioning, maintenance, and renewal of the adrenal gland.
Collapse
Affiliation(s)
- Jean Lucas Kremer
- Laboratory of Cellular Structure and Function, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Henrique Sanchez Ortega
- Laboratory of Cellular Structure and Function, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Talita Souza-Siqueira
- Department of Clinical Medicine, Laboratory of Cellular, Genetic and Molecular Nephrology, University of São Paulo, School of Medicine, São Paulo, Brazil
| | - Claudia Blanes Angeli
- Glycoproteomics Laboratory, Department of Parasitology, ICB, University of São Paulo, Brazil
| | - Leo Kei Iwai
- Laboratory of Applied Toxicology, Center of Toxins, Immune-response and Cell Signaling LETA/CeTICS Laboratory, Butantan Institute, São Paulo, Brazil
| | - Giuseppe Palmisano
- Glycoproteomics Laboratory, Department of Parasitology, ICB, University of São Paulo, Brazil
- School of Natural Science, Macquarie University, Sydney, Australia
| | - Claudimara Ferini Pacicco Lotfi
- Laboratory of Cellular Structure and Function, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
del Valle I, Young MD, Kildisiute G, Ogunbiyi OK, Buonocore F, Simcock IC, Khabirova E, Crespo B, Moreno N, Brooks T, Niola P, Swarbrick K, Suntharalingham JP, McGlacken-Byrne SM, Arthurs OJ, Behjati S, Achermann JC. An integrated single-cell analysis of human adrenal cortex development. JCI Insight 2023; 8:e168177. [PMID: 37440461 PMCID: PMC10443814 DOI: 10.1172/jci.insight.168177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/31/2023] [Indexed: 07/15/2023] Open
Abstract
The adrenal glands synthesize and release essential steroid hormones such as cortisol and aldosterone, but many aspects of human adrenal gland development are not well understood. Here, we combined single-cell and bulk RNA sequencing, spatial transcriptomics, IHC, and micro-focus computed tomography to investigate key aspects of adrenal development in the first 20 weeks of gestation. We demonstrate rapid adrenal growth and vascularization, with more cell division in the outer definitive zone (DZ). Steroidogenic pathways favored androgen synthesis in the central fetal zone, but DZ capacity to synthesize cortisol and aldosterone developed with time. Core transcriptional regulators were identified, with localized expression of HOPX (also known as Hop homeobox/homeobox-only protein) in the DZ. Potential ligand-receptor interactions between mesenchyme and adrenal cortex were seen (e.g., RSPO3/LGR4). Growth-promoting imprinted genes were enriched in the developing cortex (e.g., IGF2, PEG3). These findings reveal aspects of human adrenal development and have clinical implications for understanding primary adrenal insufficiency and related postnatal adrenal disorders, such as adrenal tumor development, steroid disorders, and neonatal stress.
Collapse
Affiliation(s)
- Ignacio del Valle
- Genetics and Genomic Medicine Research and Teaching Department, University College London (UCL) Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| | - Matthew D. Young
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Gerda Kildisiute
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Olumide K. Ogunbiyi
- Department of Histopathology, Great Ormond Street Hospital for Children National Health Service (NHS) Foundation Trust, London, United Kingdom
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| | - Federica Buonocore
- Genetics and Genomic Medicine Research and Teaching Department, University College London (UCL) Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| | - Ian C. Simcock
- Department of Clinical Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
- National Institute of Health Research (NIHR) Great Ormond Street Biomedical Research Centre, London, United Kingdom
- Population, Policy and Practice Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| | - Eleonora Khabirova
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Berta Crespo
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| | - Nadjeda Moreno
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| | - Tony Brooks
- UCL Genomics, Zayed Centre for Research, UCL Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| | - Paola Niola
- UCL Genomics, Zayed Centre for Research, UCL Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| | - Katherine Swarbrick
- Department of Histopathology, Great Ormond Street Hospital for Children National Health Service (NHS) Foundation Trust, London, United Kingdom
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| | - Jenifer P. Suntharalingham
- Genetics and Genomic Medicine Research and Teaching Department, University College London (UCL) Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| | - Sinead M. McGlacken-Byrne
- Genetics and Genomic Medicine Research and Teaching Department, University College London (UCL) Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| | - Owen J. Arthurs
- Department of Clinical Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
- National Institute of Health Research (NIHR) Great Ormond Street Biomedical Research Centre, London, United Kingdom
- Population, Policy and Practice Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| | - Sam Behjati
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
- Department of Paediatrics, University of Cambridge, Cambridge, United Kingdom
| | - John C. Achermann
- Genetics and Genomic Medicine Research and Teaching Department, University College London (UCL) Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| |
Collapse
|
5
|
Models of Congenital Adrenal Hyperplasia for Gene Therapies Testing. Int J Mol Sci 2023; 24:ijms24065365. [PMID: 36982440 PMCID: PMC10049562 DOI: 10.3390/ijms24065365] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/26/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
The adrenal glands are important endocrine organs that play a major role in the stress response. Some adrenal glands abnormalities are treated with hormone replacement therapy, which does not address physiological requirements. Modern technologies make it possible to develop gene therapy drugs that can completely cure diseases caused by mutations in specific genes. Congenital adrenal hyperplasia (CAH) is an example of such a potentially treatable monogenic disease. CAH is an autosomal recessive inherited disease with an overall incidence of 1:9500–1:20,000 newborns. To date, there are several promising drugs for CAH gene therapy. At the same time, it remains unclear how new approaches can be tested, as there are no models for this disease. The present review focuses on modern models for inherited adrenal gland insufficiency and their detailed characterization. In addition, the advantages and disadvantages of various pathological models are discussed, and ways of further development are suggested.
Collapse
|
6
|
Sanders K, Kooistra HS, van den Heuvel M, Mokry M, Grinwis GCM, van den Dungen NAM, van Steenbeek FG, Galac S. Transcriptome sequencing reveals two subtypes of cortisol-secreting adrenocortical tumours in dogs and identifies CYP26B1 as a potential new therapeutic target. Vet Comp Oncol 2023; 21:100-110. [PMID: 36582114 DOI: 10.1111/vco.12871] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 12/05/2022] [Accepted: 12/20/2022] [Indexed: 12/31/2022]
Abstract
Cushing's syndrome (CS) is a serious endocrine disorder that is relatively common in dogs, but rare in humans. In ~15%-20% of cases, CS is caused by a cortisol-secreting adrenocortical tumour (csACT). To identify differentially expressed genes that can improve prognostic predictions after surgery and represent novel treatment targets, we performed RNA sequencing on csACTs (n = 48) and normal adrenal cortices (NACs; n = 10) of dogs. A gene was declared differentially expressed when the adjusted p-value was <.05 and the log2 fold change was >2 or < -2. Between NACs and csACTs, 98 genes were differentially expressed. Based on the principal component analysis (PCA) the csACTs were separated in two groups, of which Group 1 had significantly better survival after adrenalectomy (p = .002) than Group 2. Between csACT Group G1 and Group 2, 77 genes were differentially expressed. One of these, cytochrome P450 26B1 (CYP26B1), was significantly associated with survival in both our canine csACTs and in a publicly available data set of 33 human cortisol-secreting adrenocortical carcinomas. In the validation cohort, CYP26B1 was also expressed significantly higher (p = .012) in canine csACTs compared with NACs. In future studies it would be interesting to determine whether CYP26B1 inhibitors could inhibit csACT growth in both dogs and humans.
Collapse
Affiliation(s)
- Karin Sanders
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Hans S Kooistra
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Marieke van den Heuvel
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Michal Mokry
- Central Diagnostics Laboratory, University Medical Center Utrecht, Utrecht, The Netherlands.,Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Guy C M Grinwis
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Noortje A M van den Dungen
- Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, Netherlands
| | - Frank G van Steenbeek
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, Netherlands
| | - Sara Galac
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
7
|
Abstract
The adrenal cortex undergoes multiple structural and functional rearrangements to satisfy the systemic needs for steroids during fetal life, postnatal development, and adulthood. A fully functional adrenal cortex relies on the proper subdivision in regions or 'zones' with distinct but interconnected functions, which evolve from the early embryonic stages to adulthood, and rely on a fine-tuned gene network. In particular, the steroidogenic activity of the fetal adrenal is instrumental in maintaining normal fetal development and growth. Here, we review and discuss the most recent advances in our understanding of embryonic and fetal adrenal development, including the known causes for adrenal dys-/agenesis, and the steroidogenic pathways that link the fetal adrenal with the hormone system of the mother through the fetal-placental unit. Finally, we discuss what we think are the major open questions in the field, including, among others, the impact of osteocalcin, thyroid hormone, and other hormone systems on adrenal development and function, and the reliability of rodents as models of adrenal pathophysiology.
Collapse
Affiliation(s)
- Emanuele Pignatti
- Department of Pediatrics, Division of Endocrinology, Diabetology and Metabolism, University Hospital Inselspital, University of Bern, 3010, Bern, Switzerland.
- Department for BioMedical Research, University Hospital Inselspital, University of Bern, 3010, Bern, Switzerland.
| | - Therina du Toit
- Department for BioMedical Research, University Hospital Inselspital, University of Bern, 3010, Bern, Switzerland.
| | - Christa E Flück
- Department of Pediatrics, Division of Endocrinology, Diabetology and Metabolism, University Hospital Inselspital, University of Bern, 3010, Bern, Switzerland
- Department for BioMedical Research, University Hospital Inselspital, University of Bern, 3010, Bern, Switzerland
| |
Collapse
|
8
|
Graves LE, Torpy DJ, Coates PT, Alexander IE, Bornstein SR, Clarke B. Future directions for adrenal insufficiency: cellular transplantation and genetic therapies. J Clin Endocrinol Metab 2023; 108:1273-1289. [PMID: 36611246 DOI: 10.1210/clinem/dgac751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 01/09/2023]
Abstract
Primary adrenal insufficiency occurs in 1 in 5-7000 adults. Leading aetiologies are autoimmune adrenalitis in adults and congenital adrenal hyperplasia (CAH) in children. Oral replacement of cortisol is lifesaving, but poor quality of life, repeated adrenal crises and dosing uncertainty related to lack of a validated biomarker for glucocorticoid sufficiency, persists. Adrenocortical cell therapy and gene therapy may obviate many of the shortcomings of adrenal hormone replacement. Physiological cortisol secretion regulated by pituitary adrenocorticotropin, could be achieved through allogeneic adrenocortical cell transplantation, production of adrenal-like steroidogenic cells from either stem cells or lineage conversion of differentiated cells, or for CAH, gene therapy to replace or repair a defective gene. The adrenal cortex is a high turnover organ and thus failure to incorporate progenitor cells within a transplant will ultimately result in graft exhaustion. Identification of adrenocortical progenitor cells is equally important in gene therapy where new genetic material must be specifically integrated into the genome of progenitors to ensure a durable effect. Delivery of gene editing machinery and a donor template, allowing targeted correction of the 21-hydroxylase gene, has the potential to achieve this. This review describes advances in adrenal cell transplants and gene therapy that may allow physiological cortisol production for children and adults with primary adrenal insufficiency.
Collapse
Affiliation(s)
- Lara E Graves
- Institute of Endocrinology and Diabetes, The Children's Hospital at Westmead, Sydney, NSW, Australia
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Westmead, NSW, Australia
- Discipline of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - David J Torpy
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - P Toby Coates
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Central Northern Adelaide Renal and Transplantation Service, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Ian E Alexander
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Westmead, NSW, Australia
- Discipline of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Stefan R Bornstein
- University Clinic Carl Gustav Carus, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Brigette Clarke
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
9
|
Toews JNC, Philippe TJ, Hill LA, Dordevic M, Miguelez-Crespo A, Homer NZM, Nixon M, Hammond GL, Viau V. Corticosteroid-binding Globulin (SERPINA6) Establishes Postpubertal Sex Differences in Rat Adrenal Development. Endocrinology 2022; 163:6702154. [PMID: 36112420 DOI: 10.1210/endocr/bqac152] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Indexed: 12/24/2022]
Abstract
Encoded by SerpinA6, plasma corticosteroid-binding globulin (CBG) transports glucocorticoids and regulates their access to cells. We determined how CBG influences plasma corticosterone and adrenal development in rats during the pubertal to adult transition using CRISPR/cas9 to disrupt SerpinA6 gene expression. In the absence of CBG, total plasma corticosterone levels were ∼80% lower in adult rats of both sexes, with a greater absolute reduction in females than in males. Notably, free corticosterone and adrenocorticotropic hormone were comparable between all groups. Between 30 and 90 days of age, wild-type female rats showed increases in adrenal weight and the size of the corticosterone-producing region, the zona fasciculata (zf), in tandem with increases in plasma CBG and corticosterone concentrations, whereas no such changes were observed in males. This sex difference was lost in rats without CBG, such that adrenal growth and zf expansion were similar between sexes. The sex-specific effects of CBG on adrenal morphology were accompanied by remarkable changes in gene expression: ∼40% of the adrenal transcriptome was altered in females lacking CBG, whereas almost no effect was seen in males. Over half of the adrenal genes that normally exhibit sexually dimorphic expression after puberty were similarly expressed in males and females without CBG, including those responsible for cholesterol biosynthesis and mobilization, steroidogenesis, and growth. Rat adrenal SerpinA6 transcript levels were very low or undetectable. Thus, sex differences in adrenal growth, morphology and gene expression profiles that emerge during puberty in rats are dependent on concomitant increases in plasma CBG produced by the liver.
Collapse
Affiliation(s)
- Julia N C Toews
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Tristan J Philippe
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Lesley A Hill
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Matthew Dordevic
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Allende Miguelez-Crespo
- British Heart Foundation/University Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Natalie Z M Homer
- British Heart Foundation/University Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, Queen's Medical Research Institute, Edinburgh, UK
| | - Mark Nixon
- British Heart Foundation/University Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Geoffrey L Hammond
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Victor Viau
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
10
|
Глазова ОВ, Воронцова МВ, Шевкова ЛВ, Сакр Н, Онянов НА, Казиахмедова СА, Волчков ПЮ. [Adrenal glands stem cells: general signaling pathways]. PROBLEMY ENDOKRINOLOGII 2021; 67:90-97. [PMID: 35018765 PMCID: PMC9753809 DOI: 10.14341/probl12819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Nowadays stem cells of adult type are attractive in case of active development of cell and genome technologies. They are the target of new therapeutic approaches, which are based on correction of mutations or replenishment of organs, that were damaged by autoimmune reactions, aging or other pathological processes. Also stem cells, including patient-specific (induced Pluripotent Stem Cells, iPSCs), and obtained by differentiation from them tissue cultures and organoids are the closest models to in vivo researches on humans, which gives an opportunity to get more relevant data while testing different therapeutic approaches and pharmacological drugs. The main molecular pathways, that are essential for homeostasis of a cortex of a adrenal gland - compound, structurally and functionally heterogeneous organ, is described the presented review. The adrenal cortex is renewing during the organism's ontogenesis at the expense of the pool of stem and progenitors cells, which are in tight junctions with differentiated steroidogenic cells and which are under constant control of endocrine and paracrine signals. The understanding of signaling pathways and interactions of different cell types will give an opportunity to develop the most suitable protocols for obtaining cells of adrenal gland cortex in a different stages of differentiation to use them in scientific and medical purposes.
Collapse
Affiliation(s)
- О. В. Глазова
- Национальный медицинский исследовательский центр эндокринологии;
Московский физико-технический институт (национальный исследовательский университет)
| | - М. В. Воронцова
- Национальный медицинский исследовательский центр эндокринологии
| | - Л. В. Шевкова
- Национальный медицинский исследовательский центр эндокринологии;
Московский физико-технический институт (национальный исследовательский университет)
| | - Н. Сакр
- Московский физико-технический институт (национальный исследовательский университет)
| | - Н. А. Онянов
- Московский физико-технический институт (национальный исследовательский университет)
| | - С. А. Казиахмедова
- Московский физико-технический институт (национальный исследовательский университет)
| | - П. Ю. Волчков
- Национальный медицинский исследовательский центр эндокринологии;
Московский физико-технический институт (национальный исследовательский университет)
| |
Collapse
|
11
|
Cellular Senescence in Adrenocortical Biology and Its Disorders. Cells 2021; 10:cells10123474. [PMID: 34943980 PMCID: PMC8699888 DOI: 10.3390/cells10123474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/26/2021] [Accepted: 12/06/2021] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is considered a physiological process along with aging and has recently been reported to be involved in the pathogenesis of many age-related disorders. Cellular senescence was first found in human fibroblasts and gradually explored in many other organs, including endocrine organs. The adrenal cortex is essential for the maintenance of blood volume, carbohydrate metabolism, reaction to stress and the development of sexual characteristics. Recently, the adrenal cortex was reported to harbor some obvious age-dependent features. For instance, the circulating levels of aldosterone and adrenal androgen gradually descend, whereas those of cortisol increase with aging. The detailed mechanisms have remained unknown, but cellular senescence was considered to play an essential role in age-related changes of the adrenal cortex. Recent studies have demonstrated that the senescent phenotype of zona glomerulosa (ZG) acts in association with reduced aldosterone production in both physiological and pathological aldosterone-producing cells, whereas senescent cortical-producing cells seemed not to have a suppressed cortisol-producing ability. In addition, accumulated lipofuscin formation, telomere shortening and cellular atrophy in zona reticularis cells during aging may account for the age-dependent decline in adrenal androgen levels. In adrenocortical disorders, including both aldosterone-producing adenoma (APA) and cortisol-producing adenoma (CPA), different cellular subtypes of tumor cells presented divergent senescent phenotypes, whereby compact cells in both APA and CPA harbored more senescent phenotypes than clear cells. Autonomous cortisol production from CPA reinforced a local cellular senescence that was more severe than that in APA. Adrenocortical carcinoma (ACC) was also reported to harbor oncogene-induced senescence, which compensatorily follows carcinogenesis and tumor progress. Adrenocortical steroids can induce not only a local senescence but also a periphery senescence in many other tissues. Therefore, herein, we systemically review the recent advances related to cellular senescence in adrenocortical biology and its associated disorders.
Collapse
|
12
|
Cellular Senescence in Human Aldosterone-Producing Adrenocortical Cells and Related Disorders. Biomedicines 2021; 9:biomedicines9050567. [PMID: 34070051 PMCID: PMC8158118 DOI: 10.3390/biomedicines9050567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/08/2021] [Accepted: 05/14/2021] [Indexed: 11/17/2022] Open
Abstract
In situ cortisol excess was previously reported to promote cellular senescence, a cell response to stress, in cortisol-producing adenomas (CPA). The aim of this study was to explore senescence pathways in aldosterone-producing cells and related disorders, and the influence of aldosterone overproduction on in situ senescence. We analyzed 30 surgical cases of aldosterone-producing adenoma (APA), 10 idiopathic hyperaldosteronism (IHA) and 19 normal adrenals (NA). CYP11B2 and senescence markers p16 and p21 were immunolocalized in all those cases above and results were correlated with histological/endocrinological findings. In the three cohorts examined, the zona glomerulosa (ZG) was significantly more senescent than other corticosteroid-producing cells. In addition, the ZG of adjacent non-pathological adrenal glands of APA and IHA had significantly higher p16 expression than adjacent non-pathological zona fasciculata (ZF), reticularis (ZR) and ZG of NA. In addition, laboratory findings of primary aldosteronism (PA) were significantly correlated with p21 status in KCNJ5-mutated tumors. Results of our present study firstly demonstrated that non-aldosterone-producing cells in the ZG were the most senescent compared to other cortical zones and aldosterone-producing cells in PA. Therefore, aldosterone production, whether physiological or pathological, could be maintained by suppression of cell senescence in human adrenal cortex.
Collapse
|
13
|
Dumontet T, Martinez A. Adrenal androgens, adrenarche, and zona reticularis: A human affair? Mol Cell Endocrinol 2021; 528:111239. [PMID: 33676986 DOI: 10.1016/j.mce.2021.111239] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/11/2021] [Accepted: 03/01/2021] [Indexed: 12/11/2022]
Abstract
In humans, reticularis cells of the adrenal cortex fuel the production of androgen steroids, constituting the driver of numerous morphological changes during childhood. These steps are considered a precocious stage of sexual maturation and are grouped under the term "adrenarche". This review describes the molecular and enzymatic characteristics of the zona reticularis, along with the possible signals and mechanisms that control its emergence and the associated clinical features. We investigate the differences between species and discuss new studies such as genetic lineage tracing and transcriptomic analysis, highlighting the rodent inner cortex's cellular and molecular heterogeneity. The recent development and characterization of mouse models deficient for Prkar1a presenting with adrenocortical reticularis-like features prompt us to review our vision of the mouse adrenal gland maturation. We expect these new insights will help increase our understanding of the adrenarche process and the pathologies associated with its deregulation.
Collapse
Affiliation(s)
- Typhanie Dumontet
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA; Training Program in Organogenesis, Center for Cell Plasticity and Organ Design, University of Michigan, Ann Arbor, MI, USA.
| | - Antoine Martinez
- Génétique, Reproduction et Développement (GReD), Centre National de La Recherche Scientifique CNRS, Institut National de La Santé & de La Recherche Médicale (INSERM), Université Clermont-Auvergne (UCA), France.
| |
Collapse
|
14
|
Pignatti E, Flück CE. Adrenal cortex development and related disorders leading to adrenal insufficiency. Mol Cell Endocrinol 2021; 527:111206. [PMID: 33607267 DOI: 10.1016/j.mce.2021.111206] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 02/07/2023]
Abstract
The adult human adrenal cortex produces steroid hormones that are crucial for life, supporting immune response, glucose homeostasis, salt balance and sexual maturation. It consists of three histologically distinct and functionally specialized zones. The fetal adrenal forms from mesodermal material and produces predominantly adrenal C19 steroids from its fetal zone, which involutes after birth. Transition to the adult cortex occurs immediately after birth for the formation of the zona glomerulosa and fasciculata for aldosterone and cortisol production and continues through infancy until the zona reticularis for adrenal androgen production is formed with adrenarche. The development of this indispensable organ is complex and not fully understood. This article gives an overview of recent knowledge gained of adrenal biology from two perspectives: one, from basic science studying adrenal development, zonation and homeostasis; and two, from adrenal disorders identified in persons manifesting with various isolated or syndromic forms of primary adrenal insufficiency.
Collapse
Affiliation(s)
- Emanuele Pignatti
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Bern and Department of BioMedical Research, University Hospital Inselspital, University of Bern, 3010, Bern, Switzerland.
| | - Christa E Flück
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Bern and Department of BioMedical Research, University Hospital Inselspital, University of Bern, 3010, Bern, Switzerland.
| |
Collapse
|
15
|
Gao X, Yamazaki Y, Tezuka Y, Omata K, Ono Y, Morimoto R, Nakamura Y, Satoh F, Sasano H. Gender differences in human adrenal cortex and its disorders. Mol Cell Endocrinol 2021; 526:111177. [PMID: 33582213 DOI: 10.1016/j.mce.2021.111177] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 12/11/2022]
Abstract
The adrenal cortex plays pivotal roles in the maintenance of blood volume, responsiveness to stress and the development of gender characteristics. Gender differences of human adrenal cortex have been recently reported and attracted increasing interests. Gender differences occur from the developing stage of the adrenal, in which female subjects had more activated stem cells with higher renewal capacity resulting in gender-associated divergent structures and functions of cortical zonations of human adrenal. Female subjects generally have the lower blood pressure with the lower renin levels and ACE activities than male subjects. In addition, HPA axis was more activated in female than male, which could possibly contribute to gender differences in coping with various stressful events in our life. Of particular interest, estrogens were reported to suppress RAAS but activate HPA axis, whereas androgens had opposite effects. In addition, adrenocortical disorders in general occur more frequently in female with more pronounced adrenocortical hormonal abnormalities possibly due to their more activated WNT and PRK signaling pathways with more abundant activated adrenocortical stem cells present in female adrenal glands. Therefore, it has become pivotal to clarify the gender influence on both clinical and biological features of adrenocortical disorders. We herein reviewed recent advances in these fields.
Collapse
Affiliation(s)
- Xin Gao
- Department of Pathology, Tohoku University Graduate School of Medicine, Japan
| | - Yuto Yamazaki
- Department of Pathology, Tohoku University Graduate School of Medicine, Japan
| | - Yuta Tezuka
- Division of Clinical Hypertension, Endocrinology and Metabolism, Tohoku University Graduate School of Medicine, Japan; Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Hospital, Japan
| | - Kei Omata
- Division of Clinical Hypertension, Endocrinology and Metabolism, Tohoku University Graduate School of Medicine, Japan; Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Hospital, Japan
| | - Yoshikiyo Ono
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Hospital, Japan
| | - Ryo Morimoto
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Hospital, Japan
| | - Yasuhiro Nakamura
- Division of Pathology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Japan
| | - Fumitoshi Satoh
- Division of Clinical Hypertension, Endocrinology and Metabolism, Tohoku University Graduate School of Medicine, Japan; Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Hospital, Japan
| | - Hironobu Sasano
- Department of Pathology, Tohoku University Graduate School of Medicine, Japan.
| |
Collapse
|
16
|
Sbiera I, Kircher S, Altieri B, Fassnacht M, Kroiss M, Sbiera S. Epithelial and Mesenchymal Markers in Adrenocortical Tissues: How Mesenchymal Are Adrenocortical Tissues? Cancers (Basel) 2021; 13:1736. [PMID: 33917436 PMCID: PMC8038668 DOI: 10.3390/cancers13071736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/02/2021] [Accepted: 04/04/2021] [Indexed: 12/22/2022] Open
Abstract
A clinically relevant proportion of adrenocortical carcinoma (ACC) cases shows a tendency to metastatic spread. The objective was to determine whether the epithelial to mesenchymal transition (EMT), a mechanism associated with metastasizing in several epithelial cancers, might play a crucial role in ACC. 138 ACC, 29 adrenocortical adenomas (ACA), three normal adrenal glands (NAG), and control tissue samples were assessed for the expression of epithelial (E-cadherin and EpCAM) and mesenchymal (N-cadherin, SLUG and SNAIL) markers by immunohistochemistry. Using real-time RT-PCR we quantified the alternative isoform splicing of FGFR 2 and 3, another known indicator of EMT. We also assessed the impact of these markers on clinical outcome. Results show that both normal and neoplastic adrenocortical tissues lacked expression of epithelial markers but strongly expressed mesenchymal markers N-cadherin and SLUG. FGFR isoform splicing confirmed higher similarity of adrenocortical tissues to mesenchymal compared to epithelial tissues. In ACC, higher SLUG expression was associated with clinical markers indicating aggressiveness, while N-cadherin expression inversely associated with these markers. In conclusion, we could not find any indication of EMT as all adrenocortical tissues lacked expression of epithelial markers and exhibited closer similarity to mesenchymal tissues. However, while N-cadherin might play a positive role in tissue structure upkeep, SLUG seems to be associated with a more aggressive phenotype.
Collapse
Affiliation(s)
- Iuliu Sbiera
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital Würzburg, 97080 Würzburg, Germany; (I.S.); (B.A.); (M.F.)
| | - Stefan Kircher
- Institute for Pathology, University of Würzburg, 97080 Würzburg, Germany;
| | - Barbara Altieri
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital Würzburg, 97080 Würzburg, Germany; (I.S.); (B.A.); (M.F.)
| | - Martin Fassnacht
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital Würzburg, 97080 Würzburg, Germany; (I.S.); (B.A.); (M.F.)
- Clinical Chemistry and Laboratory Medicine, University Hospital Würzburg, 97080 Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, University of Würzburg, 97080 Würzburg, Germany
| | - Matthias Kroiss
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital Würzburg, 97080 Würzburg, Germany; (I.S.); (B.A.); (M.F.)
- Comprehensive Cancer Center Mainfranken, University of Würzburg, 97080 Würzburg, Germany
- Department of Internal Medicine IV, University Hospital Munich, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | - Silviu Sbiera
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital Würzburg, 97080 Würzburg, Germany; (I.S.); (B.A.); (M.F.)
| |
Collapse
|
17
|
Gao X, Yamazaki Y, Tezuka Y, Omata K, Ono Y, Morimoto R, Nakamura Y, Satoh F, Sasano H. The Genotype-Based Morphology of Aldosterone-Producing Adrenocortical Disorders and Their Association with Aging. Endocrinol Metab (Seoul) 2021; 36:12-21. [PMID: 33677921 PMCID: PMC7937858 DOI: 10.3803/enm.2021.101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 01/08/2021] [Indexed: 11/11/2022] Open
Abstract
Primary aldosteronism (PA) is the most common cause of secondary hypertension, and is associated with an increased incidence of cardiovascular events. PA itself is clinically classified into the following two types: unilateral PA, mostly composed of aldosteroneproducing adenoma (APA); and bilateral hyperaldosteronism, consisting of multiple aldosterone-producing micronodules (APMs) and aldosterone-producing diffuse hyperplasia. Histopathologically, those disorders above are all composed of compact and clear cells. The cellular morphology in the above-mentioned aldosterone-producing disorders has been recently reported to be closely correlated with patterns of somatic mutations of ion channels including KCNJ5, CACNA1D, ATP1A1, ATP2B3, and others. In addition, in non-pathological adrenal glands, APMs are frequently detected regardless of the status of the renin-angiotensin-aldosterone system (RAAS). Aldosterone-producing nodules have been also proposed as non-neoplastic nodules that can be identified by hematoxylin and eosin staining. These non-neoplastic CYP11B2-positive nodules could represent possible precursors of APAs possibly due to the presence of somatic mutations. On the other hand, aging itself also plays a pivotal role in the development of aldosterone-producing lesions. For instance, the number of APMs was also reported to increase with aging. Therefore, recent studies indicated the novel classification of PA into normotensive PA (RAAS-independent APM) and clinically overt PA.
Collapse
Affiliation(s)
- Xin Gao
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuto Yamazaki
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuta Tezuka
- Division of Clinical Hypertension, Endocrinology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Japan
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Hospital, Sendai, Japan
| | - Kei Omata
- Division of Clinical Hypertension, Endocrinology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Japan
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Hospital, Sendai, Japan
| | - Yoshikiyo Ono
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Hospital, Sendai, Japan
| | - Ryo Morimoto
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Hospital, Sendai, Japan
| | - Yasuhiro Nakamura
- Division of Pathology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Fumitoshi Satoh
- Division of Clinical Hypertension, Endocrinology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Japan
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Hospital, Sendai, Japan
| | - Hironobu Sasano
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|