1
|
Yamazaki H, Koganezawa N, Yokoo H, Sekino Y, Shirao T. Super-resolution imaging reveals the relationship between CaMKIIβ and drebrin within dendritic spines. Neurosci Res 2024; 199:30-35. [PMID: 37659612 DOI: 10.1016/j.neures.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023]
Abstract
Dendritic spines are unique postsynaptic structures that emerge from the dendrites of neurons. They undergo activity-dependent morphological changes known as structural plasticity. The changes involve actin cytoskeletal remodeling, which is regulated by actin-binding proteins. CaMKII is a crucial molecule in synaptic plasticity. Notably, CaMKIIβ subtype is known to bind to filamentous-actin and is closely involved in structural plasticity. We have shown that CaMKIIβ binds to drebrin, and is localized in spines as both drebrin-dependent and drebrin-independent pools. However, the nanoscale relationship between drebrin and CaMKIIβ within dendritic spines has not been clarified. In this study, we used stochastic optical reconstruction microscopy (STORM) to examine the detailed localization of these proteins. STORM imaging showed that CaMKIIβ co-localized with drebrin in the core region of spines, and localized in the submembrane region of spines without drebrin. Interestingly, the dissociation of CaMKIIβ and drebrin in the core region was induced by NMDA receptor activation. In drebrin knockdown neurons, CaMKIIβ was decreased in the core region but not in the submembrane region. Together it indicates that the clustering of CaMKIIβ in the spine core region is dependent on drebrin. These findings suggest that drebrin-dependent CaMKIIβ is in a standby state before its activation.
Collapse
Affiliation(s)
- Hiroyuki Yamazaki
- Faculty of Social Welfare, Gunma University of Health and Welfare, 191-1 Kawamagari-cho, Maebashi 371-0823, Japan; Department of Pharmacology, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi 371-8511, Gunma, Japan.
| | - Noriko Koganezawa
- Department of Pharmacology, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi 371-8511, Gunma, Japan
| | - Hideaki Yokoo
- Department of Human Pathology, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi 371-8511, Gunma, Japan
| | - Yuko Sekino
- Department of Veterinary Pathophysiology and Animal Health, Graduate School of Agricultural and Life Sciences, the University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan; Institute for Drug Discovery Innovation, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tomoaki Shirao
- AlzMed, Inc, UT South building Entrepreneurs Lab, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8485, Japan
| |
Collapse
|
2
|
Koganezawa N, Sekino Y, Kawakami H, Fuchino H, Kawahara N, Shirao T. NMDA receptor-dependent and -independent effects of natural compounds and crude drugs on synaptic states as revealed by drebrin imaging analysis. Eur J Neurosci 2021; 53:3548-3560. [PMID: 33851450 PMCID: PMC8365428 DOI: 10.1111/ejn.15231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/13/2021] [Accepted: 04/09/2021] [Indexed: 12/28/2022]
Abstract
Effective drugs that can cure cognitive impairments remain elusive. Because synaptic dysfunction has been correlated with cognitive impairments, drug development to target synaptic dysfunction is important. Recently, natural compounds and crude drugs have emerged as potential therapeutic agents for cognitive disorders. However, their effects on synaptic function remain unclear, because of lack of evaluation system with high reproducibility. We have recently developed highly reproducible in vitro high-content imaging analysis system for evaluation of synaptic function using drebrin as a marker for synaptic states. Therefore, we aimed to examine the direct effects of well-known natural compounds and crude drugs on synaptic states using this system. Rat hippocampal neurons were treated using natural compounds (nobiletin, diosgenin and tenuifolin) and crude drugs (Uncaria Hook [UH], Bezoar Bovis [BB], Coptis Rhizome [CR], Phellodendron Bark [PB] and Polygala Root [PR]). Immunocytochemical analysis was performed, and dendrite lengths and drebrin cluster densities were automatically quantified. We found that diosgenin, tenuifolin, CR, PB and PR decreased drebrin cluster densities, and the effects of PB and PR were partially dependent on N-methyl-D-aspartic acid-type glutamate receptors (NMDARs). Nobiletin and UH did not show any effects, whereas low-dose BB treatment increased drebrin cluster densities. Our results showed that diosgenin, tenuifolin, BB, CR, PB and PR appeared to directly change synaptic states. Particularly, the NMDAR dependency of PB and PR appears to affect synaptic plasticity.
Collapse
Affiliation(s)
- Noriko Koganezawa
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yuko Sekino
- Endowed Laboratory of Human Cell-Based Drug Discovery, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Hitomi Kawakami
- Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, Japan
| | - Hiroyuki Fuchino
- Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, Japan
| | - Nobuo Kawahara
- Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, Japan
| | - Tomoaki Shirao
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi, Japan.,AlzMed, Inc, Bunkyo-ku, Japan
| |
Collapse
|
3
|
Klemz A, Kreis P, Eickholt BJ, Gerevich Z. The actin binding protein drebrin helps to protect against the development of seizure-like events in the entorhinal cortex. Sci Rep 2021; 11:8662. [PMID: 33883605 PMCID: PMC8060314 DOI: 10.1038/s41598-021-87967-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/31/2021] [Indexed: 11/09/2022] Open
Abstract
The actin binding protein drebrin plays a key role in dendritic spine formation and synaptic plasticity. Decreased drebrin protein levels have been observed in temporal lobe epilepsy, suggesting the involvement of drebrin in the disease. Here we investigated the effect of drebrin knockout on physiological and pathophysiological neuronal network activities in mice by inducing gamma oscillations, involved in higher cognitive functions, and by analyzing pathophysiological epileptiform activity. We found that loss of drebrin increased the emergence of spontaneous gamma oscillations suggesting an increase in neuronal excitability when drebrin is absent. Further analysis showed that although the kainate-induced hippocampal gamma oscillations were unchanged in drebrin deficient mice, seizure like events measured in the entorhinal cortex appeared earlier and more frequently. The results suggest that while drebrin is not essential for normal physiological network activity, it helps to protect against the formation of seizure like activities during pathological conditions. The data indicate that targeting drebrin function could potentially be a preventive or therapeutic strategy for epilepsy treatment.
Collapse
Affiliation(s)
- Alexander Klemz
- Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Patricia Kreis
- Institute of Biochemistry, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany.
| | - Britta J Eickholt
- Institute of Biochemistry, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Zoltan Gerevich
- Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
4
|
Dombroski TCD, Peixoto-Santos JE, Maciel K, Baqui MMA, Velasco TR, Sakamoto AC, Assirati JA, Carlotti CG, Machado HR, Sousa GKD, Hanamura K, Leite JP, Costa da Costa J, Palmini AL, Paglioli E, Neder L, Spreafico R, Shirao T, Garbelli R, Martins AR. Drebrin expression patterns in patients with refractory temporal lobe epilepsy and hippocampal sclerosis. Epilepsia 2020; 61:1581-1594. [PMID: 32662890 DOI: 10.1111/epi.16595] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/08/2020] [Accepted: 06/08/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Drebrins are crucial for synaptic function and dendritic spine development, remodeling, and maintenance. In temporal lobe epilepsy (TLE) patients, a significant hippocampal synaptic reorganization occurs, and synaptic reorganization has been associated with hippocampal hyperexcitability. This study aimed to evaluate, in TLE patients, the hippocampal expression of drebrin using immunohistochemistry with DAS2 or M2F6 antibodies that recognize adult (drebrin A) or adult and embryonic (pan-drebrin) isoforms, respectively. METHODS Hippocampal sections from drug-resistant TLE patients with hippocampal sclerosis (HS; TLE, n = 33), of whom 31 presented with type 1 HS and two with type 2 HS, and autopsy control cases (n = 20) were assayed by immunohistochemistry and evaluated for neuron density, and drebrin A and pan-drebrin expression. Double-labeling immunofluorescences were performed to localize drebrin A-positive spines in dendrites (MAP2), and to evaluate whether drebrin colocalizes with inhibitory (GAD65) and excitatory (VGlut1) presynaptic markers. RESULTS Compared to controls, TLE patients had increased pan-drebrin in all hippocampal subfields and increased drebrin A-immunopositive area in all hippocampal subfields but CA1. Drebrin-positive spine density followed the same pattern as total drebrin quantification. Confocal microscopy indicated juxtaposition of drebrin-positive spines with VGlut1-positive puncta, but not with GAD65-positive puncta. Drebrin expression in the dentate gyrus of TLE cases was associated negatively with seizure frequency and positively with verbal memory. TLE patients with lower drebrin-immunopositive area in inner molecular layer (IML) than in outer molecular layer (OML) had a lower seizure frequency than those with higher or comparable drebrin-immunopositive area in IML compared with OML. SIGNIFICANCE Our results suggest that changes in drebrin-positive spines and drebrin expression in the dentate gyrus of TLE patients are associated with lower seizure frequency, more preserved verbal memory, and a better postsurgical outcome.
Collapse
Affiliation(s)
| | - Jose Eduardo Peixoto-Santos
- Discipline of Neuroscience, Department of Neurology and Neurosurgery, Paulista Medical School, UNIFESP, São Paulo, Brazil
| | - Karina Maciel
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Munira Muhammad Abdel Baqui
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Tonicarlo Rodrigues Velasco
- Ribeirao Preto Epilepsy Surgery Center, Clinics Hospital, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Americo Ceiki Sakamoto
- Ribeirao Preto Epilepsy Surgery Center, Clinics Hospital, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - João Alberto Assirati
- Department of Surgery, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Carlos Gilberto Carlotti
- Department of Surgery, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Hélio Rubens Machado
- Department of Surgery, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Gleice Kelly de Sousa
- Graduate Program of Health Sciences, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | - Kenji Hanamura
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - João Pereira Leite
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Jaderson Costa da Costa
- Department of Internal Medicine, School of Medicine, Epilepsy Surgery Program and Brain Institute, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - André Luiz Palmini
- Department of Internal Medicine, School of Medicine, Epilepsy Surgery Program and Brain Institute, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Eliseu Paglioli
- Department of Surgery, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Luciano Neder
- Department of Pathology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Roberto Spreafico
- Clinical Epileptology and Experimental Neurophysiology Unit, Scientific Institute for Research and Health Care Foundation Carlo Besta Neurological Institute, Milan, Italy
| | - Tomoaki Shirao
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Rita Garbelli
- Clinical Epileptology and Experimental Neurophysiology Unit, Scientific Institute for Research and Health Care Foundation Carlo Besta Neurological Institute, Milan, Italy
| | - Antonio Roberto Martins
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Institute for Neuroscience and Behavior, Ribeirão Preto, Brazil
| |
Collapse
|
5
|
Ishizuka Y, Bramham CR. A simple DMSO-based method for cryopreservation of primary hippocampal and cortical neurons. J Neurosci Methods 2020; 333:108578. [DOI: 10.1016/j.jneumeth.2019.108578] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/20/2019] [Accepted: 12/30/2019] [Indexed: 01/19/2023]
|
6
|
Dendritic Spines in Alzheimer's Disease: How the Actin Cytoskeleton Contributes to Synaptic Failure. Int J Mol Sci 2020; 21:ijms21030908. [PMID: 32019166 PMCID: PMC7036943 DOI: 10.3390/ijms21030908] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/24/2020] [Accepted: 01/26/2020] [Indexed: 02/06/2023] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by Aβ-driven synaptic dysfunction in the early phases of pathogenesis. In the synaptic context, the actin cytoskeleton is a crucial element to maintain the dendritic spine architecture and to orchestrate the spine’s morphology remodeling driven by synaptic activity. Indeed, spine shape and synaptic strength are strictly correlated and precisely governed during plasticity phenomena in order to convert short-term alterations of synaptic strength into long-lasting changes that are embedded in stable structural modification. These functional and structural modifications are considered the biological basis of learning and memory processes. In this review we discussed the existing evidence regarding the role of the spine actin cytoskeleton in AD synaptic failure. We revised the physiological function of the actin cytoskeleton in the spine shaping and the contribution of actin dynamics in the endocytosis mechanism. The internalization process is implicated in different aspects of AD since it controls both glutamate receptor membrane levels and amyloid generation. The detailed understanding of the mechanisms controlling the actin cytoskeleton in a unique biological context as the dendritic spine could pave the way to the development of innovative synapse-tailored therapeutic interventions and to the identification of novel biomarkers to monitor synaptic loss in AD.
Collapse
|
7
|
High-content imaging analysis for detecting the loss of drebrin clusters along dendrites in cultured hippocampal neurons. J Pharmacol Toxicol Methods 2019; 99:106607. [DOI: 10.1016/j.vascn.2019.106607] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/27/2019] [Accepted: 06/27/2019] [Indexed: 11/18/2022]
|
8
|
Mitsuoka T, Hanamura K, Koganezawa N, Kikura-Hanajiri R, Sekino Y, Shirao T. Assessment of NMDA receptor inhibition of phencyclidine analogues using a high-throughput drebrin immunocytochemical assay. J Pharmacol Toxicol Methods 2019; 99:106583. [PMID: 31082488 DOI: 10.1016/j.vascn.2019.106583] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 12/11/2022]
Abstract
INTRODUCTION In recent years, new psychoactive substances (NPS) have been widely distributed for abuse purposes. Effective measures to counter the spread of NPS are to promptly legislate them through the risk assessment. Phencyclidine analogues having inhibitory effects toward NMDA receptor (NMDAR) have recently emerged in Japan. Therefore, it is important to establish a high-throughput system for efficiently detecting NPS that can inhibit NMDAR activity. METHODS Hippocampal neurons prepared from embryonic rats were incubated in 96-well microplates. After 3 weeks in vitro, cultured neurons were preincubated with phencyclidine (PCP) or PCP-analogues, including 3-methoxyphencyclidine (3-MeO-PCP) and 4-[1-(3-methoxyphenyl)cyclohexyl]morpholine (3-MeO-PCMo), and then treated with 100 μM glutamate for 10 min. After fixation, cultured neurons were immunostained with anti-drebrin and anti-MAP2 antibodies. The linear cluster density of drebrin along the dendrites was automatically quantified using a protocol that was originally developed by us. RESULTS The high-throughput immunocytochemical assay, measuring drebrin cluster density of cultured neurons, demonstrated that glutamate-induced reduction of drebrin cluster density in 96-well plates is competitively inhibited by NMDAR antagonist, APV. The reduction was also antagonized by PCP, 3-MeO-PCP and 3-MeO-PCMo. The inhibitory activity of 3-MeO-PCMo was lower than that of PCP or 3-MeO-PCP, with IC50 values of 26.67 μM (3-MeO-PCMo), 2.02 μM (PCP) and 1.51 μM (3-MeO-PCP). DISCUSSION The relative efficacy among PCP, 3-MeO-PCP and 3-MeO-PCMo calculated from IC50 are similar to those from Ki values. This suggests that the high-throughput imaging analysis is useful to speculate the Ki values of new PCP analogues without performing the kinetic studies.
Collapse
Affiliation(s)
- Toshinari Mitsuoka
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan; Endowed Laboratory of Human Cell-Based Drug Discovery, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kenji Hanamura
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Noriko Koganezawa
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Ruri Kikura-Hanajiri
- Division of Pharmacognosy, Phytochemistry and Narcotics, National Institute of Health Sciences, Kawasaki 210-9501, Japan
| | - Yuko Sekino
- Endowed Laboratory of Human Cell-Based Drug Discovery, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Tomoaki Shirao
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan.
| |
Collapse
|
9
|
Borovac J, Bosch M, Okamoto K. Regulation of actin dynamics during structural plasticity of dendritic spines: Signaling messengers and actin-binding proteins. Mol Cell Neurosci 2018; 91:122-130. [PMID: 30004015 DOI: 10.1016/j.mcn.2018.07.001] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 06/25/2018] [Accepted: 07/06/2018] [Indexed: 12/17/2022] Open
Abstract
Activity-dependent plasticity of synaptic structure and function plays an essential role in neuronal development and in cognitive functions including learning and memory. The formation, maintenance and modulation of dendritic spines are mainly controlled by the dynamics of actin filaments (F-actin) through interaction with various actin-binding proteins (ABPs) and postsynaptic signaling messengers. Induction of long-term potentiation (LTP) triggers a cascade of events involving Ca2+ signaling, intracellular pathways such as cAMP and cGMP, and regulation of ABPs such as CaMKII, Cofilin, Aip1, Arp2/3, α-actinin, Profilin and Drebrin. We review here how these ABPs modulate the rate of assembly, disassembly, stabilization and bundling of F-actin during LTP induction. We highlight the crucial role that CaMKII exerts in both functional and structural plasticity by directly coupling Ca2+ signaling with F-actin dynamics through the β subunit. Moreover, we show how cAMP and cGMP second messengers regulate postsynaptic structural potentiation. Brain disorders such as Alzheimer's disease, schizophrenia or autism, are associated with alterations in the regulation of F-actin dynamics by these ABPs and signaling messengers. Thus, a better understanding of the molecular mechanisms controlling actin cytoskeleton can provide cues for the treatment of these disorders.
Collapse
Affiliation(s)
- Jelena Borovac
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1X5, Canada
| | - Miquel Bosch
- Institute for Bioengineering of Catalonia, Barcelona 08028, Spain.
| | - Kenichi Okamoto
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1X5, Canada.
| |
Collapse
|
10
|
Yamazaki H, Sasagawa Y, Yamamoto H, Bito H, Shirao T. CaMKIIβ is localized in dendritic spines as both drebrin-dependent and drebrin-independent pools. J Neurochem 2018; 146:145-159. [PMID: 29675826 PMCID: PMC6099455 DOI: 10.1111/jnc.14449] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 03/14/2018] [Accepted: 04/04/2018] [Indexed: 12/21/2022]
Abstract
Drebrin is a major F-actin binding protein in dendritic spines that is critically involved in the regulation of dendritic spine morphogenesis, pathology, and plasticity. In this study, we aimed to identify a novel drebrin-binding protein involved in spine morphogenesis and synaptic plasticity. We confirmed the beta subunit of Ca2+ /calmodulin-dependent protein kinase II (CaMKIIβ) as a drebrin-binding protein using a yeast two-hybrid system, and investigated the drebrin-CaMKIIβ relationship in dendritic spines using rat hippocampal neurons. Drebrin knockdown resulted in diffuse localization of CaMKIIβ in dendrites during the resting state, suggesting that drebrin is involved in the accumulation of CaMKIIβ in dendritic spines. Fluorescence recovery after photobleaching analysis showed that drebrin knockdown increased the stable fraction of CaMKIIβ, indicating the presence of drebrin-independent, more stable CaMKIIβ. NMDA receptor activation also increased the stable fraction in parallel with drebrin exodus from dendritic spines. These findings suggest that CaMKIIβ can be classified into distinct pools: CaMKIIβ associated with drebrin, CaMKIIβ associated with post-synaptic density (PSD), and CaMKIIβ free from PSD and drebrin. CaMKIIβ appears to be anchored to a protein complex composed of drebrin-binding F-actin during the resting state. NMDA receptor activation releases CaMKIIβ from drebrin resulting in CaMKIIβ association with PSD.
Collapse
Affiliation(s)
- Hiroyuki Yamazaki
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Yoshio Sasagawa
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Hideyuki Yamamoto
- Department of Biochemistry, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Haruhiko Bito
- Department of Neurochemistry, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Tomoaki Shirao
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| |
Collapse
|
11
|
Miao S, Koganezawa N, Hanamura K, Puspitasari A, Shirao T. N-methyl-D-aspartate Receptor Mediates X-irradiation-induced Drebrin Decrease in Hippocampus. ACTA ACUST UNITED AC 2018. [DOI: 10.2974/kmj.68.111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Shuchuan Miao
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine
| | - Noriko Koganezawa
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine
| | - Kenji Hanamura
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine
| | - Anggraeini Puspitasari
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine
- International Open Laboratory, Harvard Medical School/MGH Dr. Held Lab, Gunma University Initiative for Advanced Research (GIAR)
| | - Tomoaki Shirao
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine
| |
Collapse
|
12
|
Hanamura K, Kamata Y, Yamazaki H, Kojima N, Shirao T. Isoform-dependent Regulation of Drebrin Dynamics in Dendritic Spines. Neuroscience 2018. [DOI: 10.1016/j.neuroscience.2018.02.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
13
|
Nikolaienko O, Patil S, Eriksen MS, Bramham CR. Arc protein: a flexible hub for synaptic plasticity and cognition. Semin Cell Dev Biol 2017; 77:33-42. [PMID: 28890419 DOI: 10.1016/j.semcdb.2017.09.006] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/06/2017] [Accepted: 09/06/2017] [Indexed: 02/08/2023]
Abstract
Mammalian excitatory synapses express diverse types of synaptic plasticity. A major challenge in neuroscience is to understand how a neuron utilizes different types of plasticity to sculpt brain development, function, and behavior. Neuronal activity-induced expression of the immediate early protein, Arc, is critical for long-term potentiation and depression of synaptic transmission, homeostatic synaptic scaling, and adaptive functions such as long-term memory formation. However, the molecular basis of Arc protein function as a regulator of synaptic plasticity and cognition remains a puzzle. Recent work on the biophysical and structural properties of Arc, its protein-protein interactions and post-translational modifications have shed light on the issue. Here, we present Arc protein as a flexible, multifunctional and interactive hub. Arc interacts with specific effector proteins in neuronal compartments (dendritic spines, nuclear domains) to bidirectionally regulate synaptic strength by distinct molecular mechanisms. Arc stability, subcellular localization, and interactions are dictated by synaptic activity and post-translational modification of Arc. This functional versatility and context-dependent signaling supports a view of Arc as a highly specialized master organizer of long-term synaptic plasticity, critical for information storage and cognition.
Collapse
Affiliation(s)
- Oleksii Nikolaienko
- Department of Biomedicine and KG Jebsen Center for Neuropsychiatric Disorders, University of Bergen, Jonas Lies vei 91, N-5009, Bergen, Norway
| | - Sudarshan Patil
- Department of Biomedicine and KG Jebsen Center for Neuropsychiatric Disorders, University of Bergen, Jonas Lies vei 91, N-5009, Bergen, Norway
| | - Maria Steene Eriksen
- Department of Biomedicine and KG Jebsen Center for Neuropsychiatric Disorders, University of Bergen, Jonas Lies vei 91, N-5009, Bergen, Norway
| | - Clive R Bramham
- Department of Biomedicine and KG Jebsen Center for Neuropsychiatric Disorders, University of Bergen, Jonas Lies vei 91, N-5009, Bergen, Norway.
| |
Collapse
|
14
|
Majoul IV, Ernesti JS, Butkevich EV, Duden R. Drebrins and Connexins: A Biomedical Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1006:225-247. [DOI: 10.1007/978-4-431-56550-5_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Nair RR, Patil S, Tiron A, Kanhema T, Panja D, Schiro L, Parobczak K, Wilczynski G, Bramham CR. Dynamic Arc SUMOylation and Selective Interaction with F-Actin-Binding Protein Drebrin A in LTP Consolidation In Vivo. Front Synaptic Neurosci 2017; 9:8. [PMID: 28553222 PMCID: PMC5426369 DOI: 10.3389/fnsyn.2017.00008] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 04/21/2017] [Indexed: 01/21/2023] Open
Abstract
Activity-regulatedcytoskeleton-associated protein (Arc) protein is implicated as a master regulator of long-term forms of synaptic plasticity and memory formation, but the mechanisms controlling Arc protein function are little known. Post-translation modification by small ubiquitin-like modifier (SUMO) proteins has emerged as a major mechanism for regulating protein-protein interactions and function. We first show in cell lines that ectopically expressed Arc undergoes mono-SUMOylation. The covalent addition of a single SUMO1 protein was confirmed by in vitro SUMOylation of immunoprecipitated Arc. To explore regulation of endogenous Arc during synaptic plasticity, we induced long-term potentiation (LTP) in the dentate gyrus of live anesthetized rats. Using coimmunoprecipitation of native proteins, we show that Arc synthesized during the maintenance phase of LTP undergoes dynamic mono-SUMO1-ylation. Levels of unmodified Arc increase in multiple subcellular fractions (cytosol, membrane, nuclear and cytoskeletal), whereas enhanced Arc SUMOylation was specific to the synaptoneurosomal and the cytoskeletal fractions. Dentate gyrus LTP consolidation requires a period of sustained Arc synthesis driven by brain-derived neurotrophic factor (BDNF) signaling. Local infusion of the BDNF scavenger, TrkB-Fc, during LTP maintenance resulted in rapid reversion of LTP, inhibition of Arc synthesis and loss of enhanced Arc SUMO1ylation. Furthermore, coimmunoprecipitation analysis showed that SUMO1-ylated Arc forms a complex with the F-actin-binding protein drebrin A, a major regulator of cytoskeletal dynamics in dendritic spines. Although Arc also interacted with dynamin 2, calcium/calmodulindependentprotein kinase II-beta (CaMKIIβ), and postsynaptic density protein-95 (PSD-95), these complexes lacked SUMOylated Arc. The results support a model in which newly synthesized Arc is SUMOylated and targeted for actin cytoskeletal regulation during in vivo LTP.
Collapse
Affiliation(s)
- Rajeevkumar R Nair
- Department of Biomedicine and KG Jebsen Centre for Neuropsychiatric Disorders, University of BergenBergen, Norway
| | - Sudarshan Patil
- Department of Biomedicine and KG Jebsen Centre for Neuropsychiatric Disorders, University of BergenBergen, Norway
| | - Adrian Tiron
- Department of Biomedicine and KG Jebsen Centre for Neuropsychiatric Disorders, University of BergenBergen, Norway
| | - Tambudzai Kanhema
- Department of Biomedicine and KG Jebsen Centre for Neuropsychiatric Disorders, University of BergenBergen, Norway
| | - Debabrata Panja
- Department of Biomedicine and KG Jebsen Centre for Neuropsychiatric Disorders, University of BergenBergen, Norway
| | - Lars Schiro
- Department of Biomedicine and KG Jebsen Centre for Neuropsychiatric Disorders, University of BergenBergen, Norway
| | - Kamil Parobczak
- Laboratory of Molecular and Systemic Neuromorphology, Department of Neurophysiology, Nencki Institute of Experimental BiologyWarsaw, Poland
| | - Grzegorz Wilczynski
- Laboratory of Molecular and Systemic Neuromorphology, Department of Neurophysiology, Nencki Institute of Experimental BiologyWarsaw, Poland
| | - Clive R Bramham
- Department of Biomedicine and KG Jebsen Centre for Neuropsychiatric Disorders, University of BergenBergen, Norway
| |
Collapse
|
16
|
Shirao T, Hanamura K, Koganezawa N, Ishizuka Y, Yamazaki H, Sekino Y. The role of drebrin in neurons. J Neurochem 2017; 141:819-834. [PMID: 28199019 DOI: 10.1111/jnc.13988] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 12/27/2016] [Accepted: 01/11/2017] [Indexed: 01/13/2023]
Abstract
Drebrin is an actin-binding protein that changes the helical pitch of actin filaments (F-actin), and drebrin-decorated F-actin shows slow treadmilling and decreased rate of depolymerization. Moreover, the characteristic morphology of drebrin-decorated F-actin enables it to respond differently to the same signals from other actin cytoskeletons. Drebrin consists of two major isoforms, drebrin E and drebrin A. In the developing brain, drebrin E appears in migrating neurons and accumulates in the growth cones of axons and dendrites. Drebrin E-decorated F-actin links lamellipodium F-actin to microtubules in the growth cones. Then drebrin A appears at nascent synapses and drebrin A-decorated F-actin facilitates postsynaptic molecular assembly. In the adult brain, drebrin A-decorated F-actin is concentrated in the central region of dendritic spines. During long-term potentiation initiation, NMDA receptor-mediated Ca2+ influx induces the transient exodus of drebrin A-decorated F-actin via myosin II ATPase activation. Because of the unique physical characteristics of drebrin A-decorated F-actin, this exodus likely contributes to the facilitation of F-actin polymerization and spine enlargement. Additionally, drebrin reaccumulation in dendritic spines is observed after the exodus. In our drebrin exodus model of structure-based synaptic plasticity, reestablishment of drebrin A-decorated F-actin is necessary to keep the enlarged spine size during long-term potentiation maintenance. In this review, we introduce the genetic and biochemical properties of drebrin and the roles of drebrin in early stage of brain development, synaptic formation and synaptic plasticity. Further, we discuss the pathological relevance of drebrin loss in Alzheimer's disease. This article is part of the mini review series "60th Anniversary of the Japanese Society for Neurochemistry".
Collapse
Affiliation(s)
- Tomoaki Shirao
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Kenji Hanamura
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Noriko Koganezawa
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Yuta Ishizuka
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Hiroyuki Yamazaki
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Yuko Sekino
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan.,Division of Pharmacology, National Institute of Health Sciences, Tokyo, Japan
| |
Collapse
|
17
|
Koganezawa N, Hanamura K, Shirao T. Progress in applications of iPSC-derived neurons for evaluation of drugs. Nihon Yakurigaku Zasshi 2017; 149:104-109. [PMID: 28260738 DOI: 10.1254/fpj.149.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Koganezawa N, Hanamura K, Sekino Y, Shirao T. The role of drebrin in dendritic spines. Mol Cell Neurosci 2017; 84:85-92. [PMID: 28161364 DOI: 10.1016/j.mcn.2017.01.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/06/2016] [Accepted: 01/18/2017] [Indexed: 11/17/2022] Open
Abstract
Dendritic spines form typical excitatory synapses in the brain and their shapes vary depending on synaptic inputs. It has been suggested that the morphological changes of dendritic spines play an important role in synaptic plasticity. Dendritic spines contain a high concentration of actin, which has a central role in supporting cell motility, and polymerization of actin filaments (F-actin) is most likely involved in spine shape changes. Drebrin is an actin-binding protein that forms stable F-actin and is highly accumulated within dendritic spines. Drebrin has two isoforms, embryonic-type drebrin E and adult-type drebrin A, that change during development from E to A. Inhibition of drebrin A expression results in a delay of synapse formation and inhibition of postsynaptic protein accumulation, suggesting that drebrin A has an important role in spine maturation. In mature synapses, glutamate stimulation induces rapid spine-head enlargement during long-term potentiation (LTP) formation. LTP stimulation induces Ca2+ entry through N-methyl-d-aspartate (NMDA) receptors, which causes drebrin exodus from dendritic spines. Once drebrin exits from dendritic spine heads, the dynamic actin pool increases in spine heads to facilitate F-actin polymerization. To maintain enlarged spine heads, drebrin-decorated F-actin is thought to reform within the spine heads. Thus, drebrin plays a pivotal role in spine plasticity through regulation of F-actin.
Collapse
Affiliation(s)
- Noriko Koganezawa
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Kenji Hanamura
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Yuko Sekino
- Division of Pharmacology, National Institute of Health Sciences, Tokyo 158-8501, Japan
| | - Tomoaki Shirao
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan.
| |
Collapse
|
19
|
Sekino Y, Koganezawa N, Mizui T, Shirao T. Role of Drebrin in Synaptic Plasticity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1006:183-201. [DOI: 10.1007/978-4-431-56550-5_11] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
|
21
|
Ishizuka Y, Hanamura K. Drebrin in Alzheimer’s Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1006:203-223. [DOI: 10.1007/978-4-431-56550-5_12] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
22
|
Zimering JH, Dong Y, Fang F, Huang L, Zhang Y, Xie Z. Anesthetic Sevoflurane Causes Rho-Dependent Filopodial Shortening in Mouse Neurons. PLoS One 2016; 11:e0159637. [PMID: 27441369 PMCID: PMC4956198 DOI: 10.1371/journal.pone.0159637] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/06/2016] [Indexed: 11/25/2022] Open
Abstract
Early postnatal anesthesia causes long-lasting learning and memory impairment in rodents, however, evidence for a specific neurotoxic effect on early synaptogenesis has not been demonstrated. Drebrin A is an actin binding protein whose localization in dendritic protrusions serves an important role in dendritic spine morphogenesis, and is a marker for early synaptogenesis. We therefore set out to investigate whether clinically-relevant concentrations of anesthetic sevoflurane, widely- used in infants and children, alters dendritic morphology in cultured fetal day 16 mouse hippocampal neurons. After 7 days in vitro, mouse hippocampal neurons were exposed to four hours of 3% sevoflurane in 95% air/5% CO2 or control condition (95% air/5% CO2). Neurons were fixed in 4% paraformaldehyde and stained with Alexa Fluor555-Phalloidin, and/or rabbit anti-mouse drebrin A/E antibodies which permitted subcellular localization of filamentous (F)-actin and/or drebrin immunoreactivity, respectively. Sevoflurane caused acute significant length-shortening in filopodia and thin dendritic spines in days-in-vitro 7 neurons, an effect which was completely rescued by co-incubating neurons with ten micromolar concentrations of the selective Rho kinase inhibitor Y27632. Filopodia and thin spine recovered in length two days after sevoflurane exposure. Yet cluster-type filopodia (a precursor to synaptic filopodia) were persistently significantly decreased in number on day-in-vitro 9, in part owing to preferential localization of drebrin immunoreactivity to dendritic shafts versus filopodial stalks. These data suggest that sevoflurane induces F-actin depolymerization leading to acute, reversible length-shortening in dendritic protrusions through a mechanism involving (in part) activation of RhoA/Rho kinase signaling and impairs localization of drebrin A to filopodia required for early excitatory synapse formation.
Collapse
Affiliation(s)
- Jeffrey H. Zimering
- University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Yuanlin Dong
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Fang Fang
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Lining Huang
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Yiying Zhang
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Zhongcong Xie
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
23
|
The role of the drebrin/EB3/Cdk5 pathway in dendritic spine plasticity, implications for Alzheimer's disease. Brain Res Bull 2016; 126:293-299. [PMID: 27365229 DOI: 10.1016/j.brainresbull.2016.06.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 06/23/2016] [Accepted: 06/25/2016] [Indexed: 11/21/2022]
Abstract
The drebrin/EB3/Cdk5 intracellular signalling pathway couples actin filaments to dynamic microtubules in cellular settings where cells are changing shape. The pathway has been most intensively studied in neuronal development, particularly neuritogenesis and neuronal migration, and in synaptic plasticity at dendritic spines in mature neurons. Drebrin is an actin filament side-binding and bundling protein that stabilises actin filaments. The end-binding (EB) proteins are microtubule plus-end tracking proteins (+TIPs) that localise to the growing plus-ends of dynamic microtubules and regulate their behavior and the binding of other +TIP proteins. EB3 binds specifically to drebrin when drebrin is bound to actin filaments, for example at the base of a growth cone filopodium, and EB3 is located at the plus-end of a growing microtubule inserting into the filopodium. This interaction therefore forms the basis for coupling dynamic microtubules to actin filaments in growth cones of developing neurons. Appropriate responses to growth cone guidance cues depend on actin filament/microtubule co-ordination in the growth cone, although the role of the drebrin/EB3/Cdk5 pathway in this context has not been directly tested. A similar cytoskeleton coupling pathway operates in dendritic spines in mature neurons where the activity-dependent insertion of dynamic microtubules into dendritic spines is facilitated by drebrin binding to EB3. Microtubule insertion into dendritic spines drives spine maturation during long-term potentiation and therefore has a role in synaptic plasticity and memory formation. In Alzheimer's disease and related chronic neurodegenerative diseases, there is an early and dramatic loss of drebrin from dendritic spines that precedes synapse loss and neurodegeneration and might contribute to a failure of synaptic plasticity and hence to cognitive decline.
Collapse
|
24
|
Puspitasari A, Koganezawa N, Ishizuka Y, Kojima N, Tanaka N, Nakano T, Shirao T. X Irradiation Induces Acute Cognitive Decline via Transient Synaptic Dysfunction. Radiat Res 2016; 185:423-30. [DOI: 10.1667/rr14236.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
25
|
Kojima N, Yasuda H, Hanamura K, Ishizuka Y, Sekino Y, Shirao T. Drebrin A regulates hippocampal LTP and hippocampus-dependent fear learning in adult mice. Neuroscience 2016; 324:218-26. [PMID: 26970584 DOI: 10.1016/j.neuroscience.2016.03.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 02/24/2016] [Accepted: 03/05/2016] [Indexed: 10/25/2022]
Abstract
Structural plasticity of dendritic spines, which underlies higher brain functions including learning and memory, is dynamically regulated by the actin cytoskeleton and its associated proteins. Drebrin A is an F-actin-binding protein preferentially expressed in the brain and localized in the dendritic spines of mature neurons. Isoform conversion from drebrin E to drebrin A and accumulation of the latter in dendritic spines occurs during synapse maturation. We have previously demonstrated that drebrin A plays a pivotal role in spine morphogenesis and plasticity. However, it is unclear whether drebrin A plays a specific role in processes required for structural plasticity, and whether drebrin E can substitute in this role. To answer these questions, we analyzed mutant mice (named DAKO mice), in which isoform conversion from drebrin E to drebrin A is disrupted. In DAKO mouse brain, drebrin E continues to be expressed throughout life instead of drebrin A. Electrophysiological studies using hippocampal slices revealed that long-term potentiation of CA1 synapses was impaired in adult DAKO mice, but not in adolescents. In parallel with this age-dependent impairment, DAKO mice exhibited impaired hippocampus-dependent fear learning in an age-dependent manner; the impairment was evident in adult mice, but not in adolescents. In addition, histological investigation revealed that the spine length of the apical dendrite of CA1 pyramidal cells was significantly longer in adult DAKO mice than in wild-type mice. Our data indicate that the roles of drebrin E and drebrin A in brain function are different from each other, that the isoform conversion of drebrin is critical, and that drebrin A is indispensable for normal synaptic plasticity and hippocampus-dependent fear memory in the adult brain.
Collapse
Affiliation(s)
- N Kojima
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan; Faculty of Life Sciences, Toyo University, Itakura, Gunma 374-0193, Japan; Institute of Life Innovation Studies, Toyo University, Itakura, Gunma 374-0193, Japan
| | - H Yasuda
- Education and Research Support Center, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - K Hanamura
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Y Ishizuka
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Y Sekino
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan; Division of Pharmacology, National Institute of Health Sciences, Tokyo, Tokyo 158-8501, Japan
| | - T Shirao
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan.
| |
Collapse
|
26
|
Penazzi L, Bakota L, Brandt R. Microtubule Dynamics in Neuronal Development, Plasticity, and Neurodegeneration. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 321:89-169. [PMID: 26811287 DOI: 10.1016/bs.ircmb.2015.09.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neurons are the basic information-processing units of the nervous system. In fulfilling their task, they establish a structural polarity with an axon that can be over a meter long and dendrites with a complex arbor, which can harbor ten-thousands of spines. Microtubules and their associated proteins play important roles during the development of neuronal morphology, the plasticity of neurons, and neurodegenerative processes. They are dynamic structures, which can quickly adapt to changes in the environment and establish a structural scaffold with high local variations in composition and stability. This review presents a comprehensive overview about the role of microtubules and their dynamic behavior during the formation and maturation of processes and spines in the healthy brain, during aging and under neurodegenerative conditions. The review ends with a discussion of microtubule-targeted therapies as a perspective for the supportive treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Lorène Penazzi
- Department of Neurobiology, University of Osnabrück, Osnabrück, Germany
| | - Lidia Bakota
- Department of Neurobiology, University of Osnabrück, Osnabrück, Germany
| | - Roland Brandt
- Department of Neurobiology, University of Osnabrück, Osnabrück, Germany
| |
Collapse
|
27
|
Scheff SW, Price DA, Ansari MA, Roberts KN, Schmitt FA, Ikonomovic MD, Mufson EJ. Synaptic change in the posterior cingulate gyrus in the progression of Alzheimer's disease. J Alzheimers Dis 2015; 43:1073-90. [PMID: 25147118 DOI: 10.3233/jad-141518] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mild cognitive impairment (MCI) is considered to be an early stage in the progression of Alzheimer's disease (AD) providing an opportunity to investigate brain pathogenesis prior to the onset of dementia. Neuroimaging studies have identified the posterior cingulate gyrus (PostC) as a cortical region affected early in the onset of AD. This association cortex is involved in a variety of different cognitive tasks and is intimately connected with the hippocampal/entorhinal cortex region, a component of the medial temporal memory circuit that displays early AD pathology. We quantified the total number of synapses in lamina 3 of the PostC using unbiased stereology coupled with electron microscopy from short postmortem autopsy tissue harvested from cases at different stage of AD progression. Individuals in the early stages of AD showed a significant decline in synaptic numbers compared to individuals with no cognitive impairment (NCI). Subjects with MCI exhibited synaptic numbers that were between the AD and NCI cohorts. Adjacent tissue was evaluated for changes in both pre and postsynaptic proteins levels. Individuals with MCI demonstrated a significant loss in presynaptic markers synapsin-1 and synaptophysin and postsynaptic markers PSD-95 and SAP-97. Levels of [3H]PiB binding was significantly increased in MCI and AD and correlated strongly with levels of synaptic proteins. All synaptic markers showed a significant association with Mini-Mental Status Examination scores. These results support the idea that the PostC synaptic function is affected during the prodromal stage of the disease and may underlie some of the early clinical sequelae associated with AD.
Collapse
Affiliation(s)
- Stephen W Scheff
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Douglas A Price
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Mubeen A Ansari
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Kelly N Roberts
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | | | - Milos D Ikonomovic
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Elliott J Mufson
- Rush University Medical Center, Department of Neurological Sciences, Chicago, IL, USA
| |
Collapse
|
28
|
Abstract
Increasing evidence suggests that cellular stress may underlie mood disorders such as bipolar disorder and major depression, particularly as lithium and its targets can protect against neuronal cell death. Here we describe N-methyl-D-aspartate (NMDA)-induced filamentous actin reorganization (NIFAR) as a useful in-vitro model for studying acute neurocellular stress and investigating the effects of mood stabilizers. Brief incubation of cultured neurons with NMDA (50 µM, 5 min) induces marked reorganization of F-actin within the somatodendritic domain of a majority of neurons. During NIFAR, F-actin is rapidly depleted from dendritic spines and aberrantly aggregates within the dendrite shaft. The widely used mood stabilizer lithium chloride prevented NIFAR in a time-dependent and dose-dependent manner, consistent with its known efficacy in treating bipolar disorder. Inhibitors of the lithium target glycogen synthase kinase 3 and its upstream activator phosphoinositide-3-kinase also prevented NIFAR. The antidepressant compounds imipramine and fluoxetine also attenuated NIFAR. These findings have potential relevance to neuropsychiatric diseases characterized by excessive glutamate receptor activity and synaptotoxicity. We propose that protection of the dendritic actin cytoskeleton may be a common mechanism shared by various mood stabilizers.
Collapse
|
29
|
Chimura T, Launey T, Yoshida N. Calpain-Mediated Degradation of Drebrin by Excitotoxicity In vitro and In vivo. PLoS One 2015; 10:e0125119. [PMID: 25905636 PMCID: PMC4408054 DOI: 10.1371/journal.pone.0125119] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 03/20/2015] [Indexed: 11/18/2022] Open
Abstract
The level of drebrin, an evolutionarily conserved f-actin-binding protein that regulates synaptic structure and function, is reduced in the brains of patients with chronic neurodegenerative diseases such as Alzheimer’s disease (AD) and Down’s syndrome (DS). It was suggested that excitotoxic neuronal death caused by overactivation of NMDA-type glutamate receptors (NMDARs) occurs in AD and DS; however, the relationship between excitotoxicity and drebrin loss is unknown. Here, we show that drebrin is a novel target of calpain-mediated proteolysis under excitotoxic conditions induced by the overactivation of NMDARs. In cultured rodent neurons, degradation of drebrin was confirmed by the detection of proteolytic fragments, as well as a reduction in the amount of full-length drebrin. Notably, the NMDA-induced degradation of drebrin in mature neurons occurred concomitantly with a loss of f-actin. Furthermore, pharmacological inhibition of f-actin loss facilitated the drebrin degradation, suggesting a functional linkage between f-actin and drebrin degradation. Biochemical analyses using purified drebrin and calpain revealed that calpain degraded drebrin directly in vitro. Furthermore, cerebral ischemia also induced the degradation of drebrin in vivo. These findings suggest that calpain-mediated degradation of drebrin is a fundamental pathology of neurodegenerative diseases mediated by excitotoxicity, regardless of whether they are acute or chronic. Drebrin regulates the synaptic clustering of NMDARs; therefore, degradation of drebrin under excitotoxic conditions may modulate NMDAR-mediated signal transductions, including pro-survival signaling. Overall, the results presented here provide novel insights into the molecular basis of cellular responses to excitotoxicity in vitro and in vivo.
Collapse
Affiliation(s)
- Takahiko Chimura
- Laboratory of Developmental Genetics, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- * E-mail:
| | - Thomas Launey
- RIKEN Brain Science Institute, Launey Research Unit, Wako, Saitama, Japan
| | - Nobuaki Yoshida
- Laboratory of Developmental Genetics, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
30
|
Ning L, Paetau S, Nyman-Huttunen H, Tian L, Gahmberg CG. ICAM-5 affects spine maturation by regulation of NMDA receptor binding to α-actinin. Biol Open 2015; 4:125-36. [PMID: 25572420 PMCID: PMC4365481 DOI: 10.1242/bio.201410439] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
ICAM-5 is a negative regulator of dendritic spine maturation and facilitates the formation of filopodia. Its absence results in improved memory functions, but the mechanisms have remained poorly understood. Activation of NMDA receptors induces ICAM-5 ectodomain cleavage through a matrix metalloproteinase (MMP)-dependent pathway, which promotes spine maturation and synapse formation. Here, we report a novel, ICAM-5-dependent mechanism underlying spine maturation by regulating the dynamics and synaptic distribution of α-actinin. We found that GluN1 and ICAM-5 partially compete for the binding to α-actinin; deletion of the cytoplasmic tail of ICAM-5 or ablation of the gene resulted in increased association of GluN1 with α-actinin, whereas internalization of ICAM-5 peptide perturbed the GluN1/α-actinin interaction. NMDA treatment decreased α-actinin binding to ICAM-5, and increased the binding to GluN1. Proper synaptic distribution of α-actinin requires the ICAM-5 cytoplasmic domain, without which α-actinin tended to accumulate in filopodia, leading to F-actin reorganization. The results indicate that ICAM-5 retards spine maturation by preventing reorganization of the actin cytoskeleton, but NMDA receptor activation is sufficient to relieve the brake and promote the maturation of spines.
Collapse
Affiliation(s)
- Lin Ning
- Division of Biochemistry and Biotechnology, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 5, FIN-00014, Helsinki, Finland
| | - Sonja Paetau
- Division of Biochemistry and Biotechnology, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 5, FIN-00014, Helsinki, Finland
| | - Henrietta Nyman-Huttunen
- Division of Biochemistry and Biotechnology, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 5, FIN-00014, Helsinki, Finland
| | - Li Tian
- Neuroscience Center, University of Helsinki, Viikinkaari 4, FIN-00014, Helsinki, Finland
| | - Carl G Gahmberg
- Division of Biochemistry and Biotechnology, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 5, FIN-00014, Helsinki, Finland
| |
Collapse
|
31
|
Histone deacetylase mediates the decrease in drebrin cluster density induced by amyloid beta oligomers. Neurochem Int 2014; 76:114-21. [DOI: 10.1016/j.neuint.2014.07.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 06/13/2014] [Accepted: 07/14/2014] [Indexed: 01/05/2023]
|
32
|
Myosin II ATPase activity mediates the long-term potentiation-induced exodus of stable F-actin bound by drebrin A from dendritic spines. PLoS One 2014; 9:e85367. [PMID: 24465547 PMCID: PMC3899004 DOI: 10.1371/journal.pone.0085367] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 11/25/2013] [Indexed: 12/19/2022] Open
Abstract
The neuronal actin-binding protein drebrin A forms a stable structure with F-actin in dendritic spines. NMDA receptor activation causes an exodus of F-actin bound by drebrin A (DA-actin) from dendritic spines, suggesting a pivotal role for DA-actin exodus in synaptic plasticity. We quantitatively assessed the extent of DA-actin localization to spines using the spine-dendrite ratio of drebrin A in cultured hippocampal neurons, and found that (1) chemical long-term potentiation (LTP) stimulation induces rapid DA-actin exodus and subsequent DA-actin re-entry in dendritic spines, (2) Ca2+ influx through NMDA receptors regulates the exodus and the basal accumulation of DA-actin, and (3) the DA-actin exodus is blocked by myosin II ATPase inhibitor, but is not blocked by myosin light chain kinase (MLCK) or Rho-associated kinase (ROCK) inhibitors. These results indicate that myosin II mediates the interaction between NMDA receptor activation and DA-actin exodus in LTP induction. Furthermore, myosin II seems to be activated by a rapid actin-linked mechanism rather than slow MLC phosphorylation. Thus the myosin-II mediated DA-actin exodus might be an initial event in LTP induction, triggering actin polymerization and spine enlargement.
Collapse
|
33
|
Cho IH, Lee MJ, Kim DH, Kim B, Bae J, Choi KY, Kim SM, Huh YH, Lee KH, Kim CH, Song WK. SPIN90 dephosphorylation is required for cofilin-mediated actin depolymerization in NMDA-stimulated hippocampal neurons. Cell Mol Life Sci 2013; 70:4369-83. [PMID: 23765104 PMCID: PMC3825632 DOI: 10.1007/s00018-013-1391-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 05/11/2013] [Accepted: 05/29/2013] [Indexed: 11/30/2022]
Abstract
Actin plays a fundamental role in the regulation of spine morphology (both shrinkage and enlargement) upon synaptic activation. In particular, actin depolymerization is crucial for the spine shrinkage in NMDAR-mediated synaptic depression. Here, we define the role of SPIN90 phosphorylation/dephosphorylation in regulating actin depolymerization via modulation of cofilin activity. When neurons were treated with NMDA, SPIN90 was dephosphorylated by STEP61 (striatal-enriched protein tyrosine phosphatase) and translocated from the spines to the dendritic shafts. In addition, phosphorylated SPIN90 bound cofilin and then inhibited cofilin activity, suggesting that SPIN90 dephosphorylation is a prerequisite step for releasing cofilin so that cofilin can adequately sever actin filaments into monomeric form. We found that SPIN90 YE, a phosphomimetic mutant, remained in the spines after NMDAR activation where it bound cofilin, thereby effectively preventing actin depolymerization. This led to inhibition of the activity-dependent redistribution of cortactin and drebrin A, as well as of the morphological changes in the spines that underlie synaptic plasticity. These findings indicate that NMDA-induced SPIN90 dephosphorylation and translocation initiates cofilin-mediated actin dynamics and spine shrinkage within dendritic spines, thereby modulating synaptic activity.
Collapse
Affiliation(s)
- In Ha Cho
- Bio Imaging and Cell Dynamics Research Center, Gwangju Institute of Science and Technology, 261 Cheomdan-gwagiro, Buk-Gu, Gwangju, 500-712, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Shirao T, González-Billault C. Actin filaments and microtubules in dendritic spines. J Neurochem 2013; 126:155-64. [PMID: 23692384 DOI: 10.1111/jnc.12313] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 05/13/2013] [Accepted: 05/13/2013] [Indexed: 01/26/2023]
Abstract
Dendritic spines are small protrusions emerging from their parent dendrites, and their morphological changes are involved in synaptic plasticity. These tiny structures are composed of thousands of different proteins belonging to several subfamilies such as membrane receptors, scaffold proteins, signal transduction proteins, and cytoskeletal proteins. Actin filaments in dendritic spines consist of double helix of actin protomers decorated with drebrin and ADF/cofilin, and the balance of the two is closely related to the actin dynamics, which may govern morphological and functional synaptic plasticity. During development, the accumulation of drebrin-binding type actin filaments is one of the initial events occurring at the nascent excitatory postsynaptic site, and plays a pivotal role in spine formation as well as small GTPases. It has been recently reported that microtubules transiently appear in dendritic spines in correlation with synaptic activity. Interestingly, it is suggested that microtubule dynamics might couple with actin dynamics. In this review, we will summarize the contribution of both actin filaments and microtubules to the formation and regulation of dendritic spines, and further discuss the role of cytoskeletal deregulation in neurological disorders.
Collapse
Affiliation(s)
- Tomoaki Shirao
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi, Japan.
| | | |
Collapse
|
35
|
Roppongi RT, Kojima N, Hanamura K, Yamazaki H, Shirao T. Selective reduction of drebrin and actin in dendritic spines of hippocampal neurons by activation of 5-HT(2A) receptors. Neurosci Lett 2013; 547:76-81. [PMID: 23684573 DOI: 10.1016/j.neulet.2013.04.061] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 04/27/2013] [Accepted: 04/30/2013] [Indexed: 01/10/2023]
Abstract
Abnormal architecture of dendritic spines is associated with neurodevelopmental and neurodegenerative diseases. The 5-HT(2A) receptor is a potential therapeutic target for mental illnesses and it is functionally and genetically associated with many types of psychiatric disorders. It has been reported that 5-HT(2A) receptor activation alters spine architecture. Although actin cytoskeleton has a key role in the regulation of spine architecture, it is not clarified whether 5-HT(2A)+ receptor activation affect the actin cytoskeleton in dendritic spines. In the present study, we examined the effect of 5-HT(2A) receptor activation on the actin cytoskeleton in dendritic spines of mature hippocampal neurons in low-density culture. Immunocytochemical analysis showed that 15 min exposure of 5-HT(2A) receptor agonist (±)-2,5-dimethoxy-4-iodoamphetamine hydrochloride (DOI) significantly decreased the cluster densities of drebrin (control, 37.0±6.9 per 100 μm, DOI, 12.5±2.9) and F-actin (control, 18.3±4.9; DOI, 7.7±2.1) at dendritic spines without any detectable changes in the cluster densities of synapsin I and PSD-95. At the same time period DOI exposure did not affect spine architecture (spine density: control, 38.3±5.1 per 100 μm; DOI, 25.6±3.5; spine length: control, 1.99±0.18; DOI, 2.00±0.29; spine width: control, 0.72±0.06; DOI, 0.77±0.11). Thus, it is indicated that decrease of drebrin and F-actin can occur at the dendritic spines without morphological changes. Together our data suggest that 5-HT(2A) receptors activation is involved in the regulation of distribution of cytoskeleton in the dendritic spines.
Collapse
Affiliation(s)
- Reiko T Roppongi
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi, Japan
| | | | | | | | | |
Collapse
|
36
|
Urbanska M, Swiech L, Jaworski J. Developmental plasticity of the dendritic compartment: focus on the cytoskeleton. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 970:265-84. [PMID: 22351060 DOI: 10.1007/978-3-7091-0932-8_12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Plasticity, the ability to undergo lasting changes in response to a stimulus, is an important attribute of neurons. It allows proper development and underlies learning, memory, and the recovery of the nervous system after severe injuries. Often, an outcome of neuronal plasticity is a structural plasticity manifested as a change of neuronal morphology. In this chapter, we focus on the structural plasticity of dendritic arbors and spines during development. Dendrites receive and compute synaptic inputs from other neurons. The number of dendrites and their branching pattern are strictly correlated with the function of a particular neuron and the geometry of the connections it receives. The development of proper dendritic tree morphology depends on the interplay between genetic programming and extracellular signals. Spines are tiny actin-rich dendritic protrusions that harbor excitatory synapses. No consensus has been reached regarding how dendritic spines form, and several models of spine morphogenesis exist. Nevertheless, most researchers agree that spinogenesis is an important target for structural plasticity. In this chapter, we discuss examples of such plasticity and describe the principles and molecular mechanisms underlying this process, focusing mostly on the regulation of the cytoskeleton during dendrito- and spinogenesis.
Collapse
|
37
|
Furutani R, Kibayashi K. Morphological alteration and reduction of MAP2-immunoreactivity in pyramidal neurons of cerebral cortex in a rat model of focal cortical compression. J Neurotrauma 2011; 29:1266-76. [PMID: 21401443 DOI: 10.1089/neu.2010.1630] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Subdural hematoma causes cortical damage including brain tissue disruption, often resulting in neuronal dysfunction and neurological impairment. The aim of the present study was to identify the relationship between cerebral compression and neuronal injury. In this report, we investigated time-dependent morphological alterations within layers II, III, and V pyramidal neurons in the cerebral cortex, using Golgi-Cox staining and immunohistochemistry for microtubule-associated protein 2 (MAP2) in a rat model of focal cortical compression. An acryl pole was used to experimentally induce chronic cerebral compression by continuous pressure on the cortical surface. Changes in cellular morphology were examined at five survival time periods: 12 h and 1, 2, 3, and 4 weeks. The Golgi-Cox method revealed time-dependent alterations in dendritic length of apical and basilar dendrites of pyramidal neurons. The number of dendritic branch segments and spines of basilar dendrites were decreased in cells in layers II, III, and V. Immunohistochemical staining for MAP2 revealed changes in the intracellular distribution of immunoreactive materials. A significant reduction in MAP2 immunostaining was found in nerve cell bodies and apical dendrites of ipsilateral cortical neurons. The number of MAP2-immunoreactive neurons was significantly decreased at 12 h compared with the contralateral cerebral cortex in the same animal. Dendritic changes in layers II, III, and V pyramidal neurons were accompanied by reductions in intracellular MAP2-immunoreactive materials. The present results suggest that cortical compression causes alteration of cellular morphology as a consequence of injury, and that these morphological changes may be related to reductions in MAP2-immunoreactive materials.
Collapse
Affiliation(s)
- Rui Furutani
- Department of Legal Medicine, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan.
| | | |
Collapse
|
38
|
Hanamura K, Mizui T, Kakizaki T, Roppongi R, Yamazaki H, Yanagawa Y, Shirao T. Low accumulation of drebrin at glutamatergic postsynaptic sites on GABAergic neurons. Neuroscience 2010; 169:1489-500. [DOI: 10.1016/j.neuroscience.2010.06.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 06/08/2010] [Accepted: 06/16/2010] [Indexed: 12/20/2022]
|
39
|
Linkage of hippocampal proteins to spatial memory formation and strain-dependence in Apodemus sylvaticus, C57BL/6J and PWD/PhJ mice. Neurochem Int 2010; 56:522-7. [DOI: 10.1016/j.neuint.2009.12.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 12/11/2009] [Accepted: 12/17/2009] [Indexed: 11/22/2022]
|
40
|
Kojima N, Hanamura K, Yamazaki H, Ikeda T, Itohara S, Shirao T. Genetic disruption of the alternative splicing of drebrin gene impairs context-dependent fear learning in adulthood. Neuroscience 2010; 165:138-50. [DOI: 10.1016/j.neuroscience.2009.10.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 10/02/2009] [Accepted: 10/09/2009] [Indexed: 11/24/2022]
|
41
|
Aoki C, Kojima N, Sabaliauskas N, Shah L, Ahmed TH, Oakford J, Ahmed T, Yamazaki H, Hanamura K, Shirao T. Drebrin a knockout eliminates the rapid form of homeostatic synaptic plasticity at excitatory synapses of intact adult cerebral cortex. J Comp Neurol 2009; 517:105-21. [PMID: 19711416 DOI: 10.1002/cne.22137] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Homeostatic synaptic plasticity (HSP) is important for maintaining neurons' excitability within the dynamic range and for protecting neurons from unconstrained long-term potentiation that can cause breakdown of synapse specificity (Turrigiano [2008] Cell 135:422-435). Knowledge of the molecular mechanism underlying this phenomenon remains incomplete, especially for the rapid form of HSP. To test whether HSP in adulthood depends on an F-actin binding protein, drebrin A, mice deleted of the adult isoform of drebrin (DAKO) but retaining the embryonic isoform (drebrin E) were generated. HSP was assayed by determining whether the NR2A subunit of N-methyl-D-aspartate receptors (NMDARs) can rise rapidly within spines following the application of an NMDAR antagonist, D-APV, onto the cortical surface. Electron microscopic immunocytochemistry revealed that, as expected, the D-APV treatment of wild-type (WT) mouse cortex increased the proportion of NR2A-immunolabeled spines within 30 minutes relative to basal levels in hemispheres treated with an inactive enantiomer, L-APV. This difference was significant at the postsynaptic membrane and postsynaptic density (i.e., synaptic junction) as well as at nonsynaptic sites within spines and was not accompanied by spine size changes. In contrast, the D-APV treatment of DAKO brains did not augment NR2A labeling within the spine cytoplasm or at the synaptic junction, even though basal levels of NR2A were not significantly different from those of WT cortices. These findings indicate that drebrin A is required for the rapid (<30 minutes) form of HSP at excitatory synapses of adult cortices, whereas drebrin E is sufficient for maintaining basal NR2A levels within spines.
Collapse
Affiliation(s)
- Chiye Aoki
- Center for Neural Science, New York University, New York, New York 10003, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Pontrello CG, Ethell IM. Accelerators, Brakes, and Gears of Actin Dynamics in Dendritic Spines. ACTA ACUST UNITED AC 2009; 3:67-86. [PMID: 20463852 DOI: 10.2174/1874082000903020067] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dendritic spines are actin-rich structures that accommodate the postsynaptic sites of most excitatory synapses in the brain. Although dendritic spines form and mature as synaptic connections develop, they remain plastic even in the adult brain, where they can rapidly grow, change, or collapse in response to normal physiological changes in synaptic activity that underlie learning and memory. Pathological stimuli can adversely affect dendritic spine shape and number, and this is seen in neurodegenerative disorders and some forms of mental retardation and autism as well. Many of the molecular signals that control these changes in dendritic spines act through the regulation of filamentous actin (F-actin), some through direct interaction with actin, and others via downstream effectors. For example, cortactin, cofilin, and gelsolin are actin-binding proteins that directly regulate actin dynamics in dendritic spines. Activities of these proteins are precisely regulated by intracellular signaling events that control their phosphorylation state and localization. In this review, we discuss how actin-regulating proteins maintain the balance between F-actin assembly and disassembly that is needed to stabilize mature dendritic spines, and how changes in their activities may lead to rapid remodeling of dendritic spines.
Collapse
Affiliation(s)
- Crystal G Pontrello
- Biomedical Sciences Division and Neuroscience program, University of California Riverside, USA
| | | |
Collapse
|
43
|
Lin WH, Webb DJ. Actin and Actin-Binding Proteins: Masters of Dendritic Spine Formation, Morphology, and Function. THE OPEN NEUROSCIENCE JOURNAL 2009; 3:54-66. [PMID: 20717495 PMCID: PMC2921857 DOI: 10.2174/1874082000903020054] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dendritic spines are actin-rich protrusions that comprise the postsynaptic sites of synapses and receive the majority of excitatory synaptic inputs in the central nervous system. These structures are central to cognitive processes, and alterations in their number, size, and morphology are associated with many neurological disorders. Although the actin cytoskeleton is thought to govern spine formation, morphology, and synaptic functions, we are only beginning to understand how modulation of actin reorganization by actin-binding proteins (ABPs) contributes to the function of dendritic spines and synapses. In this review, we discuss what is currently known about the role of ABPs in regulating the formation, morphology, motility, and plasticity of dendritic spines and synapses.
Collapse
Affiliation(s)
- Wan-Hsin Lin
- Department of Biological Sciences and Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Donna J. Webb
- Department of Biological Sciences and Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, Tennessee 37235, USA
- Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee 37235, USA
| |
Collapse
|
44
|
Julien C, Tremblay C, Bendjelloul F, Phivilay A, Coulombe MA, Emond V, Calon F. Decreased drebrin mRNA expression in Alzheimer disease: correlation with tau pathology. J Neurosci Res 2008; 86:2292-302. [PMID: 18338803 DOI: 10.1002/jnr.21667] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
To investigate the mRNA expression of the dendritic spine protein drebrin in Alzheimer's disease (AD), we performed post-mortem in situ hybridization studies in brain sections from 20 AD patients and 21 controls. AD diagnosis was confirmed by decreased drebrin protein and increased Abeta(40) (+464%; P < 0.05), Abeta(42) (+369%; P < 0.0001), Abeta(42/40) ratio (+226%; P < 0.01), total tau (+2,725%; P < 0.0001), and paired helical filament tau (PHFtau; +867%; P < 0.001) compared with controls. We found significant decreases in drebrin mRNA in the parietal cortex (-27%; P < 0.01), the temporal cortex (-22%; P < 0.05), and the hippocampus (-25%; P < 0.05) of AD patients compared with controls. Cortical levels of drebrin mRNA correlated positively with soluble total tau (r(2) = +0.244) but negatively with duration of symptoms (r(2) = -0.357) and PHFtau (r(2) = -0.248). Drebrin mRNA levels were correlated to a lesser degree with the drebrin protein content (r(2) = +0.136) and with sim2 (r(2) = +0.176), a potential modulator of drebrin transcription. Our results suggest that the down-regulation of drebrin mRNA expression plays an important role in AD and is closely related to the progression of the disease.
Collapse
Affiliation(s)
- Carl Julien
- Molecular Endocrinology and Oncology Research Center, Centre Hospitalier de l'Universitè, Laval Research Center, Quebec, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
45
|
Hanamura K, Shirao T. [Actin cytoskeleton in dendritic spine]. Nihon Yakurigaku Zasshi 2007; 130:352-7. [PMID: 18000347 DOI: 10.1254/fpj.130.352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
46
|
KOBAYASHI CHIHO, AOKI CHIYE, KOJIMA NOBUHIKO, YAMAZAKI HIROYUKI, SHIRAO TOMOAKI. Drebrin a content correlates with spine head size in the adult mouse cerebral cortex. J Comp Neurol 2007; 503:618-26. [PMID: 17559090 PMCID: PMC2844454 DOI: 10.1002/cne.21408] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Synaptic activities alter synaptic strengths at the axospinous junctions, and such changes are often accompanied by changes in the size of the postsynaptic spines. We have been exploring the idea that drebrin A, a neuron-specific actin-binding protein localized on the postsynaptic side of excitatory synapses, may be a molecule that links synaptic activity to the shape and content of spines. Here, we performed electron microscopic immunocytochemistry with the nondiffusible gold label to explore the relationship among levels of drebrin A, the NR2A subunit of N-methyl-D-aspartate receptors, and the size of spines in the perirhinal cortex of adult mouse brains. In contrast to the membranous localization within neonatal spines, most immunogold particles for drebrin A were localized to the cytoplasmic core region of spines in mature spines. This distribution suggests that drebrin within adult spines may reorganize the F-actin network at the spine core, in addition to its known neonatal role in spine formation. Drebrin A-immunopositive (DIP) spines exhibited larger spine head areas and longer postsynaptic densities (PSDs) than drebrin A-immunonegative (DIN) spines (P < 0.001). Furthermore, spine head area and PSD lengths correlated positively with drebrin A levels (r = 0.47 and 0.40). The number of synaptic NR2A immunolabels was also higher in DIP spines than in DIN spines, whereas their densities per unit lengths of PSD were not significantly different. These differences between the DIP and the DIN spines indicate that spine sizes and synaptic protein composition of mature brains are regulated, at least in part, by drebrin A levels.
Collapse
Affiliation(s)
- CHIHO KOBAYASHI
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - CHIYE AOKI
- Center for Neural Science, New York University, New York, New York 10003
| | - NOBUHIKO KOJIMA
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - HIROYUKI YAMAZAKI
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - TOMOAKI SHIRAO
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
- Correspondence to: Tomoaki Shirao, Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, 3-39-22 Showamachi, Maebashi, Gunma 371-8511, Japan.
| |
Collapse
|
47
|
Sekino Y, Kojima N, Shirao T. Role of actin cytoskeleton in dendritic spine morphogenesis. Neurochem Int 2007; 51:92-104. [PMID: 17590478 DOI: 10.1016/j.neuint.2007.04.029] [Citation(s) in RCA: 227] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Revised: 04/25/2007] [Accepted: 04/27/2007] [Indexed: 11/20/2022]
Abstract
Dendritic spines are the postsynaptic receptive regions of most excitatory synapses, and their morphological plasticity play a pivotal role in higher brain functions, such as learning and memory. The dynamics of spine morphology is due to the actin cytoskeleton concentrated highly in spines. Filopodia, which are thin and headless protrusions, are thought to be precursors of dendritic spines. Drebrin, a spine-resident side-binding protein of filamentous actin (F-actin), is responsible for recruiting F-actin and PSD-95 into filopodia, and is suggested to govern spine morphogenesis. Interestingly, some recent studies on neurological disorders accompanied by cognitive deficits suggested that the loss of drebrin from dendritic spines is a common pathognomonic feature of synaptic dysfunction. In this review, to understand the importance of actin-binding proteins in spine morphogenesis, we first outline the well-established knowledge pertaining to the actin cytoskeleton in non-neuronal cells, such as the mechanism of regulation by small GTPases, the equilibrium between globular actin (G-actin) and F-actin, and the distinct roles of various actin-binding proteins. Then, we review the dynamic changes in the localization of drebrin during synaptogenesis and in response to glutamate receptor activation. Because side-binding proteins are located upstream of the regulatory pathway for actin organization via other actin-binding proteins, we discuss the significance of drebrin in the regulatory mechanism of spine morphology through the reorganization of the actin cytoskeleton. In addition, we discuss the possible involvement of an actin-myosin interaction in the morphological plasticity of spines.
Collapse
Affiliation(s)
- Yuko Sekino
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | | | | |
Collapse
|
48
|
Lacor PN, Buniel MC, Furlow PW, Sanz Clemente A, Velasco PT, Wood M, Viola KL, Klein WL. Abeta oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer's disease. J Neurosci 2007; 27:796-807. [PMID: 17251419 PMCID: PMC6672917 DOI: 10.1523/jneurosci.3501-06.2007] [Citation(s) in RCA: 926] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The basis for memory loss in early Alzheimer's disease (AD) seems likely to involve synaptic damage caused by soluble Abeta-derived oligomers (ADDLs). ADDLs have been shown to build up in the brain and CSF of AD patients and are known to interfere with mechanisms of synaptic plasticity, acting as gain-of-function ligands that attach to synapses. Because of the correlation between AD dementia and synaptic degeneration, we investigated here the ability of ADDLs to affect synapse composition, structure, and abundance. Using highly differentiated cultures of hippocampal neurons, a preferred model for studies of synapse cell biology, we found that ADDLs bound to neurons with specificity, attaching to presumed excitatory pyramidal neurons but not GABAergic neurons. Fractionation of ADDLs bound to forebrain synaptosomes showed association with postsynaptic density complexes containing NMDA receptors, consistent with observed attachment of ADDLs to dendritic spines. During binding to hippocampal neurons, ADDLs promoted a rapid decrease in membrane expression of memory-related receptors (NMDA and EphB2). Continued exposure resulted in abnormal spine morphology, with induction of long thin spines reminiscent of the morphology found in mental retardation, deafferentation, and prionoses. Ultimately, ADDLs caused a significant decrease in spine density. Synaptic deterioration, which was accompanied by decreased levels of the spine cytoskeletal protein drebrin, was blocked by the Alzheimer's therapeutic drug Namenda. The observed disruption of dendritic spines links ADDLs to a major facet of AD pathology, providing strong evidence that ADDLs in AD brain cause neuropil damage believed to underlie dementia.
Collapse
Affiliation(s)
- Pascale N. Lacor
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois 60208
| | - Maria C. Buniel
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois 60208
| | - Paul W. Furlow
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois 60208
| | - Antonio Sanz Clemente
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois 60208
| | - Pauline T. Velasco
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois 60208
| | - Margaret Wood
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois 60208
| | - Kirsten L. Viola
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois 60208
| | - William L. Klein
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois 60208
| |
Collapse
|
49
|
Kojima N, Shirao T. Synaptic dysfunction and disruption of postsynaptic drebrin-actin complex: a study of neurological disorders accompanied by cognitive deficits. Neurosci Res 2007; 58:1-5. [PMID: 17379343 DOI: 10.1016/j.neures.2007.02.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 01/31/2007] [Accepted: 02/01/2007] [Indexed: 12/31/2022]
Abstract
Many neurological disorders accompanied by cognitive deficits, including Alzheimer's disease (AD) and Down syndrome, exhibit abnormal dendritic spine morphology. Actin-based cytoskeletal network dynamics is critical for the regulation of spine morphology and function. Recent experimental data from an AD animal model revealed that defects in intracellular signaling cascades related to the accumulation of amyloid beta (Abeta) peptide cause disruption of the postsynaptic actin-regulatory machinery, including cofilin and drebrin. The level of postsynaptic drebrin, a major F-actin-binding protein in dendritic spines, correlates well with the severity of cognitive impairment. We propose that an imbalanced regulation of the actin-regulatory machinery (loss of drebrin and increase of dephosphorylated cofilin) results in synaptic dysfunction, which underlies the cognitive impairment accompanying neurological disorders and normal aging.
Collapse
Affiliation(s)
- Nobuhiko Kojima
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | | |
Collapse
|
50
|
Schell MJ, Irvine RF. Calcium-triggered exit of F-actin and IP(3) 3-kinase A from dendritic spines is rapid and reversible. Eur J Neurosci 2007; 24:2491-503. [PMID: 17100838 DOI: 10.1111/j.1460-9568.2006.05125.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The structure of the actin cytoskeleton in dendritic spines is thought to underlie some forms of synaptic plasticity. We have used fixed and live-cell imaging in rat primary hippocampal cultures to characterize the synaptic dynamics of the F-actin binding protein inositol trisphosphate 3-kinase A (IP3K), which is localized in the spines of pyramidal neurons derived from the CA1 region. IP3K was intensely concentrated as puncta in spine heads when Ca(2+) influx was low, but rapidly and reversibly redistributed to a striated morphology in the main dendrite when Ca(2+) influx was high. Glutamate stimulated the exit of IP3K from spines within 10 s, and re-entry following blockage of Ca(2+) influx commenced within a minute; IP3K appeared to remain associated with F-actin throughout this process. Ca(2+)-triggered F-actin relocalization occurred in about 90% of the cells expressing IP3K endogenously, and was modulated by the synaptic activity of the cultures, suggesting that it is a physiological process. F-actin relocalization was blocked by cytochalasins, jasplakinolide and by the over-expression of actin fused to green fluorescent protein. We also used deconvolution microscopy to visualize the relationship between F-actin and endoplasmic reticulum inside dendritic spines, revealing a delicate microorganization of IP3K near the Ca(2+) stores. We conclude that Ca(2+) influx into the spines of CA1 pyramidal neurons triggers the rapid and reversible retraction of F-actin from the dendritic spine head. This process contributes to changes in spine F-actin shape and content during synaptic activity, and might also regulate spine IP3 signals.
Collapse
Affiliation(s)
- Michael J Schell
- Department of Pharmacology, University of Cambridge CB2 1PD, UK.
| | | |
Collapse
|