1
|
Ohkawara B, Kurokawa M, Kanai A, Imamura K, Chen G, Zhang R, Masuda A, Higashi K, Mori H, Suzuki Y, Kurokawa K, Ohno K. Transcriptome profile of subsynaptic myonuclei at the neuromuscular junction in embryogenesis. J Neurochem 2024; 168:342-354. [PMID: 37994470 DOI: 10.1111/jnc.16013] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/26/2023] [Accepted: 11/03/2023] [Indexed: 11/24/2023]
Abstract
Skeletal muscle fiber is a large syncytium with multiple and evenly distributed nuclei. Adult subsynaptic myonuclei beneath the neuromuscular junction (NMJ) express specific genes, the products of which coordinately function in the maintenance of the pre- and post-synaptic regions. However, the gene expression profiles that promote the NMJ formation during embryogenesis remain largely unexplored. We performed single-nucleus RNA sequencing (snRNA-seq) analysis of embryonic and neonatal mouse diaphragms, and found that each myonucleus had a distinct transcriptome pattern during the NMJ formation. Among the previously reported NMJ-constituting genes, Dok7, Chrna1, and Chrnd are specifically expressed in subsynaptic myonuclei at E18.5. In the E18.5 diaphragm, ca. 10.7% of the myonuclei express genes for the NMJ formation (Dok7, Chrna1, and Chrnd) together with four representative β-catenin regulators (Amotl2, Ptprk, Fam53b, and Tcf7l2). Additionally, the temporal gene expression patterns of these seven genes are synchronized in differentiating C2C12 myoblasts. Amotl2 and Ptprk are expressed in the sarcoplasm, where β-catenin serves as a structural protein to organize the membrane-anchored NMJ structure. In contrast, Fam53b and Tcf7l2 are expressed in the myonucleus, where β-catenin serves as a transcriptional coactivator in Wnt/β-catenin signaling at the NMJ. In C2C12 myotubes, knockdown of Amotl2 or Ptprk markedly, and that of Fam53b and Tcf7l2 less efficiently, impair the clustering of acetylcholine receptors. In contrast, knockdown of Fam53b and Tcf7l2, but not of Amotl2 or Ptprk, impairs the gene expression of Slit2 encoding an axonal attractant for motor neurons, which is required for the maturation of motor nerve terminal. Thus, Amotl2 and Ptprk exert different roles at the NM compared to Fam53b and Tcf7l2. Additionally, Wnt ligands originating from the spinal motor neurons and the perichondrium/chondrocyte are likely to work remotely on the subsynaptic nuclei and the myotendinous junctional nuclei, respectively. We conclude that snRNA-seq analysis of embryonic/neonatal diaphragms reveal a novel coordinated expression profile especially in the Wnt/β-catenin signaling that regulate the formation of the embryonic NMJ.
Collapse
Affiliation(s)
- Bisei Ohkawara
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masaomi Kurokawa
- Department of Informatics, National Institute of Genetics, Shizuoka, Japan
| | - Akinori Kanai
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Kiyomi Imamura
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Guiying Chen
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ruchen Zhang
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akio Masuda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Koichi Higashi
- Department of Informatics, National Institute of Genetics, Shizuoka, Japan
| | - Hiroshi Mori
- Department of Informatics, National Institute of Genetics, Shizuoka, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Ken Kurokawa
- Department of Informatics, National Institute of Genetics, Shizuoka, Japan
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
2
|
Piol D, Robberechts T, Da Cruz S. Lost in local translation: TDP-43 and FUS in axonal/neuromuscular junction maintenance and dysregulation in amyotrophic lateral sclerosis. Neuron 2023; 111:1355-1380. [PMID: 36963381 DOI: 10.1016/j.neuron.2023.02.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/21/2022] [Accepted: 02/16/2023] [Indexed: 03/26/2023]
Abstract
Key early features of amyotrophic lateral sclerosis (ALS) are denervation of neuromuscular junctions and axonal degeneration. Motor neuron homeostasis relies on local translation through controlled regulation of axonal mRNA localization, transport, and stability. Yet the composition of the local transcriptome, translatome (mRNAs locally translated), and proteome during health and disease remains largely unexplored. This review covers recent discoveries on axonal translation as a critical mechanism for neuronal maintenance/survival. We focus on two RNA binding proteins, transactive response DNA binding protein-43 (TDP-43) and fused in sarcoma (FUS), whose mutations cause ALS and frontotemporal dementia (FTD). Emerging evidence points to their essential role in the maintenance of axons and synapses, including mRNA localization, transport, and local translation, and whose dysfunction may contribute to ALS. Finally, we describe recent advances in omics-based approaches mapping compartment-specific local RNA and protein compositions, which will be invaluable to elucidate fundamental local processes and identify key targets for therapy development.
Collapse
Affiliation(s)
- Diana Piol
- VIB-KU Leuven Center for Brain and Disease Research, Department of Neurosciences, KU Leuven, Leuven Brain Institute, Leuven, Belgium
| | - Tessa Robberechts
- VIB-KU Leuven Center for Brain and Disease Research, Department of Neurosciences, KU Leuven, Leuven Brain Institute, Leuven, Belgium
| | - Sandrine Da Cruz
- VIB-KU Leuven Center for Brain and Disease Research, Department of Neurosciences, KU Leuven, Leuven Brain Institute, Leuven, Belgium.
| |
Collapse
|
3
|
Petrany MJ, Swoboda CO, Sun C, Chetal K, Chen X, Weirauch MT, Salomonis N, Millay DP. Single-nucleus RNA-seq identifies transcriptional heterogeneity in multinucleated skeletal myofibers. Nat Commun 2020; 11:6374. [PMID: 33311464 PMCID: PMC7733460 DOI: 10.1038/s41467-020-20063-w] [Citation(s) in RCA: 196] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
While the majority of cells contain a single nucleus, cell types such as trophoblasts, osteoclasts, and skeletal myofibers require multinucleation. One advantage of multinucleation can be the assignment of distinct functions to different nuclei, but comprehensive interrogation of transcriptional heterogeneity within multinucleated tissues has been challenging due to the presence of a shared cytoplasm. Here, we utilized single-nucleus RNA-sequencing (snRNA-seq) to determine the extent of transcriptional diversity within multinucleated skeletal myofibers. Nuclei from mouse skeletal muscle were profiled across the lifespan, which revealed the presence of distinct myonuclear populations emerging in postnatal development as well as aging muscle. Our datasets also provided a platform for discovery of genes associated with rare specialized regions of the muscle cell, including markers of the myotendinous junction and functionally validated factors expressed at the neuromuscular junction. These findings reveal that myonuclei within syncytial muscle fibers possess distinct transcriptional profiles that regulate muscle biology.
Collapse
Affiliation(s)
- Michael J Petrany
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Casey O Swoboda
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Chengyi Sun
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kashish Chetal
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Xiaoting Chen
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Matthew T Weirauch
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Nathan Salomonis
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Douglas P Millay
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
4
|
R-spondin 2 promotes acetylcholine receptor clustering at the neuromuscular junction via Lgr5. Sci Rep 2016; 6:28512. [PMID: 27328992 PMCID: PMC4916433 DOI: 10.1038/srep28512] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 06/06/2016] [Indexed: 11/09/2022] Open
Abstract
At the neuromuscular junction (NMJ), acetylcholine receptor (AChR) clustering is mediated by spinal motor neuron (SMN)-derived agrin and its receptors on the muscle, the low-density lipoprotein receptor-related protein 4 (LRP4) and muscle-specific receptor tyrosine kinase (MuSK). Additionally, AChR clustering is mediated by the components of the Wnt pathway. Laser capture microdissection of SMNs revealed that a secreted activator of Wnt signaling, R-spondin 2 (Rspo2), is highly expressed in SMNs. We found that Rspo2 is enriched at the NMJ, and that Rspo2 induces MuSK phosphorylation and AChR clustering. Rspo2 requires Wnt ligands, but not agrin, for promoting AChR clustering in cultured myotubes. Leucine-rich repeat-containing G-protein coupled receptor 5 (Lgr5), an Rspo2 receptor, is also accumulated at the NMJ, and is associated with MuSK via LRP4. Lgr5 is required for Rspo2-mediated AChR clustering in myotubes. In Rspo2-knockout mice, the number and density of AChRs at the NMJ are reduced. The Rspo2-knockout diaphragm has an altered ultrastructure with widened synaptic clefts and sparse synaptic vesicles. Frequency of miniature endplate currents is markedly reduced in Rspo2-knockout mice. To conclude, we demonstrate that Rspo2 and its receptor Lgr5 are Wnt-dependent and agrin-independent regulators of AChR clustering at the NMJ.
Collapse
|
5
|
Thorley M, Malatras A, Duddy W, Le Gall L, Mouly V, Butler Browne G, Duguez S. Changes in Communication between Muscle Stem Cells and their Environment with Aging. J Neuromuscul Dis 2015; 2:205-217. [PMID: 27858742 PMCID: PMC5240546 DOI: 10.3233/jnd-150097] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aging is associated with both muscle weakness and a loss of muscle mass, contributing towards overall frailty in the elderly. Aging skeletal muscle is also characterised by a decreasing efficiency in repair and regeneration, together with a decline in the number of adult stem cells. Commensurate with this are general changes in whole body endocrine signalling, in local muscle secretory environment, as well as in intrinsic properties of the stem cells themselves. The present review discusses the various mechanisms that may be implicated in these age-associated changes, focusing on aspects of cell-cell communication and long-distance signalling factors, such as levels of circulating growth hormone, IL-6, IGF1, sex hormones, and inflammatory cytokines. Changes in the local environment are also discussed, implicating IL-6, IL-4, FGF-2, as well as other myokines, and processes that lead to thickening of the extra-cellular matrix. These factors, involved primarily in communication, can also modulate the intrinsic properties of muscle stem cells, including reduced DNA accessibility and repression of specific genes by methylation. Finally we discuss the decrease in the stem cell pool, particularly the failure of elderly myoblasts to re-quiesce after activation, and the consequences of all these changes on general muscle homeostasis.
Collapse
Affiliation(s)
- Matthew Thorley
- Sorbonne Universités, UPMC Univ Paris 06, Center of Research in Myology UMRS 974, F-75013, Paris, France.,INSERM UMRS 974, F-75013, Paris, France.,CNRS FRE 3617, F-75013, Paris, France.,Institut de Myologie, F-75013, Paris, France
| | - Apostolos Malatras
- Sorbonne Universités, UPMC Univ Paris 06, Center of Research in Myology UMRS 974, F-75013, Paris, France.,INSERM UMRS 974, F-75013, Paris, France.,CNRS FRE 3617, F-75013, Paris, France.,Institut de Myologie, F-75013, Paris, France
| | - William Duddy
- Sorbonne Universités, UPMC Univ Paris 06, Center of Research in Myology UMRS 974, F-75013, Paris, France.,INSERM UMRS 974, F-75013, Paris, France.,CNRS FRE 3617, F-75013, Paris, France.,Institut de Myologie, F-75013, Paris, France
| | - Laura Le Gall
- Sorbonne Universités, UPMC Univ Paris 06, Center of Research in Myology UMRS 974, F-75013, Paris, France.,INSERM UMRS 974, F-75013, Paris, France.,CNRS FRE 3617, F-75013, Paris, France.,Institut de Myologie, F-75013, Paris, France
| | - Vincent Mouly
- Sorbonne Universités, UPMC Univ Paris 06, Center of Research in Myology UMRS 974, F-75013, Paris, France.,INSERM UMRS 974, F-75013, Paris, France.,CNRS FRE 3617, F-75013, Paris, France.,Institut de Myologie, F-75013, Paris, France
| | - Gillian Butler Browne
- Sorbonne Universités, UPMC Univ Paris 06, Center of Research in Myology UMRS 974, F-75013, Paris, France.,CNRS FRE 3617, F-75013, Paris, France.,INSERM UMRS 974, F-75013, Paris, France.,CNRS FRE 3617, F-75013, Paris, France.,Institut de Myologie, F-75013, Paris, France
| | - Stéphanie Duguez
- Sorbonne Universités, UPMC Univ Paris 06, Center of Research in Myology UMRS 974, F-75013, Paris, France.,INSERM UMRS 974, F-75013, Paris, France.,CNRS FRE 3617, F-75013, Paris, France.,Institut de Myologie, F-75013, Paris, France
| |
Collapse
|
6
|
Yuasa K, Aoki N, Hijikata T. JAZF1 promotes proliferation of C2C12 cells, but retards their myogenic differentiation through transcriptional repression of MEF2C and MRF4-Implications for the role of Jazf1 variants in oncogenesis and type 2 diabetes. Exp Cell Res 2015; 336:287-97. [PMID: 26101156 DOI: 10.1016/j.yexcr.2015.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 06/09/2015] [Accepted: 06/15/2015] [Indexed: 11/16/2022]
Abstract
Single-nucleotide polymorphisms associated with type 2 diabetes (T2D) have been identified in Jazf1, which is also involved in the oncogenesis of endometrial stromal tumors. To understand how Jazf1 variants confer a risk of tumorigenesis and T2D, we explored the functional roles of JAZF1 and searched for JAZF1 target genes in myogenic C2C12 cells. Consistent with an increase of Jazf1 transcripts during myoblast proliferation and their decrease during myogenic differentiation in regenerating skeletal muscle, JAZF1 overexpression promoted cell proliferation, whereas it retarded myogenic differentiation. Examination of myogenic genes revealed that JAZF1 overexpression transcriptionally repressed MEF2C and MRF4 and their downstream genes. AMP deaminase1 (AMPD1) was identified as a candidate for JAZF1 target by gene array analysis. However, promoter assays of Ampd1 demonstrated that mutation of the putative binding site for the TR4/JAZF1 complex did not alleviate the repressive effects of JAZF1 on promoter activity. Instead, JAZF1-mediated repression of Ampd1 occurred through the MEF2-binding site and E-box within the Ampd1 proximal regulatory elements. Consistently, MEF2C and MRF4 expression enhanced Ampd1 promoter activity. AMPD1 overexpression and JAZF1 downregulation impaired AMPK phosphorylation, while JAZF1 overexpression also reduced it. Collectively, these results suggest that aberrant JAZF1 expression contributes to the oncogenesis and T2D pathogenesis.
Collapse
Affiliation(s)
- Katsutoshi Yuasa
- Department of Anatomy and Cell Biology, Research Institute of Pharmaceutical Science, Faculty of Pharmacy, Musashino University, Nishitokyo, Tokyo 202-8585, Japan
| | - Natsumi Aoki
- Department of Anatomy and Cell Biology, Research Institute of Pharmaceutical Science, Faculty of Pharmacy, Musashino University, Nishitokyo, Tokyo 202-8585, Japan
| | - Takao Hijikata
- Department of Anatomy and Cell Biology, Research Institute of Pharmaceutical Science, Faculty of Pharmacy, Musashino University, Nishitokyo, Tokyo 202-8585, Japan.
| |
Collapse
|
7
|
Ostrovidov S, Ahadian S, Ramon-Azcon J, Hosseini V, Fujie T, Parthiban SP, Shiku H, Matsue T, Kaji H, Ramalingam M, Bae H, Khademhosseini A. Three-dimensional co-culture of C2C12/PC12 cells improves skeletal muscle tissue formation and function. J Tissue Eng Regen Med 2014; 11:582-595. [PMID: 25393357 DOI: 10.1002/term.1956] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 06/19/2014] [Accepted: 08/28/2014] [Indexed: 01/16/2023]
Abstract
Engineered muscle tissues demonstrate properties far from native muscle tissue. Therefore, fabrication of muscle tissues with enhanced functionalities is required to enable their use in various applications. To improve the formation of mature muscle tissues with higher functionalities, we co-cultured C2C12 myoblasts and PC12 neural cells. While alignment of the myoblasts was obtained by culturing the cells in micropatterned methacrylated gelatin (GelMA) hydrogels, we studied the effects of the neural cells (PC12) on the formation and maturation of muscle tissues. Myoblasts cultured in the presence of neural cells showed improved differentiation, with enhanced myotube formation. Myotube alignment, length and coverage area were increased. In addition, the mRNA expression of muscle differentiation markers (Myf-5, myogenin, Mefc2, MLP), muscle maturation markers (MHC-IId/x, MHC-IIa, MHC-IIb, MHC-pn, α-actinin, sarcomeric actinin) and the neuromuscular markers (AChE, AChR-ε) were also upregulated. All these observations were amplified after further muscle tissue maturation under electrical stimulation. Our data suggest a synergistic effect on the C2C12 differentiation induced by PC12 cells, which could be useful for creating improved muscle tissue. Copyright © 2014 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Serge Ostrovidov
- Advanced Institute for Materials Research (WPI), Tohoku University, Sendai, Japan
| | - Samad Ahadian
- Advanced Institute for Materials Research (WPI), Tohoku University, Sendai, Japan
| | - Javier Ramon-Azcon
- Advanced Institute for Materials Research (WPI), Tohoku University, Sendai, Japan
| | - Vahid Hosseini
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH, Zurich, Switzerland
| | - Toshinori Fujie
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - S Prakash Parthiban
- Advanced Institute for Materials Research (WPI), Tohoku University, Sendai, Japan
| | - Hitoshi Shiku
- Graduate School of Environmental Studies, Tohoku University, Sendai, Japan
| | - Tomokazu Matsue
- Advanced Institute for Materials Research (WPI), Tohoku University, Sendai, Japan.,Graduate School of Environmental Studies, Tohoku University, Sendai, Japan
| | - Hirokazu Kaji
- Department of Bioengineering and Robotics, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Murugan Ramalingam
- Advanced Institute for Materials Research (WPI), Tohoku University, Sendai, Japan.,Centre for Stem Cell Research, A unit of the Institute for Stem Cell Biology and Regenerative Medicine, Christian Medical College Campus, Vellore, India.,Institut National de la Santé et de la Recherche Médicale U977, Faculté de Chirurgie Dentaire, Université de Strasbourg, France
| | - Hojae Bae
- College of Animal Bioscience and Technology, Department of Bioindustrial Technologies, Konkuk University, Seoul, Republic of Korea
| | - Ali Khademhosseini
- Advanced Institute for Materials Research (WPI), Tohoku University, Sendai, Japan.,Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea.,Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School and Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.,Center of Nanotechnology, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
8
|
Abstract
MRF4 belongs to the basic helix-loop-helix class of transcription factors and this and other members of its family profoundly influence skeletal muscle development. Less is known about the role of these factors in aging. As MRF4 is preferentially expressed in subsynaptic nuclei, we postulated it might play a role in maintenance of the neuromuscular junction. To test this hypothesis, we examined the junctional regions of 19-20-month-old mice and found decreased levels of SV2B, a marker of synaptic vesicles, in MRF4-null mice relative to controls. There was a corresponding decrease in grip strength in MRF4-null mice. Taken together, these data suggest that the intrinsic muscle factor, MRF4 plays an important role in maintenance of neuromuscular junctions.
Collapse
|
9
|
Ketterer C, Zeiger U, Budak MT, Rubinstein NA, Khurana TS. Identification of the neuromuscular junction transcriptome of extraocular muscle by laser capture microdissection. Invest Ophthalmol Vis Sci 2010; 51:4589-99. [PMID: 20393109 DOI: 10.1167/iovs.09-4893] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To examine and characterize the profile of genes expressed at the synapses or neuromuscular junctions (NMJs) of extraocular muscles (EOMs) compared with those expressed at the tibialis anterior (TA). METHODS Adult rat eyeballs with rectus EOMs attached and TAs were dissected, snap frozen, serially sectioned, and stained for acetylcholinesterase (AChE) to identify the NMJs. Approximately 6000 NMJs for rectus EOM (EOMsyn), 6000 NMJs for TA (TAsyn), equal amounts of NMJ-free fiber regions (EOMfib, TAfib), and underlying myonuclei and RNAs were captured by laser capture microdissection (LCM). RNA was processed for microarray-based expression profiling. Expression profiles and interaction lists were generated for genes differentially expressed at synaptic and nonsynaptic regions of EOM (EOMsyn versus EOMfib) and TA (TAsyn versus TAfib). Profiles were validated by using real-time quantitative polymerase chain reaction (qPCR). RESULTS The regional transcriptomes associated with NMJs of EOMs and TAs were identified. Two hundred seventy-five genes were preferentially expressed in EOMsyn (compared with EOMfib), 230 in TAsyn (compared with TAfib), and 288 additional transcripts expressed in both synapses. Identified genes included novel genes as well as well-known, evolutionarily conserved synaptic markers (e.g., nicotinic acetylcholine receptor (AChR) alpha (Chrna) and epsilon (Chrne) subunits and nestin (Nes). CONCLUSIONS Transcriptome level differences exist between EOM synaptic regions and TA synaptic regions. The definition of the synaptic transcriptome provides insight into the mechanism of formation and functioning of the unique synapses of EOM and their differential involvement in diseases noted in the EOM allotype.
Collapse
Affiliation(s)
- Caroline Ketterer
- Department of Cell and Developmental Biology, Pennsylvania Muscle Institute, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
10
|
Wang YH, Li CK, Lee GH, Tsay HJ, Tsai HJ, Chen YH. Inactivation of zebrafish mrf4 leads to myofibril misalignment and motor axon growth disorganization. Dev Dyn 2008; 237:1043-50. [PMID: 18297736 DOI: 10.1002/dvdy.21478] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Mrf4 is a basic helix-loop-helix (bHLH) transcription factor associated with myogenesis. Two mrf4 transcripts, mrf4_tv1 and mrf4_tv2, were identified in zebrafish generated by alternative splicing. To study their biological functions, we separately injected the Mrf4-morpholinos, including MO1 (mrf4_tv1:mrf4_tv2 knockdown), MO2+MO3 (mrf4_tv1:mrf4_tv2 knockdown), MO3 (mrf4_tv1 knockdown), and MO4 (mrf4_tv2 knockdown), into zebrafish embryos to observe mrf4 gene knockdown phenotypes. No phenotypic abnormalities were observed following injection with 0.5 ng of MO1 but those injected with 4.5, 9, or 13.5 ng displayed curved-body phenotypes, such as indistinct somite boundaries, and a lack of uniformly sized cell blocks. Similar results were also observed in the (MO2+MO3)-, MO3-, and MO4-injected groups. To further investigate the molecular mechanisms that lead to curved-body phenotypes, we stained embryos with alpha-bungrotoxin and specific monoclonal antibodies F59, Znp1, and Zn5 to detect morphological changes in acetyl-choline receptor (AChR) clusters, muscle fibers, common path of the primary neurons, and secondary neurons axonal projections, respectively. Our results show that the muscle fibers of mrf4_(tv1:tv2)-morphant aligned disorderly and lost their integrity and attachment, while the defects became milder in either mrf4_tv1-morphant or mrf4_tv2-morphant. On the other hand, reduced axonal projections and AChR clusters were found in both mrf4_tv2-morphant and mrf4_(tv1:tv2)-morphant but distributed normally in the mrf4_tv1-morphant. We conclude that Mrf4_tv2 is involved in alignment of muscle fibers, and Mrf4_tv1 might have cooperative function with Mrf4_tv2 in muscle fiber alignment, without affecting the muscle-nerve connection.
Collapse
Affiliation(s)
- Yun-Hsin Wang
- Graduate Institute of Life Sciences, Tamkang University, Tamsui, Taiwan
| | | | | | | | | | | |
Collapse
|
11
|
Kang H, Tian L, Son YJ, Zuo Y, Procaccino D, Love F, Hayworth C, Trachtenberg J, Mikesh M, Sutton L, Ponomareva O, Mignone J, Enikolopov G, Rimer M, Thompson W. Regulation of the intermediate filament protein nestin at rodent neuromuscular junctions by innervation and activity. J Neurosci 2007; 27:5948-57. [PMID: 17537965 PMCID: PMC6672248 DOI: 10.1523/jneurosci.0621-07.2007] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The intermediate filament nestin is localized postsynaptically at rodent neuromuscular junctions. The protein forms a filamentous network beneath and between the synaptic gutters, surrounds myofiber nuclei, and is associated with Z-discs adjacent to the junction. In situ hybridization shows that nestin mRNA is synthesized selectively by synaptic myonuclei. Although weak immunoreactivity is present in myelinating Schwann cells that wrap the preterminal axon, nestin is not detected in the terminal Schwann cells (tSCs) that cover the nerve terminal branches. However, after denervation of muscle, nestin is upregulated in tSCs and in SCs within the nerve distal to the lesion site. In contrast, immunoreactivity is strongly downregulated in the muscle fiber. Transgenic mice in which the nestin neural enhancer drives expression of a green fluorescent protein (GFP) reporter show that the regulation in SCs is transcriptional. However, the postsynaptic expression occurs through enhancer elements distinct from those responsible for regulation in SCs. Application of botulinum toxin shows that the upregulation in tSCs and the loss of immunoreactivity in muscle fibers occurs with blockade of transmitter release. Extrinsic stimulation of denervated muscle maintains the postsynaptic expression of nestin but does not affect the upregulation in SCs. Thus, a nestin-containing cytoskeleton is promoted in the postsynaptic muscle fiber by nerve-evoked muscle activity but suppressed in tSCs by transmitter release. Nestin antibodies and GFP driven by nestin promoter elements serve as excellent markers for the reactive state of SCs. Vital imaging of GFP shows that SCs grow a dynamic set of processes after denervation.
Collapse
Affiliation(s)
- Hyuno Kang
- Section of Neurobiology, Institute of Neuroscience, and Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712, and
| | - Le Tian
- Section of Neurobiology, Institute of Neuroscience, and Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712, and
| | - Young-Jin Son
- Section of Neurobiology, Institute of Neuroscience, and Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712, and
| | - Yi Zuo
- Section of Neurobiology, Institute of Neuroscience, and Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712, and
| | - Diane Procaccino
- Section of Neurobiology, Institute of Neuroscience, and Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712, and
| | - Flora Love
- Section of Neurobiology, Institute of Neuroscience, and Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712, and
| | - Christopher Hayworth
- Section of Neurobiology, Institute of Neuroscience, and Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712, and
| | - Joshua Trachtenberg
- Section of Neurobiology, Institute of Neuroscience, and Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712, and
| | - Michelle Mikesh
- Section of Neurobiology, Institute of Neuroscience, and Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712, and
| | - Lee Sutton
- Section of Neurobiology, Institute of Neuroscience, and Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712, and
| | - Olga Ponomareva
- Section of Neurobiology, Institute of Neuroscience, and Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712, and
| | - John Mignone
- Cold Spring Harbor Laboratories, Cold Spring Harbor, New York 11724
| | | | - Mendell Rimer
- Section of Neurobiology, Institute of Neuroscience, and Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712, and
| | - Wesley Thompson
- Section of Neurobiology, Institute of Neuroscience, and Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712, and
| |
Collapse
|
12
|
Lehti TM, Silvennoinen M, Kivelä R, Kainulainen H, Komulainen J. Effects of streptozotocin-induced diabetes and physical training on gene expression of titin-based stretch-sensing complexes in mouse striated muscle. Am J Physiol Endocrinol Metab 2007; 292:E533-42. [PMID: 17003243 DOI: 10.1152/ajpendo.00229.2006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In striated muscle, a sarcomeric noncontractile protein, titin, is proposed to form the backbone of the stress- and strain-sensing structures. We investigated the effects of diabetes, physical training, and their combination on the gene expression of proteins of putative titin stretch-sensing complexes in skeletal and cardiac muscle. Mice were divided into control (C), training (T), streptozotocin-induced diabetic (D), and diabetic training (DT) groups. Training groups performed for 1, 3, or 5 wk of endurance training on a motor-driven treadmill. Muscle samples from T and DT groups together with respective controls were collected 24 h after the last training session. Gene expression of calf muscles (soleus, gastrocnemius, and plantaris) and cardiac muscle were analyzed using microarray and quantitative PCR. Diabetes induced changes in mRNA expression of the proteins of titin stretch-sensing complexes in Z-disc (MLP, myostatin), I-band (CARP, Ankrd2), and M-line (titin kinase signaling). Training alleviated diabetes-induced changes in most affected mRNA levels in skeletal muscle but only one change in cardiac muscle. In conclusion, we showed diabetes-induced changes in mRNA levels of several fiber-type-biased proteins (MLP, myostatin, Ankrd2) in skeletal muscle. These results are consistent with previous observations of diabetes-induced atrophy leading to slower fiber type composition. The ability of exercise to alleviate diabetes-induced changes may indicate slower transition of fiber type.
Collapse
Affiliation(s)
- T Maarit Lehti
- LIKES Research Center for Sport and Health Sciences, Rautpohjankatu 8, Viveca, FIN-40700 Jyväskylä, Finland.
| | | | | | | | | |
Collapse
|