1
|
Jia XX, Chen C, Hu C, Wu YZ, Chao ZY, Zeng JF, A RH, Zhou DH, Wang Y, Zhang WW, Xiao K, Gao LP, Shi Q, Dong XP. Aberrance of GAP43/p-GAP43 Closely Associates with the Pathology of Neuron Loss in Prion-Infected Rodent Models. Mol Neurobiol 2024:10.1007/s12035-024-04568-9. [PMID: 39453517 DOI: 10.1007/s12035-024-04568-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024]
Abstract
Prion diseases are fatal neurodegenerative disorders characterized by neuron damage and loss. Growth-associated protein 43 (GAP43) functions in neuronal plasticity and synaptic function, but its role in prion diseases is not fully elucidated. In this study, we investigated the changes of GAP43 in the central nerve system (CNS) of several prion-infected rodent models and explored the potential relationship of GAP43 with PrPSc deposit and neuron loss using various methods. We found that GAP43 levels were significantly decreased in the brain tissues of scrapie-infected rodent models at the terminal stage of the disease. Immunohistochemical analysis showed that GAP43 colocalized with NeuN-positive cells morphologically, indicating the presence of GAP43 in mature neurons. On contrary, the levels of GAP43 and p-GAP43 increased in a prion-infected cell line SMB-S15 in vitro, accompanying with the increase of intracellular calcium. Stimulation of lipopolysaccharide (LPS) upregulated while removal of PrPSc propagation downregulated the level of GAP43 in SMB-S15 cells. Morphological colocalization and molecular interaction between GAP43 and PrPSc have been addressed in the brains of prion-infected rodents and prion-infected cell line. Histological assays of the serial sections of the whole brains of prion-infected mice proposed that the reduced GAP43 level correlated with large amount of PrPSc deposits and notable neuron damage and loss showing cell crumpled and nuclear pyknosis. The impairment of GAP43 signaling and disturbance of calcium homeostasis by aberrance of brain GAP43/p-GAP43 not only reflect but also likely contribute to the pathology of severe neuron loss at the end of prion disease.
Collapse
Affiliation(s)
- Xiao-Xi Jia
- National Key-Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Cao Chen
- National Key-Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.
| | - Chao Hu
- National Key-Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Xuanwu Hospital Capital Medical University, Beijing, China
| | - Yue-Zhang Wu
- National Key-Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhi-Yue Chao
- National Key-Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jia-Feng Zeng
- National Key-Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ru-Han A
- National Key-Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dong-Hua Zhou
- National Key-Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuan Wang
- National Key-Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- North China University of Science and Technology, Tangshan, China
| | - Wei-Wei Zhang
- National Key-Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- North China University of Science and Technology, Tangshan, China
| | - Kang Xiao
- National Key-Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Li-Ping Gao
- National Key-Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qi Shi
- National Key-Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiao-Ping Dong
- National Key-Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.
- China Academy of Chinese Medical Sciences, Beijing, China.
- Shanghai Institute of Infectious Disease and Biosafety, Shanghai, China.
| |
Collapse
|
2
|
Horánszky A, Shashikadze B, Elkhateib R, Lombardo SD, Lamberto F, Zana M, Menche J, Fröhlich T, Dinnyés A. Proteomics and disease network associations evaluation of environmentally relevant Bisphenol A concentrations in a human 3D neural stem cell model. Front Cell Dev Biol 2023; 11:1236243. [PMID: 37664457 PMCID: PMC10472293 DOI: 10.3389/fcell.2023.1236243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Bisphenol A (BPA) exposure is associated with a plethora of neurodevelopmental abnormalities and brain disorders. Previous studies have demonstrated BPA-induced perturbations to critical neural stem cell (NSC) characteristics, such as proliferation and differentiation, although the underlying molecular mechanisms remain under debate. The present study evaluated the effects of a repeated-dose exposure of environmentally relevant BPA concentrations during the in vitro 3D neural induction of human induced pluripotent stem cells (hiPSCs), emulating a chronic exposure scenario. Firstly, we demonstrated that our model is suitable for NSC differentiation during the early stages of embryonic brain development. Our morphological image analysis showed that BPA exposure at 0.01, 0.1 and 1 µM decreased the average spheroid size by day 21 (D21) of the neural induction, while no effect on cell viability was detected. No alteration to the rate of the neural induction was observed based on the expression of key neural lineage and neuroectodermal transcripts. Quantitative proteomics at D21 revealed several differentially abundant proteins across all BPA-treated groups with important functions in NSC proliferation and maintenance (e.g., FABP7, GPC4, GAP43, Wnt-8B, TPPP3). Additionally, a network analysis demonstrated alterations to the glycolytic pathway, potentially implicating BPA-induced changes to glycolytic signalling in NSC proliferation impairments, as well as the pathophysiology of brain disorders including intellectual disability, autism spectrum disorders, and amyotrophic lateral sclerosis (ALS). This study enhances the current understanding of BPA-related NSC aberrations based mostly on acute, often high dose exposures of rodent in vivo and in vitro models and human GWAS data in a novel human 3D cell-based model with real-life scenario relevant prolonged and low-level exposures, offering further mechanistic insights into the ramifications of BPA exposure on the developing human brain and consequently, later life neurological disorders.
Collapse
Affiliation(s)
- Alex Horánszky
- BioTalentum Ltd., Gödöllő, Hungary
- Department of Physiology and Animal Health, Institute of Physiology and Animal Nutrition, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Bachuki Shashikadze
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - Radwa Elkhateib
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - Salvo Danilo Lombardo
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Department of Structural and Computational Biology, Center for Molecular Biology, University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Federica Lamberto
- BioTalentum Ltd., Gödöllő, Hungary
- Department of Physiology and Animal Health, Institute of Physiology and Animal Nutrition, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | | | - Jörg Menche
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Department of Structural and Computational Biology, Center for Molecular Biology, University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Faculty of Mathematics, University of Vienna, Vienna, Austria
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - András Dinnyés
- BioTalentum Ltd., Gödöllő, Hungary
- Department of Physiology and Animal Health, Institute of Physiology and Animal Nutrition, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
- Department of Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
3
|
Morcom L, Gobius I, Marsh APL, Suárez R, Lim JWC, Bridges C, Ye Y, Fenlon LR, Zagar Y, Douglass AM, Donahoo ALS, Fothergill T, Shaikh S, Kozulin P, Edwards TJ, Cooper HM, Sherr EH, Chédotal A, Leventer RJ, Lockhart PJ, Richards LJ. DCC regulates astroglial development essential for telencephalic morphogenesis and corpus callosum formation. eLife 2021; 10:e61769. [PMID: 33871356 PMCID: PMC8116049 DOI: 10.7554/elife.61769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 04/18/2021] [Indexed: 02/04/2023] Open
Abstract
The forebrain hemispheres are predominantly separated during embryogenesis by the interhemispheric fissure (IHF). Radial astroglia remodel the IHF to form a continuous substrate between the hemispheres for midline crossing of the corpus callosum (CC) and hippocampal commissure (HC). Deleted in colorectal carcinoma (DCC) and netrin 1 (NTN1) are molecules that have an evolutionarily conserved function in commissural axon guidance. The CC and HC are absent in Dcc and Ntn1 knockout mice, while other commissures are only partially affected, suggesting an additional aetiology in forebrain commissure formation. Here, we find that these molecules play a critical role in regulating astroglial development and IHF remodelling during CC and HC formation. Human subjects with DCC mutations display disrupted IHF remodelling associated with CC and HC malformations. Thus, axon guidance molecules such as DCC and NTN1 first regulate the formation of a midline substrate for dorsal commissures prior to their role in regulating axonal growth and guidance across it.
Collapse
Affiliation(s)
- Laura Morcom
- The University of Queensland, Queensland Brain InstituteBrisbaneAustralia
| | - Ilan Gobius
- The University of Queensland, Queensland Brain InstituteBrisbaneAustralia
| | - Ashley PL Marsh
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children’s Research Institute, Royal Children’s HospitalParkvilleAustralia
- Department of Paediatrics, University of MelbourneParkvilleAustralia
| | - Rodrigo Suárez
- The University of Queensland, Queensland Brain InstituteBrisbaneAustralia
| | - Jonathan WC Lim
- The University of Queensland, Queensland Brain InstituteBrisbaneAustralia
| | - Caitlin Bridges
- The University of Queensland, Queensland Brain InstituteBrisbaneAustralia
| | - Yunan Ye
- The University of Queensland, Queensland Brain InstituteBrisbaneAustralia
| | - Laura R Fenlon
- The University of Queensland, Queensland Brain InstituteBrisbaneAustralia
| | - Yvrick Zagar
- Sorbonne Université, INSERM, CNRS, Institut de la VisionParisFrance
| | - Amelia M Douglass
- The University of Queensland, Queensland Brain InstituteBrisbaneAustralia
| | | | - Thomas Fothergill
- The University of Queensland, Queensland Brain InstituteBrisbaneAustralia
| | - Samreen Shaikh
- The University of Queensland, Queensland Brain InstituteBrisbaneAustralia
| | - Peter Kozulin
- The University of Queensland, Queensland Brain InstituteBrisbaneAustralia
| | - Timothy J Edwards
- The University of Queensland, Queensland Brain InstituteBrisbaneAustralia
- The University of Queensland, Faculty of MedicineBrisbaneAustralia
| | - Helen M Cooper
- The University of Queensland, Queensland Brain InstituteBrisbaneAustralia
| | - IRC5 Consortium
- Members and Affiliates of the International Research Consortium for the Corpus Callosum and Cerebral Connectivity (IRC5)Los AngelesUnited States
| | - Elliott H Sherr
- Departments of Neurology and Pediatrics, Institute of Human Genetics and Weill Institute of Neurosciences, University of California, San FranciscoSan FranciscoUnited States
| | - Alain Chédotal
- Sorbonne Université, INSERM, CNRS, Institut de la VisionParisFrance
| | - Richard J Leventer
- Department of Paediatrics, University of MelbourneParkvilleAustralia
- Neuroscience Research Group, Murdoch Children’s Research InstituteParkvilleAustralia
- Department of Neurology, University of Melbourne, Royal Children’s HospitalParkvilleAustralia
| | - Paul J Lockhart
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children’s Research Institute, Royal Children’s HospitalParkvilleAustralia
- Department of Paediatrics, University of MelbourneParkvilleAustralia
| | - Linda J Richards
- The University of Queensland, Queensland Brain InstituteBrisbaneAustralia
- The University of Queensland, School of Biomedical SciencesBrisbaneAustralia
| |
Collapse
|
4
|
Radhakrishnan S, Trentz OA, Reddy MS, Rela M, Kandasamy M, Sellathamby S. In vitro transdifferentiation of human adipose tissue-derived stem cells to neural lineage cells - a stage-specific incidence. Adipocyte 2019; 8:164-177. [PMID: 31033391 PMCID: PMC6768268 DOI: 10.1080/21623945.2019.1607424] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The present Study investigated the intrinsic ability of adipose tissue-derived stem cells (ADSCs) and their neural transdifferentiation in a stage-specific manner. Woodbury’s Chemical induction was implemented with modifications to achieve neural transdifferentiation. In Group I, ADSCs were preinduced with β-mercaptoethanol (β-ME) and later, with neural induction medium (NIM). In Group II, ADSCs were directly treated with NIM. In Group III, a DNA methyltransferase (DNMT) inhibitor 5-azacytidine was applied to understand whether transdifferentiation is controlled by epigenetic marks. Irrespective of the presence of (β-ME), the differentiation protocol resulted in glial-lineage cells. Group III produced poorly -differentiated neural cells with neuron-specific enolase positivity. A neuroprogenitor stage (NPC) was identified at d 11 after induction only in Group I. In other groups, this stage was not morphologically distinct. We explored the stage-specific incidence NPC, by alternatively treating them with basic fibroblast growth factor (bFGF), and antioxidants to validate if different signalling could cause varied outcomes (Group IV). They differentiated into neurons, as defined by cell polarity and expression of specific proteins. Meanwhile, neuroprogenitors exposed to NIM (Group I) produced glial-lineage cells. Further refinement and study of the occurrence and terminal differentiation of neuroprogenitors would identify a promising source for neural tissue replacement.
Collapse
Affiliation(s)
- Subathra Radhakrishnan
- National Foundation for Liver Research (NFLR), Gleneagles Global Health City, Chennai, India
- Department of Biomedical Science, Bharathidasan University, Tiruchirappalli, India
| | - Omana Anna Trentz
- MIOT Institute of Research (MIR), MIOT International, Chennai, India
| | - Mettu Srinivas Reddy
- National Foundation for Liver Research (NFLR), Gleneagles Global Health City, Chennai, India
- Institute of Liver Disease and Transplantation, Gleneagles Global Health City, Chennai, India
| | - Mohamed Rela
- National Foundation for Liver Research (NFLR), Gleneagles Global Health City, Chennai, India
- Institute of Liver Disease and Transplantation, Gleneagles Global Health City, Chennai, India
| | - Mahesh Kandasamy
- Department of Animal Science, Bharathidasan University, Tiruchirappalli, India
| | | |
Collapse
|
5
|
Verma I, Seshagiri PB. Directed differentiation of mouse P19 embryonal carcinoma cells to neural cells in a serum- and retinoic acid-free culture medium. In Vitro Cell Dev Biol Anim 2018; 54:567-579. [PMID: 30030768 DOI: 10.1007/s11626-018-0275-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 06/15/2018] [Indexed: 11/25/2022]
Abstract
P19 embryonal carcinoma cells (EC-cells) provide a simple and robust culture system for studying neural development. Most protocols developed so far for directing neural differentiation of P19 cells depend on the use of culture medium supplemented with retinoic acid (RA) and serum, which has an undefined composition. Hence, such protocols are not suitable for many molecular studies. In this study, we achieved neural differentiation of P19 cells in a serum- and RA-free culture medium by employing the knockout serum replacement (KSR) supplement. In the KSR-containing medium, P19 cells underwent predominant differentiation into neural lineage and by day 12 of culture, neural cells were present in 100% of P19-derived embryoid bodies (EBs). This was consistently accompanied by the increased expression of various neural lineage-associated markers during the course of differentiation. P19-derived neural cells comprised of NES+ neural progenitors (~ 46%), TUBB3+ immature neurons (~ 6%), MAP2+ mature neurons (~ 2%), and GFAP+ astrocytes (~ 50%). A heterogeneous neuronal population consisting of glutamatergic, GABAergic, serotonergic, and dopaminergic neurons was generated. Taken together, our study shows that the KSR medium is suitable for the differentiation of P19 cells to neural lineage without requiring additional (serum and RA) supplements. This stem cell differentiation system could be utilized for gaining mechanistic insights into neural differentiation and for identifying potential neuroactive compounds.
Collapse
Affiliation(s)
- Isha Verma
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Sir CV Raman Road, Bangalore, 560012, India
| | - Polani B Seshagiri
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Sir CV Raman Road, Bangalore, 560012, India.
| |
Collapse
|
6
|
Al-Mayyahi RS, Sterio LD, Connolly JB, Adams CF, Al-Tumah WA, Sen J, Emes RD, Hart SR, Chari DM. A proteomic investigation into mechanisms underpinning corticosteroid effects on neural stem cells. Mol Cell Neurosci 2018; 86:30-40. [DOI: 10.1016/j.mcn.2017.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 11/03/2017] [Accepted: 11/06/2017] [Indexed: 12/13/2022] Open
|
7
|
Zakharova FM, Zakharov VV. Identification of brain proteins BASP1 and GAP-43 in mouse oocytes and zygotes. Russ J Dev Biol 2017. [DOI: 10.1134/s1062360417030110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Astrocytic GAP43 Induced by the TLR4/NF-κB/STAT3 Axis Attenuates Astrogliosis-Mediated Microglial Activation and Neurotoxicity. J Neurosci 2016; 36:2027-43. [PMID: 26865625 DOI: 10.1523/jneurosci.3457-15.2016] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Growth-associated protein 43 (GAP43), a protein kinase C (PKC)-activated phosphoprotein, is often implicated in axonal plasticity and regeneration. In this study, we found that GAP43 can be induced by the endotoxin lipopolysaccharide (LPS) in rat brain astrocytes both in vivo and in vitro. The LPS-induced astrocytic GAP43 expression was mediated by Toll-like receptor 4 and nuclear factor-κB (NF-κB)- and interleukin-6/signal transducer and activator of transcription 3 (STAT3)-dependent transcriptional activation. The overexpression of the PKC phosphorylation-mimicking GAP43(S41D) (constitutive active GAP43) in astrocytes mimicked LPS-induced process arborization and elongation, while application of a NF-κB inhibitory peptide TAT-NBD or GAP43(S41A) (dominant-negative GAP43) or knockdown of GAP43 all inhibited astrogliosis responses. Moreover, GAP43 knockdown aggravated astrogliosis-induced microglial activation and expression of proinflammatory cytokines. We also show that astrogliosis-conditioned medium from GAP43 knock-down astrocytes inhibited GAP43 phosphorylation and axonal growth, and increased neuronal damage in cultured rat cortical neurons. These proneurotoxic effects of astrocytic GAP43 knockdown were accompanied by attenuated glutamate uptake and expression of the glutamate transporter excitatory amino acid transporter 2 (EAAT2) in LPS-treated astrocytes. The regulation of EAAT2 expression involves actin polymerization-dependent activation of the transcriptional coactivator megakaryoblastic leukemia 1 (MKL1), which targets the serum response elements in the promoter of rat Slc1a2 gene encoding EAAT2. In sum, the present study suggests that astrocytic GAP43 mediates glial plasticity during astrogliosis, and provides beneficial effects for neuronal plasticity and survival and attenuation of microglial activation. SIGNIFICANCE STATEMENT Astrogliosis is a complex state in which injury-stimulated astrocytes exert both protective and harmful effects on neuronal survival and plasticity. In this study, we demonstrated for the first time that growth-associated protein 43 (GAP43), a well known growth cone protein that promotes axonal regeneration, can be induced in rat brain astrocytes by the proinflammatory endotoxin lipopolysaccharide via both nuclear factor-κB and signal transducer and activator of transcription 3-mediated transcriptional activation. Importantly, LPS-induced GAP43 mediates plastic changes of astrocytes while attenuating astrogliosis-induced microglial activation and neurotoxicity. Hence, astrocytic GAP43 upregulation may serve to indicate beneficial astrogliosis after CNS injury.
Collapse
|
9
|
De Moliner K, Wolfson ML, Perrone-Bizzozero N, Adamo AM. GAP-43 slows down cell cycle progression via sequences in its 3'UTR. Arch Biochem Biophys 2015; 571:66-75. [PMID: 25721498 DOI: 10.1016/j.abb.2015.02.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/30/2015] [Accepted: 02/18/2015] [Indexed: 12/26/2022]
Abstract
Growth-associated protein 43 (GAP-43) is a neuronal phosphoprotein associated with initial axonal outgrowth and synaptic remodeling and recent work also suggests its involvement in cell cycle control. The complex expression of GAP-43 features transcriptional and posttranscriptional components. However, in some conditions, GAP-43 gene expression is controlled primarily by the interaction of stabilizing or destabilizing RNA-binding proteins (RBPs) with adenine and uridine (AU)-rich instability elements (AREs) in its 3'UTR. Like GAP-43, many proteins involved in cell proliferation are encoded by ARE-containing mRNAs, some of which codify cell-cycle-regulating proteins including cyclin D1. Considering that GAP-43 and cyclin D1 mRNA stabilization may depend on similar RBPs, this study evaluated the participation of GAP-43 in cell cycle control and its underlying mechanisms, particularly the possible role of its 3'UTR, using GAP-43-transfected NIH-3T3 fibroblasts. Our results show an arrest in cell cycle progression in the G0/G1 phase. This arrest may be mediated by the competition of GAP-43 3'UTR with cyclin D1 3'UTR for the binding of Hu proteins such as HuR, which may lead to a decrease in cyclin D1 expression. These results might lead to therapeutic applications involving the use of sequences in the B region of GAP-43 3'UTR to slow down cell cycle progression.
Collapse
Affiliation(s)
- Karina De Moliner
- Department of Biological Chemistry, IQUIFIB (UBA-CONICET), School of Pharmacy and Biochemistry, University of Buenos Aires, Junín 956, C1113AAD Buenos Aires, Argentina
| | - Manuel Luis Wolfson
- Department of Biological Chemistry, IQUIFIB (UBA-CONICET), School of Pharmacy and Biochemistry, University of Buenos Aires, Junín 956, C1113AAD Buenos Aires, Argentina
| | - Nora Perrone-Bizzozero
- Department of Neurosciences and Psychiatry, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Ana M Adamo
- Department of Biological Chemistry, IQUIFIB (UBA-CONICET), School of Pharmacy and Biochemistry, University of Buenos Aires, Junín 956, C1113AAD Buenos Aires, Argentina.
| |
Collapse
|
10
|
Liu B, Cai G, Yi J, Chen X. Buyang Huanwu Decoction regulates neural stem cell behavior in ischemic brain. Neural Regen Res 2014; 8:2336-42. [PMID: 25206543 PMCID: PMC4146048 DOI: 10.3969/j.issn.1673-5374.2013.25.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 06/25/2013] [Indexed: 01/19/2023] Open
Abstract
The traditional Chinese medicine Buyang Huanwu Decoction has been shown to improve the neu-rological function of patients with stroke. However, the precise mechanisms underlying its effect remain poorly understood. In this study, we established a rat model of cerebral ischemia by middle cerebral artery occlusion and intragastrically administered 5 g/kg Buyang Huanwu Decoction, once per day, for 1, 7, 14 and 28 days after cerebral ischemia. Immunohistochemical staining revealed a number of cells positive for the neural stem cell marker nestin in the cerebral cortex, the subven-tricular zone and the ipsilateral hippocampal dentate gyrus in rat models of cerebral ischemia. Buyang Huanwu Decoction significantly increased the number of cells positive for 5-bromodeoxyuridine (BrdU), a cell proliferation-related marker, microtubule-associated protein-2, a marker of neuronal differentiation, and growth-associated protein 43, a marker of synaptic plasticity in the ischemic rat cerebral regions. The number of positive cells peaked at 14 and 28 days after intragastric administration of Buyang Huanwu Decoction. These findings suggest that Buyang Huanwu Decoction can promote the proliferation and differentiation of neural stem cells and hance synaptic plasticity in ischemic rat brain tissue.
Collapse
Affiliation(s)
- Baiyan Liu
- Key Laboratory of Internal Medicine, Hunan University of Traditional Chinese Medicine, Changsha 410007, Hunan Province, China
| | - Guangxian Cai
- Key Laboratory of Internal Medicine, Hunan University of Traditional Chinese Medicine, Changsha 410007, Hunan Province, China
| | - Jian Yi
- Key Laboratory of Internal Medicine, Hunan University of Traditional Chinese Medicine, Changsha 410007, Hunan Province, China
| | - Xuemei Chen
- Key Laboratory of Internal Medicine, Hunan University of Traditional Chinese Medicine, Changsha 410007, Hunan Province, China
| |
Collapse
|
11
|
Hronik-Tupaj M, Raja WK, Tang-Schomer M, Omenetto FG, Kaplan DL. Neural responses to electrical stimulation on patterned silk films. J Biomed Mater Res A 2013; 101:2559-72. [PMID: 23401351 DOI: 10.1002/jbm.a.34565] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 12/15/2012] [Accepted: 12/18/2012] [Indexed: 12/21/2022]
Abstract
Peripheral nerve injury is a critical issue for patients with trauma. Following injury, incomplete axon regeneration or misguided axon innervation into tissue will result in loss of sensory and motor functions. The objective of this study was to examine axon outgrowth and axon alignment in response to surface patterning and electrical stimulation. To accomplish our objective, metal electrodes with dimensions of 1.5 mm × 4 cm, were sputter coated onto micropatterned silk protein films, with surface grooves 3.5 μm wide × 500 nm deep. P19 neurons were seeded on the patterned electronic silk films and stimulated at 120 mV, 1 kHz, for 45 min each day for 7 days. Responses were compared with neurons on flat electronic silk films, patterned silk films without stimulation, and flat silk films without stimulation. Significant alignment was found on the patterned film groups compared with the flat film groups. Axon outgrowth was greater (p < 0.05) on electronic films on days 5 and 7 compared with the unstimulated groups. In conclusion, electrical stimulation, at 120 mV, 1 kHz, for 45 min daily, in addition to surface patterning, of 3.5 μm wide × 500 nm deep grooves, offered control of nerve axon outgrowth and alignment.
Collapse
Affiliation(s)
- Marie Hronik-Tupaj
- Department of Biomedical Engineering, Science & Technology Center, Tufts University, Medford, Massachusetts 02155, USA
| | | | | | | | | |
Collapse
|
12
|
He C, Wang C, Li B, Wu M, Geng H, Chen Y, Zuo Z. Exposure of Sebastiscus marmoratus embryos to pyrene results in neurodevelopmental defects and disturbs related mechanisms. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 116-117:109-115. [PMID: 22487263 DOI: 10.1016/j.aquatox.2012.03.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 03/13/2012] [Accepted: 03/13/2012] [Indexed: 05/31/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental contaminants, which are known to be carcinogenic and teratogenic. These compounds cause a range of macroscopic malformations, particularly to the craniofacial apparatus and cardiovascular system during vertebrate development. However, little is known concerning microscopic effects, especially on the sensitive early life stages or on the molecular basis of developmental neurotoxicity. Using the rockfish (Sebastiscus marmoratus), we explored the neurodevelopmental defects caused by early-life exposure to environmentally relevant concentrations of pyrene, a 4-ring PAH. The results showed that pyrene substantially disrupted the cranial innervation pattern and caused deficiency of motor nerves. The expression of a protein associated with axon growth, growth associated protein 43, was decreased in the central nervous system after treatment with pyrene. N-methyl-D-aspartate receptor (NMDAR) plays a vital role in a variety of processes, including neuronal development, synaptic plasticity, and neuronal survival and death. Our results showed that the expression of Ca²⁺/calmodulin dependent kinase II and cAMP-response element-binding, which belong to the NMDAR pathway, were increased in a dose-dependent manner after exposure to pyrene. Acetylcholine, an important neurotransmitter which is known to suppress retinal cells neurite outgrowth, was increased by pyrene exposure. Nitric oxide (NO) acts as an activity-dependent retrograde signal that can coordinate axonal targeting and synaptogenesis during development. The level of NO was decreased in a dose-dependent manner following exposure to pyrene. Taken together, the defects in neurodevelopment and the damage to related mechanisms provided the basis for a better understanding of the neurotoxic effects of pyrene.
Collapse
Affiliation(s)
- Chengyong He
- Key Laboratory of Ministry of Education for Subtropical Wetland Ecosystem Research, School of Life Sciences, Xiamen University, Xiamen, China
| | | | | | | | | | | | | |
Collapse
|
13
|
Liu Y, Ye F, Yamada K, Tso JL, Zhang Y, Nguyen DH, Dong Q, Soto H, Choe J, Dembo A, Wheeler H, Eskin A, Schmid I, Yong WH, Mischel PS, Cloughesy TF, Kornblum HI, Nelson SF, Liau LM, Tso CL. Autocrine endothelin-3/endothelin receptor B signaling maintains cellular and molecular properties of glioblastoma stem cells. Mol Cancer Res 2011; 9:1668-85. [PMID: 22013079 DOI: 10.1158/1541-7786.mcr-10-0563] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glioblastoma stem cells (GSC) express both radial glial cell and neural crest cell (NCC)-associated genes. We report that endothelin 3 (EDN3), an essential mitogen for NCC development and migration, is highly produced by GSCs. Serum-induced proliferative differentiation rapidly decreased EDN3 production and downregulated the expression of stemness-associated genes, and reciprocally, two glioblastoma markers, EDN1 and YKL-40 transcripts, were induced. Correspondingly, patient glioblastoma tissues express low levels of EDN3 mRNA and high levels of EDN1 and YKL-40 mRNA. Blocking EDN3/EDN receptor B (EDNRB) signaling by an EDNRB antagonist (BQ788), or EDN3 RNA interference (siRNA), leads to cell apoptosis and functional impairment of tumor sphere formation and cell spreading/migration in culture and loss of tumorigenic capacity in animals. Using exogenous EDN3 as the sole mitogen in culture does not support GSC propagation, but it can rescue GSCs from undergoing cell apoptosis. Molecular analysis by gene expression profiling revealed that most genes downregulated by EDN3/EDNRB blockade were those involved in cytoskeleton organization, pause of growth and differentiation, and DNA damage response, implicating the involvement of EDN3/EDNRB signaling in maintaining GSC migration, undifferentiation, and survival. These data suggest that autocrine EDN3/EDNRB signaling is essential for maintaining GSCs. Incorporating END3/EDNRB-targeted therapies into conventional cancer treatments may have clinical implication for the prevention of tumor recurrence.
Collapse
Affiliation(s)
- Yue Liu
- Department of Surgery/Surgical Oncology, University of California Los Angeles, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Wang YY, Li N, Huang J, Yang Z, Zhang T. Effects of ionic products from silicon-substituted hydroxyapatite on the rat brain activity: Morris water maze studies and long term potentiation in hippocampal CA1. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2011. [DOI: 10.1016/j.msec.2011.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
15
|
Zhao J, Yao Y, Xu C, Cheng B, Xu Q. Expression of GAP-43 in fibroblast cell lines influences the orientation of cell division. Int J Dev Neurosci 2011; 29:469-74. [PMID: 21345365 DOI: 10.1016/j.ijdevneu.2011.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2010] [Revised: 01/23/2011] [Accepted: 02/08/2011] [Indexed: 12/24/2022] Open
Abstract
The orientation (vertical or horizontal) of cell division is known to be critical for neural cell fate determination during neurogenesis. At the onset of neurogenesis, neurogenic progenitor cells are dividing with the cleavage plane parallel to the ventricular surface (horizontal division), which would lead to critical apical components being unequally distributed to both their two daughter cells. The daughter cells lack of inheritance is going to differentiate into the neuron. Recent studies have shown that GAP-43 is highly expressed in horizontally dividing neural progenitor cells in the forebrain of mammals. Based on findings from in vivo studies, GAP-43 is locally associated with the centrosome and is required for centrosome positioning, suggesting that GAP-43 may be involved in neurogenesis through regulating the orientation of cell division. With a fibroblast cell model, our results show that both GFP expressing and control cells had the same potential (p>0.05) with regard to dividing orientation (either vertical or horizontal to the cells long axis). On the other hand, we found that GAP-43 was localized on the membrane instead of the centrosome during all phases of mitosis within GAP-43 transgenic cells, but expressing of GAP-43 could make the cells dividing more likely along their long axis (p<0.05). Our observations suggest that GAP-43 might link the cell membrane and spindle pole and consequently participate in controlling cleavage orientation during cell division.
Collapse
Affiliation(s)
- Junpeng Zhao
- Medical Center for Experiment and Testing, Capital Medical University, Beijing 100069, PR China.
| | | | | | | | | |
Collapse
|
16
|
Trofimiuk E, Holownia A, Braszko JJ. St. John's wort may relieve negative effects of stress on spatial working memory by changing synaptic plasticity. Naunyn Schmiedebergs Arch Pharmacol 2011; 383:415-22. [DOI: 10.1007/s00210-011-0604-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Accepted: 01/25/2011] [Indexed: 01/12/2023]
|
17
|
Understanding the mechanisms of callosal development through the use of transgenic mouse models. Semin Pediatr Neurol 2009; 16:127-42. [PMID: 19778710 DOI: 10.1016/j.spen.2009.07.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The cerebral cortex is the area of the brain where higher-order cognitive processing occurs. The 2 hemispheres of the cerebral cortex communicate through one of the largest fiber tracts in the brain, the corpus callosum. Malformation of the corpus callosum in human beings occurs in 1 in 4000 live births, and those afflicted experience an extensive range of neurologic disorders, from relatively mild to severe cognitive deficits. Understanding the molecular and cellular processes involved in these disorders would therefore assist in the development of prognostic tools and therapies. During the past 3 decades, mouse models have been used extensively to determine which molecules play a role in the complex regulation of corpus callosum development. This review provides an update on these studies, as well as highlights the value of using mouse models with the goal of developing therapies for human acallosal syndromes.
Collapse
|
18
|
Zhao J, Yao Y, Xu C, Jiang X, Xu Q. Expression of the neural specific protein, GAP‐43, dramatically lengthens the cell cycle in fibroblasts. Int J Dev Neurosci 2009; 27:531-7. [DOI: 10.1016/j.ijdevneu.2009.06.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 06/16/2009] [Accepted: 06/30/2009] [Indexed: 10/20/2022] Open
Affiliation(s)
- Junpeng Zhao
- Beijing Institute for NeuroscienceBeijing Center for Neural Regeneration and RepairKey Laboratory for Neurodegenerative Diseases of the Ministry of EducationCapital Medical UniversityBeijing100069PR China
| | - Yajuan Yao
- Beijing Institute for NeuroscienceBeijing Center for Neural Regeneration and RepairKey Laboratory for Neurodegenerative Diseases of the Ministry of EducationCapital Medical UniversityBeijing100069PR China
| | - Changlei Xu
- Beijing Institute for NeuroscienceBeijing Center for Neural Regeneration and RepairKey Laboratory for Neurodegenerative Diseases of the Ministry of EducationCapital Medical UniversityBeijing100069PR China
| | - Xiaohua Jiang
- Beijing Institute for NeuroscienceBeijing Center for Neural Regeneration and RepairKey Laboratory for Neurodegenerative Diseases of the Ministry of EducationCapital Medical UniversityBeijing100069PR China
| | - Qunyuan Xu
- Beijing Institute for NeuroscienceBeijing Center for Neural Regeneration and RepairKey Laboratory for Neurodegenerative Diseases of the Ministry of EducationCapital Medical UniversityBeijing100069PR China
| |
Collapse
|
19
|
Liu Q, Nguyen DH, Dong Q, Shitaku P, Chung K, Liu OY, Tso JL, Liu JY, Konkankit V, Cloughesy TF, Mischel PS, Lane TF, Liau LM, Nelson SF, Tso CL. Molecular properties of CD133+ glioblastoma stem cells derived from treatment-refractory recurrent brain tumors. J Neurooncol 2009; 94:1-19. [PMID: 19468690 PMCID: PMC2705704 DOI: 10.1007/s11060-009-9919-z] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Accepted: 05/05/2009] [Indexed: 01/02/2023]
Abstract
Glioblastoma multiforme (GBM) remains refractory to conventional therapy. CD133+ GBM cells have been recently isolated and characterized as chemo-/radio-resistant tumor-initiating cells and are hypothesized to be responsible for post-treatment recurrence. In order to explore the molecular properties of tumorigenic CD133+ GBM cells that resist treatment, we isolated CD133+ GBM cells from tumors that are recurrent and have previously received chemo-/radio-therapy. We found that the purified CD133+ GBM cells sorted from the CD133+ GBM spheres express SOX2 and CD44 and are capable of clonal self-renewal and dividing to produce fast-growing CD133− progeny, which form the major cell population within GBM spheres. Intracranial injection of purified CD133+, not CD133− GBM daughter cells, can lead to the development of YKL-40+ infiltrating tumors that display hypervascularity and pseudopalisading necrosis-like features in mouse brain. The molecular profile of purified CD133+ GBM cells revealed characteristics of neuroectoderm-like cells, expressing both radial glial and neural crest cell developmental genes, and portraying a slow-growing, non-differentiated, polarized/migratory, astrogliogenic, and chondrogenic phenotype. These data suggest that at least a subset of treated and recurrent GBM tumors may be seeded by CD133+ GBM cells with neural and mesenchymal properties. The data also imply that CD133+ GBM cells may be clinically indolent/quiescent prior to undergoing proliferative cell division (PCD) to produce CD133− GBM effector progeny. Identifying intrinsic and extrinsic cues, which promote CD133+ GBM cell self-renewal and PCD to support ongoing tumor regeneration may highlight novel therapeutic strategies to greatly diminish the recurrence rate of GBM.
Collapse
Affiliation(s)
- Qinghai Liu
- Department of Medicine, Division of Hematology-Oncology, David Geffen School of Medicine, University of California Los Angeles, Factor Building, Rm 13-260, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Fujimori KE, Kawasaki T, Deguchi T, Yuba S. Characterization of a nervous system-specific promoter for growth-associated protein 43 gene in Medaka (Oryzias latipes). Brain Res 2008; 1245:1-15. [PMID: 18951884 DOI: 10.1016/j.brainres.2008.09.071] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 09/17/2008] [Accepted: 09/23/2008] [Indexed: 12/29/2022]
Abstract
Genes expressed by neurons are controlled by specific, interacting cis-regulatory elements and trans-acting factors within their promoters. In the present study, we asked whether the transcriptional machinery regulating neuron-specific gene expression was conserved in evolution. We identified a GAP-43 homolog in Medaka (Oryzias latipes), and analyzed its expression during various stages of development. Compared with the amino acid sequences of GAP-43 homologs in other vertebrates, the amino-terminus of GAP-43 was highly conserved evolutionarily, but the carboxy-terminus exhibited significant variability. Expression of GAP-43 predominantly occurred in cells of the central and peripheral nervous systems as determined by in situ hybridization and by RT-PCR. Expression of GAP-43 increased throughout development and significant levels continued to be expressed into adulthood. We also showed that a proximal approximately 2.0 kbp fragment in the 5'-flanking region had promoter activity as determined by in vivo reporter assays. Furthermore, based upon computational analysis of transcription factor binding sites and an in vivo reporter analysis using sequentially deleted promoters, we demonstrated that cis-regulatory elements for neuronal expression were widely distributed in this region. In mammals, a TATA-box, E-box and neuronal repressive elements have been thought to contribute to neuronal expression. However, these features were not found in the orthologous region of the Medaka GAP-43 promoter. Our results suggest that the arrangement of cis-regulatory elements of the GAP-43 ortholog in Medaka is different from that in mammals, yet maintains neuron-specific regulation.
Collapse
Affiliation(s)
- Kazuhiro E Fujimori
- Research Institute for Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Nakoji 3-11-46, Amagasaki, Hyogo 661-0974, Japan.
| | | | | | | |
Collapse
|
21
|
Donovan SL, McCasland JS. GAP-43 is critical for normal targeting of thalamocortical and corticothalamic, but not trigeminothalamic axons in the whisker barrel system. Somatosens Mot Res 2008; 25:33-47. [PMID: 18344146 DOI: 10.1080/08990220701830696] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mice lacking the growth-associated protein GAP-43 (KO) show disrupted cortical topography and no barrels. Whisker-related patterns of cells are normal in the KO brainstem trigeminal complex (BSTC), while the pattern in KO ventrobasal thalamus (VB) is somewhat compromised. To better understand the basis for VB and cortical abnormalities, we used small placements of DiI to trace axonal projections between BSTC, VB, and barrel cortex in wildtype (WT) and GAP-43 KO mice. The trigeminothalamic (TT) pathway consists of axons from cells in the Nucleus Prinicipalis that project to the contralateral VB thalamus. DiI-labeled KO TT axons crossed the midline from BSTC and projected to contralateral VB normally, consistent with normal BSTC cytoarchitecture. By contrast, the KO thalamocortical axons (TCA) projection was highly abnormal. KO TCAs showed delays of 1-2 days in initial ingrowth to cortex. Postnatally, KO TCAs showed multiple pathfinding errors near intermediate targets, and were abnormally fasciculated within the internal capsule (IC). Interestingly, most individually labeled KO TCAs terminated in deep layers instead of in layer IV as in WT. This misprojection is consistent with birthdating analysis in KO mice, which revealed that neurons normally destined for layer IV remain in deep cortical layers. Early outgrowth of KO corticofugal (CF) axons was similar for both genotypes. However, at P7 KO CF fibers remained bundled as they entered the IC, and exhibited few terminal branches in VB. Thus, the establishment of axonal projections between thalamus and cortex are disrupted in GAP-43 KO mice.
Collapse
Affiliation(s)
- Stacy L Donovan
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | | |
Collapse
|
22
|
Schwob AE, Nguyen LJ, Meiri KF. Immortalization of neural precursors when telomerase is overexpressed in embryonal carcinomas and stem cells. Mol Biol Cell 2008; 19:1548-60. [PMID: 18256293 DOI: 10.1091/mbc.e06-11-1013] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The DNA repair enzyme telomerase maintains chromosome stability by ensuring that telomeres regenerate each time the cell divides, protecting chromosome ends. During onset of neuroectodermal differentiation in P19 embryonal carcinoma (EC) cells three independent techniques (Southern blotting, Q-FISH, and Q-PCR) revealed a catastrophic reduction in telomere length in nestin-expressing neuronal precursors even though telomerase activity remained high. Overexpressing telomerase protein (mTERT) prevented telomere collapse and the neuroepithelial precursors produced continued to divide, but deaggregated and died. Addition of FGF-2 prevented deaggregation, protected the precursors from the apoptotic event that normally accompanies onset of terminal neuronal differentiation, allowed them to evade senescence, and enabled completion of morphological differentiation. Similarly, primary embryonic stem (ES) cells overexpressing mTERT also initiated neuroectodermal differentiation efficiently, acquiring markers of neuronal precursors and mature neurons. ES precursors are normally cultured with FGF-2, and overexpression of mTERT alone was sufficient to allow them to evade senescence. However, when FGF-2 was removed in order for differentiation to be completed most neural precursors underwent apoptosis indicating that in ES cells mTERT is not sufficient allow terminal differentiation of ES neural precursors in vitro. The results demonstrate that telomerase can potentiate the transition between pluripotent stem cell and committed neuron in both EC and ES cells.
Collapse
Affiliation(s)
- Anneke E Schwob
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine, Boston MA 02111, USA
| | | | | |
Collapse
|
23
|
Slevin M, Krupinski J, Mitsios N, Perikleous C, Cuadrado E, Montaner J, Sanfeliu C, Luque A, Kumar S, Kumar P, Gaffney J. Leukaemia inhibitory factor is over-expressed by ischaemic brain tissue concomitant with reduced plasma expression following acute stroke. Eur J Neurol 2007; 15:29-37. [PMID: 18042242 DOI: 10.1111/j.1468-1331.2007.01995.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Leukaemia inhibitory factor (LIF) is a glycoprotein of the interleukin-6 family, which has potent pro-inflammatory properties and is involved in regulation of neuronal differentiation. We have previously identified its upregulation in gene microarrays following acute ischaemic stroke in man. LIF expression and localization was measured in human ischaemic stroke autopsy specimens, in a rat model of middle cerebral artery occlusion (MCAO) and in human foetal neural cell cultures following oxygen-glucose deprivation (OGD) by Western blotting and immunohistochemistry. Circulating LIF was determined in the plasma of patients in the hyper-acute stroke phase using a multiplex enzyme-linked-immunosorbent serologic assay system. Patients demonstrated an increase in LIF expression in peri-infarcted regions with localization in neurons and endothelial cells of microvessels surrounding the infarcted core. The rat MCAO model showed similar upregulation in neurons with a peak increase at 90 min. Circulating serum LIF expression was significantly decreased in the hyper-acute phase of stroke. Brain-derived neurons and glia cultured in vitro demonstrated an increase in gene/protein and protein expression respectively following exposure to OGD. Increased LIF expression in peri-infarcted regions and sequestration from the peripheral circulation in acute stroke patients are characteristic of the pathobiological response to ischaemia and tissue damage.
Collapse
Affiliation(s)
- M Slevin
- The Department of Biology, Chemistry and Health Science, Manchester Metropolitan University, Manchester, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Nilsson A, Sköld K, Sjögren B, Svensson M, Pierson J, Zhang X, Caprioli RM, Buijs J, Persson B, Svenningsson P, Andrén PE. Increased Striatal mRNA and Protein Levels of the Immunophilin FKBP-12 in Experimental Parkinson's Disease and Identification of FKBP-12-Binding Proteins. J Proteome Res 2007; 6:3952-61. [PMID: 17877381 DOI: 10.1021/pr070189e] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
FKBP-12, a 12 kDa FK506-binding protein (neuroimmunophilin), acts as a receptor for the immunosuppressant drug FK506. Neuroimmunophilins, including FKBP-12, are abundant in the brain and have been shown to be involved in reversing neuronal degeneration and preventing cell death. In this report, we have utilized several analytical techniques, such as in situ hybridization, Western blotting, two-dimensional gel electrophoresis, and liquid chromatography electrospray tandem mass spectrometry to study the transcriptional expression as well as protein levels of FKBP-12 in the unilateral 6-hydroxydopamine (6-OHDA) rat model of Parkinson's disease. The FKBP-12 protein was also detected directly on brain tissue sections using mass spectrometry profiling. We found increased levels of FKBP-12 mRNA and protein in the dorsal and middle part of the 6-OHDA lesioned striatum. Thus, these studies clearly demonstrate that FKBP-12 is increased in the brain of a common animal model of Parkinson's disease (PD). Additionally, we have identified potential binding partners to FKBP-12 that may be implicated in the pathophysiology of Parkinson's disease, such as alpha-enolase, 14-3-3 zeta/delta, pyruvate kinase isozymes, and heat shock protein 70, using surface plasmon resonance sensor technology in combination with mass spectrometry. In conclusion, these data strongly suggests that FKBP-12 is altered in an experimental model of PD.
Collapse
Affiliation(s)
- Anna Nilsson
- Laboratory for Biological and Medical Mass Spectrometry, Uppsala University, P.O. Box 583 Biomedical Centre, SE-75123 Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Lindwall C, Fothergill T, Richards LJ. Commissure formation in the mammalian forebrain. Curr Opin Neurobiol 2007; 17:3-14. [PMID: 17275286 DOI: 10.1016/j.conb.2007.01.008] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Accepted: 01/18/2007] [Indexed: 01/06/2023]
Abstract
Commissural formation in the mammalian brain is highly organised and regulated both by the cell-autonomous expression of transcription factors, and by non-cell-autonomous mechanisms including the formation of midline glial structures and their expression of specific axon guidance molecules. These mechanisms channel axons into the correct path and enable the subsequent connection of specific brain areas to their appropriate targets. Several key findings have been made over the past two years, including the discovery of novel mechanisms of action that 'classical' guidance factors such as the Slits, Netrins, and their receptors have in axon guidance. Moreover, novel guidance factors such as members of the Wnt family, and extracellular matrix components such as heparan sulphate proteoglycans, have been shown to be important for mammalian brain commissure formation. Additionally, there have been significant discoveries regarding the role of FGF signalling in the formation of midline glial structures. In this review, we discuss the most recent advances in the field that have contributed to our current understanding of commissural development in the telencephalon.
Collapse
Affiliation(s)
- Charlotta Lindwall
- The University of Queensland, School of Biomedical Sciences and The Queensland Brain Institute, St Lucia, Queensland 4072, Australia
| | | | | |
Collapse
|
26
|
Garattini E, Gianni' M, Terao M. Cytodifferentiation by retinoids, a novel therapeutic option in oncology: rational combinations with other therapeutic agents. VITAMINS AND HORMONES 2007; 75:301-54. [PMID: 17368321 DOI: 10.1016/s0083-6729(06)75012-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Retinoic acid (RA) and derivatives are promising antineoplastic agents endowed with both therapeutic and chemopreventive potential. Although the treatment of acute promyelocytic leukemia with all-trans retinoic acid is an outstanding example, the full potential of retinoids in oncology has not yet been explored and a more generalized use of these compounds is not yet a reality. One way to enhance the therapeutic and chemopreventive activity of RA and derivatives is to identify rational combinations between these compounds and other pharmacological agents. This is now possible given the information available on the biochemical and molecular mechanisms underlying the biological activity of retinoids. At the cellular level, the antileukemia and anticancer activity of retinoids is the result of three main actions, cytodifferentiation, growth inhibition, and apoptosis. Cytodifferentiation is a particularly attractive modality of treatment and differentiating agents promise to be less toxic and more specific than conventional chemotherapy. This is the result of the fact that cytotoxicity is not the primary aim of differentiation therapy. At the molecular level, retinoids act through the activation of nuclear retinoic acid receptor-dependent and -independent pathways. The cellular pathways and molecular networks relevant for retinoid activity are modulated by a panoply of other intracellular and extracellular pathways that may be targeted by known drugs and other experimental therapeutics. This chapter aims to summarize and critically discuss the available knowledge in the field.
Collapse
Affiliation(s)
- Enrico Garattini
- Laboratorio di Biologia Molecolare, Centro Catullo e Daniela Borgomainerio, Istituto di Ricerche Farmacologiche Mario Negri, via Eritrea 62, 20157 Milano, Italy
| | | | | |
Collapse
|
27
|
Teo JL, Ma H, Nguyen C, Lam C, Kahn M. Specific inhibition of CBP/beta-catenin interaction rescues defects in neuronal differentiation caused by a presenilin-1 mutation. Proc Natl Acad Sci U S A 2005; 102:12171-6. [PMID: 16093313 PMCID: PMC1189325 DOI: 10.1073/pnas.0504600102] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2005] [Indexed: 12/28/2022] Open
Abstract
Wnt/beta-catenin signaling has been shown to promote self-renewal in a variety of tissue stem cells, including neuronal stem cells and hematopoietic stem cells. However, activation of the Wnt/beta-catenin pathway promoted and inhibition of the pathway prevented differentiation of neuronal precursor cells. A clear explanation for the differential effects of Wnt/beta-catenin activation on neuronal precursors is not available at present. Presenilin-1 (PS-1) is a polytopic protein comprised of six to eight transmembrane domains. PS-1, as part of the gamma-secretase complex, is required for the intramembrane proteolysis of both amyloid precursor protein (APP) and Notch. Additionally, through interactions with beta-catenin, PS-1 is associated with modulation of Wnt/beta-catenin signaling. A familial Alzheimer's disease-associated PS-1 mutant, PS-1(L286V), causes a dramatic increase in T cell factor (TCF)/beta-catenin transcription in PC-12 cells, which prevents normal nerve growth factor (NGF)-induced neuronal differentiation and neurite outgrowth. Selective inhibition of TCF/beta-catenin/cAMP-response element-binding protein (CREB)-binding protein (CBP)-mediated transcription, but not TCF/beta-catenin/p300, with the recently described small molecule antagonist ICG-001 corrects these defects in neuronal differentiation, highlighting the importance of Wnt/beta-catenin signaling in this process. We propose that increased TCF/beta-catenin/CBP-mediated transcription, as well as a failure to switch to TCF/beta-catenin/p300-mediated transcription, play an important role in decreasing neuronal differentiation.
Collapse
Affiliation(s)
- Jia-Ling Teo
- Institute for Chemical Genomics, 600 Broadway, Suite 580, Seattle, WA 98122, USA
| | | | | | | | | |
Collapse
|
28
|
Mosevitsky MI. Nerve Ending “Signal” Proteins GAP‐43, MARCKS, and BASP1. INTERNATIONAL REVIEW OF CYTOLOGY 2005; 245:245-325. [PMID: 16125549 DOI: 10.1016/s0074-7696(05)45007-x] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Mechanisms of growth cone pathfinding in the course of neuronal net formation as well as mechanisms of learning and memory have been under intense investigation for the past 20 years, but many aspects of these phenomena remain unresolved and even mysterious. "Signal" proteins accumulated mainly in the axon endings (growth cones and the presynaptic area of synapses) participate in the main brain processes. These proteins are similar in several essential structural and functional properties. The most prominent similarities are N-terminal fatty acylation and the presence of an "effector domain" (ED) that dynamically binds to the plasma membrane, to calmodulin, and to actin fibrils. Reversible phosphorylation of ED by protein kinase C modulates these interactions. However, together with similarities, there are significant differences among the proteins, such as different conditions (Ca2+ contents) for calmodulin binding and different modes of interaction with the actin cytoskeleton. In light of these facts, we consider GAP-43, MARCKS, and BASP1 both separately and in conjunction. Special attention is devoted to a discussion of apparent inconsistencies in results and opinions of different authors concerning specific questions about the structure of proteins and their interactions.
Collapse
Affiliation(s)
- Mark I Mosevitsky
- Division of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute, Russian Academy of Sciences, 188300 Gatchina Leningrad District, Russian Federation
| |
Collapse
|