1
|
Lu CF, Zhou YN, Zhang J, Su S, Liu Y, Peng GH, Zang W, Cao J. The role of epigenetic methylation/demethylation in the regulation of retinal photoreceptors. Front Cell Dev Biol 2023; 11:1149132. [PMID: 37305686 PMCID: PMC10251769 DOI: 10.3389/fcell.2023.1149132] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
Photoreceptors are integral and crucial for the retina, as they convert light into electrical signals. Epigenetics plays a vital role in determining the precise expression of genetic information in space and time during the development and maturation of photoreceptors, cell differentiation, degeneration, death, and various pathological processes. Epigenetic regulation has three main manifestations: histone modification, DNA methylation, and RNA-based mechanisms, where methylation is involved in two regulatory mechanisms-histone methylation and DNA methylation. DNA methylation is the most studied form of epigenetic modification, while histone methylation is a relatively stable regulatory mechanism. Evidence suggests that normal methylation regulation is essential for the growth and development of photoreceptors and the maintenance of their functions, while abnormal methylation can lead to many pathological forms of photoreceptors. However, the role of methylation/demethylation in regulating retinal photoreceptors remains unclear. Therefore, this study aims to review the role of methylation/demethylation in regulating photoreceptors in various physiological and pathological situations and discuss the underlying mechanisms involved. Given the critical role of epigenetic regulation in gene expression and cellular differentiation, investigating the specific molecular mechanisms underlying these processes in photoreceptors may provide valuable insights into the pathogenesis of retinal diseases. Moreover, understanding these mechanisms could lead to the development of novel therapies that target the epigenetic machinery, thereby promoting the maintenance of retinal function throughout an individual's lifespan.
Collapse
Affiliation(s)
- Chao-Fan Lu
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Ya-Nan Zhou
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Jingjing Zhang
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Songxue Su
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Yupeng Liu
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Guang-Hua Peng
- Department of Pathophysiology, Basic Medical College, Zhengzhou University, Zhengzhou, China
- Laboratory of Visual Cell Differentiation and Regulation, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Weidong Zang
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Jing Cao
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Roy A, Tolone A, Hilhorst R, Groten J, Tomar T, Paquet-Durand F. Kinase activity profiling identifies putative downstream targets of cGMP/PKG signaling in inherited retinal neurodegeneration. Cell Death Dis 2022; 8:93. [PMID: 35241647 PMCID: PMC8894370 DOI: 10.1038/s41420-022-00897-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/16/2021] [Accepted: 02/08/2022] [Indexed: 11/15/2022]
Abstract
Inherited retinal diseases (IRDs) are a group of neurodegenerative disorders that lead to photoreceptor cell death and eventually blindness. IRDs are characterised by a high genetic heterogeneity, making it imperative to design mutation-independent therapies. Mutations in a number of IRD disease genes have been associated with a rise of cyclic 3’,5’-guanosine monophosphate (cGMP) levels in photoreceptors. Accordingly, the cGMP-dependent protein kinase (PKG) has emerged as a new potential target for the mutation-independent treatment of IRDs. However, the substrates of PKG and the downstream degenerative pathways triggered by its activity have yet to be determined. Here, we performed kinome activity profiling of different murine organotypic retinal explant cultures (diseased rd1 and wild-type controls) using multiplex peptide microarrays to identify proteins whose phosphorylation was significantly altered by PKG activity. In addition, we tested the downstream effect of a known PKG inhibitor CN03 in these organotypic retina cultures. Among the PKG substrates were potassium channels belonging to the Kv1 family (KCNA3, KCNA6), cyclic AMP-responsive element-binding protein 1 (CREB1), DNA topoisomerase 2-α (TOP2A), 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (F263), and the glutamate ionotropic receptor kainate 2 (GRIK2). The retinal expression of these PKG targets was further confirmed by immunofluorescence and could be assigned to various neuronal cell types, including photoreceptors, horizontal cells, and ganglion cells. Taken together, this study confirmed the key role of PKG in photoreceptor cell death and identified new downstream targets of cGMP/PKG signalling that will improve the understanding of the degenerative mechanisms underlying IRDs.
Collapse
Affiliation(s)
- Akanksha Roy
- Division of Toxicology, Wageningen University and Research, 96708 WE, Wageningen, The Netherlands.,PamGene International B.V, 5200 BJ, s-Hertogenbosch, The Netherlands
| | - Arianna Tolone
- Cell Death Mechanism Group, Institute for Ophthalmic Research, Eberhard-Karls-Universität, Tübingen, 72072, Germany
| | - Riet Hilhorst
- PamGene International B.V, 5200 BJ, s-Hertogenbosch, The Netherlands
| | - John Groten
- Division of Toxicology, Wageningen University and Research, 96708 WE, Wageningen, The Netherlands.,PamGene International B.V, 5200 BJ, s-Hertogenbosch, The Netherlands
| | - Tushar Tomar
- PamGene International B.V, 5200 BJ, s-Hertogenbosch, The Netherlands.
| | - François Paquet-Durand
- Cell Death Mechanism Group, Institute for Ophthalmic Research, Eberhard-Karls-Universität, Tübingen, 72072, Germany.
| |
Collapse
|
3
|
Jiang K, Mondal AK, Adlakha YK, Gumerson J, Aponte A, Gieser L, Kim JW, Boleda A, Brooks MJ, Nellissery J, Fox DA, Balaban R, Covian R, Swaroop A. Multiomics analyses reveal early metabolic imbalance and mitochondrial stress in neonatal photoreceptors leading to cell death in Pde6brd1/rd1 mouse model of retinal degeneration. Hum Mol Genet 2022; 31:2137-2154. [PMID: 35075486 PMCID: PMC9618164 DOI: 10.1093/hmg/ddac013] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/17/2021] [Accepted: 01/10/2022] [Indexed: 01/26/2023] Open
Abstract
Retinal diseases exhibit extensive genetic heterogeneity and complex etiology with varying onset and severity. Mutations in over 200 genes can lead to photoreceptor dysfunction and/or cell death in retinal neurodegeneration. To deduce molecular pathways that initiate and/or drive cell death, we adopted a temporal multiomics approach and examined molecular and cellular events in newborn and developing photoreceptors before the onset of degeneration in a widely-used Pde6brd1/rd1 (rd1) mouse, a model of autosomal recessive retinitis pigmentosa caused by PDE6B mutations. Transcriptome profiling of neonatal and developing rods from the rd1 retina revealed early downregulation of genes associated with anabolic pathways and energy metabolism. Quantitative proteomics of rd1 retina showed early changes in calcium signaling and oxidative phosphorylation, with specific partial bypass of complex I electron transfer, which precede the onset of cell death. Concurrently, we detected alterations in central carbon metabolism, including dysregulation of components associated with glycolysis, pentose phosphate and purine biosynthesis. Ex vivo assays of oxygen consumption and transmission electron microscopy validated early and progressive mitochondrial stress and abnormalities in mitochondrial structure and function of rd1 rods. These data uncover mitochondrial overactivation and related metabolic alterations as determinants of early pathology and implicate aberrant calcium signaling as an initiator of higher mitochondrial stress. Our studies thus provide a mechanistic framework with mitochondrial damage and metabolic disruptions as early drivers of photoreceptor cell death in retinal degeneration.
Collapse
Affiliation(s)
| | | | - Yogita K Adlakha
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, Bethesda, MD 20892, USA,Translational Health Science and Technology Institute, National Capital Region Biotech Cluster, Faridabad, India
| | - Jessica Gumerson
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, Bethesda, MD 20892, USA
| | - Angel Aponte
- Proteomics Core Facility, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Linn Gieser
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, Bethesda, MD 20892, USA
| | - Jung-Woong Kim
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, Bethesda, MD 20892, USA,Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Alexis Boleda
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, Bethesda, MD 20892, USA,Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20740, USA
| | - Matthew J Brooks
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, Bethesda, MD 20892, USA
| | - Jacob Nellissery
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, Bethesda, MD 20892, USA
| | - Donald A Fox
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, Bethesda, MD 20892, USA
| | - Robert Balaban
- Laboratory of Cardiac Energetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Raul Covian
- Laboratory of Cardiac Energetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Anand Swaroop
- To whom correspondence should be addressed. Tel: +301-435-5754; Fax: 301-480-9917;
| |
Collapse
|
4
|
Technological advancements to study cellular signaling pathways in inherited retinal degenerative diseases. Curr Opin Pharmacol 2021; 60:102-110. [PMID: 34388439 DOI: 10.1016/j.coph.2021.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/02/2021] [Indexed: 01/01/2023]
Abstract
Inherited retinal degenerative diseases (IRDs) are rare neurodegenerative disorders with mutations in hundreds of genes leading to vision loss, primarily owing to photoreceptor cell death. This genetic diversity is impeding development of effective treatment options. Gene-based therapies have resulted in the first FDA-approved drug (Luxturna) for RPE65-specific IRD. Although currently explored in clinical trials, genomic medicines are mutation-dependent, hence suitable only for patients harboring a specific mutation. Better understanding of the pathways leading to photoreceptor degeneration may help to determine common targets and develop mutation-independent therapies for larger groups of patients with IRDs. In this review, we discuss the key pathways involved in photoreceptor cell death studied by transcriptomics, proteomics, and metabolomics techniques to identify potential therapeutic targets in IRDs.
Collapse
|
5
|
Power M, Das S, Schütze K, Marigo V, Ekström P, Paquet-Durand F. Cellular mechanisms of hereditary photoreceptor degeneration - Focus on cGMP. Prog Retin Eye Res 2019; 74:100772. [PMID: 31374251 DOI: 10.1016/j.preteyeres.2019.07.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 07/25/2019] [Accepted: 07/29/2019] [Indexed: 12/21/2022]
Abstract
The cellular mechanisms underlying hereditary photoreceptor degeneration are still poorly understood, a problem that is exacerbated by the enormous genetic heterogeneity of this disease group. However, the last decade has yielded a wealth of new knowledge on degenerative pathways and their diversity. Notably, a central role of cGMP-signalling has surfaced for photoreceptor cell death triggered by a subset of disease-causing mutations. In this review, we examine key aspects relevant for photoreceptor degeneration of hereditary origin. The topics covered include energy metabolism, epigenetics, protein quality control, as well as cGMP- and Ca2+-signalling, and how the related molecular and metabolic processes may trigger photoreceptor demise. We compare and integrate evidence on different cell death mechanisms that have been associated with photoreceptor degeneration, including apoptosis, necrosis, necroptosis, and PARthanatos. A special focus is then put on the mechanisms of cGMP-dependent cell death and how exceedingly high photoreceptor cGMP levels may cause activation of Ca2+-dependent calpain-type proteases, histone deacetylases and poly-ADP-ribose polymerase. An evaluation of the available literature reveals that a large group of patients suffering from hereditary photoreceptor degeneration carry mutations that are likely to trigger cGMP-dependent cell death, making this pathway a prime target for future therapy development. Finally, an outlook is given into technological and methodological developments that will with time likely contribute to a comprehensive overview over the entire metabolic complexity of photoreceptor cell death. Building on such developments, new imaging technology and novel biomarkers may be used to develop clinical test strategies, that fully consider the genetic heterogeneity of hereditary retinal degenerations, in order to facilitate clinical testing of novel treatment approaches.
Collapse
Affiliation(s)
- Michael Power
- Cell Death Mechanism Group, Institute for Ophthalmic Research, University of Tübingen, Germany; Centre for Integrative Neurosciences (CIN), University of Tübingen, Germany; Graduate Training Centre of Neuroscience (GTC), University of Tübingen, Germany
| | - Soumyaparna Das
- Cell Death Mechanism Group, Institute for Ophthalmic Research, University of Tübingen, Germany; Graduate Training Centre of Neuroscience (GTC), University of Tübingen, Germany
| | | | - Valeria Marigo
- Department of Life Sciences, University of Modena and Reggio Emilia, Italy
| | - Per Ekström
- Ophthalmology, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Sweden
| | - François Paquet-Durand
- Cell Death Mechanism Group, Institute for Ophthalmic Research, University of Tübingen, Germany.
| |
Collapse
|
6
|
Sahaboglu A, Barth M, Secer E, Amo EMD, Urtti A, Arsenijevic Y, Zrenner E, Paquet-Durand F. Olaparib significantly delays photoreceptor loss in a model for hereditary retinal degeneration. Sci Rep 2016; 6:39537. [PMID: 28004814 PMCID: PMC5177898 DOI: 10.1038/srep39537] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 11/24/2016] [Indexed: 12/14/2022] Open
Abstract
The enzyme poly-ADP-ribose-polymerase (PARP) mediates DNA-repair and rearrangements of the nuclear chromatin. Generally, PARP activity is thought to promote cell survival and in recent years a number of PARP inhibitors have been clinically developed for cancer treatment. Paradoxically, PARP activity is also connected to many diseases including the untreatable blinding disease Retinitis Pigmentosa (RP), where PARP activity appears to drive the pathogenesis of photoreceptor loss. We tested the efficacy of three different PARP inhibitors to prevent photoreceptor loss in the rd1 mouse model for RP. In retinal explant cultures in vitro, olaparib had strong and long-lasting photoreceptor neuroprotective capacities. We demonstrated target engagement by showing that olaparib reduced photoreceptor accumulation of poly-ADP-ribosylated proteins. Remarkably, olaparib also reduced accumulation of cyclic-guanosine-monophosphate (cGMP), a characteristic marker for photoreceptor degeneration. Moreover, intravitreal injection of olaparib in rd1 animals diminished PARP activity and increased photoreceptor survival, confirming in vivo neuroprotection. This study affirms the role of PARP in inherited retinal degeneration and for the first time shows that a clinically approved PARP inhibitor can prevent photoreceptor degeneration in an RP model. The wealth of human clinical data available for olaparib highlights its strong potential for a rapid clinical translation into a novel RP treatment.
Collapse
Affiliation(s)
| | - Melanie Barth
- Institute for Ophthalmic Research, Tuebingen, Germany.,Graduate Training Center of Neuroscience, Tuebingen, Germany
| | - Enver Secer
- Institute for Ophthalmic Research, Tuebingen, Germany.,Department of Medical Genetics, Erciyes University, Kayseri, Turkey
| | - Eva M Del Amo
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Arto Urtti
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland.,Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | | | | | | |
Collapse
|
7
|
Ji X, Liu Y, Hurd R, Wang J, Fitzmaurice B, Nishina PM, Chang B. Retinal Pigment Epithelium Atrophy 1 (rpea1): A New Mouse Model With Retinal Detachment Caused by a Disruption of Protein Kinase C, θ. Invest Ophthalmol Vis Sci 2016; 57:877-88. [PMID: 26978024 PMCID: PMC4794085 DOI: 10.1167/iovs.15-17495] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Retinal detachments (RDs), a separation of the light-sensitive tissue of the retina from its supporting layers in the posterior eye, isolate retinal cells from their normal supply of nourishment and can lead to their deterioration and death. We identified a new, spontaneous murine model of exudative retinal detachment, nm3342 (new mutant 3342, also referred to as rpea1: retinal pigment epithelium atrophy 1), which we characterize herein. Methods The chromosomal position for the recessive nm3342 mutation was determined by DNA pooling, and the causative mutation was discovered by comparison of whole exome sequences of mutant and wild-type controls. The effects of the mutation were examined in longitudinal studies by clinical evaluation, electroretinography (ERG), light microscopy, and marker and Western blot analyses. Results New mutant 3342, nm3342, also referred to as rpea1, causes an early-onset, complete RD on the ABJ/LeJ strain background, and central exudative RD and late-onset RPE atrophy on the C57BL/6J background. The ERG responses were normal at 2 months of age but deteriorate as mice age, concomitant with progressive pan-retinal photoreceptor loss. Genetic analysis localized rpea1 to mouse chromosome 2. By high-throughput sequencing of a whole exome capture library of an rpea1/rpea1 mutant and subsequent sequence analysis, a splice donor site mutation in the Prkcq (protein kinase C, θ) gene, was identified, leading to a skipping of exon 6, frame shift and premature termination. Homozygotes with a Prkcq-targeted null allele (Prkcqtm1Litt) have similar retinal phenotypes as homozygous rpea1 mice. We determined that the PKCθ protein is abundant in the lateral surfaces of RPE cells and colocalizes with both tight and adherens junction proteins. Phalloidin-stained RPE whole mounts showed abnormal RPE cell morphology with aberrant actin ring formation. Conclusions The homozygous Prkcqrpea1 and the null Prkcqtm1Litt mutants are reliable novel mouse models of RD and can also be used to study the effects of the disruption of PRKCQ (PKCθ) signaling in RPE cells.
Collapse
|
8
|
Kulkarni M, Trifunović D, Schubert T, Euler T, Paquet-Durand F. Calcium dynamics change in degenerating cone photoreceptors. Hum Mol Genet 2016; 25:3729-3740. [PMID: 27402880 DOI: 10.1093/hmg/ddw219] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/24/2016] [Accepted: 06/25/2016] [Indexed: 11/14/2022] Open
Abstract
Cone photoreceptors (cones) are essential for high-resolution daylight vision and colour perception. Loss of cones in hereditary retinal diseases has a dramatic impact on human vision. The mechanisms underlying cone death are poorly understood, and consequently, there are no treatments available. Previous studies suggest a central role for calcium (Ca2+) homeostasis deficits in photoreceptor degeneration; however, direct evidence for this is scarce and physiological measurements of Ca2+ in degenerating mammalian cones are lacking.Here, we took advantage of the transgenic HR2.1:TN-XL mouse line that expresses a genetically encoded Ca2+ biosensor exclusively in cones. We cross-bred this line with mouse models for primary ("cone photoreceptor function loss-1", cpfl1) and secondary ("retinal degeneration-1", rd1) cone degeneration, respectively, and assessed resting Ca2+ levels and light-evoked Ca2+ responses in cones using two-photon imaging. We found that Ca2+ dynamics were altered in cpfl1 cones, showing higher noise and variable Ca2+ levels, with significantly wider distribution than for wild-type and rd1 cones. Unexpectedly, up to 21% of cpfl1 cones still displayed light-evoked Ca2+ responses, which were larger and slower than wild-type responses. In contrast, genetically intact rd1 cones were characterized by lower noise and complete lack of visual function.Our study demonstrates alterations in cone Ca2+ dynamics in both primary and secondary cone degeneration. Our results are consistent with the view that higher (fluctuating) cone Ca2+ levels are involved in photoreceptor cell death in primary (cpfl1) but not in secondary (rd1) cone degeneration. These findings may guide the future development of therapies targeting photoreceptor Ca2+ homeostasis.
Collapse
Affiliation(s)
- Manoj Kulkarni
- Institute for Ophthalmic Research.,Werner Reichardt Centre for Integrative Neuroscience.,Graduate School of Cellular & Molecular Neuroscience
| | | | - Timm Schubert
- Institute for Ophthalmic Research.,Werner Reichardt Centre for Integrative Neuroscience
| | - Thomas Euler
- Institute for Ophthalmic Research (F.P-D.) (T.E.).,Werner Reichardt Centre for Integrative Neuroscience.,Bernstein Centre for Computational Neuroscience, University of Tübingen, Tübingen, Germany
| | | |
Collapse
|
9
|
Jiao K, Sahaboglu A, Zrenner E, Ueffing M, Ekström PAR, Paquet-Durand F. Efficacy of PARP inhibition in Pde6a mutant mouse models for retinitis pigmentosa depends on the quality and composition of individual human mutations. Cell Death Discov 2016; 2:16040. [PMID: 27551530 PMCID: PMC4979439 DOI: 10.1038/cddiscovery.2016.40] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 04/28/2016] [Indexed: 11/09/2022] Open
Abstract
Retinitis pigmentosa (RP), an inherited blinding disease, is caused by a variety of different mutations that affect retinal photoreceptor function and survival. So far there is neither effective treatment nor cure. We have previously shown that poly(ADP-ribose)polymerase (PARP) acts as a common and critical denominator of cell death in photoreceptors, qualifying it as a potential target for future therapeutic intervention. A significant fraction of RP-causing mutations affect the genes for the rod photoreceptor phosphodiesterase 6A (PDE6A) subunit, but it is not known whether they all engage the same death pathway. Analysing three homozygous point mutations (Pde6a R562W, D670G, and V685M) and one compound heterozygous Pde6aV685M/R562W mutation in mouse models that match human RP patients, we demonstrate excessive activation of PARP, which correlated in time with the progression of photoreceptor degeneration. The causal involvement of PARP activity in the neurodegenerative process was confirmed in organotypic retinal explant cultures treated with the PARP-selective inhibitor PJ34, using different treatment time-points and durations. Remarkably, the neuroprotective efficacy of PARP inhibition correlated inversely with the strength of the genetically induced insult, with the D670G mutant showing the best treatment effects. Our results highlight PARP as a target for neuroprotective interventions in RP caused by PDE6A mutations and are a first attempt towards personalized, genotype-matched therapy development for RP. In addition, for each of the different mutant situations, our work identifies windows of opportunity for an optimal treatment regimen for further in vivo experimentation and possibly clinical studies.
Collapse
Affiliation(s)
- K Jiao
- Cell Death Mechanisms Group, Division of Experimental Ophthalmology, Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tuebingen, Roentgenweg 11, Tuebingen 72076, Germany; Centre for Ophthalmology, The Second People's Hospital of Yunnan Province and The Fourth Affiliated Hospital of Kunming Medical University, Qingnian 176, Kunming 650021, China
| | - A Sahaboglu
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tuebingen , Tuebingen 72076, Germany
| | - E Zrenner
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tuebingen, Tuebingen 72076, Germany; Werner Reichardt Centre for Integrative Neuroscience (CIN), University of Tuebingen, Tuebingen, Germany
| | - M Ueffing
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tuebingen , Tuebingen 72076, Germany
| | - P A R Ekström
- Division of Ophthalmology, Department of Clinical Sciences, Lund, University of Lund , Lund 22184, Sweden
| | - F Paquet-Durand
- Cell Death Mechanisms Group, Division of Experimental Ophthalmology, Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tuebingen , Roentgenweg 11, Tuebingen 72076, Germany
| |
Collapse
|
10
|
Farinelli P, Perera A, Arango-Gonzalez B, Trifunovic D, Wagner M, Carell T, Biel M, Zrenner E, Michalakis S, Paquet-Durand F, Ekström PAR. DNA methylation and differential gene regulation in photoreceptor cell death. Cell Death Dis 2014; 5:e1558. [PMID: 25476906 PMCID: PMC4649831 DOI: 10.1038/cddis.2014.512] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/17/2014] [Accepted: 10/21/2014] [Indexed: 01/09/2023]
Abstract
Retinitis pigmentosa (RP) defines a group of inherited degenerative retinal diseases causing progressive loss of photoreceptors. To this day, RP is still untreatable and rational treatment development will require a thorough understanding of the underlying cell death mechanisms. Methylation of the DNA base cytosine by DNA methyltransferases (DNMTs) is an important epigenetic factor regulating gene expression, cell differentiation, cell death, and survival. Previous studies suggested an involvement of epigenetic mechanisms in RP, and in this study, increased cytosine methylation was detected in dying photoreceptors in the rd1, rd2, P23H, and S334ter rodent models for RP. Ultrastructural analysis of photoreceptor nuclear morphology in the rd1 mouse model for RP revealed a severely altered chromatin structure during retinal degeneration that coincided with an increased expression of the DNMT isozyme DNMT3a. To identify disease-specific differentially methylated DNA regions (DMRs) on a genomic level, we immunoprecipitated methylated DNA fragments and subsequently analyzed them with a targeted microarray. Genome-wide comparison of DMRs between rd1 and wild-type retina revealed hypermethylation of genes involved in cell death and survival as well as cell morphology and nervous system development. When correlating DMRs with gene expression data, we found that hypermethylation occurred alongside transcriptional repression. Consistently, motif analysis showed that binding sites of several important transcription factors for retinal physiology were hypermethylated in the mutant model, which also correlated with transcriptional silencing of their respective target genes. Finally, inhibition of DNMTs in rd1 organotypic retinal explants using decitabine resulted in a substantial reduction of photoreceptor cell death, suggesting inhibition of DNA methylation as a potential novel treatment in RP.
Collapse
Affiliation(s)
- P Farinelli
- 1] Division of Ophthalmology, Department of Clinical Sciences, University of Lund, BMC-B11, Lund 22184, Sweden [2] Division of Experimental Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen 72076, Germany
| | - A Perera
- Center for Integrated Protein Science Munich (CIPSM) at the Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - B Arango-Gonzalez
- Division of Experimental Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen 72076, Germany
| | - D Trifunovic
- Division of Experimental Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen 72076, Germany
| | - M Wagner
- Center for Integrated Protein Science Munich (CIPSM) at the Department of Chemistry, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - T Carell
- Center for Integrated Protein Science Munich (CIPSM) at the Department of Chemistry, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - M Biel
- Center for Integrated Protein Science Munich (CIPSM) at the Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - E Zrenner
- Division of Experimental Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen 72076, Germany
| | - S Michalakis
- Center for Integrated Protein Science Munich (CIPSM) at the Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - F Paquet-Durand
- Division of Experimental Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen 72076, Germany
| | - P A R Ekström
- Division of Ophthalmology, Department of Clinical Sciences, University of Lund, BMC-B11, Lund 22184, Sweden
| |
Collapse
|
11
|
Arango-Gonzalez B, Trifunović D, Sahaboglu A, Kranz K, Michalakis S, Farinelli P, Koch S, Koch F, Cottet S, Janssen-Bienhold U, Dedek K, Biel M, Zrenner E, Euler T, Ekström P, Ueffing M, Paquet-Durand F. Identification of a common non-apoptotic cell death mechanism in hereditary retinal degeneration. PLoS One 2014; 9:e112142. [PMID: 25392995 PMCID: PMC4230983 DOI: 10.1371/journal.pone.0112142] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 10/13/2014] [Indexed: 01/10/2023] Open
Abstract
Cell death in neurodegenerative diseases is often thought to be governed by apoptosis; however, an increasing body of evidence suggests the involvement of alternative cell death mechanisms in neuronal degeneration. We studied retinal neurodegeneration using 10 different animal models, covering all major groups of hereditary human blindness (rd1, rd2, rd10, Cngb1 KO, Rho KO, S334ter, P23H, Cnga3 KO, cpfl1, Rpe65 KO), by investigating metabolic processes relevant for different forms of cell death. We show that apoptosis plays only a minor role in the inherited forms of retinal neurodegeneration studied, where instead, a non-apoptotic degenerative mechanism common to all mutants is of major importance. Hallmark features of this pathway are activation of histone deacetylase, poly-ADP-ribose-polymerase, and calpain, as well as accumulation of cyclic guanosine monophosphate and poly-ADP-ribose. Our work thus demonstrates the prevalence of alternative cell death mechanisms in inherited retinal degeneration and provides a rational basis for the design of mutation-independent treatments.
Collapse
Affiliation(s)
| | - Dragana Trifunović
- Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
| | - Ayse Sahaboglu
- Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
| | - Katharina Kranz
- Department of Neurobiology, University of Oldenburg, Oldenburg, Germany
| | - Stylianos Michalakis
- Center for Integrated Protein Science Munich and Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Pietro Farinelli
- Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
- Division of Ophthalmology, Department of Clinical Sciences, University of Lund, Lund, Sweden
| | - Susanne Koch
- Center for Integrated Protein Science Munich and Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Fred Koch
- Center for Integrated Protein Science Munich and Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Sandra Cottet
- Institute for Research in Ophthalmology, Sion, Switzerland
| | | | - Karin Dedek
- Department of Neurobiology, University of Oldenburg, Oldenburg, Germany
| | - Martin Biel
- Center for Integrated Protein Science Munich and Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Eberhart Zrenner
- Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
- Centre for Integrative Neuroscience, University of Tuebingen, Tuebingen, Germany
| | - Thomas Euler
- Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
- Centre for Integrative Neuroscience, University of Tuebingen, Tuebingen, Germany
| | - Per Ekström
- Division of Ophthalmology, Department of Clinical Sciences, University of Lund, Lund, Sweden
| | - Marius Ueffing
- Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
| | | |
Collapse
|
12
|
Jin H, Kanthasamy A, Harischandra DS, Kondru N, Ghosh A, Panicker N, Anantharam V, Rana A, Kanthasamy AG. Histone hyperacetylation up-regulates protein kinase Cδ in dopaminergic neurons to induce cell death: relevance to epigenetic mechanisms of neurodegeneration in Parkinson disease. J Biol Chem 2014; 289:34743-67. [PMID: 25342743 DOI: 10.1074/jbc.m114.576702] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The oxidative stress-sensitive protein kinase Cδ (PKCδ) has been implicated in dopaminergic neuronal cell death. However, little is known about the epigenetic mechanisms regulating PKCδ expression in neurons. Here, we report a novel mechanism by which the PKCδ gene can be regulated by histone acetylation. Treatment with histone deacetylase (HDAC) inhibitor sodium butyrate (NaBu) induced PKCδ expression in cultured neurons, brain slices, and animal models. Several other HDAC inhibitors also mimicked NaBu. The chromatin immunoprecipitation analysis revealed that hyperacetylation of histone H4 by NaBu is associated with the PKCδ promoter. Deletion analysis of the PKCδ promoter mapped the NaBu-responsive element to an 81-bp minimal promoter region. Detailed mutagenesis studies within this region revealed that four GC boxes conferred hyperacetylation-induced PKCδ promoter activation. Cotransfection experiments and Sp inhibitor studies demonstrated that Sp1, Sp3, and Sp4 regulated NaBu-induced PKCδ up-regulation. However, NaBu did not alter the DNA binding activities of Sp proteins or their expression. Interestingly, a one-hybrid analysis revealed that NaBu enhanced transcriptional activity of Sp1/Sp3. Overexpression of the p300/cAMP-response element-binding protein-binding protein (CBP) potentiated the NaBu-mediated transactivation potential of Sp1/Sp3, but expressing several HDACs attenuated this effect, suggesting that p300/CBP and HDACs act as coactivators or corepressors in histone acetylation-induced PKCδ up-regulation. Finally, using genetic and pharmacological approaches, we showed that NaBu up-regulation of PKCδ sensitizes neurons to cell death in a human dopaminergic cell model and brain slice cultures. Together, these results indicate that histone acetylation regulates PKCδ expression to augment nigrostriatal dopaminergic cell death, which could contribute to the progressive neuropathogenesis of Parkinson disease.
Collapse
Affiliation(s)
- Huajun Jin
- From the Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa 50011
| | - Arthi Kanthasamy
- From the Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa 50011
| | - Dilshan S Harischandra
- From the Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa 50011
| | - Naveen Kondru
- From the Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa 50011
| | - Anamitra Ghosh
- From the Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa 50011
| | - Nikhil Panicker
- From the Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa 50011
| | - Vellareddy Anantharam
- From the Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa 50011
| | - Ajay Rana
- the Department of Molecular Pharmacology and Therapeutics, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois 60153, and the Hines Veterans Affairs Medical Center, Hines, Illinois 60141
| | - Anumantha G Kanthasamy
- From the Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa 50011,
| |
Collapse
|
13
|
Farinelli P, Arango-Gonzalez B, Völkl J, Alesutan I, Lang F, Zrenner E, Paquet-Durand F, Ekström PAR. Retinitis Pigmentosa: over-expression of anti-ageing protein Klotho in degenerating photoreceptors. J Neurochem 2013; 127:868-79. [PMID: 23796581 DOI: 10.1111/jnc.12353] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 05/14/2013] [Accepted: 06/04/2013] [Indexed: 02/03/2023]
Abstract
Retinitis Pigmentosa involves a hereditary degeneration of photoreceptors by as yet unresolved mechanisms. The secretable protein α-Klotho has a function related to ageing processes, and α-Klotho-deficient mice have reduced lifespan and declining functions in several tissues. Here, we studied Klotho in connection with inherited photoreceptor degeneration. Increased nuclear immunostaining for α-Klotho protein was seen in degenerating photoreceptors in four different Retinitis Pigmentosa models (rd1, rd2 mice; P23H, S334ter rhodopsin mutant rats). Correspondingly, in rd1 retina α-Klotho mRNA expression was significantly up-regulated. Moreover, immunostaining for another Klotho family protein, β-Klotho, also co-localized with degenerating rd1 photoreceptors. The rd1 retina displayed reduced levels of fibroblast growth factor 15, a member of the fibroblast growth factor subfamily for which Klotho acts as a co-receptor. Exogenous α-Klotho protein added to retinal explant cultures did not affect cell death in rd1 retinae, but caused a severe layer disordering in wild-type retinae. Our study suggests Klotho as a novel player in the retina, with a clear connection to photoreceptor cell death as well as with an influence on retinal organization.
Collapse
Affiliation(s)
- Pietro Farinelli
- Division of Ophthalmology, Department of Clinical Sciences, Lund, University of Lund, Lund, Sweden; Division of Experimental Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Sahaboglu A, Paquet-Durand O, Dietter J, Dengler K, Bernhard-Kurz S, Ekström PAR, Hitzmann B, Ueffing M, Paquet-Durand F. Retinitis pigmentosa: rapid neurodegeneration is governed by slow cell death mechanisms. Cell Death Dis 2013; 4:e488. [PMID: 23392176 PMCID: PMC3593146 DOI: 10.1038/cddis.2013.12] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 12/21/2012] [Accepted: 01/03/2013] [Indexed: 12/31/2022]
Abstract
For most neurodegenerative diseases the precise duration of an individual cell's death is unknown, which is an obstacle when counteractive measures are being considered. To address this, we used the rd1 mouse model for retinal neurodegeneration, characterized by phosphodiesterase-6 (PDE6) dysfunction and photoreceptor death triggered by high cyclic guanosine-mono-phosphate (cGMP) levels. Using cellular data on cGMP accumulation, cell death, and survival, we created mathematical models to simulate the temporal development of the degeneration. We validated model predictions using organotypic retinal explant cultures derived from wild-type animals and exposed to the selective PDE6 inhibitor zaprinast. Together, photoreceptor data and modeling for the first time delineated three major cell death phases in a complex neuronal tissue: (1) initiation, taking up to 36 h, (2) execution, lasting another 40 h, and finally (3) clearance, lasting about 7 h. Surprisingly, photoreceptor neurodegeneration was noticeably slower than necrosis or apoptosis, suggesting a different mechanism of death for these neurons.
Collapse
Affiliation(s)
- A Sahaboglu
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - O Paquet-Durand
- Institute of Food Science and Biotechnology, University of Stuttgart Hohenheim, Stuttgart, Germany
| | - J Dietter
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - K Dengler
- Skin Clinic, University of Tübingen, Tübingen, Germany
| | - S Bernhard-Kurz
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - P AR Ekström
- Department of Clinical Sciences, Lund, University of Lund, Lund, Sweden
| | - B Hitzmann
- Institute of Food Science and Biotechnology, University of Stuttgart Hohenheim, Stuttgart, Germany
| | - M Ueffing
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - F Paquet-Durand
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
15
|
Nakao T, Tsujikawa M, Notomi S, Ikeda Y, Nishida K. The role of mislocalized phototransduction in photoreceptor cell death of retinitis pigmentosa. PLoS One 2012; 7:e32472. [PMID: 22485131 PMCID: PMC3317642 DOI: 10.1371/journal.pone.0032472] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 01/31/2012] [Indexed: 01/09/2023] Open
Abstract
Most of inherited retinal diseases such as retinitis pigmentosa (RP) cause photoreceptor cell death resulting in blindness. RP is a large family of diseases in which the photoreceptor cell death can be caused by a number of pathways. Among them, light exposure has been reported to induce photoreceptor cell death. However, the detailed mechanism by which photoreceptor cell death is caused by light exposure is unclear. In this study, we have shown that even a mild light exposure can induce ectopic phototransduction and result in the acceleration of rod photoreceptor cell death in some vertebrate models. In ovl, a zebrafish model of outer segment deficiency, photoreceptor cell death is associated with light exposure. The ovl larvae show ectopic accumulation of rhodopsin and knockdown of ectopic rhodopsin and transducin rescue rod photoreceptor cell death. However, knockdown of phosphodiesterase, the enzyme that mediates the next step of phototransduction, does not. So, ectopic phototransduction activated by light exposure, which leads to rod photoreceptor cell death, is through the action of transducin. Furthermore, we have demonstrated that forced activation of adenylyl cyclase in the inner segment leads to rod photoreceptor cell death. For further confirmation, we have also generated a transgenic fish which possesses a human rhodopsin mutation, Q344X. This fish and rd10 model mice show photoreceptor cell death caused by adenylyl cyclase. In short, our study indicates that in some RP, adenylyl cyclase is involved in photoreceptor cell death pathway; its inhibition is potentially a logical approach for a novel RP therapy.
Collapse
Affiliation(s)
- Takeshi Nakao
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Motokazu Tsujikawa
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- * E-mail:
| | - Shoji Notomi
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasuhiro Ikeda
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kohji Nishida
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
16
|
Sancho-Pelluz J, Alavi MV, Sahaboglu A, Kustermann S, Farinelli P, Azadi S, van Veen T, Romero FJ, Paquet-Durand F, Ekström P. Excessive HDAC activation is critical for neurodegeneration in the rd1 mouse. Cell Death Dis 2011; 1:e24. [PMID: 21364632 PMCID: PMC3032332 DOI: 10.1038/cddis.2010.4] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Inherited retinal degenerations, collectively termed retinitis pigmentosa (RP), constitute one of the leading causes of blindness in the developed world. RP is at present untreatable and the underlying neurodegenerative mechanisms are unknown, even though the genetic causes are often established. Acetylation and deacetylation of histones, carried out by histone acetyltransferases (HATs) and histone deacetylases (HDACs), respectively, affects cellular division, differentiation, death and survival. We found acetylation of histones and probably other proteins to be dramatically reduced in degenerating photoreceptors in the rd1 human homologous mouse model for RP. Using a custom developed in situ HDAC activity assay, we show that overactivation of HDAC classes I/II temporally precedes photoreceptor degeneration. Moreover, pharmacological inhibition of HDACs I/II activity in rd1 organotypic retinal explants decreased activity of poly-ADP-ribose-polymerase and strongly reduced photoreceptor cell death. These findings highlight the importance of protein acetylation for photoreceptor cell death and survival and propose certain HDAC classes as novel targets for the pharmacological intervention in RP.
Collapse
Affiliation(s)
- J Sancho-Pelluz
- Division of Experimental Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Paquet-Durand F, Sanges D, McCall J, Silva J, van Veen T, Marigo V, Ekström P. Photoreceptor rescue and toxicity induced by different calpain inhibitors. J Neurochem 2010; 115:930-40. [PMID: 20807308 DOI: 10.1111/j.1471-4159.2010.06983.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Photoreceptor degeneration is the hallmark of a group of inherited blinding diseases collectively termed retinitis pigmentosa (RP); a major cause of blindness in humans. RP is at present untreatable and the underlying neurodegenerative mechanisms are largely unknown, even though the genetic causes are often established. The activation of calpain-type proteases may play an important role in cell death in various neuronal tissues, including the retina. We therefore tested the efficacy of two different calpain inhibitors in preventing cell death in the retinal degeneration (rd1) human homologous mouse model for RP. Pharmacological inhibition of calpain activity in rd1 organotypic retinal explants had ambiguous effects on photoreceptor viability. Calpain inhibitor XI had protective effects when applied for short periods of time (16 h) but demonstrated substantial levels of toxicity in both wild-type and rd1 retina when used over several days. In contrast, the highly specific calpain inhibitor calpastatin peptide reduced photoreceptor cell death in vitro after both short and prolonged exposure, an effect that was also evident after in vivo application via intravitreal injection. These findings highlight the importance of calpain activation for photoreceptor cell death but also for photoreceptor survival and propose the use of highly specific calpain inhibitors to prevent or delay RP.
Collapse
Affiliation(s)
- François Paquet-Durand
- Division of Experimental Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
18
|
PKCdelta regulates cortical radial migration by stabilizing the Cdk5 activator p35. Proc Natl Acad Sci U S A 2009; 106:21353-8. [PMID: 19965374 DOI: 10.1073/pnas.0812872106] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cyclin-dependent kinase 5 (Cdk5) and its activator p35 are critical for radial migration and lamination of cortical neurons. However, how this kinase is regulated by extracellular and intracellular signals during cortical morphogenesis remains unclear. Here, we show that PKCdelta, a member of novel PKC expressing in cortical neurons, could stabilize p35 by direct phosphorylation. PKCdelta attenuated the degradation of p35 but not its mutant derivative, which could not be phosphorylated by PKCdelta. Down-regulation of PKCdelta by in utero electroporation of specific small interference RNA (siRNA) severely impaired the radial migration of cortical neurons. This migration defect was similar to that caused by down-regulation of p35 and could be prevented by cotransfection with the wild-type but not the mutant p35. Furthermore, PKCdelta could be activated by the promigratory factor brain-derived neurotrophic factor (BDNF) and was required for the activation of Cdk5 by BDNF. Both PKCdelta and p35 were required for the promigratory effect of BDNF on cultured newborn neurons. Thus, PKCdelta may promote cortical radial migration through maintaining the proper level of p35 in newborn neurons.
Collapse
|
19
|
Huber G, Beck SC, Grimm C, Sahaboglu-Tekgoz A, Paquet-Durand F, Wenzel A, Humphries P, Redmond TM, Seeliger MW, Fischer MD. Spectral domain optical coherence tomography in mouse models of retinal degeneration. Invest Ophthalmol Vis Sci 2009; 50:5888-95. [PMID: 19661229 DOI: 10.1167/iovs.09-3724] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Spectral domain optical coherence tomography (SD-OCT) allows cross-sectional visualization of retinal structures in vivo. Here, the authors report the efficacy of a commercially available SD-OCT device to study mouse models of retinal degeneration. METHODS C57BL/6 and BALB/c wild-type mice and three different mouse models of hereditary retinal degeneration (Rho(-/-), rd1, RPE65(-/-)) were investigated using confocal scanning laser ophthalmoscopy (cSLO) for en face visualization and SD-OCT for cross-sectional imaging of retinal structures. Histology was performed to correlate structural findings in SD-OCT with light microscopic data. RESULTS In C57BL/6 and BALB/c mice, cSLO and SD-OCT imaging provided structural details of frequently used control animals (central retinal thickness, CRT(C57BL/6) = 237 +/- 2 microm and CRT(BALB/c) = 211 +/- 10 microm). RPE65(-/-) mice at 11 months of age showed a significant reduction of retinal thickness (CRT(RPE65) = 193 +/- 2 microm) with thinning of the outer nuclear layer. Rho(-/-) mice at P28 demonstrated degenerative changes mainly in the outer retinal layers (CRT(Rho) = 193 +/- 2 microm). Examining rd1 animals before and after the onset of retinal degeneration allowed monitoring of disease progression (CRT(rd1 P11) = 246 +/- 4 microm, CRT(rd1 P28) = 143 +/- 4 microm). Correlation of CRT assessed by histology and SD-OCT was high (r(2) = 0.897). CONCLUSIONS The authors demonstrated cross-sectional visualization of retinal structures in wild-type mice and mouse models for retinal degeneration in vivo using a commercially available SD-OCT device. This method will help to reduce numbers of animals needed per study by allowing longitudinal study designs and will facilitate characterization of disease dynamics and evaluation of putative therapeutic effects after experimental interventions.
Collapse
Affiliation(s)
- Gesine Huber
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Centre for Ophthalmology, Tuebingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Paquet-Durand F, Hauck SM, van Veen T, Ueffing M, Ekström P. PKG activity causes photoreceptor cell death in two retinitis pigmentosa models. J Neurochem 2009; 108:796-810. [PMID: 19187097 DOI: 10.1111/j.1471-4159.2008.05822.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Photoreceptor degeneration in retinitis pigmentosa is one of the leading causes of hereditary blindness in the developed world. Although causative genetic mutations have been elucidated in many cases, the underlying neuronal degeneration mechanisms are still unknown. Here, we show that activation of cGMP-dependent protein kinase (PKG) hallmarks photoreceptor degeneration in rd1 and rd2 human homologous mouse models. When induced in wild-type retinae, PKG activity was both necessary and sufficient to trigger cGMP-mediated photoreceptor cell death. Target-specific, pharmacological inhibition of PKG activity in both rd1 and rd2 retinae strongly reduced photoreceptor cell death in organotypic retinal explants. Likewise, inhibition of PKG in vivo, using three different application paradigms, resulted in robust photoreceptor protection in the rd1 retina. These findings suggest a pivotal role for PKG activity in cGMP-mediated photoreceptor degeneration mechanisms and highlight the importance of PKG as a novel target for the pharmacological intervention in RP.
Collapse
Affiliation(s)
- François Paquet-Durand
- University of Tübingen, Centre for Ophthalmology, Institute for Ophthalmic Research, Division of Experimental Ophthalmology, Röntgenweg 11, Tübingen, Germany.
| | | | | | | | | |
Collapse
|
21
|
Sancho-Pelluz J, Arango-Gonzalez B, Kustermann S, Romero FJ, van Veen T, Zrenner E, Ekström P, Paquet-Durand F. Photoreceptor cell death mechanisms in inherited retinal degeneration. Mol Neurobiol 2008; 38:253-69. [PMID: 18982459 DOI: 10.1007/s12035-008-8045-9] [Citation(s) in RCA: 212] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Accepted: 10/16/2008] [Indexed: 02/24/2023]
Abstract
Photoreceptor cell death is the major hallmark of a group of human inherited retinal degenerations commonly referred to as retinitis pigmentosa (RP). Although the causative genetic mutations are often known, the mechanisms leading to photoreceptor degeneration remain poorly defined. Previous research work has focused on apoptosis, but recent evidence suggests that photoreceptor cell death may result primarily from non-apoptotic mechanisms independently of AP1 or p53 transcription factor activity, Bcl proteins, caspases, or cytochrome c release. This review briefly describes some animal models used for studies of retinal degeneration, with particular focus on the rd1 mouse. After outlining the major features of different cell death mechanisms in general, we then compare them with results obtained in retinal degeneration models, where photoreceptor cell death appears to be governed by, among other things, changes in cyclic nucleotide metabolism, downregulation of the transcription factor CREB, and excessive activation of calpain and PARP. Based on recent experimental evidence, we propose a putative non-apoptotic molecular pathway for photoreceptor cell death in the rd1 retina. The notion that inherited photoreceptor cell death is driven by non-apoptotic mechanisms may provide new ideas for future treatment of RP.
Collapse
Affiliation(s)
- Javier Sancho-Pelluz
- Institute for Ophthalmic Research, University of Tübingen, Centre for Ophthalmology, Röntgenweg 11, 72076, Tübingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Paquet-Durand F, Silva J, Talukdar T, Johnson LE, Azadi S, van Veen T, Ueffing M, Hauck SM, Ekström PAR. Excessive activation of poly(ADP-ribose) polymerase contributes to inherited photoreceptor degeneration in the retinal degeneration 1 mouse. J Neurosci 2007; 27:10311-9. [PMID: 17881537 PMCID: PMC6672664 DOI: 10.1523/jneurosci.1514-07.2007] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Retinitis pigmentosa (RP) is an inherited blinding disease for which there is no treatment available. It is characterized by a progressive and neurodegenerative loss of photoreceptors but the underlying mechanisms are poorly understood. Excessive activation of the enzyme poly(ADP-ribose) polymerase (PARP) has recently been shown to be involved in several neuropathologies. To investigate the possible role of PARP in retinal photoreceptor degeneration, we used the retinal degeneration 1 (rd1) mouse RP model to study PARP expression, PARP activity, and to test the effects of PARP inhibition on photoreceptor viability. PARP expression was found to be equal between rd1 and wild-type counterpart retinas. In contrast to this, a dramatic increase in both PARP activity per se and PARP product formation was detected by in situ assays in rd1 photoreceptors actively undergoing cell death. Furthermore, PARP activity colabeled with oxidatively damaged DNA and nuclear translocation of AIF (apoptosis-inducing factor), suggesting activation of PARP as a bridge between these events in the degenerating photoreceptors. The PARP-specific inhibitor PJ34 [N-(6-oxo-5,6-dihydrophenanthridin-2-yl)-N,N-dimethylacetamide x HCl[ reduced the number of cells exhibiting death markers in a short-term retinal culture paradigm, a protective effect that was translated into an increased number of surviving photoreceptors when the inhibitor was used in a long-term culture setting. Our results thus demonstrate an involvement of PARP activity in rd1 photoreceptor cell death, which could have a bearing on the understanding of neurodegenerations as such. The findings also suggest that the therapeutical possibilities of PARP inhibition should include retinal diseases like RP.
Collapse
|
23
|
Calza S, Raffelsberger W, Ploner A, Sahel J, Leveillard T, Pawitan Y. Filtering genes to improve sensitivity in oligonucleotide microarray data analysis. Nucleic Acids Res 2007; 35:e102. [PMID: 17702762 PMCID: PMC2018638 DOI: 10.1093/nar/gkm537] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Revised: 06/29/2007] [Accepted: 07/03/2007] [Indexed: 12/13/2022] Open
Abstract
Many recent microarrays hold an enormous number of probe sets, thus raising many practical and theoretical problems in controlling the false discovery rate (FDR). Biologically, it is likely that most probe sets are associated with un-expressed genes, so the measured values are simply noise due to non-specific binding; also many probe sets are associated with non-differentially-expressed (non-DE) genes. In an analysis to find DE genes, these probe sets contribute to the false discoveries, so it is desirable to filter out these probe sets prior to analysis. In the methodology proposed here, we first fit a robust linear model for probe-level Affymetrix data that accounts for probe and array effects. We then develop a novel procedure called FLUSH (Filtering Likely Uninformative Sets of Hybridizations), which excludes probe sets that have statistically small array-effects or large residual variance. This filtering procedure was evaluated on a publicly available data set from a controlled spiked-in experiment, as well as on a real experimental data set of a mouse model for retinal degeneration. In both cases, FLUSH filtering improves the sensitivity in the detection of DE genes compared to analyses using unfiltered, presence-filtered, intensity-filtered and variance-filtered data. A freely-available package called FLUSH implements the procedures and graphical displays described in the article.
Collapse
Affiliation(s)
- Stefano Calza
- Department of Medical Epidemiology and Biostatistics - Karolinska Institute, Stockholm, Sweden, Section of Medical Statistics and Biometry, Department of Biomedical Sciences and Biotechnology - University of Brescia, Italy, Laboratoire de Bioinformatique et Génomique Intégratives, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch Strasbourg, France and Laboratoire de Physiopathologie Cellulaire et Moléculaire de la Retine - Faculté de Médecine, Université Pierre et Marie Curie, Paris, France
| | - Wolfgang Raffelsberger
- Department of Medical Epidemiology and Biostatistics - Karolinska Institute, Stockholm, Sweden, Section of Medical Statistics and Biometry, Department of Biomedical Sciences and Biotechnology - University of Brescia, Italy, Laboratoire de Bioinformatique et Génomique Intégratives, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch Strasbourg, France and Laboratoire de Physiopathologie Cellulaire et Moléculaire de la Retine - Faculté de Médecine, Université Pierre et Marie Curie, Paris, France
| | - Alexander Ploner
- Department of Medical Epidemiology and Biostatistics - Karolinska Institute, Stockholm, Sweden, Section of Medical Statistics and Biometry, Department of Biomedical Sciences and Biotechnology - University of Brescia, Italy, Laboratoire de Bioinformatique et Génomique Intégratives, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch Strasbourg, France and Laboratoire de Physiopathologie Cellulaire et Moléculaire de la Retine - Faculté de Médecine, Université Pierre et Marie Curie, Paris, France
| | - Jose Sahel
- Department of Medical Epidemiology and Biostatistics - Karolinska Institute, Stockholm, Sweden, Section of Medical Statistics and Biometry, Department of Biomedical Sciences and Biotechnology - University of Brescia, Italy, Laboratoire de Bioinformatique et Génomique Intégratives, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch Strasbourg, France and Laboratoire de Physiopathologie Cellulaire et Moléculaire de la Retine - Faculté de Médecine, Université Pierre et Marie Curie, Paris, France
| | - Thierry Leveillard
- Department of Medical Epidemiology and Biostatistics - Karolinska Institute, Stockholm, Sweden, Section of Medical Statistics and Biometry, Department of Biomedical Sciences and Biotechnology - University of Brescia, Italy, Laboratoire de Bioinformatique et Génomique Intégratives, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch Strasbourg, France and Laboratoire de Physiopathologie Cellulaire et Moléculaire de la Retine - Faculté de Médecine, Université Pierre et Marie Curie, Paris, France
| | - Yudi Pawitan
- Department of Medical Epidemiology and Biostatistics - Karolinska Institute, Stockholm, Sweden, Section of Medical Statistics and Biometry, Department of Biomedical Sciences and Biotechnology - University of Brescia, Italy, Laboratoire de Bioinformatique et Génomique Intégratives, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch Strasbourg, France and Laboratoire de Physiopathologie Cellulaire et Moléculaire de la Retine - Faculté de Médecine, Université Pierre et Marie Curie, Paris, France
| |
Collapse
|
24
|
Abstract
Retinal degenerations such as retinitis pigmentosa (RP) or glaucoma are a major cause of blindness in humans. Understanding the mechanisms underlying the various types of retinal degeneration is a pre-requisite for the development of rational therapies for these diseases. Activation of the calcium dependent protease, calpain, has been suggested to play an important role in cell death in various neuronal tissues including the retina. Improved detection and analysis of calpain activity during degenerative processes is likely to expand the list of pathological conditions with calpain involvement. We give a short overview of the methods available for the detection of calpain activity, and briefly discuss properties of calpain inhibitors. We then discuss the role of calpains in different cell death mechanisms and review existing work on retinal degeneration and the possible involvement of calpains therein. The implication of calpains in retinal cell death raises the possibility to use calpain inhibitors to prevent or delay retinal degeneration.
Collapse
|
25
|
Sanz MM, Johnson LE, Ahuja S, Ekström PAR, Romero J, van Veen T. Significant photoreceptor rescue by treatment with a combination of antioxidants in an animal model for retinal degeneration. Neuroscience 2007; 145:1120-9. [PMID: 17293057 DOI: 10.1016/j.neuroscience.2006.12.034] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Revised: 12/11/2006] [Accepted: 12/15/2006] [Indexed: 10/23/2022]
Abstract
The purpose of this study was to investigate the presence of oxidative DNA damage in the photoreceptors of the rd1 mouse, an animal model for retinitis pigmentosa, and to determine if antioxidants could delay the progress of photoreceptor cell death. Retinas of rd1 mice and congenic wild type controls were examined for DNA oxidation and fragmentation. To study the rescue effect of antioxidants on retinal degeneration, rd1 retinas were studied in vitro and in vivo using lutein, zeaxanthin, alpha lipoic acid and reduced l-glutathione. For the in vitro studies, antioxidants were added to the culture medium. For the in vivo studies, postnatal day (PN3) pups of rd1 mice were fed antioxidants either individually or in combination and control rd1 animals received vehicle alone. Histological evaluation was performed using hematoxylin/eosin and avidin staining, as well as terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Many of the rd1 rod photoreceptors at PN11 displayed oxidative DNA damage and TUNEL positive reaction which co-localized in a subset of rod photoreceptors. Avidin-labeled rod photoreceptors were more abundant than the TUNEL positive photoreceptors of the rd1 mouse, indicating that oxidative DNA damage precedes fragmentation. The number of TUNEL positive and avidin positive cells was considerably decreased upon treatment with the combination of the antioxidants. Rescue of rd1 photoreceptors was significant at PN18 and PN17, respectively, in the in vitro and in vivo studies. In conclusion individual antioxidants had no significant rescue effect but the combination slowed down the rd1 rod photoreceptor degeneration, indicating an additive or synergistic effect.
Collapse
Affiliation(s)
- M M Sanz
- Department of Ophthalmology, Lund University, BMC, B13, Klinikgatan 26, 22184 Lund, Sweden
| | | | | | | | | | | |
Collapse
|
26
|
Azadi S, Johnson LE, Paquet-Durand F, Perez MTR, Zhang Y, Ekström PAR, van Veen T. CNTF+BDNF treatment and neuroprotective pathways in the rd1 mouse retina. Brain Res 2007; 1129:116-29. [PMID: 17156753 DOI: 10.1016/j.brainres.2006.10.031] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Revised: 10/05/2006] [Accepted: 10/06/2006] [Indexed: 11/22/2022]
Abstract
The rd1 mouse is a relevant model for studying the mechanisms of photoreceptor degeneration in retinitis pigmentosa. Treatment with ciliary neurotrophic factor (CNTF) in combination with brain derived neurotrophic factor (BDNF) is known to rescue photoreceptors in cultured rd1 retinal explants. To shed light on the underlying mechanisms, we studied the effects of 9 days (starting at postnatal day 2) in vitro CNTF+BDNF treatment on the endogenous production of CNTF, BDNF, fibroblast growth factor 2 (FGF2), or the activation of extracellular signal-regulated kinase (ERK), Akt and cAMP-response-element-binding protein (CREB) in retinal explants. In rd1 explants, CNTF+BDNF decreased the number of TUNEL-positive photoreceptors. The treatment also increased endogenous rd1 levels of CNTF and BDNF, but lowered the level of FGF2 expression in rd1 explants. When wild-type explants were treated, endogenous CNTF was similarly increased, while BDNF and FGF2 levels remained unaffected. In addition, treatment of rd1 retinas strongly increased the phosphorylation of ERK, Akt and CREB. In treated wild-type explants, the same parameters were either unchanged (ERK) or decreased (Akt and CREB). The results suggest a role for Akt, ERK and CREB in conveying the neuroprotective effect of CNTF+BDNF treatment in rd1 retinal explants.
Collapse
Affiliation(s)
- Seifollah Azadi
- Department of Ophthalmology, University of Lund, BMC-B13, SE-221 84 LUND, Sweden
| | | | | | | | | | | | | |
Collapse
|