1
|
Zhang L, Xiong Z, Xiao M. A Review of the Application of Spatial Transcriptomics in Neuroscience. Interdiscip Sci 2024; 16:243-260. [PMID: 38374297 DOI: 10.1007/s12539-024-00603-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 02/21/2024]
Abstract
Since spatial transcriptomics can locate and distinguish the gene expression of functional genes in special regions and tissue, it is important for us to investigate the brain development, the development mechanism of brain diseases, and the relationship between brain structure and function in Neuroscience (or Brain science). While previous studies have introduced the crucial spatial transcriptomic techniques and data analysis methods, there are few studies to comprehensively overview the key methods, data resources, and technological applications of spatial transcriptomics in Neuroscience. For these reasons, we first investigate several common spatial transcriptomic data analysis approaches and data resources. Second, we introduce the applications of the spatial transcriptomic data analysis approaches in Neuroscience. Third, we summarize the integrating spatial transcriptomics with other technologies in Neuroscience. Finally, we discuss the challenges and future research directions of spatial transcriptomics in Neuroscience.
Collapse
Affiliation(s)
- Le Zhang
- College of Computer Science, Sichuan University, Chengdu, 610065, China
| | - Zhenqi Xiong
- College of Computer Science, Sichuan University, Chengdu, 610065, China
| | - Ming Xiao
- College of Computer Science, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
2
|
Pillai M, Hojel E, Jolly MK, Goyal Y. Unraveling non-genetic heterogeneity in cancer with dynamical models and computational tools. NATURE COMPUTATIONAL SCIENCE 2023; 3:301-313. [PMID: 38177938 DOI: 10.1038/s43588-023-00427-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 03/03/2023] [Indexed: 01/06/2024]
Abstract
Individual cells within an otherwise genetically homogenous population constantly undergo fluctuations in their molecular state, giving rise to non-genetic heterogeneity. Such diversity is being increasingly implicated in cancer therapy resistance and metastasis. Identifying the origins of non-genetic heterogeneity is therefore crucial for making clinical breakthroughs. We discuss with examples how dynamical models and computational tools have provided critical multiscale insights into the nature and consequences of non-genetic heterogeneity in cancer. We demonstrate how mechanistic modeling has been pivotal in establishing key concepts underlying non-genetic diversity at various biological scales, from population dynamics to gene regulatory networks. We discuss advances in single-cell longitudinal profiling techniques to reveal patterns of non-genetic heterogeneity, highlighting the ongoing efforts and challenges in statistical frameworks to robustly interpret such multimodal datasets. Moving forward, we stress the need for data-driven statistical and mechanistically motivated dynamical frameworks to come together to develop predictive cancer models and inform therapeutic strategies.
Collapse
Affiliation(s)
- Maalavika Pillai
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Center for Synthetic Biology, Northwestern University, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Emilia Hojel
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Center for Synthetic Biology, Northwestern University, Chicago, IL, USA
- Department of Biomedical Engineering, Northwestern University McCormick School of Engineering, Evanston, IL, USA
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India.
| | - Yogesh Goyal
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Center for Synthetic Biology, Northwestern University, Chicago, IL, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Department of Biomedical Engineering, Northwestern University McCormick School of Engineering, Evanston, IL, USA.
| |
Collapse
|
3
|
Jørgensen ACS, Hill CS, Sturrock M, Tang W, Karamched SR, Gorup D, Lythgoe MF, Parrinello S, Marguerat S, Shahrezaei V. Data-driven spatio-temporal modelling of glioblastoma. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221444. [PMID: 36968241 PMCID: PMC10031411 DOI: 10.1098/rsos.221444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Mathematical oncology provides unique and invaluable insights into tumour growth on both the microscopic and macroscopic levels. This review presents state-of-the-art modelling techniques and focuses on their role in understanding glioblastoma, a malignant form of brain cancer. For each approach, we summarize the scope, drawbacks and assets. We highlight the potential clinical applications of each modelling technique and discuss the connections between the mathematical models and the molecular and imaging data used to inform them. By doing so, we aim to prime cancer researchers with current and emerging computational tools for understanding tumour progression. By providing an in-depth picture of the different modelling techniques, we also aim to assist researchers who seek to build and develop their own models and the associated inference frameworks. Our article thus strikes a unique balance. On the one hand, we provide a comprehensive overview of the available modelling techniques and their applications, including key mathematical expressions. On the other hand, the content is accessible to mathematicians and biomedical scientists alike to accommodate the interdisciplinary nature of cancer research.
Collapse
Affiliation(s)
| | - Ciaran Scott Hill
- Department of Neurosurgery, The National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London WC1E 6DD, UK
| | - Marc Sturrock
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| | - Wenhao Tang
- Department of Mathematics, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK
| | - Saketh R. Karamched
- Division of Medicine, Centre for Advanced Biomedical Imaging, University College London (UCL), London WC1E 6BT, UK
| | - Dunja Gorup
- Division of Medicine, Centre for Advanced Biomedical Imaging, University College London (UCL), London WC1E 6BT, UK
| | - Mark F. Lythgoe
- Division of Medicine, Centre for Advanced Biomedical Imaging, University College London (UCL), London WC1E 6BT, UK
| | - Simona Parrinello
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London WC1E 6DD, UK
| | - Samuel Marguerat
- Genomics Translational Technology Platform, UCL Cancer Institute, University College London, London WC1E 6DD, UK
| | - Vahid Shahrezaei
- Department of Mathematics, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
4
|
Heidary Z, Haghjooy Javanmard S, Izadi I, Zare N, Ghaisari J. Multiscale modeling of collective cell migration elucidates the mechanism underlying tumor-stromal interactions in different spatiotemporal scales. Sci Rep 2022; 12:16242. [PMID: 36171274 PMCID: PMC9519582 DOI: 10.1038/s41598-022-20634-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 09/15/2022] [Indexed: 11/09/2022] Open
Abstract
Metastasis is the pathogenic spread of cancer cells from a primary tumor to a secondary site which happens at the late stages of cancer. It is caused by a variety of biological, chemical, and physical processes, such as molecular interactions, intercellular communications, and tissue-level activities. Complex interactions of cancer cells with their microenvironment components such as cancer associated fibroblasts (CAFs) and extracellular matrix (ECM) cause them to adopt an invasive phenotype that promotes tumor growth and migration. This paper presents a multiscale model for integrating a wide range of time and space interactions at the molecular, cellular, and tissue levels in a three-dimensional domain. The modeling procedure starts with presenting nonlinear dynamics of cancer cells and CAFs using ordinary differential equations based on TGFβ, CXCL12, and LIF signaling pathways. Unknown kinetic parameters in these models are estimated using hybrid unscented Kalman filter and the models are validated using experimental data. Then, the principal role of CAFs on metastasis is revealed by spatial-temporal modeling of circulating signals throughout the TME. At this stage, the model has evolved into a coupled ODE-PDE system that is capable of determining cancer cells' status in one of the quiescent, proliferating or migratory conditions due to certain metastasis factors and ECM characteristics. At the tissue level, we consider a force-based framework to model the cancer cell proliferation and migration as the final step towards cancer cell metastasis. The ability of the multiscale model to depict cancer cells' behavior in different levels of modeling is confirmed by comparing its outputs with the results of RT PCR and wound scratch assay techniques. Performance evaluation of the model indicates that the proposed multiscale model can pave the way for improving the efficiency of therapeutic methods in metastasis prevention.
Collapse
Affiliation(s)
- Zarifeh Heidary
- Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Shaghayegh Haghjooy Javanmard
- Department of Physiology, Applied Physiology Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran
| | - Iman Izadi
- Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Nasrin Zare
- School of Medicine, Najafabad Branch, Islamic Azad University, Isfahan, Iran
| | - Jafar Ghaisari
- Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| |
Collapse
|
5
|
Wu C, Lorenzo G, Hormuth DA, Lima EABF, Slavkova KP, DiCarlo JC, Virostko J, Phillips CM, Patt D, Chung C, Yankeelov TE. Integrating mechanism-based modeling with biomedical imaging to build practical digital twins for clinical oncology. BIOPHYSICS REVIEWS 2022; 3:021304. [PMID: 35602761 PMCID: PMC9119003 DOI: 10.1063/5.0086789] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/29/2022] [Indexed: 12/11/2022]
Abstract
Digital twins employ mathematical and computational models to virtually represent a physical object (e.g., planes and human organs), predict the behavior of the object, and enable decision-making to optimize the future behavior of the object. While digital twins have been widely used in engineering for decades, their applications to oncology are only just emerging. Due to advances in experimental techniques quantitatively characterizing cancer, as well as advances in the mathematical and computational sciences, the notion of building and applying digital twins to understand tumor dynamics and personalize the care of cancer patients has been increasingly appreciated. In this review, we present the opportunities and challenges of applying digital twins in clinical oncology, with a particular focus on integrating medical imaging with mechanism-based, tissue-scale mathematical modeling. Specifically, we first introduce the general digital twin framework and then illustrate existing applications of image-guided digital twins in healthcare. Next, we detail both the imaging and modeling techniques that provide practical opportunities to build patient-specific digital twins for oncology. We then describe the current challenges and limitations in developing image-guided, mechanism-based digital twins for oncology along with potential solutions. We conclude by outlining five fundamental questions that can serve as a roadmap when designing and building a practical digital twin for oncology and attempt to provide answers for a specific application to brain cancer. We hope that this contribution provides motivation for the imaging science, oncology, and computational communities to develop practical digital twin technologies to improve the care of patients battling cancer.
Collapse
Affiliation(s)
- Chengyue Wu
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | | | | | | | - Kalina P. Slavkova
- Department of Physics, The University of Texas at Austin, Austin, Texas 78712, USA
| | | | | | - Caleb M. Phillips
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Debra Patt
- Texas Oncology, Austin, Texas 78731, USA
| | - Caroline Chung
- Department of Radiation Oncology, MD Anderson Cancer Center, University of Texas, Houston, Texas 77030, USA
| | | |
Collapse
|
6
|
Wang L, Zhang X, Liu J, Liu Q. MUC21 induces the viability and migration of glioblastoma via the STAT3/AKT pathway. Exp Ther Med 2022; 23:331. [PMID: 35401801 PMCID: PMC8987941 DOI: 10.3892/etm.2022.11260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 01/17/2022] [Indexed: 11/26/2022] Open
Abstract
Glioblastoma (GBM) is a malignant tumor with one of the fastest increasing morbidity and mortality rates. As such, more therapeutic targets need to be developed to combat this disease. Mucin 21 (MUC21) is a human counterpart of mouse epiglycanin and mediates multiple cellular functions. However, its possible effects on GBM and its possible mechanism remain unclear. The current study aimed to clarify the role or MUC21 in the progression of GBM by performing a series of in vitro assays, including Cell Counting Kit-8, colony formation, wound closure, transwell, and in vivo assays. In the present study, the aberrantly high expression of MUC21 in human GBM tissues and cell lines was observed and it was revealed that it was associated with the clinicopathological feature, tumor recurrence, in patients with GBM. MUC21 promoted the viability and motility of GBM cells in vitro and stimulated tumor growth in vivo. It was further confirmed that MUC21 promoted the progression of GBM via the STAT3/AKT pathway and it was considered that MUC21 could serve as a promising target for the treatment of GBM.
Collapse
Affiliation(s)
- Leibo Wang
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin 300350, P.R. China
| | - Xuebin Zhang
- Department of Pathology, Tianjin Huanhu Hospital, Tianjin 300350, P.R. China
| | - Jun Liu
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin 300350, P.R. China
| | - Qingjun Liu
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin 300350, P.R. China
| |
Collapse
|
7
|
Corti A, Colombo M, Migliavacca F, Rodriguez Matas JF, Casarin S, Chiastra C. Multiscale Computational Modeling of Vascular Adaptation: A Systems Biology Approach Using Agent-Based Models. Front Bioeng Biotechnol 2021; 9:744560. [PMID: 34796166 PMCID: PMC8593007 DOI: 10.3389/fbioe.2021.744560] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/04/2021] [Indexed: 12/20/2022] Open
Abstract
The widespread incidence of cardiovascular diseases and associated mortality and morbidity, along with the advent of powerful computational resources, have fostered an extensive research in computational modeling of vascular pathophysiology field and promoted in-silico models as a support for biomedical research. Given the multiscale nature of biological systems, the integration of phenomena at different spatial and temporal scales has emerged to be essential in capturing mechanobiological mechanisms underlying vascular adaptation processes. In this regard, agent-based models have demonstrated to successfully embed the systems biology principles and capture the emergent behavior of cellular systems under different pathophysiological conditions. Furthermore, through their modular structure, agent-based models are suitable to be integrated with continuum-based models within a multiscale framework that can link the molecular pathways to the cell and tissue levels. This can allow improving existing therapies and/or developing new therapeutic strategies. The present review examines the multiscale computational frameworks of vascular adaptation with an emphasis on the integration of agent-based approaches with continuum models to describe vascular pathophysiology in a systems biology perspective. The state-of-the-art highlights the current gaps and limitations in the field, thus shedding light on new areas to be explored that may become the future research focus. The inclusion of molecular intracellular pathways (e.g., genomics or proteomics) within the multiscale agent-based modeling frameworks will certainly provide a great contribution to the promising personalized medicine. Efforts will be also needed to address the challenges encountered for the verification, uncertainty quantification, calibration and validation of these multiscale frameworks.
Collapse
Affiliation(s)
- Anna Corti
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Monika Colombo
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy.,Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Switzerland
| | - Francesco Migliavacca
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Jose Felix Rodriguez Matas
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Stefano Casarin
- Department of Surgery, Houston Methodist Hospital, Houston, TX, United States.,Center for Computational Surgery, Houston Methodist Research Institute, Houston, TX, United States.,Houston Methodist Academic Institute, Houston, TX, United States
| | - Claudio Chiastra
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy.,PoliToMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| |
Collapse
|
8
|
Macnamara CK. Biomechanical modelling of cancer: Agent‐based force‐based models of solid tumours within the context of the tumour microenvironment. COMPUTATIONAL AND SYSTEMS ONCOLOGY 2021. [DOI: 10.1002/cso2.1018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Cicely K. Macnamara
- School of Mathematics and Statistics Mathematical Institute University of St Andrews St Andrews Fife UK
| |
Collapse
|
9
|
Heidary Z, Ghaisari J, Moein S, Haghjooy Javanmard S. The double-edged sword role of fibroblasts in the interaction with cancer cells; an agent-based modeling approach. PLoS One 2020; 15:e0232965. [PMID: 32384110 PMCID: PMC7209353 DOI: 10.1371/journal.pone.0232965] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 04/24/2020] [Indexed: 02/07/2023] Open
Abstract
Fibroblasts as key components of tumor microenvironment show different features in the interaction with cancer cells. Although, Normal fibroblasts demonstrate anti-tumor effects, cancer associated fibroblasts are principal participant in tumor growth and invasion. The ambiguity of fibroblasts function can be regarded as two heads of its behavioral spectrum and can be subjected for mathematical modeling to identify their switching behavior. In this research, an agent-based model of mutual interactions between fibroblast and cancer cell was created. The proposed model is based on nonlinear differential equations which describes biochemical reactions of the main factors involved in fibroblasts and cancer cells communication. Also, most of the model parameters are estimated using hybrid unscented Kalman filter. The interactions between two cell types are illustrated by the dynamic modeling of TGFβ and LIF pathways as well as their crosstalk. Using analytical and computational approaches, reciprocal effects of cancer cells and fibroblasts are constructed and the role of signaling molecules in tumor progression or prevention are determined. Finally, the model is validated using a set of experimental data. The proposed dynamic modeling might be useful for designing more efficient therapies in cancer metastasis treatment and prevention.
Collapse
Affiliation(s)
- Zarifeh Heidary
- Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Jafar Ghaisari
- Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Shiva Moein
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shaghayegh Haghjooy Javanmard
- Department of Physiology, Applied Physiology Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
- * E-mail:
| |
Collapse
|
10
|
Cess CG, Finley SD. Data-driven analysis of a mechanistic model of CAR T cell signaling predicts effects of cell-to-cell heterogeneity. J Theor Biol 2019; 489:110125. [PMID: 31866395 PMCID: PMC7467855 DOI: 10.1016/j.jtbi.2019.110125] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/13/2019] [Accepted: 12/18/2019] [Indexed: 01/09/2023]
Abstract
Due to the variability of protein expression, cells of the same population can exhibit different responses to stimuli. It is important to understand this heterogeneity at the individual level, as population averages mask these underlying differences. Using computational modeling, we can interrogate a system much more precisely than by using experiments alone, in order to learn how the expression of each protein affects a biological system. Here, we examine a mechanistic model of CAR T cell signaling, which connects receptor-antigen binding to MAPK activation, to determine intracellular modulations that can increase cellular response. CAR T cell cancer therapy involves removing a patient's T cells, modifying them to express engineered receptors that can bind to tumor-associated antigens to promote tumor cell killing, and then injecting the cells back into the patient. This population of cells, like all cell populations, would have heterogeneous protein expression, which could affect the efficacy of treatment. Thus, it is important to examine the effects of cell-to-cell heterogeneity. We first generated a dataset of simulated cell responses via Monte Carlo simulations of the mechanistic model, where the initial protein concentrations were randomly sampled. We analyzed the dataset using partial least-squares modeling to determine the relationships between protein expression and ERK phosphorylation, the output of the mechanistic model. Using this data-driven analysis, we found that only the expressions of proteins relating directly to the receptor and the MAPK cascade, the beginning and end of the network, respectively, are relevant to the cells' response. We also found, surprisingly, that increasing the amount of receptor present can actually inhibit the cell's ability to respond due to increasing the strength of negative feedback from phosphatases. Overall, we have combined data-driven and mechanistic modeling to generate detailed insight into CAR T cell signaling.
Collapse
Affiliation(s)
- Colin G Cess
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - Stacey D Finley
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States; Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, United States; Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|
11
|
A systems approach to clinical oncology uses deep phenotyping to deliver personalized care. Nat Rev Clin Oncol 2019; 17:183-194. [DOI: 10.1038/s41571-019-0273-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2019] [Indexed: 02/06/2023]
|
12
|
Zhao H, Chappell JC. Microvascular bioengineering: a focus on pericytes. J Biol Eng 2019; 13:26. [PMID: 30984287 PMCID: PMC6444752 DOI: 10.1186/s13036-019-0158-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/15/2019] [Indexed: 12/26/2022] Open
Abstract
Capillaries within the microcirculation are essential for oxygen delivery and nutrient/waste exchange, among other critical functions. Microvascular bioengineering approaches have sought to recapitulate many key features of these capillary networks, with an increasing appreciation for the necessity of incorporating vascular pericytes. Here, we briefly review established and more recent insights into important aspects of pericyte identification and function within the microvasculature. We then consider the importance of including vascular pericytes in various bioengineered microvessel platforms including 3D culturing and microfluidic systems. We also discuss how vascular pericytes are a vital component in the construction of computational models that simulate microcirculation phenomena including angiogenesis, microvascular biomechanics, and kinetics of exchange across the vessel wall. In reviewing these topics, we highlight the notion that incorporating pericytes into microvascular bioengineering applications will increase their utility and accelerate the translation of basic discoveries to clinical solutions for vascular-related pathologies.
Collapse
Affiliation(s)
- Huaning Zhao
- Center for Heart and Reparative Medicine, Fralin Biomedical Research Institute, 2 Riverside Circle, Roanoke, VA 24016 USA.,Department of Biomedical Engineering and Mechanics, Virginia Polytechnic State Institute and State University, Blacksburg, VA 24061 USA
| | - John C Chappell
- Center for Heart and Reparative Medicine, Fralin Biomedical Research Institute, 2 Riverside Circle, Roanoke, VA 24016 USA.,Department of Biomedical Engineering and Mechanics, Virginia Polytechnic State Institute and State University, Blacksburg, VA 24061 USA.,3Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016 USA
| |
Collapse
|
13
|
Wang Z, Deisboeck TS. Dynamic Targeting in Cancer Treatment. Front Physiol 2019; 10:96. [PMID: 30890944 PMCID: PMC6413712 DOI: 10.3389/fphys.2019.00096] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 01/25/2019] [Indexed: 12/18/2022] Open
Abstract
With the advent of personalized medicine, design and development of anti-cancer drugs that are specifically targeted to individual or sets of genes or proteins has been an active research area in both academia and industry. The underlying motivation for this approach is to interfere with several pathological crosstalk pathways in order to inhibit or at the very least control the proliferation of cancer cells. However, after initially conferring beneficial effects, if sub-lethal, these artificial perturbations in cell function pathways can inadvertently activate drug-induced up- and down-regulation of feedback loops, resulting in dynamic changes over time in the molecular network structure and potentially causing drug resistance as seen in clinics. Hence, the targets or their combined signatures should also change in accordance with the evolution of the network (reflected by changes to the structure and/or functional output of the network) over the course of treatment. This suggests the need for a "dynamic targeting" strategy aimed at optimizing tumor control by interfering with different molecular targets, at varying stages. Understanding the dynamic changes of this complex network under various perturbed conditions due to drug treatment is extremely challenging under experimental conditions let alone in clinical settings. However, mathematical modeling can facilitate studying these effects at the network level and beyond, and also accelerate comparison of the impact of different dosage regimens and therapeutic modalities prior to sizeable investment in risky and expensive clinical trials. A dynamic targeting strategy based on the use of mathematical modeling can be a new, exciting research avenue in the discovery and development of therapeutic drugs.
Collapse
Affiliation(s)
- Zhihui Wang
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, TX, United States.,Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Thomas S Deisboeck
- Department of Radiology, Harvard-MIT (HST) Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| |
Collapse
|
14
|
Metzcar J, Wang Y, Heiland R, Macklin P. A Review of Cell-Based Computational Modeling in Cancer Biology. JCO Clin Cancer Inform 2019; 3:1-13. [PMID: 30715927 PMCID: PMC6584763 DOI: 10.1200/cci.18.00069] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2018] [Indexed: 12/14/2022] Open
Abstract
Cancer biology involves complex, dynamic interactions between cancer cells and their tissue microenvironments. Single-cell effects are critical drivers of clinical progression. Chemical and mechanical communication between tumor and stromal cells can co-opt normal physiologic processes to promote growth and invasion. Cancer cell heterogeneity increases cancer's ability to test strategies to adapt to microenvironmental stresses. Hypoxia and treatment can select for cancer stem cells and drive invasion and resistance. Cell-based computational models (also known as discrete models, agent-based models, or individual-based models) simulate individual cells as they interact in virtual tissues, which allows us to explore how single-cell behaviors lead to the dynamics we observe and work to control in cancer systems. In this review, we introduce the broad range of techniques available for cell-based computational modeling. The approaches can range from highly detailed models of just a few cells and their morphologies to millions of simpler cells in three-dimensional tissues. Modeling individual cells allows us to directly translate biologic observations into simulation rules. In many cases, individual cell agents include molecular-scale models. Most models also simulate the transport of oxygen, drugs, and growth factors, which allow us to link cancer development to microenvironmental conditions. We illustrate these methods with examples drawn from cancer hypoxia, angiogenesis, invasion, stem cells, and immunosurveillance. An ecosystem of interoperable cell-based simulation tools is emerging at a time when cloud computing resources make software easier to access and supercomputing resources make large-scale simulation studies possible. As the field develops, we anticipate that high-throughput simulation studies will allow us to rapidly explore the space of biologic possibilities, prescreen new therapeutic strategies, and even re-engineer tumor and stromal cells to bring cancer systems under control.
Collapse
|
15
|
Angeli S, Emblem KE, Due-Tonnessen P, Stylianopoulos T. Towards patient-specific modeling of brain tumor growth and formation of secondary nodes guided by DTI-MRI. NEUROIMAGE-CLINICAL 2018; 20:664-673. [PMID: 30211003 PMCID: PMC6134360 DOI: 10.1016/j.nicl.2018.08.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 07/25/2018] [Accepted: 08/31/2018] [Indexed: 01/09/2023]
Abstract
Previous studies to simulate brain tumor progression, often investigate either temporal changes in cancer cell density or the overall tissue-level growth of the tumor mass. Here, we developed a computational model to bridge these two approaches. The model incorporates the tumor biomechanical response at the tissue level and accounts for cellular events by modeling cancer cell proliferation, infiltration to surrounding tissues, and invasion to distant locations. Moreover, acquisition of high resolution human data from anatomical magnetic resonance imaging, diffusion tensor imaging and perfusion imaging was employed within the simulations towards a realistic and patient specific model. The model predicted the intratumoral mechanical stresses to range from 20 to 34 kPa, which caused an up to 4.5 mm displacement to the adjacent healthy tissue. Furthermore, the model predicted plausible cancer cell invasion patterns within the brain along the white matter fiber tracts. Finally, by varying the tumor vascular density and its invasive outer ring thickness, our model showed the potential of these parameters for guiding the timing (83–90 days) of cancer cell distant invasion as well as the number (0–2 sites) and location (temportal and/or parietal lobe) of the invasion sites.
Collapse
Affiliation(s)
- Stelios Angeli
- Cancer Biophysics laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Kyrre E Emblem
- Department of Diagnostic Physics, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Paulina Due-Tonnessen
- Department of Radiology, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Triantafyllos Stylianopoulos
- Cancer Biophysics laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus.
| |
Collapse
|
16
|
Torii R, Velliou RI, Hodgson D, Mudera V. Modelling multi-scale cell-tissue interaction of tissue-engineered muscle constructs. J Tissue Eng 2018; 9:2041731418787141. [PMID: 30128109 PMCID: PMC6090492 DOI: 10.1177/2041731418787141] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/12/2018] [Indexed: 01/21/2023] Open
Abstract
Expectation on engineered tissue substitute continues to grow, and for an effective development of a functional tissue and to control its quality, cellular mechanoresponse plays a key role. Although the mechanoresponse – in terms of cell–tissue interaction across scales – has been understood better in recent years, there are still technical limitations to quantitatively monitor the processes involved in the development of both native and engineered tissues. Computational (in silico) studies have been utilised to complement the experimental limitations and successfully applied to the prediction of tissue growth. We here review recent activities in the area of combined experimental and computational analyses of tissue growth, especially in the tissue engineering context, and highlight the advantages of such an approach for the future of the tissue engineering, using our own case study of predicting musculoskeletal tissue engineering construct development.
Collapse
Affiliation(s)
- Ryo Torii
- Department of Mechanical Engineering, University College London, London, UK
| | | | - David Hodgson
- Centre for Computation, Mathematics and Physics in the Life Sciences and Experimental Biology (COMPLEX), University College London, London, UK.,Clinical Operational Research Unit, Department of Mathematics, University College London, London, UK
| | - Vivek Mudera
- Division of Surgery and Interventional Science, University College London, London, UK
| |
Collapse
|
17
|
Alfonso JCL, Talkenberger K, Seifert M, Klink B, Hawkins-Daarud A, Swanson KR, Hatzikirou H, Deutsch A. The biology and mathematical modelling of glioma invasion: a review. J R Soc Interface 2018; 14:rsif.2017.0490. [PMID: 29118112 DOI: 10.1098/rsif.2017.0490] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/17/2017] [Indexed: 12/13/2022] Open
Abstract
Adult gliomas are aggressive brain tumours associated with low patient survival rates and limited life expectancy. The most important hallmark of this type of tumour is its invasive behaviour, characterized by a markedly phenotypic plasticity, infiltrative tumour morphologies and the ability of malignant progression from low- to high-grade tumour types. Indeed, the widespread infiltration of healthy brain tissue by glioma cells is largely responsible for poor prognosis and the difficulty of finding curative therapies. Meanwhile, mathematical models have been established to analyse potential mechanisms of glioma invasion. In this review, we start with a brief introduction to current biological knowledge about glioma invasion, and then critically review and highlight future challenges for mathematical models of glioma invasion.
Collapse
Affiliation(s)
- J C L Alfonso
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Centre for Information Services and High Performance Computing, Technische Universität Dresden, Germany
| | - K Talkenberger
- Centre for Information Services and High Performance Computing, Technische Universität Dresden, Germany
| | - M Seifert
- Institute for Medical Informatics and Biometry, Technische Universität Dresden, Germany.,National Center for Tumor Diseases (NCT), Dresden, Germany
| | - B Klink
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Germany.,National Center for Tumor Diseases (NCT), Dresden, Germany.,German Cancer Consortium (DKTK), partner site, Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - A Hawkins-Daarud
- Precision Neurotherapeutics Innovation Program, Mayo Clinic, Phoenix, AZ, USA
| | - K R Swanson
- Precision Neurotherapeutics Innovation Program, Mayo Clinic, Phoenix, AZ, USA
| | - H Hatzikirou
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Centre for Information Services and High Performance Computing, Technische Universität Dresden, Germany
| | - A Deutsch
- Centre for Information Services and High Performance Computing, Technische Universität Dresden, Germany
| |
Collapse
|
18
|
Caccavale J, Fiumara D, Stapf M, Sweitzer L, Anderson HJ, Gorky J, Dhurjati P, Galileo DS. A simple and accurate rule-based modeling framework for simulation of autocrine/paracrine stimulation of glioblastoma cell motility and proliferation by L1CAM in 2-D culture. BMC SYSTEMS BIOLOGY 2017; 11:124. [PMID: 29228953 PMCID: PMC5725844 DOI: 10.1186/s12918-017-0516-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/21/2017] [Indexed: 11/24/2022]
Abstract
Background Glioblastoma multiforme (GBM) is a devastating brain cancer for which there is no known cure. Its malignancy is due to rapid cell division along with high motility and invasiveness of cells into the brain tissue. Simple 2-dimensional laboratory assays (e.g., a scratch assay) commonly are used to measure the effects of various experimental perturbations, such as treatment with chemical inhibitors. Several mathematical models have been developed to aid the understanding of the motile behavior and proliferation of GBM cells. However, many are mathematically complicated, look at multiple interdependent phenomena, and/or use modeling software not freely available to the research community. These attributes make the adoption of models and simulations of even simple 2-dimensional cell behavior an uncommon practice by cancer cell biologists. Results Herein, we developed an accurate, yet simple, rule-based modeling framework to describe the in vitro behavior of GBM cells that are stimulated by the L1CAM protein using freely available NetLogo software. In our model L1CAM is released by cells to act through two cell surface receptors and a point of signaling convergence to increase cell motility and proliferation. A simple graphical interface is provided so that changes can be made easily to several parameters controlling cell behavior, and behavior of the cells is viewed both pictorially and with dedicated graphs. We fully describe the hierarchical rule-based modeling framework, show simulation results under several settings, describe the accuracy compared to experimental data, and discuss the potential usefulness for predicting future experimental outcomes and for use as a teaching tool for cell biology students. Conclusions It is concluded that this simple modeling framework and its simulations accurately reflect much of the GBM cell motility behavior observed experimentally in vitro in the laboratory. Our framework can be modified easily to suit the needs of investigators interested in other similar intrinsic or extrinsic stimuli that influence cancer or other cell behavior. This modeling framework of a commonly used experimental motility assay (scratch assay) should be useful to both researchers of cell motility and students in a cell biology teaching laboratory. Electronic supplementary material The online version of this article (10.1186/s12918-017-0516-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Justin Caccavale
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA
| | - David Fiumara
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Michael Stapf
- Department of Mathematical Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Liedeke Sweitzer
- Department of Mathematical Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Hannah J Anderson
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Jonathan Gorky
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Prasad Dhurjati
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA.,Department of Mathematical Sciences, University of Delaware, Newark, DE, 19716, USA.,Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Deni S Galileo
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA. .,Helen F. Graham Cancer Center and Research Institute, Christiana Care Health System, Newark, DE, USA.
| |
Collapse
|
19
|
A branching process model of heterogeneous DNA damages caused by radiotherapy in in vitro cell cultures. Math Biosci 2017; 294:100-109. [PMID: 29054768 DOI: 10.1016/j.mbs.2017.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 07/21/2017] [Accepted: 09/23/2017] [Indexed: 11/22/2022]
Abstract
This paper deals with the dynamic modeling and simulation of cell damage heterogeneity and associated mutant cell phenotypes in the therapeutic responses of cancer cell populations submitted to a radiotherapy session during in vitro assays. Each cell is described by a finite number of phenotypic states with possible transitions between them. The population dynamics is then given by an age-dependent multi-type branching process. From this representation, we obtain formulas for the average size of the global survival population as well as the one of subpopulations associated with 10 mutation phenotypes. The proposed model has been implemented into Matlab© and the numerical results corroborate the ability of the model to reproduce four major types of cell responses: delayed growth, anti-proliferative, cytostatic and cytotoxic.
Collapse
|
20
|
Logsdon DK, Beeghly GF, Munson JM. Chemoprotection Across the Tumor Border: Cancer Cell Response to Doxorubicin Depends on Stromal Fibroblast Ratios and Interstitial Therapeutic Transport. Cell Mol Bioeng 2017; 10:463-481. [PMID: 31719872 PMCID: PMC6816789 DOI: 10.1007/s12195-017-0498-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 07/20/2017] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Increasing evidence suggests that the tumor microenvironment reduces therapeutic delivery and may lead to chemotherapeutic resistance. At tumor borders, drug is convectively transported across a unique microenvironment composed of inverse gradients of stromal and tumor cells. These regions are particularly important to overall survival, as they are often missed through surgical intervention and contain many invading cells, often responsible for metastatic spread. An understanding of how cells in this tumor-border region respond to chemotherapy could begin to elucidate the role of transport and intercellular interactions in relation to chemoresistance. Here we examine the contribution of drug transport and stromal fibroblasts to breast cancer response to doxorubicin using in silico and in vitro models of the tumor-stroma interface. METHODS 2D culture systems were utilized to determine the effects of modulated ratios of fibroblasts and cancer cells on overall cancer cell viability. A homogenous breast mimetic in vitro 3D collagen I-based hydrogel system, with drug delivered via pressure driven flow (0.5 µm/s), was developed to determine the effects of transport and fibroblasts on doxorubicin treatment efficacy. Using a novel layered tumor bulk-to-stroma transition in vitro 3D hydrogel model, ratios of MDA-MB-231s and fibroblasts were seeded in successive layers creating cellular gradients, yielding insight into region specific cancer cell viability at the tumor border. In silico models, utilizing concentration profiles developed in COMSOL Multiphysics, were optimized for time dependent viability prediction and confirmation of in vitro findings. RESULTS In general, the addition of fibroblasts increased viability of cancer cells exposed to doxorubicin, indicating a protective effect of co-culture. More specifically, however, modulating ratios of cancer cells (MDA-MB-231):fibroblasts in 2D co-cultures, to mimic the tumor-stroma transition, resulted in a linear decrease in cancer cell viability from 77% (4:1) to 44% (1:4). Similar trends were seen in the breast-mimetic in vitro 3D collagen I-based homogenous hydrogel system. Our in vitro and in silico tumor border models indicate that MDA-MB-231s at the top of the gel, indicative of the tumor bulk, receive the greatest concentration of drug for the longest time, yet cellular death is lowest in this region. This trend is reversed for MDA-MB-231s alone. CONCLUSION Together, our data indicate that fibroblasts are chemoprotective at lower density, resulting in less tumor death in regions of higher chemotherapy concentration. Additionally, chemotherapeutic agent transport properties can modulate this effect.
Collapse
Affiliation(s)
- Daniel K. Logsdon
- Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, VA 22908 USA
| | - Garrett F. Beeghly
- Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, VA 22908 USA
| | - Jennifer M. Munson
- Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, VA 22908 USA
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Kelly Hall, 325 Stanger Street, Blacksburg, VA 24061 USA
| |
Collapse
|
21
|
Zangooei MH, Habibi J. Hybrid multiscale modeling and prediction of cancer cell behavior. PLoS One 2017; 12:e0183810. [PMID: 28846712 PMCID: PMC5573302 DOI: 10.1371/journal.pone.0183810] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 08/13/2017] [Indexed: 12/03/2022] Open
Abstract
Background Understanding cancer development crossing several spatial-temporal scales is of great practical significance to better understand and treat cancers. It is difficult to tackle this challenge with pure biological means. Moreover, hybrid modeling techniques have been proposed that combine the advantages of the continuum and the discrete methods to model multiscale problems. Methods In light of these problems, we have proposed a new hybrid vascular model to facilitate the multiscale modeling and simulation of cancer development with respect to the agent-based, cellular automata and machine learning methods. The purpose of this simulation is to create a dataset that can be used for prediction of cell phenotypes. By using a proposed Q-learning based on SVR-NSGA-II method, the cells have the capability to predict their phenotypes autonomously that is, to act on its own without external direction in response to situations it encounters. Results Computational simulations of the model were performed in order to analyze its performance. The most striking feature of our results is that each cell can select its phenotype at each time step according to its condition. We provide evidence that the prediction of cell phenotypes is reliable. Conclusion Our proposed model, which we term a hybrid multiscale modeling of cancer cell behavior, has the potential to combine the best features of both continuum and discrete models. The in silico results indicate that the 3D model can represent key features of cancer growth, angiogenesis, and its related micro-environment and show that the findings are in good agreement with biological tumor behavior. To the best of our knowledge, this paper is the first hybrid vascular multiscale modeling of cancer cell behavior that has the capability to predict cell phenotypes individually by a self-generated dataset.
Collapse
Affiliation(s)
| | - Jafar Habibi
- Department of Computer Engineering, Sharif University of Technology, Tehran, Iran
- * E-mail:
| |
Collapse
|
22
|
Davis A, Gao R, Navin N. Tumor evolution: Linear, branching, neutral or punctuated? Biochim Biophys Acta Rev Cancer 2017; 1867:151-161. [PMID: 28110020 DOI: 10.1016/j.bbcan.2017.01.003] [Citation(s) in RCA: 185] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 01/14/2017] [Accepted: 01/16/2017] [Indexed: 02/08/2023]
Abstract
Intratumor heterogeneity has been widely reported in human cancers, but our knowledge of how this genetic diversity emerges over time remains limited. A central challenge in studying tumor evolution is the difficulty in collecting longitudinal samples from cancer patients. Consequently, most studies have inferred tumor evolution from single time-point samples, providing very indirect information. These data have led to several competing models of tumor evolution: linear, branching, neutral and punctuated. Each model makes different assumptions regarding the timing of mutations and selection of clones, and therefore has different implications for the diagnosis and therapeutic treatment of cancer patients. Furthermore, emerging evidence suggests that models may change during tumor progression or operate concurrently for different classes of mutations. Finally, we discuss data that supports the theory that most human tumors evolve from a single cell in the normal tissue. This article is part of a Special Issue entitled: Evolutionary principles - heterogeneity in cancer?, edited by Dr. Robert A. Gatenby.
Collapse
Affiliation(s)
- Alexander Davis
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ruli Gao
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nicholas Navin
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
23
|
Frieboes HB, Curtis LT, Wu M, Kani K, Mallick P. Simulation of the Protein-Shedding Kinetics of a Fully Vascularized Tumor. Cancer Inform 2015; 14:163-75. [PMID: 26715830 PMCID: PMC4687979 DOI: 10.4137/cin.s35374] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 11/09/2015] [Accepted: 11/15/2015] [Indexed: 12/12/2022] Open
Abstract
Circulating biomarkers are of significant interest for cancer detection and treatment personalization. However, the biophysical processes that determine how proteins are shed from cancer cells or their microenvironment, diffuse through tissue, enter blood vasculature, and persist in circulation remain poorly understood. Since approaches primarily focused on experimental evaluation are incapable of measuring the shedding and persistence for every possible marker candidate, we propose an interdisciplinary computational/experimental approach that includes computational modeling of tumor tissue heterogeneity. The model implements protein production, transport, and shedding based on tumor vascularization, cell proliferation, hypoxia, and necrosis, thus quantitatively relating the tumor and circulating proteomes. The results highlight the dynamics of shedding as a function of protein diffusivity and production. Linking the simulated tumor parameters to clinical tumor and vascularization measurements could potentially enable this approach to reveal the tumor-specific conditions based on the protein detected in circulation and thus help to more accurately manage cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Hermann B Frieboes
- Department of Bioengineering, University of Louisville, Louisville, KY, USA. ; James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Louis T Curtis
- Department of Bioengineering, University of Louisville, Louisville, KY, USA
| | - Min Wu
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Chicago, IL, USA
| | - Kian Kani
- Center for Applied Molecular Medicine, University of Southern California, Los Angeles, CA, USA
| | - Parag Mallick
- Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA, USA
| |
Collapse
|
24
|
Cosgrove J, Butler J, Alden K, Read M, Kumar V, Cucurull-Sanchez L, Timmis J, Coles M. Agent-Based Modeling in Systems Pharmacology. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2015; 4:615-29. [PMID: 26783498 PMCID: PMC4716580 DOI: 10.1002/psp4.12018] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 06/29/2015] [Accepted: 07/31/2015] [Indexed: 02/06/2023]
Abstract
Modeling and simulation (M&S) techniques provide a platform for knowledge integration and hypothesis testing to gain insights into biological systems that would not be possible a priori. Agent‐based modeling (ABM) is an M&S technique that focuses on describing individual components rather than homogenous populations. This tutorial introduces ABM to systems pharmacologists, using relevant case studies to highlight how ABM‐specific strengths have yielded success in the area of preclinical mechanistic modeling.
Collapse
Affiliation(s)
- J Cosgrove
- York Computational Immunology LabUniversity of YorkYorkUK; Centre for Immunology and InfectionUniversity of YorkYorkUK; Department of ElectronicsUniversity of YorkYorkUK
| | - J Butler
- York Computational Immunology LabUniversity of YorkYorkUK; Centre for Immunology and InfectionUniversity of YorkYorkUK; Department of ElectronicsUniversity of YorkYorkUK
| | - K Alden
- York Computational Immunology LabUniversity of YorkYorkUK; Centre for Immunology and InfectionUniversity of YorkYorkUK
| | - M Read
- Charles Perkins Centre University of Sydney Sydney Australia
| | - V Kumar
- University of California School of Medicine LA Jolla California USA
| | | | - J Timmis
- York Computational Immunology LabUniversity of YorkYorkUK; Department of ElectronicsUniversity of YorkYorkUK; SimOmicsYorkUK
| | - M Coles
- York Computational Immunology LabUniversity of YorkYorkUK; Centre for Immunology and InfectionUniversity of YorkYorkUK; SimOmicsYorkUK
| |
Collapse
|
25
|
Aviziotis IG, Kavousanakis ME, Boudouvis AG. Effect of Intrinsic Noise on the Phenotype of Cell Populations Featuring Solution Multiplicity: An Artificial lac Operon Network Paradigm. PLoS One 2015; 10:e0132946. [PMID: 26185999 PMCID: PMC4506119 DOI: 10.1371/journal.pone.0132946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 06/21/2015] [Indexed: 11/19/2022] Open
Abstract
Heterogeneity in cell populations originates from two fundamentally different sources: the uneven distribution of intracellular content during cell division, and the stochastic fluctuations of regulatory molecules existing in small amounts. Discrete stochastic models can incorporate both sources of cell heterogeneity with sufficient accuracy in the description of an isogenic cell population; however, they lack efficiency when a systems level analysis is required, due to substantial computational requirements. In this work, we study the effect of cell heterogeneity in the behaviour of isogenic cell populations carrying the genetic network of lac operon, which exhibits solution multiplicity over a wide range of extracellular conditions. For such systems, the strategy of performing solely direct temporal solutions is a prohibitive task, since a large ensemble of initial states needs to be tested in order to drive the system--through long time simulations--to possible co-existing steady state solutions. We implement a multiscale computational framework, the so-called "equation-free" methodology, which enables the performance of numerical tasks, such as the computation of coarse steady state solutions and coarse bifurcation analysis. Dynamically stable and unstable solutions are computed and the effect of intrinsic noise on the range of bistability is efficiently investigated. The results are compared with the homogeneous model, which neglects all sources of heterogeneity, with the deterministic cell population balance model, as well as with a stochastic model neglecting the heterogeneity originating from intrinsic noise effects. We show that when the effect of intrinsic source of heterogeneity is intensified, the bistability range shifts towards higher extracellular inducer concentration values.
Collapse
Affiliation(s)
- Ioannis G. Aviziotis
- School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | | | - Andreas G. Boudouvis
- School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| |
Collapse
|
26
|
Kondapalli KC, Llongueras JP, Capilla-González V, Prasad H, Hack A, Smith C, Guerrero-Cázares H, Quiñones-Hinojosa A, Rao R. A leak pathway for luminal protons in endosomes drives oncogenic signalling in glioblastoma. Nat Commun 2015; 6:6289. [PMID: 25662504 PMCID: PMC4354686 DOI: 10.1038/ncomms7289] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 01/12/2015] [Indexed: 12/15/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) signalling is a potent driver of glioblastoma, a malignant and lethal form of brain cancer. Disappointingly, inhibitors targeting receptor tyrosine kinase activity are not clinically effective and EGFR persists on the plasma membrane to maintain tumour growth and invasiveness. Here we show that endolysosomal pH is critical for receptor sorting and turnover. By functioning as a leak pathway for protons, the Na(+)/H(+) exchanger NHE9 limits luminal acidification to circumvent EGFR turnover and prolong downstream signalling pathways that drive tumour growth and migration. In glioblastoma, NHE9 expression is associated with stem/progenitor characteristics, radiochemoresistance, poor prognosis and invasive growth in vitro and in vivo. Silencing or inhibition of NHE9 in brain tumour-initiating cells attenuates tumoursphere formation and improves efficacy of EGFR inhibitor. Thus, NHE9 mediates inside-out control of oncogenic signalling and is a highly druggable target for pan-specific receptor clearance in cancer therapy.
Collapse
Affiliation(s)
- Kalyan C. Kondapalli
- Department of Physiology, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - Jose P. Llongueras
- Department of Physiology, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - Vivian Capilla-González
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - Hari Prasad
- Department of Physiology, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - Anniesha Hack
- Department of Physiology, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - Christopher Smith
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - Hugo Guerrero-Cázares
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - Alfredo Quiñones-Hinojosa
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - Rajini Rao
- Department of Physiology, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| |
Collapse
|
27
|
Wang Z, Butner JD, Cristini V, Deisboeck TS. Integrated PK-PD and agent-based modeling in oncology. J Pharmacokinet Pharmacodyn 2015; 42:179-89. [PMID: 25588379 DOI: 10.1007/s10928-015-9403-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 01/08/2015] [Indexed: 01/11/2023]
Abstract
Mathematical modeling has become a valuable tool that strives to complement conventional biomedical research modalities in order to predict experimental outcome, generate new medical hypotheses, and optimize clinical therapies. Two specific approaches, pharmacokinetic-pharmacodynamic (PK-PD) modeling, and agent-based modeling (ABM), have been widely applied in cancer research. While they have made important contributions on their own (e.g., PK-PD in examining chemotherapy drug efficacy and resistance, and ABM in describing and predicting tumor growth and metastasis), only a few groups have started to combine both approaches together in an effort to gain more insights into the details of drug dynamics and the resulting impact on tumor growth. In this review, we focus our discussion on some of the most recent modeling studies building on a combined PK-PD and ABM approach that have generated experimentally testable hypotheses. Some future directions are also discussed.
Collapse
Affiliation(s)
- Zhihui Wang
- Department of Pathology, University of New Mexico, Albuquerque, NM, 87131, USA
| | | | | | | |
Collapse
|
28
|
Aviziotis IG, Kavousanakis ME, Bitsanis IA, Boudouvis AG. Coarse-grained analysis of stochastically simulated cell populations with a positive feedback genetic network architecture. J Math Biol 2014; 70:1457-84. [PMID: 24929336 DOI: 10.1007/s00285-014-0799-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 05/26/2014] [Indexed: 11/29/2022]
Abstract
Among the different computational approaches modelling the dynamics of isogenic cell populations, discrete stochastic models can describe with sufficient accuracy the evolution of small size populations. However, for a systematic and efficient study of their long-time behaviour over a wide range of parameter values, the performance of solely direct temporal simulations requires significantly high computational time. In addition, when the dynamics of the cell populations exhibit non-trivial bistable behaviour, such an analysis becomes a prohibitive task, since a large ensemble of initial states need to be tested for the quest of possibly co-existing steady state solutions. In this work, we study cell populations which carry the lac operon network exhibiting solution multiplicity over a wide range of extracellular conditions (inducer concentration). By adopting ideas from the so-called "equation-free" methodology, we perform systems-level analysis, which includes numerical tasks such as the computation of coarse steady state solutions, coarse bifurcation analysis, as well as coarse stability analysis. Dynamically stable and unstable macroscopic (population level) steady state solutions are computed by means of bifurcation analysis utilising short bursts of fine-scale simulations, and the range of bistability is determined for different sizes of cell populations. The results are compared with the deterministic cell population balance model, which is valid for large populations, and we demonstrate the increased effect of stochasticity in small size populations with asymmetric partitioning mechanisms.
Collapse
Affiliation(s)
- I G Aviziotis
- National Technical University of Athens, School of Chemical Engineering, 15780 , Athens, Greece,
| | | | | | | |
Collapse
|
29
|
Masoudi-Nejad A, Meshkin A. WITHDRAWN: Cancer modeling: The holonic agent-based approach. Semin Cancer Biol 2014:S1044-579X(14)00032-7. [PMID: 24598694 DOI: 10.1016/j.semcancer.2014.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 02/19/2014] [Accepted: 02/20/2014] [Indexed: 11/22/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Ali Masoudi-Nejad
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| | - Alireza Meshkin
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
30
|
Wang J, Zhang L, Jing C, Ye G, Wu H, Miao H, Wu Y, Zhou X. Multi-scale agent-based modeling on melanoma and its related angiogenesis analysis. Theor Biol Med Model 2013; 10:41. [PMID: 23800293 PMCID: PMC3694033 DOI: 10.1186/1742-4682-10-41] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Accepted: 06/18/2013] [Indexed: 12/26/2022] Open
Abstract
Background Recently, melanoma has become the most malignant and commonly occurring skin cancer. Melanoma is not only the major source (75%) of deaths related to skin cancer, but also it is hard to be treated by the conventional drugs. Recent research indicated that angiogenesis is an important factor for tumor initiation, expansion, and response to therapy. Thus, we proposed a novel multi-scale agent-based computational model that integrates the angiogenesis into tumor growth to study the response of melanoma cancer under combined drug treatment. Results Our multi-scale agent-based model can simulate the melanoma tumor growth with angiogenesis under combined drug treatment. The significant synergistic effects between drug Dox and drug Sunitinib demonstrated the clinical potential to interrupt the communication between melanoma cells and its related vasculatures. Also, the sensitivity analysis of the model revealed that diffusivity related to the micro-vasculatures around tumor tissues closely correlated with the spread, oscillation and destruction of the tumor. Conclusions Simulation results showed that the 3D model can represent key features of melanoma growth, angiogenesis, and its related micro-environment. The model can help cancer researchers understand the melanoma developmental mechanism. Drug synergism analysis suggested that interrupting the communications between melanoma cells and the related vasculatures can significantly increase the drug efficacy against tumor cells.
Collapse
Affiliation(s)
- Jun Wang
- College of Computer and Information Science, Southwest University, Chongqing 400715, China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Bhattacharya S, Shoda LKM, Zhang Q, Woods CG, Howell BA, Siler SQ, Woodhead JL, Yang Y, McMullen P, Watkins PB, Andersen ME. Modeling drug- and chemical-induced hepatotoxicity with systems biology approaches. Front Physiol 2012; 3:462. [PMID: 23248599 PMCID: PMC3522076 DOI: 10.3389/fphys.2012.00462] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 11/21/2012] [Indexed: 12/22/2022] Open
Abstract
We provide an overview of computational systems biology approaches as applied to the study of chemical- and drug-induced toxicity. The concept of “toxicity pathways” is described in the context of the 2007 US National Academies of Science report, “Toxicity testing in the 21st Century: A Vision and A Strategy.” Pathway mapping and modeling based on network biology concepts are a key component of the vision laid out in this report for a more biologically based analysis of dose-response behavior and the safety of chemicals and drugs. We focus on toxicity of the liver (hepatotoxicity) – a complex phenotypic response with contributions from a number of different cell types and biological processes. We describe three case studies of complementary multi-scale computational modeling approaches to understand perturbation of toxicity pathways in the human liver as a result of exposure to environmental contaminants and specific drugs. One approach involves development of a spatial, multicellular “virtual tissue” model of the liver lobule that combines molecular circuits in individual hepatocytes with cell–cell interactions and blood-mediated transport of toxicants through hepatic sinusoids, to enable quantitative, mechanistic prediction of hepatic dose-response for activation of the aryl hydrocarbon receptor toxicity pathway. Simultaneously, methods are being developing to extract quantitative maps of intracellular signaling and transcriptional regulatory networks perturbed by environmental contaminants, using a combination of gene expression and genome-wide protein-DNA interaction data. A predictive physiological model (DILIsym™) to understand drug-induced liver injury (DILI), the most common adverse event leading to termination of clinical development programs and regulatory actions on drugs, is also described. The model initially focuses on reactive metabolite-induced DILI in response to administration of acetaminophen, and spans multiple biological scales.
Collapse
Affiliation(s)
- Sudin Bhattacharya
- Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences Research Triangle Park, NC, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Walker DC, Southgate J. The modulatory effect of cell–cell contact on the tumourigenic potential of pre-malignant epithelial cells: a computational exploration. J R Soc Interface 2012; 10:20120703. [PMID: 23097504 DOI: 10.1098/rsif.2012.0703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Malignant development cannot be attributed alone to genetic changes in a single cell, but occurs as a result of the complex interplay between the failure of cellular regulation mechanisms and the presence of a permissive microenvironment. Although E-cadherin is classified as a 'metastasis suppressor' owing to its role in intercellular adhesion, the observation that it may be downregulated at a premalignant stage is indicative of additional roles in neoplastic development. We have used an agent-based computational model to explore the emergent behaviour resulting from the interaction of single and subpopulations of E-cadherin-compromised cells with unaffected normal epithelial cells within a monolayer environment. We have extended this to investigate the importance of local tissue perturbations in the form of scratch-wounding, or ablation of randomly-dispersed normal cells, on the growth of a single cell exhibiting E-cadherin loss. Our results suggest that the microenvironment with respect to localized cell density and normal/E-cadherin-compromised neighbours is crucial in determining whether an abnormal individual cell proliferates or remains dormant within the monolayer. These predictions raise important questions relating to the propensity for individual mutations to give rise to disease, and future experimental exploration of these will enhance our understanding of a complex, multifactorial pathological process.
Collapse
Affiliation(s)
- D C Walker
- Department of Computer Science, Kroto Institute, North Campus, Broad Lane, Sheffield S3 7HQ, UK.
| | | |
Collapse
|
33
|
Chakrabarti A, Verbridge S, Stroock AD, Fischbach C, Varner JD. Multiscale models of breast cancer progression. Ann Biomed Eng 2012; 40:2488-500. [PMID: 23008097 DOI: 10.1007/s10439-012-0655-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 09/04/2012] [Indexed: 12/13/2022]
Abstract
Breast cancer initiation, invasion and metastasis span multiple length and time scales. Molecular events at short length scales lead to an initial tumorigenic population, which left unchecked by immune action, acts at increasingly longer length scales until eventually the cancer cells escape from the primary tumor site. This series of events is highly complex, involving multiple cell types interacting with (and shaping) the microenvironment. Multiscale mathematical models have emerged as a powerful tool to quantitatively integrate the convective-diffusion-reaction processes occurring on the systemic scale, with the molecular signaling processes occurring on the cellular and subcellular scales. In this study, we reviewed the current state of the art in cancer modeling across multiple length scales, with an emphasis on the integration of intracellular signal transduction models with pro-tumorigenic chemical and mechanical microenvironmental cues. First, we reviewed the underlying biomolecular origin of breast cancer, with a special emphasis on angiogenesis. Then, we summarized the development of tissue engineering platforms which could provide high-fidelity ex vivo experimental models to identify and validate multiscale simulations. Lastly, we reviewed top-down and bottom-up multiscale strategies that integrate subcellular networks with the microenvironment. We present models of a variety of cancers, in addition to breast cancer specific models. Taken together, we expect as the sophistication of the simulations increase, that multiscale modeling and bottom-up agent-based models in particular will become an increasingly important platform technology for basic scientific discovery, as well as the identification and validation of potentially novel therapeutic targets.
Collapse
Affiliation(s)
- Anirikh Chakrabarti
- School of Chemical and Biomolecular Engineering, 244 Olin Hall, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | |
Collapse
|
34
|
Sun X, Zhang L, Tan H, Bao J, Strouthos C, Zhou X. Multi-scale agent-based brain cancer modeling and prediction of TKI treatment response: incorporating EGFR signaling pathway and angiogenesis. BMC Bioinformatics 2012; 13:218. [PMID: 22935054 PMCID: PMC3487967 DOI: 10.1186/1471-2105-13-218] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 08/08/2012] [Indexed: 12/04/2022] Open
Abstract
Background The epidermal growth factor receptor (EGFR) signaling pathway and angiogenesis in brain cancer act as an engine for tumor initiation, expansion and response to therapy. Since the existing literature does not have any models that investigate the impact of both angiogenesis and molecular signaling pathways on treatment, we propose a novel multi-scale, agent-based computational model that includes both angiogenesis and EGFR modules to study the response of brain cancer under tyrosine kinase inhibitors (TKIs) treatment. Results The novel angiogenesis module integrated into the agent-based tumor model is based on a set of reaction–diffusion equations that describe the spatio-temporal evolution of the distributions of micro-environmental factors such as glucose, oxygen, TGFα, VEGF and fibronectin. These molecular species regulate tumor growth during angiogenesis. Each tumor cell is equipped with an EGFR signaling pathway linked to a cell-cycle pathway to determine its phenotype. EGFR TKIs are delivered through the blood vessels of tumor microvasculature and the response to treatment is studied. Conclusions Our simulations demonstrated that entire tumor growth profile is a collective behaviour of cells regulated by the EGFR signaling pathway and the cell cycle. We also found that angiogenesis has a dual effect under TKI treatment: on one hand, through neo-vasculature TKIs are delivered to decrease tumor invasion; on the other hand, the neo-vasculature can transport glucose and oxygen to tumor cells to maintain their metabolism, which results in an increase of cell survival rate in the late simulation stages.
Collapse
Affiliation(s)
- Xiaoqiang Sun
- Department of Radiology, The Methodist Hospital Research Institute, Weil Cornell Medical College, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
35
|
Andasari V, Roper RT, Swat MH, Chaplain MAJ. Integrating intracellular dynamics using CompuCell3D and Bionetsolver: applications to multiscale modelling of cancer cell growth and invasion. PLoS One 2012; 7:e33726. [PMID: 22461894 PMCID: PMC3312894 DOI: 10.1371/journal.pone.0033726] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 02/16/2012] [Indexed: 01/01/2023] Open
Abstract
In this paper we present a multiscale, individual-based simulation environment that integrates CompuCell3D for lattice-based modelling on the cellular level and Bionetsolver for intracellular modelling. CompuCell3D or CC3D provides an implementation of the lattice-based Cellular Potts Model or CPM (also known as the Glazier-Graner-Hogeweg or GGH model) and a Monte Carlo method based on the metropolis algorithm for system evolution. The integration of CC3D for cellular systems with Bionetsolver for subcellular systems enables us to develop a multiscale mathematical model and to study the evolution of cell behaviour due to the dynamics inside of the cells, capturing aspects of cell behaviour and interaction that is not possible using continuum approaches. We then apply this multiscale modelling technique to a model of cancer growth and invasion, based on a previously published model of Ramis-Conde et al. (2008) where individual cell behaviour is driven by a molecular network describing the dynamics of E-cadherin and β-catenin. In this model, which we refer to as the centre-based model, an alternative individual-based modelling technique was used, namely, a lattice-free approach. In many respects, the GGH or CPM methodology and the approach of the centre-based model have the same overall goal, that is to mimic behaviours and interactions of biological cells. Although the mathematical foundations and computational implementations of the two approaches are very different, the results of the presented simulations are compatible with each other, suggesting that by using individual-based approaches we can formulate a natural way of describing complex multi-cell, multiscale models. The ability to easily reproduce results of one modelling approach using an alternative approach is also essential from a model cross-validation standpoint and also helps to identify any modelling artefacts specific to a given computational approach.
Collapse
Affiliation(s)
- Vivi Andasari
- Division of Mathematics, University of Dundee, Dundee, Scotland, United Kingdom.
| | | | | | | |
Collapse
|
36
|
Abstract
Simulating cancer behavior across multiple biological scales in space and time, i.e., multiscale cancer modeling, is increasingly being recognized as a powerful tool to refine hypotheses, focus experiments, and enable more accurate predictions. A growing number of examples illustrate the value of this approach in providing quantitative insights in the initiation, progression, and treatment of cancer. In this review, we introduce the most recent and important multiscale cancer modeling works that have successfully established a mechanistic link between different biological scales. Biophysical, biochemical, and biomechanical factors are considered in these models. We also discuss innovative, cutting-edge modeling methods that are moving predictive multiscale cancer modeling toward clinical application. Furthermore, because the development of multiscale cancer models requires a new level of collaboration among scientists from a variety of fields such as biology, medicine, physics, mathematics, engineering, and computer science, an innovative Web-based infrastructure is needed to support this growing community.
Collapse
Affiliation(s)
- Thomas S Deisboeck
- Harvard-MIT (HST) Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129
| | - Zhihui Wang
- Harvard-MIT (HST) Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129
| | - Paul Macklin
- Division of Mathematics, University of Dundee, Dundee DD1 4HN, United Kingdom
| | - Vittorio Cristini
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico 87131.,Department of Chemical and Biomedical Engineering, University of New Mexico, Albuquerque, NM 87131]
| |
Collapse
|
37
|
Kam Y, Rejniak KA, Anderson ARA. Cellular modeling of cancer invasion: integration of in silico and in vitro approaches. J Cell Physiol 2012; 227:431-8. [PMID: 21465465 PMCID: PMC3687536 DOI: 10.1002/jcp.22766] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cancer invasion is one of the hallmarks of cancer and a prerequisite for cancer metastasis. However, the invasive process is very complex, depending on multiple correlated intrinsic and environmental factors, and thus is difficult to study experimentally in a fully controlled way. Therefore, there is an increased demand for interdisciplinary integrated approaches combining laboratory experiments with multiscale in silico modeling. In this review, we will summarize current computational techniques applicable to model cancer invasion in silico, with a special focus on a class of individual-cell-based models developed in our laboratories. We also discuss their integration with traditional and novel in vitro experimentation, including new invasion assays whose design was inspired by computational modeling.
Collapse
Affiliation(s)
- Yoonseok Kam
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida 33612, USA.
| | | | | |
Collapse
|
38
|
Kim M, Christley S, Alverdy JC, Liu D, An G. Immature oxidative stress management as a unifying principle in the pathogenesis of necrotizing enterocolitis: insights from an agent-based model. Surg Infect (Larchmt) 2012; 13:18-32. [PMID: 22217195 DOI: 10.1089/sur.2011.057] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Necrotizing enterocolitis (NEC) is a complex disease involving prematurity, enteral feeding, and bacterial effects. We propose that the underlying initial condition in its pathogenesis is reduced ability of the neonatal gut epithelial cells (NGECs) to clear oxidative stress (OS), and that when such a NGEC population is exposed to enteral feeding, the increased metabolic OS tips the population toward apoptosis, inflammation, bacterial activation, and eventual necrosis. The multi-factorial complexity of NEC requires characterization with computational modeling, and herein, we used an agent-based model (ABM) to instantiate and examine our unifying hypothesis of the pathogenesis of NEC. METHODS An ABM of the neonatal gut was created with NGEC computational agents incorporating rules for pathways for OS, p53, tight junctions, Toll-like receptor (TLR)-4, nitric oxide, and nuclear factor-kappa beta (NF-κB). The modeled bacteria activated TLR-4 on contact with NGECs. Simulations included parameter sweeps of OS response, response to feeding, addition of bacteria, and alterations in gut mucus production. RESULTS The ABM reproduced baseline cellular respiration and clearance of OS. Reduction in OS clearance consistent with clinical NEC led to senescence, apoptosis, or inflammation, with disruption of tight junctions, but rarely to NGEC necrosis. An additional "hit" of bacteria activating TLR-4 potentiated a shift to NGEC necrosis across the entire population. The mucus layer was modeled to limit bacterial-NGEC interactions and reduce this effect, but concomitant apoptosis in the goblet cell population reduced the efficacy of the mucus layer and limited its protective effect in simulated experiments. This finding suggests a means by which increased apoptosis at the cellular population level can lead to a transition to the necrosis outcome. CONCLUSIONS Our ABM incorporates known components of NEC and demonstrates that impaired OS management can lead to apoptosis and inflammation of NGECs, rendering the system susceptible to an additional insult involving regionalized mucus barrier failure and TLR-4 activation, which potentiates the necrosis outcome. This type of integrative dynamic knowledge representation can be a useful adjunct to help guide and contextualize research.
Collapse
Affiliation(s)
- Moses Kim
- Department of Surgery, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | |
Collapse
|
39
|
Zhang L, Jiang B, Wu Y, Strouthos C, Sun PZ, Su J, Zhou X. Developing a multiscale, multi-resolution agent-based brain tumor model by graphics processing units. Theor Biol Med Model 2011; 8:46. [PMID: 22176732 PMCID: PMC3312859 DOI: 10.1186/1742-4682-8-46] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 12/16/2011] [Indexed: 01/18/2023] Open
Abstract
Multiscale agent-based modeling (MABM) has been widely used to simulate Glioblastoma Multiforme (GBM) and its progression. At the intracellular level, the MABM approach employs a system of ordinary differential equations to describe quantitatively specific intracellular molecular pathways that determine phenotypic switches among cells (e.g. from migration to proliferation and vice versa). At the intercellular level, MABM describes cell-cell interactions by a discrete module. At the tissue level, partial differential equations are employed to model the diffusion of chemoattractants, which are the input factors of the intracellular molecular pathway. Moreover, multiscale analysis makes it possible to explore the molecules that play important roles in determining the cellular phenotypic switches that in turn drive the whole GBM expansion. However, owing to limited computational resources, MABM is currently a theoretical biological model that uses relatively coarse grids to simulate a few cancer cells in a small slice of brain cancer tissue. In order to improve this theoretical model to simulate and predict actual GBM cancer progression in real time, a graphics processing unit (GPU)-based parallel computing algorithm was developed and combined with the multi-resolution design to speed up the MABM. The simulated results demonstrated that the GPU-based, multi-resolution and multiscale approach can accelerate the previous MABM around 30-fold with relatively fine grids in a large extracellular matrix. Therefore, the new model has great potential for simulating and predicting real-time GBM progression, if real experimental data are incorporated.
Collapse
Affiliation(s)
- Le Zhang
- Department of Mathematical Sciences, Michigan Technological University, Houghton, MI 49931, USA.
| | | | | | | | | | | | | |
Collapse
|
40
|
Seal JB, Alverdy JC, Zaborina O, An G. Agent-based dynamic knowledge representation of Pseudomonas aeruginosa virulence activation in the stressed gut: Towards characterizing host-pathogen interactions in gut-derived sepsis. Theor Biol Med Model 2011; 8:33. [PMID: 21929759 PMCID: PMC3184268 DOI: 10.1186/1742-4682-8-33] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 09/19/2011] [Indexed: 01/07/2023] Open
Abstract
Background There is a growing realization that alterations in host-pathogen interactions (HPI) can generate disease phenotypes without pathogen invasion. The gut represents a prime region where such HPI can arise and manifest. Under normal conditions intestinal microbial communities maintain a stable, mutually beneficial ecosystem. However, host stress can lead to changes in environmental conditions that shift the nature of the host-microbe dialogue, resulting in escalation of virulence expression, immune activation and ultimately systemic disease. Effective modulation of these dynamics requires the ability to characterize the complexity of the HPI, and dynamic computational modeling can aid in this task. Agent-based modeling is a computational method that is suited to representing spatially diverse, dynamical systems. We propose that dynamic knowledge representation of gut HPI with agent-based modeling will aid in the investigation of the pathogenesis of gut-derived sepsis. Methodology/Principal Findings An agent-based model (ABM) of virulence regulation in Pseudomonas aeruginosa was developed by translating bacterial and host cell sense-and-response mechanisms into behavioral rules for computational agents and integrated into a virtual environment representing the host-microbe interface in the gut. The resulting gut milieu ABM (GMABM) was used to: 1) investigate a potential clinically relevant laboratory experimental condition not yet developed - i.e. non-lethal transient segmental intestinal ischemia, 2) examine the sufficiency of existing hypotheses to explain experimental data - i.e. lethality in a model of major surgical insult and stress, and 3) produce behavior to potentially guide future experimental design - i.e. suggested sample points for a potential laboratory model of non-lethal transient intestinal ischemia. Furthermore, hypotheses were generated to explain certain discrepancies between the behaviors of the GMABM and biological experiments, and new investigatory avenues proposed to test those hypotheses. Conclusions/Significance Agent-based modeling can account for the spatio-temporal dynamics of an HPI, and, even when carried out with a relatively high degree of abstraction, can be useful in the investigation of system-level consequences of putative mechanisms operating at the individual agent level. We suggest that an integrated and iterative heuristic relationship between computational modeling and more traditional laboratory and clinical investigations, with a focus on identifying useful and sufficient degrees of abstraction, will enhance the efficiency and translational productivity of biomedical research.
Collapse
Affiliation(s)
- John B Seal
- Department of Surgery, University of Chicago, 5841 South Maryland Ave, MC 5031, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
41
|
Prasasya RD, Tian D, Kreeger PK. Analysis of cancer signaling networks by systems biology to develop therapies. Semin Cancer Biol 2011; 21:200-6. [DOI: 10.1016/j.semcancer.2011.04.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 04/04/2011] [Indexed: 12/27/2022]
|
42
|
Rejniak KA, Anderson ARA. Hybrid models of tumor growth. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2011; 3:115-25. [PMID: 21064037 DOI: 10.1002/wsbm.102] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cancer is a complex, multiscale process in which genetic mutations occurring at a subcellular level manifest themselves as functional changes at the cellular and tissue scale. The multiscale nature of cancer requires mathematical modeling approaches that can handle multiple intracellular and extracellular factors acting on different time and space scales. Hybrid models provide a way to integrate both discrete and continuous variables that are used to represent individual cells and concentration or density fields, respectively. Each discrete cell can also be equipped with submodels that drive cell behavior in response to microenvironmental cues. Moreover, the individual cells can interact with one another to form and act as an integrated tissue. Hybrid models form part of a larger class of individual-based models that can naturally connect with tumor cell biology and allow for the integration of multiple interacting variables both intrinsically and extrinsically and are therefore perfectly suited to a systems biology approach to tumor growth.
Collapse
Affiliation(s)
- Katarzyna A Rejniak
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA.
| | | |
Collapse
|
43
|
Abstract
Intraneoplastic diversity in human tumors is a widespread phenomenon of critical importance for tumor progression and the response to therapeutic intervention. Insights into the evolutionary events that control tumor heterogeneity would be a major breakthrough in our comprehension of cancer development and could lead to more effective prevention methods and therapies. In this paper, we design an evolutionary mathematical framework to study the dynamics of heterogeneity over time. We consider specific situations arising during tumorigenesis, such as the emergence of positively selected mutations (“drivers”) and the accumulation of neutral variation (“passengers”). We perform exact computer simulations of the emergence of diverse tumor cell clones over time, and derive analytical estimates for the extent of heterogeneity within a population of cancer cells. Our methods contribute to a quantitative understanding of tumor heterogeneity and the impact of heritable alterations on this tumor trait.
Collapse
Affiliation(s)
- Yoh Iwasa
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan
| | - Franziska Michor
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, and Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
44
|
Coupled modelling of tumour angiogenesis, tumour growth and blood perfusion. J Theor Biol 2011; 279:90-101. [PMID: 21392511 DOI: 10.1016/j.jtbi.2011.02.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 01/29/2011] [Accepted: 02/22/2011] [Indexed: 01/24/2023]
Abstract
We propose a mathematical modelling system to investigate the dynamic process of tumour cell proliferation, death and tumour angiogenesis by fully coupling the vessel growth, tumour growth and blood perfusion. Tumour growth and angiogenesis are coupled by the chemical microenvironment and the cell-matrix interaction. The haemodynamic calculation is carried out on the updated vasculature. The domains of intravascular, transcapillary and interstitial fluid flow were coupled in the model to provide a comprehensive solution of blood perfusion variables. An estimation of vessel collapse is made according to the wall shear stress criterion to provide feedback on vasculature remodelling. The simulation can show the process of tumour angiogenesis and the spatial distribution of tumour cells for periods of up to 24 days. It can show the major features of tumour and tumour microvasculature during the period such as the formation of a large necrotic core in the tumour centre with few functional vessels passing through, and a well circulated tumour periphery regions in which the microvascular density is high and associated with more aggressive proliferating cells of the growing tumour which are all consistent with physiological observations. The study also demonstrated that the simulation results are not dependent on the initial tumour and networks, which further confirms the application of the coupled model feedback mechanisms. The model enables us to examine the interactions between angiogenesis and tumour growth, and to study the dynamic response of a solid tumour to the changes in the microenvironment. This simulation framework can be a foundation for further applications such as drug delivery and anti-angiogenic therapies.
Collapse
|
45
|
Vital-Lopez FG, Armaou A, Hutnik M, Maranas CD. Modeling the effect of chemotaxis on glioblastoma tumor progression. AIChE J 2010. [DOI: 10.1002/aic.12296] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
46
|
Frieboes HB, Jin F, Chuang YL, Wise SM, Lowengrub JS, Cristini V. Three-dimensional multispecies nonlinear tumor growth-II: Tumor invasion and angiogenesis. J Theor Biol 2010; 264:1254-78. [PMID: 20303982 DOI: 10.1016/j.jtbi.2010.02.036] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 02/10/2010] [Accepted: 02/21/2010] [Indexed: 11/16/2022]
Abstract
We extend the diffuse interface model developed in Wise et al. (2008) to study nonlinear tumor growth in 3-D. Extensions include the tracking of multiple viable cell species populations through a continuum diffuse-interface method, onset and aging of discrete tumor vessels through angiogenesis, and incorporation of individual cell movement using a hybrid continuum-discrete approach. We investigate disease progression as a function of cellular-scale parameters such as proliferation and oxygen/nutrient uptake rates. We find that heterogeneity in the physiologically complex tumor microenvironment, caused by non-uniform distribution of oxygen, cell nutrients, and metabolites, as well as phenotypic changes affecting cellular-scale parameters, can be quantitatively linked to the tumor macro-scale as a mechanism that promotes morphological instability. This instability leads to invasion through tumor infiltration of surrounding healthy tissue. Models that employ a biologically founded, multiscale approach, as illustrated in this work, could help to quantitatively link the critical effect of heterogeneity in the tumor microenvironment with clinically observed tumor growth and invasion. Using patient tumor-specific parameter values, this may provide a predictive tool to characterize the complex in vivo tumor physiological characteristics and clinical response, and thus lead to improved treatment modalities and prognosis.
Collapse
Affiliation(s)
- Hermann B Frieboes
- School of Health Information Sciences, The University of Texas Health Science Center, Houston, TX 77054, USA
| | | | | | | | | | | |
Collapse
|
47
|
Lowengrub JS, Frieboes HB, Jin F, Chuang YL, Li X, Macklin P, Wise SM, Cristini V. Nonlinear modelling of cancer: bridging the gap between cells and tumours. NONLINEARITY 2010; 23:R1-R9. [PMID: 20808719 PMCID: PMC2929802 DOI: 10.1088/0951-7715/23/1/r01] [Citation(s) in RCA: 224] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Despite major scientific, medical and technological advances over the last few decades, a cure for cancer remains elusive. The disease initiation is complex, and including initiation and avascular growth, onset of hypoxia and acidosis due to accumulation of cells beyond normal physiological conditions, inducement of angiogenesis from the surrounding vasculature, tumour vascularization and further growth, and invasion of surrounding tissue and metastasis. Although the focus historically has been to study these events through experimental and clinical observations, mathematical modelling and simulation that enable analysis at multiple time and spatial scales have also complemented these efforts. Here, we provide an overview of this multiscale modelling focusing on the growth phase of tumours and bypassing the initial stage of tumourigenesis. While we briefly review discrete modelling, our focus is on the continuum approach. We limit the scope further by considering models of tumour progression that do not distinguish tumour cells by their age. We also do not consider immune system interactions nor do we describe models of therapy. We do discuss hybrid-modelling frameworks, where the tumour tissue is modelled using both discrete (cell-scale) and continuum (tumour-scale) elements, thus connecting the micrometre to the centimetre tumour scale. We review recent examples that incorporate experimental data into model parameters. We show that recent mathematical modelling predicts that transport limitations of cell nutrients, oxygen and growth factors may result in cell death that leads to morphological instability, providing a mechanism for invasion via tumour fingering and fragmentation. These conditions induce selection pressure for cell survivability, and may lead to additional genetic mutations. Mathematical modelling further shows that parameters that control the tumour mass shape also control its ability to invade. Thus, tumour morphology may serve as a predictor of invasiveness and treatment prognosis.
Collapse
Affiliation(s)
- J S Lowengrub
- Department of Biomedical Engineering, Center for Mathematical and Computational Biology, University of California at Irvine, Irvine, CA 92697, USA
| | - H B Frieboes
- School of Health Information Sciences, University of Texas Health Science Center, Houston, TX 77030, USA
- Department of Mathematics, University of California at Irvine, Irvine, CA 92697, USA
| | - F Jin
- School of Health Information Sciences, University of Texas Health Science Center, Houston, TX 77030, USA
- Department of Mathematics, University of California at Irvine, Irvine, CA 92697, USA
| | - Y-L Chuang
- School of Health Information Sciences, University of Texas Health Science Center, Houston, TX 77030, USA
| | - X Li
- Department of Mathematics, University of California at Irvine, Irvine, CA 92697, USA
| | - P Macklin
- School of Health Information Sciences, University of Texas Health Science Center, Houston, TX 77030, USA
| | - S M Wise
- Department of Mathematics, University of Tennessee, Knoxville, TN 37996, USA
| | - V Cristini
- School of Health Information Sciences, University of Texas Health Science Center, Houston, TX 77030, USA
| |
Collapse
|
48
|
Abstract
As Theodosius Dobzhansky famously noted in 1973, "Nothing in biology makes sense except in the light of evolution," and cancer is no exception to this rule. Our understanding of cancer initiation, progression, treatment, and resistance has advanced considerably by regarding cancer as the product of evolutionary processes. Here we review the literature of mathematical models of cancer evolution and provide a synthesis and discussion of the field.
Collapse
|
49
|
Peng X, Chan EY, Li Y, Diamond DL, Korth MJ, Katze MG. Virus-host interactions: from systems biology to translational research. Curr Opin Microbiol 2009; 12:432-8. [PMID: 19576841 DOI: 10.1016/j.mib.2009.06.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 06/02/2009] [Accepted: 06/04/2009] [Indexed: 11/19/2022]
Abstract
Research embracing systems biology approaches and careful analysis of the critical host response has greatly expanded our understanding of infectious diseases. First-generation studies based on genomics and proteomics have made significant progress in establishing the foundation for network-based investigations on virus-host interactions. More recently, data from complementary high-throughput technologies, such as siRNA and microRNA screens and next-generation sequencing, are augmenting systems level analyses and are providing a more detailed and insightful multidimensional view of virus-host networks. Together with advances in data integration, systems biology approaches now have the potential to provide profound impacts on translational research, leading to the more rapid development of new therapeutics and vaccines for infectious diseases. In this review, we highlight new high-throughput technologies, a new philosophy for studying virus-host interactions, and discuss the potential of systems biology to facilitate bench-to-bedside research and create novel strategies to combat disease. Can we save the world using these approaches? Read on.
Collapse
Affiliation(s)
- Xinxia Peng
- Department of Microbiology, University of Washington, Seattle, WA 98195-8070, USA
| | | | | | | | | | | |
Collapse
|
50
|
Zhang L, Chen LL, Deisboeck TS. Multi-scale, multi-resolution brain cancer modeling. MATHEMATICS AND COMPUTERS IN SIMULATION 2009; 79:2021-2035. [PMID: 20161556 PMCID: PMC2805161 DOI: 10.1016/j.matcom.2008.09.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In advancing discrete-based computational cancer models towards clinical applications, one faces the dilemma of how to deal with an ever growing amount of biomedical data that ought to be incorporated eventually in one form or another. Model scalability becomes of paramount interest. In an effort to start addressing this critical issue, here, we present a novel multi-scale and multi-resolution agent-based in silico glioma model. While 'multi-scale' refers to employing an epidermal growth factor receptor (EGFR)-driven molecular network to process cellular phenotypic decisions within the micro-macroscopic environment, 'multi-resolution' is achieved through algorithms that classify cells to either active or inactive spatial clusters, which determine the resolution they are simulated at. The aim is to assign computational resources where and when they matter most for maintaining or improving the predictive power of the algorithm, onto specific tumor areas and at particular times. Using a previously described 2D brain tumor model, we have developed four different computational methods for achieving the multi-resolution scheme, three of which are designed to dynamically train on the high-resolution simulation that serves as control. To quantify the algorithms' performance, we rank them by weighing the distinct computational time savings of the simulation runs versus the methods' ability to accurately reproduce the high-resolution results of the control. Finally, to demonstrate the flexibility of the underlying concept, we show the added value of combining the two highest-ranked methods. The main finding of this work is that by pursuing a multi-resolution approach, one can reduce the computation time of a discrete-based model substantially while still maintaining a comparably high predictive power. This hints at even more computational savings in the more realistic 3D setting over time, and thus appears to outline a possible path to achieve scalability for the all-important clinical translation.
Collapse
Affiliation(s)
| | | | - Thomas S. Deisboeck
- Corresponding Author: Thomas S. Deisboeck, M.D., Complex Biosystems Modeling Laboratory, Harvard-MIT (HST) Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital-East, 2301, Bldg. 149, 13th Street, Charlestown, MA 02129, Tel: 617-724-1845, Fax: 617-726-7422,
| |
Collapse
|