1
|
Lu KP, Zhou XZ. Pin1-catalyzed conformational regulation after phosphorylation: A distinct checkpoint in cell signaling and drug discovery. Sci Signal 2024; 17:eadi8743. [PMID: 38889227 PMCID: PMC11409840 DOI: 10.1126/scisignal.adi8743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 05/30/2024] [Indexed: 06/20/2024]
Abstract
Protein phosphorylation is one of the most common mechanisms regulating cellular signaling pathways, and many kinases and phosphatases are proven drug targets. Upon phosphorylation, protein functions can be further regulated by the distinct isomerase Pin1 through cis-trans isomerization. Numerous protein targets and many important roles have now been elucidated for Pin1. However, no tools are available to detect or target cis and trans conformation events in cells. The development of Pin1 inhibitors and stereo- and phospho-specific antibodies has revealed that cis and trans conformations have distinct and often opposing cellular functions. Aberrant conformational changes due to the dysregulation of Pin1 can drive pathogenesis but can be effectively targeted in age-related diseases, including cancers and neurodegenerative disorders. Here, we review advances in understanding the roles of Pin1 signaling in health and disease and highlight conformational regulation as a distinct signal transduction checkpoint in disease development and treatment.
Collapse
Affiliation(s)
- Kun Ping Lu
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry
- Robarts Research Institute, Schulich School of Medicine & Dentistry
| | - Xiao Zhen Zhou
- Departments of Biochemistry and Oncology, Schulich School of Medicine & Dentistry
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine & Dentistry
- Lawson Health Research Institute, Western University, London, ON N6G 2V4, Canada
| |
Collapse
|
2
|
Qiu C, Li Z, Leigh DA, Duan B, Stucky JE, Kim N, Xie G, Lu KP, Zhou XZ. The role of the Pin1- cis P-tau axis in the development and treatment of vascular contribution to cognitive impairment and dementia and preeclampsia. Front Cell Dev Biol 2024; 12:1343962. [PMID: 38628595 PMCID: PMC11019028 DOI: 10.3389/fcell.2024.1343962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/14/2024] [Indexed: 04/19/2024] Open
Abstract
Tauopathies are neurodegenerative diseases characterized by deposits of abnormal Tau protein in the brain. Conventional tauopathies are often defined by a limited number of Tau epitopes, notably neurofibrillary tangles, but emerging evidence suggests structural heterogeneity among tauopathies. The prolyl isomerase Pin1 isomerizes cis P-tau to inhibit the development of oligomers, tangles and neurodegeneration in multiple neurodegenerative diseases such as Alzheimer's disease, traumatic brain injury, vascular contribution to cognitive impairment and dementia (VCID) and preeclampsia (PE). Thus, cis P-tau has emerged as an early etiological driver, blood marker and therapeutic target for multiple neurodegenerative diseases, with clinical trials ongoing. The discovery of cis P-tau and other tau pathologies in VCID and PE calls attention for simplistic classification of tauopathy in neurodegenerative diseases. These recent advances have revealed the exciting novel role of the Pin1-cis P-tau axis in the development and treatment of vascular contribution to cognitive impairment and dementia and preeclampsia.
Collapse
Affiliation(s)
- Chenxi Qiu
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Zhixiong Li
- Departments of Biochemistry and Oncology, Schulich School of Medicine and Dentistry and Robarts Research Institute, Western University, London, ON, Canada
| | - David A. Leigh
- Department of Genetics, Harvard Medical School, Boston, MA, United States
| | - Bingbing Duan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| | - Joseph E. Stucky
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Nami Kim
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - George Xie
- Departments of Biochemistry and Oncology, Schulich School of Medicine and Dentistry and Robarts Research Institute, Western University, London, ON, Canada
| | - Kun Ping Lu
- Departments of Biochemistry and Oncology, Schulich School of Medicine and Dentistry and Robarts Research Institute, Western University, London, ON, Canada
| | - Xiao Zhen Zhou
- Departments of Biochemistry and Oncology, Schulich School of Medicine and Dentistry and Robarts Research Institute, Western University, London, ON, Canada
- Departments of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, and Lawson Health Research Institute, Western University, London, ON, Canada
| |
Collapse
|
3
|
Katchur NJ, Notterman DA. Recent insights from non-mammalian models of brain injuries: an emerging literature. Front Neurol 2024; 15:1378620. [PMID: 38566857 PMCID: PMC10985199 DOI: 10.3389/fneur.2024.1378620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Traumatic brain injury (TBI) is a major global health concern and is increasingly recognized as a risk factor for neurodegenerative diseases including Alzheimer's disease (AD) and chronic traumatic encephalopathy (CTE). Repetitive TBIs (rTBIs), commonly observed in contact sports, military service, and intimate partner violence (IPV), pose a significant risk for long-term sequelae. To study the long-term consequences of TBI and rTBI, researchers have typically used mammalian models to recapitulate brain injury and neurodegenerative phenotypes. However, there are several limitations to these models, including: (1) lengthy observation periods, (2) high cost, (3) difficult genetic manipulations, and (4) ethical concerns regarding prolonged and repeated injury of a large number of mammals. Aquatic vertebrate model organisms, including Petromyzon marinus (sea lampreys), zebrafish (Danio rerio), and invertebrates, Caenorhabditis elegans (C. elegans), and Drosophila melanogaster (Drosophila), are emerging as valuable tools for investigating the mechanisms of rTBI and tauopathy. These non-mammalian models offer unique advantages, including genetic tractability, simpler nervous systems, cost-effectiveness, and quick discovery-based approaches and high-throughput screens for therapeutics, which facilitate the study of rTBI-induced neurodegeneration and tau-related pathology. Here, we explore the use of non-vertebrate and aquatic vertebrate models to study TBI and neurodegeneration. Drosophila, in particular, provides an opportunity to explore the longitudinal effects of mild rTBI and its impact on endogenous tau, thereby offering valuable insights into the complex interplay between rTBI, tauopathy, and neurodegeneration. These models provide a platform for mechanistic studies and therapeutic interventions, ultimately advancing our understanding of the long-term consequences associated with rTBI and potential avenues for intervention.
Collapse
Affiliation(s)
- Nicole J. Katchur
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States
- Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ, United States
| | - Daniel A. Notterman
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States
| |
Collapse
|
4
|
Saeed U, Piracha ZZ. PIN1 and PIN4 inhibition via parvulin impeders Juglone, PiB, ATRA, 6,7,4'-THIF, KPT6566, and EGCG thwarted hepatitis B virus replication. Front Microbiol 2023; 14:921653. [PMID: 36760500 PMCID: PMC9905731 DOI: 10.3389/fmicb.2023.921653] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 01/04/2023] [Indexed: 01/27/2023] Open
Abstract
Introduction Human parvulin peptidyl prolyl cis/trans isomerases PIN1 and PIN4 play important roles in cell cycle progression, DNA binding, protein folding and chromatin remodeling, ribosome biogenesis, and tubulin polymerization. In this article, we found that endogenous PIN1 and PIN4 were upregulated in selected hepatocellular carcinoma (HCC) cell lines. Methods In this study, we inhibited PIN1 and PIN4 via parvulin inhibitors (Juglone, PiB, ATRA, 6,7,4'-THIF, KPT6566, and EGCG). The native agarose gel electrophoresis (NAGE) immunoblotting analysis revealed that upon PIN1 and/ or PIN4 inhibition, the HBc protein expression and core particle or capsid synthesis reduced remarkably. The effects of PIN4 inhibition on hepatitis B virus (HBV) replication were more pronounced as compared to that of PIN1. The Northern and Southern blotting revealed reduced HBV RNA and DNA levels. Results During the HBV course of infection, Juglone, PiB, ATRA, 6,7,4'-THIF, KPT6566, and EGCG-mediated inhibition of PIN1 and PIN4 significantly lowered HBV transcriptional activities without affecting total levels of covalently closed circular DNA (cccDNA). Similar to the inhibitory effects of PIN1 and PIN4 on HBV replication, the knockdown of PIN1 and PIN4 in HBV infection cells revealed significantly reduced amounts of intracellular HBc, HBs, HBV pgRNA, SmRNAs, core particles, and HBV DNA synthesis. Similarly, PIN1 and PIN4 KD abrogated extracellular virion release, naked capsid levels, and HBV DNA levels. In comparison with PIN1 KD, the PIN4 KD showed reduced HBc and/or core particle stabilities, indicating that PIN4 is more critically involved in HBV replication. Chromatin immunoprecipitation (ChIP) assays revealed that in contrast to DNA binding PIN4 proteins, the PIN1 did not show binding to cccDNA. Similarly, upon PIN1 KD, the HBc recruitment to cccDNA remained unaffected. However, PIN4 KD significantly abrogated PIN4 binding to cccDNA, followed by HBc recruitment to cccDNA and restricted HBV transcriptional activities. These effects were more pronounced in PIN4 KD cells upon drug treatment in HBV-infected cells. Conclusion The comparative analysis revealed that in contrast to PIN1, PIN4 is more critically involved in enhancing HBV replication. Thus, PIN1 and PIN4 inhibition or knockdown might be novel therapeutic targets to suppress HBV infection. targets to suppress HBV infection.
Collapse
|
5
|
Bartolome F, Carro E, Alquezar C. Oxidative Stress in Tauopathies: From Cause to Therapy. Antioxidants (Basel) 2022; 11:antiox11081421. [PMID: 35892623 PMCID: PMC9332496 DOI: 10.3390/antiox11081421] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 07/20/2022] [Indexed: 02/01/2023] Open
Abstract
Oxidative stress (OS) is the result of an imbalance between the production of reactive oxygen species (ROS) and the antioxidant capacity of cells. Due to its high oxygen demand, the human brain is highly susceptible to OS and, thus, it is not a surprise that OS has emerged as an essential component of the pathophysiology of several neurodegenerative diseases, including tauopathies. Tauopathies are a heterogeneous group of age-related neurodegenerative disorders characterized by the deposition of abnormal tau protein in the affected neurons. With the worldwide population aging, the prevalence of tauopathies is increasing, but effective therapies have not yet been developed. Since OS seems to play a key role in tauopathies, it has been proposed that the use of antioxidants might be beneficial for tau-related neurodegenerative diseases. Although antioxidant therapies looked promising in preclinical studies performed in cellular and animal models, the antioxidant clinical trials performed in tauopathy patients have been disappointing. To develop effective antioxidant therapies, the molecular mechanisms underlying OS in tauopathies should be completely understood. Here, we review the link between OS and tauopathies, emphasizing the causes of OS in these diseases and the role of OS in tau pathogenesis. We also summarize the antioxidant therapies proposed as a potential treatment for tauopathies and discuss why they have not been completely translated to clinical trials. This review aims to provide an integrated perspective of the role of OS and antioxidant therapies in tauopathies. In doing so, we hope to enable a more comprehensive understanding of OS in tauopathies that will positively impact future studies.
Collapse
Affiliation(s)
- Fernando Bartolome
- Group of Neurodegenerative Diseases, Hospital Universitario 12 de Octubre Research Institute (imas12), 28041 Madrid, Spain;
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Spain;
| | - Eva Carro
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Spain;
- Neurobiology of Alzheimer’s Disease Unit, Chronic Disease Program, Instituto de Salud Carlos III, 28222 Madrid, Spain
| | - Carolina Alquezar
- Group of Neurodegenerative Diseases, Hospital Universitario 12 de Octubre Research Institute (imas12), 28041 Madrid, Spain;
- Correspondence:
| |
Collapse
|
6
|
Imbimbo BP, Ippati S, Watling M, Balducci C. A critical appraisal of tau-targeting therapies for primary and secondary tauopathies. Alzheimers Dement 2021; 18:1008-1037. [PMID: 34533272 DOI: 10.1002/alz.12453] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Primary tauopathies are neurological disorders in which tau protein deposition is the predominant pathological feature. Alzheimer's disease is a secondary tauopathy with tau forming hyperphosphorylated insoluble aggregates. Tau pathology can propagate from region to region in the brain, while alterations in tau processing may impair tau physiological functions. METHODS We reviewed literature on tau biology and anti-tau drugs using PubMed, meeting abstracts, and ClnicalTrials.gov. RESULTS The past 15 years have seen >30 drugs interfering with tau aggregation, processing, and accumulation reaching the clinic. Initial results with tau aggregation inhibitors and anti-tau monoclonal antibodies have not shown clinical efficacy. DISCUSSION The reasons for these clinical failures are unclear but could be linked to the clearing of physiological forms of tau by non-specific drugs. Research is now concentrating efforts on developing reliable translational animal models and selective compounds targeting specific tau epitopes, neurotoxic tau aggregates, and post-translational tau modifications.
Collapse
Affiliation(s)
- Bruno P Imbimbo
- Department of Research & Development, Chiesi Farmaceutici, Parma, Italy
| | - Stefania Ippati
- San Raffaele Scientific Institute, San Raffaele Hospital, Milan, Italy
| | - Mark Watling
- CNS & Pain Department, TranScrip Ltd, Reading, UK
| | - Claudia Balducci
- Department of Neuroscience, Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, Milan, Italy
| |
Collapse
|
7
|
Sonawane SK, Chinnathambi S. Epigallocatechin-3-gallate modulates Tau Post-translational modifications and cytoskeletal network. Oncotarget 2021; 12:1083-1099. [PMID: 34084282 PMCID: PMC8169072 DOI: 10.18632/oncotarget.27963] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 05/05/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Alzheimer's disease is a type of dementia denoted by progressive neuronal death due to the accumulation of proteinaceous aggregates of Tau. Post-translational modifications like hyperphosphorylation, truncation, glycation, etc. play a pivotal role in Tau pathogenesis. Glycation of Tau aids in paired helical filament formation and abates its microtubule-binding function. The chemical modulators of Tau PTMs, such as kinase inhibitors and antibody-based therapeutics, have been developed, but natural compounds, as modulators of Tau PTMs are not much explored. MATERIALS AND METHODS We applied biophysical and biochemical techniques like fluorescence kinetics, oligomerization analysis and transmission electron microscopy to investigate the impact of EGCG on Tau glycation in vitro. The effect of glycation on cytoskeleton instability and its EGCG-mediated rescue were studied by immunofluorescence microscopy in neuroblastoma cells. RESULTS EGCG inhibited methyl glyoxal (MG)-induced Tau glycation in vitro. EGCG potently inhibited MG-induced advanced glycation endproducts formation in neuroblastoma cells as well modulated the localization of AT100 phosphorylated Tau in the cells. In addition to preventing the glycation, EGCG enhanced actin-rich neuritic extensions and rescued actin and tubulin cytoskeleton severely disrupted by MG. EGCG maintained the integrity of the Microtubule Organizing Center (MTOC) stabilized microtubules by Microtubule-associated protein RP/EB family member 1 (EB1). CONCLUSIONS We report EGCG, a green tea polyphenol, as a modulator of in vitro methylglyoxal-induced Tau glycation and its impact on reducing advanced glycation end products in neuroblastoma cells. We unravel unprecedented function of EGCG in remodeling neuronal cytoskeletal integrity.
Collapse
Affiliation(s)
- Shweta Kishor Sonawane
- Neurobiology Group, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Subashchandrabose Chinnathambi
- Neurobiology Group, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
8
|
Hou X, Yang F, Li A, Zhao D, Ma N, Chen L, Lin S, Lin Y, Wang L, Yan X, Zheng M, Lee TH, Zhou XZ, Lu KP, Liu H. The Pin1-CaMKII-AMPA Receptor Axis Regulates Epileptic Susceptibility. Cereb Cortex 2021; 31:3082-3095. [PMID: 33569579 DOI: 10.1093/cercor/bhab004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 10/28/2020] [Accepted: 12/27/2020] [Indexed: 12/11/2022] Open
Abstract
Pin1 is a unique isomerase that regulates protein conformation and function after phosphorylation. Pin1 aberration contributes to some neurological diseases, notably Alzheimer's disease, but its role in epilepsy is not fully understood. We found that Pin1-deficient mice had significantly increased seizure susceptibility in multiple chemical inducing models and developed age-dependent spontaneous epilepsy. Electrophysiologically, Pin1 ablation enhanced excitatory synaptic transmission to prefrontal cortex (PFC) pyramidal neurons without affecting their intrinsic excitability. Biochemically, Pin1 ablation upregulated AMPA receptors and GluA1 phosphorylation by acting on phosphorylated CaMKII. Clinically, Pin1 was decreased significantly, whereas phosphorylated CaMKII and GluA1 were increased in the neocortex of patients with epilepsy. Moreover, Pin1 expression restoration in the PFC of Pin1-deficient mice using viral gene transfer significantly reduced phosphorylated CaMKII and GluA1 and effectively suppressed their seizure susceptibility. Thus, Pin1-CaMKII-AMPA receptors are a novel axis controlling epileptic susceptibility, highlighting attractive new therapeutic strategies.
Collapse
Affiliation(s)
- Xiaojun Hou
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China.,Fuzhou Children's Hospital of Fujian Medical University, Fuzhou, Fujian, 350005, China
| | - Fan Yang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Angcheng Li
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Debao Zhao
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Nengjun Ma
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Linying Chen
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China.,The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350009, China
| | - Suijin Lin
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Yuanxiang Lin
- The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350009, China
| | - Long Wang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Xingxue Yan
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Min Zheng
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Tae Ho Lee
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Xiao Zhen Zhou
- Division of Translational Therapeutics, Department of Medicine and Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Kun Ping Lu
- Division of Translational Therapeutics, Department of Medicine and Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Hekun Liu
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China
| |
Collapse
|
9
|
Lanni C, Masi M, Racchi M, Govoni S. Cancer and Alzheimer's disease inverse relationship: an age-associated diverging derailment of shared pathways. Mol Psychiatry 2021; 26:280-295. [PMID: 32382138 DOI: 10.1038/s41380-020-0760-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 04/06/2020] [Accepted: 04/24/2020] [Indexed: 02/07/2023]
Abstract
Several epidemiological studies show an inverse association between cancer and Alzheimer's disease (AD). It is debated whether this association is the consequence of biological mechanisms shared by both these conditions or may be related to the pharmacological treatments carried out on the patients. The latter hypothesis, however, is not sustained by the available evidence. Hence, the focus of this review is to analyze common biological mechanisms for both cancer and AD and to build up a biological theory useful to explain the inverse correlation between AD and cancer. The review proposes a hypothesis, according to which several molecular players, prominently PIN1 and p53, have been investigated and considered involved in complex molecular interactions putatively associated with the inverse correlation. On the other hand, p53 involvement in both diseases seems to be a consequence of the aberrant activation of other proteins. Instead, PIN1 may be identified as a novel key regulator at the crossroad between cancer and AD. PIN1 is a peptidyl-prolyl cis-trans isomerase that catalyzes the cis-trans isomerization, thus regulating the conformation of different protein substrates after phosphorylation and modulating protein function. In particular, trans-conformations of Amyloid Precursor Protein (APP) and tau are functional and "healthy", while cis-conformations, triggered after phosphorylation, are pathogenic. As an example, PIN1 accelerates APP cis-to-trans isomerization thus favoring the non-amyloidogenic pathway, while, in the absence of PIN1, APP is processed through the amyloidogenic pathway, thus predisposing to neurodegeneration. Furthermore, a link between PIN1 and tau regulation has been found, since when PIN1 function is inhibited, tau is hyperphosphorylated. Data from brain specimens of subjects affected by mild cognitive impairment and AD have revealed a very low PIN1 expression. Moreover, polymorphisms in PIN1 promoter correlated with an increased PIN1 expression are associated with a delay of sporadic AD age of onset, while a polymorphism related to a reduced PIN1 expression is associated with a decreased risk of multiple cancers. In the case of dementias, in particular of Alzheimer's disease, new biological markers and targets based on the discussed players can be developed based on a theoretical approach relying on different grounds compared to the past. An unbiased expansion of the rationale and of the targets may help to achieve in the field of neurodegenerative dementias similar advances to those attained in the case of cancer treatment.
Collapse
Affiliation(s)
- Cristina Lanni
- Department of Drug Sciences, University of Pavia, V.le Taramelli 12/14, 27100, Pavia, Italy
| | - Mirco Masi
- Department of Drug Sciences, University of Pavia, V.le Taramelli 12/14, 27100, Pavia, Italy.,Scuola Universitaria Superiore IUSS Pavia, Piazza della Vittoria 15, 27100, Pavia, Italy
| | - Marco Racchi
- Department of Drug Sciences, University of Pavia, V.le Taramelli 12/14, 27100, Pavia, Italy
| | - Stefano Govoni
- Department of Drug Sciences, University of Pavia, V.le Taramelli 12/14, 27100, Pavia, Italy.
| |
Collapse
|
10
|
Muralidar S, Ambi SV, Sekaran S, Thirumalai D, Palaniappan B. Role of tau protein in Alzheimer's disease: The prime pathological player. Int J Biol Macromol 2020; 163:1599-1617. [PMID: 32784025 DOI: 10.1016/j.ijbiomac.2020.07.327] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/07/2020] [Accepted: 07/31/2020] [Indexed: 01/11/2023]
Abstract
Alzheimer's disease (AD) is a prevalently found tauopathy characterized by memory loss and cognitive insufficiency. AD is an age-related neurodegenerative disease with two major hallmarks which includes extracellular amyloid plaques made of amyloid-β (Aβ) and intracellular neurofibrillary tangles of hyperphosphorylated tau. With population aging worldwide, there is an indispensable need for treatment strategies that can potentially manage this developing dementia. Despite broad researches on targeting Aβ in the past two decades, research findings on Aβ targeted therapeutics failed to prove efficacy in the treatment of AD. Tau protein with its extensive pathological role in several neurodegenerative diseases can be considered as a promising target candidate for developing therapeutic interventions. The abnormal hyperphosphorylation of tau plays detrimental pathological functions which ultimately lead to neurodegeneration. This review will divulge the importance of tau in AD pathogenesis, the interplay of Aβ and tau, the pathological functions of tau, and potential therapeutic strategies for an effective management of neuronal disorders.
Collapse
Affiliation(s)
- Shibi Muralidar
- School of Chemical and Biotechnology, SASTRA Deemed-to-be-University, Thanjavur 613401, Tamil Nadu, India
| | - Senthil Visaga Ambi
- School of Chemical and Biotechnology, SASTRA Deemed-to-be-University, Thanjavur 613401, Tamil Nadu, India.
| | - Saravanan Sekaran
- School of Chemical and Biotechnology, SASTRA Deemed-to-be-University, Thanjavur 613401, Tamil Nadu, India; Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), School of Chemical and Biotechnology, SASTRA Deemed-to-be-University, Thanjavur 613401, Tamil Nadu, India
| | - Diraviyam Thirumalai
- School of Chemical and Biotechnology, SASTRA Deemed-to-be-University, Thanjavur 613401, Tamil Nadu, India
| | - Balamurugan Palaniappan
- School of Chemical and Biotechnology, SASTRA Deemed-to-be-University, Thanjavur 613401, Tamil Nadu, India
| |
Collapse
|
11
|
Buee L. Dementia Therapy Targeting Tau. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1184:407-416. [PMID: 32096053 DOI: 10.1007/978-981-32-9358-8_30] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tau is a microtubule-associated tau proteins but it has also non-microtubular functions. It aggregates in Alzheimer's disease and many neurodegenerative disorders referred to as tauopathies. Such aggregation may result from mutations on the tau gene, MAPT, dysregulation in alternative splicing, post-translational modifications or truncation. This final chapter addresses some of the various researches on a therapeutic potential around the tau protein and its gene, MAPT. Many therapeutic strategies are ongoing but they are hampered by the lack of knowledge on tau physiological functions.
Collapse
Affiliation(s)
- Luc Buee
- University of Lille, INSERM, CHU-Lille, Alzheimer & Tauopathies, LabEx DISTALZ, Lille, France.
| |
Collapse
|
12
|
Ikura T, Tochio N, Kawasaki R, Matsuzaki M, Narita A, Kikumoto M, Utsunomiya‐Tate N, Tate S, Ito N. The
trans
isomer of Tau peptide is prone to aggregate, and the WW domain of Pin1 drastically decreases its aggregation. FEBS Lett 2018; 592:3082-3091. [DOI: 10.1002/1873-3468.13218] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/10/2018] [Accepted: 07/31/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Teikichi Ikura
- Medical Research Institute Tokyo Medical and Dental University Japan
| | - Naoya Tochio
- Reseach Center for the Mathematics on Chromatin Live Dynamics (RcMcD) Hiroshima University Higashi‐Hiroshima Japan
- Faculty of Pharma‐Sciences Teikyo University Tokyo Japan
| | - Ryosuke Kawasaki
- Department of Mathematical and Life Sciences Graduate School of Science Hiroshima University Higashi‐Hiroshima Japan
| | - Mizuki Matsuzaki
- Structural Biology Research Center Graduate School of Science Nagoya University Japan
| | - Akihiro Narita
- Structural Biology Research Center Graduate School of Science Nagoya University Japan
| | - Mahito Kikumoto
- Structural Biology Research Center Graduate School of Science Nagoya University Japan
| | | | - Shin‐ichi Tate
- Reseach Center for the Mathematics on Chromatin Live Dynamics (RcMcD) Hiroshima University Higashi‐Hiroshima Japan
- Department of Mathematical and Life Sciences Graduate School of Science Hiroshima University Higashi‐Hiroshima Japan
| | - Nobutoshi Ito
- Medical Research Institute Tokyo Medical and Dental University Japan
| |
Collapse
|
13
|
Albayram O, Angeli P, Bernstein E, Baxley S, Gao Z, Lu KP, Zhou XZ. Targeting Prion-like Cis Phosphorylated Tau Pathology in Neurodegenerative Diseases. JOURNAL OF ALZHEIMER'S DISEASE & PARKINSONISM 2018; 8:443. [PMID: 30197831 PMCID: PMC6122852 DOI: 10.4172/2161-0460.1000443] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tau is a microtubule-associated protein heavily implicated in neurodegenerative diseases collectively known as tauopathies, including Alzheimer's disease and chronic traumatic encephalopathy. Phosphorylation of tau at Thr231 allows for the isomerization of phosphorylated tau (p-tau) into distinct cis and trans conformations. Cis, but not trans, p-tau is detectable not only in Alzheimer's disease and chronic traumatic encephalopathy, but also right after traumatic brain injury depending on injury severity and frequency both in humans and animal models. Cis p-tau is not only neurotoxic but also spreads from a neuron to another in a prion-like fashion, functioning as a primary driver of neurodegeneration, which can be effectively neutralized by cis p-tau antibody. This represents an exciting new opportunity for understanding disease development and developing early biomarkers and effective therapies of tauopathies.
Collapse
Affiliation(s)
- Onder Albayram
- Division of Translational Therapeutics, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS 0408, Boston, MA 02215, USA
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS 0408, Boston, MA 02215, USA
| | - Peter Angeli
- Division of Translational Therapeutics, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS 0408, Boston, MA 02215, USA
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS 0408, Boston, MA 02215, USA
| | - Elizabeth Bernstein
- Division of Translational Therapeutics, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS 0408, Boston, MA 02215, USA
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS 0408, Boston, MA 02215, USA
| | - Sean Baxley
- Division of Translational Therapeutics, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS 0408, Boston, MA 02215, USA
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS 0408, Boston, MA 02215, USA
| | - Ziang Gao
- Division of Translational Therapeutics, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS 0408, Boston, MA 02215, USA
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS 0408, Boston, MA 02215, USA
| | - Kun Ping Lu
- Division of Translational Therapeutics, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS 0408, Boston, MA 02215, USA
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS 0408, Boston, MA 02215, USA
- Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine Fujian Medical University, Fuzhou, Fujian, China
| | - Xiao Zhen Zhou
- Division of Translational Therapeutics, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS 0408, Boston, MA 02215, USA
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS 0408, Boston, MA 02215, USA
| |
Collapse
|
14
|
Behm M, Wahlstedt H, Widmark A, Eriksson M, Öhman M. Accumulation of nuclear ADAR2 regulates adenosine-to-inosine RNA editing during neuronal development. J Cell Sci 2017; 130:745-753. [PMID: 28082424 DOI: 10.1242/jcs.200055] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 12/30/2016] [Indexed: 12/16/2022] Open
Abstract
Adenosine to inosine (A-to-I) RNA editing is important for a functional brain, and most known sites that are subject to selective RNA editing have been found to result in diversified protein isoforms that are involved in neurotransmission. In the absence of the active editing enzymes ADAR1 or ADAR2 (also known as ADAR and ADARB1, respectively), mice fail to survive until adulthood. Nuclear A-to-I editing of neuronal transcripts is regulated during brain development, with low levels of editing in the embryo and a dramatic increase after birth. Yet, little is known about the mechanisms that regulate editing during development. Here, we demonstrate lower levels of ADAR2 in the nucleus of immature neurons than in mature neurons. We show that importin-α4 (encoded by Kpna3), which increases during neuronal maturation, interacts with ADAR2 and contributes to the editing efficiency by bringing it into the nucleus. Moreover, we detect an increased number of interactions between ADAR2 and the nuclear isomerase Pin1 as neurons mature, which contribute to ADAR2 protein stability. Together, these findings explain how the nuclear editing of substrates that are important for neuronal function can increase as the brain develops.
Collapse
Affiliation(s)
- Mikaela Behm
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrheniusväg 20C, Stockholm, 106 91, Sweden
| | - Helene Wahlstedt
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrheniusväg 20C, Stockholm, 106 91, Sweden
| | - Albin Widmark
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrheniusväg 20C, Stockholm, 106 91, Sweden
| | - Maria Eriksson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrheniusväg 20C, Stockholm, 106 91, Sweden
| | - Marie Öhman
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrheniusväg 20C, Stockholm, 106 91, Sweden
| |
Collapse
|
15
|
Abstract
Targeted drugs have changed cancer treatment but are often ineffective in the long term against solid tumours, largely because of the activation of heterogeneous oncogenic pathways. A central common signalling mechanism in many of these pathways is proline-directed phosphorylation, which is regulated by many kinases and phosphatases. The structure and function of these phosphorylated proteins are further controlled by a single proline isomerase: PIN1. PIN1 is overactivated in cancers and it promotes cancer and cancer stem cells by disrupting the balance of oncogenes and tumour suppressors. This Review discusses the roles of PIN1 in cancer and the potential of PIN1 inhibitors to restore this balance.
Collapse
Affiliation(s)
- Xiao Zhen Zhou
- Division of Translational Therapeutics, Department of Medicine and Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Kun Ping Lu
- Division of Translational Therapeutics, Department of Medicine and Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| |
Collapse
|
16
|
Domise M, Didier S, Marinangeli C, Zhao H, Chandakkar P, Buée L, Viollet B, Davies P, Marambaud P, Vingtdeux V. AMP-activated protein kinase modulates tau phosphorylation and tau pathology in vivo. Sci Rep 2016; 6:26758. [PMID: 27230293 PMCID: PMC4882625 DOI: 10.1038/srep26758] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/04/2016] [Indexed: 12/12/2022] Open
Abstract
Neurofibrillary tangles (NFTs) are the pathological hallmark of neurodegenerative diseases commonly known as tauopathies. NFTs result from the intracellular aggregation of abnormally and hyperphosphorylated tau proteins. Tau functions, which include the regulation of microtubules dynamics, are dependent on its phosphorylation status. As a consequence, any changes in tau phosphorylation can have major impacts on synaptic plasticity and memory. Recently, it has been demonstrated that AMP-activated protein kinase (AMPK) was deregulated in the brain of Alzheimer's disease (AD) patients where it co-localized with phosphorylated tau in pre-tangle and tangle-bearing neurons. Besides, it was found that AMPK was a tau kinase in vitro. Here, we find that endogenous AMPK activation in mouse primary neurons induced an increase of tau phosphorylation at multiple sites, whereas AMPK inhibition led to a rapid decrease of tau phosphorylation. We further show that AMPK mice deficient for one of the catalytic alpha subunits displayed reduced endogenous tau phosphorylation. Finally, we found that AMPK deficiency reduced tau pathology in the PS19 mouse model of tauopathy. These results show that AMPK regulates tau phosphorylation in mouse primary neurons as well as in vivo, and thus suggest that AMPK could be a key player in the development of AD pathology.
Collapse
Affiliation(s)
- Manon Domise
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT, F-59000 Lille, France
| | - Sébastien Didier
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT, F-59000 Lille, France
| | - Claudia Marinangeli
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT, F-59000 Lille, France
| | - Haitian Zhao
- Litwin-Zucker Research Center for the Study of Alzheimer's disease, The Feinstein Institute for Medical Research, Manhasset, New York 11030, USA
| | - Pallavi Chandakkar
- Litwin-Zucker Research Center for the Study of Alzheimer's disease, The Feinstein Institute for Medical Research, Manhasset, New York 11030, USA
| | - Luc Buée
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT, F-59000 Lille, France
| | - Benoit Viollet
- Institut Cochin, Inserm U1016, Paris 75014, France.,CNRS, UMR 8104, Paris 75014, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Peter Davies
- Litwin-Zucker Research Center for the Study of Alzheimer's disease, The Feinstein Institute for Medical Research, Manhasset, New York 11030, USA
| | - Philippe Marambaud
- Litwin-Zucker Research Center for the Study of Alzheimer's disease, The Feinstein Institute for Medical Research, Manhasset, New York 11030, USA
| | - Valérie Vingtdeux
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT, F-59000 Lille, France
| |
Collapse
|
17
|
Molecular Mechanism of Pin1–Tau Recognition and Catalysis. J Mol Biol 2016; 428:1760-75. [DOI: 10.1016/j.jmb.2016.03.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/08/2016] [Accepted: 03/10/2016] [Indexed: 02/06/2023]
|
18
|
Ferri E, Arosio B, D'Addario C, Galimberti D, Gussago C, Pucci M, Casati M, Fenoglio C, Abbate C, Rossi PD, Scarpini E, Maccarrone M, Mari D. Gene promoter methylation and expression of Pin1 differ between patients with frontotemporal dementia and Alzheimer's disease. J Neurol Sci 2016; 362:283-6. [PMID: 26944164 DOI: 10.1016/j.jns.2016.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 01/07/2016] [Accepted: 02/02/2016] [Indexed: 11/17/2022]
Abstract
Frontotemporal Dementia (FTD) and Alzheimer's Disease (AD) share the accumulation of fibrillar aggregates of misfolded proteins. To better understand these neurodegenerative diseases and identify biomarkers in easily accessible cells, we investigated DNA methylation at Pin1 gene promoter and its expression in peripheral blood mononuclear cells of FTD patients. We found a lower gene expression of Pin1 with a higher DNA methylation in three CpG sites at Pin1 gene promoter analysed in FTD subjects, in contrast to a higher gene expression with a lower methylation in AD subjects and controls. These data suggest an important and distinct involvement of Pin1 in these two types of dementia.
Collapse
Affiliation(s)
- Evelyn Ferri
- Geriatric Unit, Department of Medical Sciences and Community Health, University of Milan, Via Pace 9, 20122 Milan, Italy; PhD in Nutritional Sciences University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy.
| | - Beatrice Arosio
- Geriatric Unit, Department of Medical Sciences and Community Health, University of Milan, Via Pace 9, 20122 Milan, Italy; Fondazione Ca' Granda, IRCCS Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Claudio D'Addario
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Piazza Aldo Moro 45, 64100 Teramo, Italy; European Center for Brain Research (CERC)/Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Daniela Galimberti
- Fondazione Ca' Granda, IRCCS Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy; Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, University of Milan, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Cristina Gussago
- Geriatric Unit, Department of Medical Sciences and Community Health, University of Milan, Via Pace 9, 20122 Milan, Italy
| | - Mariangela Pucci
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Piazza Aldo Moro 45, 64100 Teramo, Italy
| | - Martina Casati
- Geriatric Unit, Department of Medical Sciences and Community Health, University of Milan, Via Pace 9, 20122 Milan, Italy; PhD in Nutritional Sciences University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy
| | - Chiara Fenoglio
- Fondazione Ca' Granda, IRCCS Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy; Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, University of Milan, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Carlo Abbate
- Fondazione Ca' Granda, IRCCS Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Paolo Dionigi Rossi
- Fondazione Ca' Granda, IRCCS Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Elio Scarpini
- Fondazione Ca' Granda, IRCCS Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy; Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, University of Milan, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Mauro Maccarrone
- European Center for Brain Research (CERC)/Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy; Campus Bio-Medico University of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy
| | - Daniela Mari
- Geriatric Unit, Department of Medical Sciences and Community Health, University of Milan, Via Pace 9, 20122 Milan, Italy; Fondazione Ca' Granda, IRCCS Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy
| |
Collapse
|
19
|
Nesti E. Harnessing the master transcriptional repressor REST to reciprocally regulate neurogenesis. NEUROGENESIS 2015; 2:e1055419. [PMID: 27535341 PMCID: PMC4973598 DOI: 10.1080/23262133.2015.1055419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 05/16/2015] [Accepted: 05/21/2015] [Indexed: 02/04/2023]
Abstract
Neurogenesis begins in embryonic development and continues at a reduced rate into adulthood in vertebrate species, yet the signaling cascades regulating this process remain poorly understood. Plasma membrane-initiated signaling cascades regulate neurogenesis via downstream pathways including components of the transcriptional machinery. A nuclear factor that temporally regulates neurogenesis by repressing neuronal differentiation is the repressor element 1 (RE1) silencing transcription (REST) factor. We have recently discovered a regulatory site on REST that serves as a molecular switch for neuronal differentiation. Specifically, C-terminal domain small phosphatase 1, CTDSP1, present in non-neuronal cells, maintains REST activity by dephosphorylating this site. Reciprocally, extracellular signal-regulated kinase, ERK, activated by growth factor signaling in neural progenitors, and peptidylprolyl cis/trans isomerase Pin1, decrease REST activity through phosphorylation-dependent degradation. Our findings further resolve the mechanism for temporal regulation of REST and terminal neuronal differentiation. They also provide new potential therapeutic targets to enhance neuronal regeneration after injury.
Collapse
Affiliation(s)
- Edmund Nesti
- Alcamena Stem Cell Therapeutics, LLC ; Beltsville, MD USA
| |
Collapse
|
20
|
Mantovani F, Zannini A, Rustighi A, Del Sal G. Interaction of p53 with prolyl isomerases: Healthy and unhealthy relationships. Biochim Biophys Acta Gen Subj 2015; 1850:2048-60. [PMID: 25641576 DOI: 10.1016/j.bbagen.2015.01.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 01/17/2015] [Accepted: 01/19/2015] [Indexed: 01/11/2023]
Abstract
BACKGROUND The p53 protein family, comprising p53, p63 and p73, is primarily involved in preserving genome integrity and preventing tumor onset, and also affects a range of physiological processes. Signal-dependent modifications of its members and of other pathway components provide cells with a sophisticated code to transduce a variety of stress signaling into appropriate responses. TP53 mutations are highly frequent in cancer and lead to the expression of mutant p53 proteins that are endowed with oncogenic activities and sensitive to stress signaling. SCOPE OF REVIEW p53 family proteins have unique structural and functional plasticity, and here we discuss the relevance of prolyl-isomerization to actively shape these features. MAJOR CONCLUSIONS The anti-proliferative functions of the p53 family are carefully activated upon severe stress and this involves the interaction with prolyl-isomerases. In particular, stress-induced stabilization of p53, activation of its transcriptional control over arrest- and cell death-related target genes and of its mitochondrial apoptotic function, as well as certain p63 and p73 functions, all require phosphorylation of specific S/T-P motifs and their subsequent isomerization by the prolyl-isomerase Pin1. While these functions of p53 counteract tumorigenesis, under some circumstances their activation by prolyl-isomerases may have negative repercussions (e.g. tissue damage induced by anticancer therapies and ischemia-reperfusion, neurodegeneration). Moreover, elevated Pin1 levels in tumor cells may transduce deregulated phosphorylation signaling into activation of mutant p53 oncogenic functions. GENERAL SIGNIFICANCE The complex repertoire of biological outcomes induced by p53 finds mechanistic explanations, at least in part, in the association between prolyl-isomerases and the p53 pathway. This article is part of a Special Issue entitled Proline-directed foldases: Cell signaling catalysts and drug targets.
Collapse
Affiliation(s)
- Fiamma Mantovani
- Laboratorio Nazionale CIB (LNCIB), Area Science Park, Trieste, Italy; Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Trieste, Italy
| | - Alessandro Zannini
- Laboratorio Nazionale CIB (LNCIB), Area Science Park, Trieste, Italy; Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Trieste, Italy
| | - Alessandra Rustighi
- Laboratorio Nazionale CIB (LNCIB), Area Science Park, Trieste, Italy; Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Trieste, Italy
| | - Giannino Del Sal
- Laboratorio Nazionale CIB (LNCIB), Area Science Park, Trieste, Italy; Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Trieste, Italy.
| |
Collapse
|
21
|
Dujardin S, Colin M, Buée L. Invited review: Animal models of tauopathies and their implications for research/translation into the clinic. Neuropathol Appl Neurobiol 2015; 41:59-80. [DOI: 10.1111/nan.12200] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 11/23/2014] [Indexed: 02/01/2023]
Affiliation(s)
- Simon Dujardin
- Inserm, UMR1172 Jean-Pierre Aubert Research Centre; Lille France
- Faculté de Médecine; Université de Lille; France
- Memory Clinic; CHRU; Lille France
| | - Morvane Colin
- Inserm, UMR1172 Jean-Pierre Aubert Research Centre; Lille France
- Faculté de Médecine; Université de Lille; France
- Memory Clinic; CHRU; Lille France
| | - Luc Buée
- Inserm, UMR1172 Jean-Pierre Aubert Research Centre; Lille France
- Faculté de Médecine; Université de Lille; France
- Memory Clinic; CHRU; Lille France
| |
Collapse
|
22
|
Driver JA, Zhou XZ, Lu KP. Pin1 dysregulation helps to explain the inverse association between cancer and Alzheimer's disease. Biochim Biophys Acta Gen Subj 2015; 1850:2069-76. [PMID: 25583562 DOI: 10.1016/j.bbagen.2014.12.025] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 12/26/2014] [Accepted: 12/29/2014] [Indexed: 12/24/2022]
Abstract
BACKGROUND Pin1 is an intracellular signaling molecule which plays a critical but opposite role in the pathogenesis of Alzheimer's disease (AD) and many human cancers. SCOPE OF REVIEW We review the structure and function of the Pin1 enzyme, the diverse roles it plays in cycling cells and neurons, the epidemiologic evidence for the inverse association between cancer and AD, and the potential therapeutic implications of Pin1-based therapies. MAJOR CONCLUSIONS Pin1 is a unique enzyme that has effects on the function of target proteins by "twisting" them into different shapes. Cycling cells use Pin1 to help coordinate cell division. It is over-expressed and/or activated by multiple mechanisms in many common human cancers, and acts on multiple signal pathways to promote tumorigenesis. Inhibition of Pin1 in animal models has profound anti-tumor effects. In contrast, Pin1 is down-regulated or inactivated by multiple mechanisms in AD brains. The absence of Pin1 impairs tau function and amyloid precursor protein processing, leading to tangle- and amyloid-related pathologies and neurodegeneration in an age-dependent manner, resembling human AD. We have developed cis and trans conformation-specific antibodies to provide the first direct evidence that tau exists in distinct cis and trans conformations and that Pin1 accelerates its cis to trans conversion, thereby protecting against tangle formation in AD. GENERAL SIGNIFICANCE Available studies on Pin1 suggest that cancer and AD may share biological pathways that are deregulated in different directions. Pin1 biology opens exciting preventive and therapeutic horizons for both cancer and neurodegeneration. This article is part of a Special Issue entitled Proline-directed Foldases: Cell Signaling Catalysts and Drug Targets.
Collapse
Affiliation(s)
- Jane A Driver
- Geriatric Research Education and Clinical Center, VA Boston Healthcare System and the Division of Aging, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Xiao Zhen Zhou
- Cancer Research Institute, Beth Israel Deaconess Cancer Center and Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Kun Ping Lu
- Cancer Research Institute, Beth Israel Deaconess Cancer Center and Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
23
|
Jin H, Hu Z, Dong M, Wu Y, Zhu Z, Xu L. Ketamine induces tau hyperphosphorylation at serine 404 in the hippocampus of neonatal rats. Neural Regen Res 2014; 8:1590-6. [PMID: 25206455 PMCID: PMC4145967 DOI: 10.3969/j.issn.1673-5374.2013.17.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 04/10/2013] [Indexed: 11/18/2022] Open
Abstract
Male Wistar 7-day-old rats were injected with 40 mg/kg ketamine intraperitoneally, followed by three additional injections of 20 mg/kg ketamine each upon restoration of the righting reflex. Neonatal rats injected with equivalent volumes of saline served as controls. Hippocampal samples were collected at 1, 7 or 14 days following administration. Electron microscopy showed that neuronal structure changed noticeably following ketamine treatment. Specifically, microtubular structure became irregular and disorganized. Quantitative real time-PCR revealed that phosphorylated tau mRNA was upregulated after ketamine. Western blot analysis demonstrated that phosphorylated tau levels at serine 396 initially decreased at 1 day after ketamine injection, and then gradually returned to control values. At 14 days after injection, levels of phosphorylated tau were higher in the ketamine group than in the control group. Tau protein phosphorylated at serine 404 significantly increased after ketamine injection, and then gradually decreased with time. However, the levels of tau protein at serine 404 were significantly greater in the ketamine group than in the control group until 14 days. The present results indicate that ketamine induces an increase of phosphorylated tau mRNA and excessive phosphorylation of tau protein at serine 404, causing disruption of microtubules in the neonatal rat hippocampus and potentially resulting in damage to hippocampal neurons.
Collapse
Affiliation(s)
- Haiyan Jin
- Department of Anesthesiology, The Children's Hospital, School of Medicine, Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Zhiyong Hu
- Department of Anesthesiology, The Children's Hospital, School of Medicine, Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Mengjie Dong
- PET Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Yidong Wu
- Department of Central Laboratory, The Children's Hospital, School of Medicine, Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Zhirui Zhu
- Department of Anesthesiology, The Children's Hospital, School of Medicine, Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Lili Xu
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310005, Zhejiang Province, China
| |
Collapse
|
24
|
C-terminal domain small phosphatase 1 and MAP kinase reciprocally control REST stability and neuronal differentiation. Proc Natl Acad Sci U S A 2014; 111:E3929-36. [PMID: 25197063 DOI: 10.1073/pnas.1414770111] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The repressor element 1 (RE1) silencing transcription factor (REST) in stem cells represses hundreds of genes essential to neuronal function. During neurogenesis, REST is degraded in neural progenitors to promote subsequent elaboration of a mature neuronal phenotype. Prior studies indicate that part of the degradation mechanism involves phosphorylation of two sites in the C terminus of REST that require activity of beta-transducin repeat containing E3 ubiquitin protein ligase, βTrCP. We identify a proline-directed phosphorylation motif, at serines 861/864 upstream of these sites, which is a substrate for the peptidylprolyl cis/trans isomerase, Pin1, as well as the ERK1/2 kinases. Mutation at S861/864 stabilizes REST, as does inhibition of Pin1 activity. Interestingly, we find that C-terminal domain small phosphatase 1 (CTDSP1), which is recruited by REST to neuronal genes, is present in REST immunocomplexes, dephosphorylates S861/864, and stabilizes REST. Expression of a REST peptide containing S861/864 in neural progenitors inhibits terminal neuronal differentiation. Together with previous work indicating that both REST and CTDSP1 are expressed to high levels in stem cells and down-regulated during neurogenesis, our results suggest that CTDSP1 activity stabilizes REST in stem cells and that ERK-dependent phosphorylation combined with Pin1 activity promotes REST degradation in neural progenitors.
Collapse
|
25
|
Peripheral blood mononuclear cells as a laboratory to study dementia in the elderly. BIOMED RESEARCH INTERNATIONAL 2014; 2014:169203. [PMID: 24877062 PMCID: PMC4022117 DOI: 10.1155/2014/169203] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 03/28/2014] [Indexed: 02/08/2023]
Abstract
The steady and dramatic increase in the incidence of Alzheimer's disease (AD) and the lack of effective treatments have stimulated the search for strategies to prevent or delay its onset and/or progression. Since the diagnosis of dementia requires a number of established features that are present when the disease is fully developed, but not always in the early stages, the need for a biological marker has proven to be urgent, in terms of both diagnosis and monitoring of AD. AD has been shown to affect peripheral blood mononuclear cells (PBMCs) that are a critical component of the immune system which provide defence against infection. Although studies are continuously supplying additional data that emphasize the central role of inflammation in AD, PBMCs have not been sufficiently investigated in this context. Delineating biochemical alterations in AD blood constituents may prove valuable in identifying accessible footprints that reflect degenerative processes within the Central Nervous System (CNS). In this review, we address the role of biomarkers in AD with a focus on the notion that PBMCs may serve as a peripheral laboratory to find molecular signatures that could aid in differential diagnosis with other forms of dementia and in monitoring of disease progression.
Collapse
|
26
|
Tau protein modifications and interactions: their role in function and dysfunction. Int J Mol Sci 2014; 15:4671-713. [PMID: 24646911 PMCID: PMC3975420 DOI: 10.3390/ijms15034671] [Citation(s) in RCA: 234] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 02/11/2014] [Accepted: 03/04/2014] [Indexed: 01/29/2023] Open
Abstract
Tau protein is abundant in the central nervous system and involved in microtubule assembly and stabilization. It is predominantly associated with axonal microtubules and present at lower level in dendrites where it is engaged in signaling functions. Post-translational modifications of tau and its interaction with several proteins play an important regulatory role in the physiology of tau. As a consequence of abnormal modifications and expression, tau is redistributed from neuronal processes to the soma and forms toxic oligomers or aggregated deposits. The accumulation of tau protein is increasingly recognized as the neuropathological hallmark of a number of dementia disorders known as tauopathies. Dysfunction of tau protein may contribute to collapse of cytoskeleton, thereby causing improper anterograde and retrograde movement of motor proteins and their cargos on microtubules. These disturbances in intraneuronal signaling may compromise synaptic transmission as well as trophic support mechanisms in neurons.
Collapse
|
27
|
Ikura T, Ito N. Peptidyl-prolyl isomerase activity of FK506 binding protein 12 prevents tau peptide from aggregating. Protein Eng Des Sel 2013; 26:539-46. [DOI: 10.1093/protein/gzt033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
28
|
Binukumar BK, Shukla V, Amin ND, Reddy P, Skuntz S, Grant P, Pant HC. Topographic regulation of neuronal intermediate filaments by phosphorylation, role of peptidyl-prolyl isomerase 1: significance in neurodegeneration. Histochem Cell Biol 2013; 140:23-32. [PMID: 23793952 DOI: 10.1007/s00418-013-1108-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2013] [Indexed: 11/30/2022]
Abstract
The neuronal cytoskeleton is tightly regulated by phosphorylation and dephosphorylation reactions mediated by numerous associated kinases, phosphatases and their regulators. Defects in the relative kinase and phosphatase activities and/or deregulation of compartment-specific phosphorylation result in neurodegenerative disorders. The largest family of cytoskeletal proteins in mammalian cells is the superfamily of intermediate filaments (IFs). The neurofilament (NF) proteins are the major IFs. Aggregated forms of hyperphosphorylated tau and phosphorylated NFs are found in pathological cell body accumulations in the central nervous system of patients suffering from Alzheimer's disease, Parkinson's disease, and Amyotrophic Lateral Sclerosis. The precise mechanisms for this compartment-specific phosphorylation of cytoskeletal proteins are not completely understood. In this review, we focus on the mechanisms of neurofilament phosphorylation in normal physiology and neurodegenerative diseases. We also address the recent breakthroughs in our understanding the role of different kinases and phosphatases involved in regulating the phosphorylation status of the NFs. In addition, special emphasis has been given to describe the role of phosphatases and Pin1 in phosphorylation of NFs.
Collapse
Affiliation(s)
- B K Binukumar
- Laboratory of Neuronal Cytoskeletal Protein Regulation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Tau pathology modulates Pin1 post-translational modifications and may be relevant as biomarker. Neurobiol Aging 2013; 34:757-69. [DOI: 10.1016/j.neurobiolaging.2012.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Revised: 07/18/2012] [Accepted: 08/02/2012] [Indexed: 11/18/2022]
|
30
|
Abstract
The Wnt/β-catenin pathway promotes proliferation of neural progenitor cells (NPCs) at early stages and induces neuronal differentiation from NPCs at late stages, but the molecular mechanisms that control this stage-specific response are unclear. Pin1 is a prolyl isomerase that regulates cell signaling uniquely by controlling protein conformation after phosphorylation, but its role in neuronal differentiation is not known. Here we found that whereas Pin1 depletion suppresses neuronal differentiation, Pin1 overexpression enhances it, without any effects on gliogenesis from NPCs in vitro. Consequently, Pin1-null mice have significantly fewer upper layer neurons in the motor cortex and severely impaired motor activity during the neonatal stage. A proteomic approach identified β-catenin as a major substrate for Pin1 in NPCs, in which Pin1 stabilizes β-catenin. As a result, Pin1 knockout leads to reduced β-catenin during differentiation but not proliferation of NPCs in developing brains. Importantly, defective neuronal differentiation in Pin1 knockout NPCs is fully rescued in vitro by overexpression of β-catenin but not a β-catenin mutant that fails to act as a Pin1 substrate. These results show that Pin1 is a novel regulator of NPC differentiation by acting on β-catenin and provides a new postphosphorylation signaling mechanism to regulate developmental stage-specific functioning of β-catenin signaling in neuronal differentiation.
Collapse
|
31
|
Nakamura K, Greenwood A, Binder L, Bigio EH, Denial S, Nicholson L, Zhou XZ, Lu KP. Proline isomer-specific antibodies reveal the early pathogenic tau conformation in Alzheimer's disease. Cell 2012; 149:232-44. [PMID: 22464332 PMCID: PMC3601591 DOI: 10.1016/j.cell.2012.02.016] [Citation(s) in RCA: 192] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 08/29/2011] [Accepted: 02/08/2012] [Indexed: 11/22/2022]
Abstract
cis-trans isomerization of proteins phosphorylated by proline-directed kinases is proposed to control numerous signaling molecules and is implicated in the pathogenesis of Alzheimer's and other diseases. However, there is no direct evidence for the existence of cis-trans protein isomers in vivo or for their conformation-specific function or regulation. Here we develop peptide chemistries that allow the generation of cis- and trans-specific antibodies and use them to raise antibodies specific for isomers of phosphorylated tau. cis, but not trans, p-tau appears early in the brains of humans with mild cognitive impairment, accumulates exclusively in degenerated neurons, and localizes to dystrophic neurites during Alzheimer's progression. Unlike trans p-tau, the cis isomer cannot promote microtubule assembly, is more resistant to dephosphorylation and degradation, and is more prone to aggregation. Pin1 converts cis to trans p-tau to prevent Alzheimer's tau pathology. Isomer-specific antibodies and vaccines may therefore have value for the early diagnosis and treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Kazuhiro Nakamura
- Department of Medicine Beth Israel Deaconess Medical Center Harvard Medical School, Boston, MA 02215, USA
| | - Alex Greenwood
- Department of Molecular Biology and Genetics Cornell University, Ithaca, NY 14853, USA
| | - Lester Binder
- Department of Pathology Northwestern University Feinberg School of Medicine Chicago, IL 60611, USA
| | - Eileen H. Bigio
- Department of Cell and Molecular Biology Northwestern University Feinberg School of Medicine Chicago, IL 60611, USA
| | - Sarah Denial
- Department of Molecular Biology and Genetics Cornell University, Ithaca, NY 14853, USA
| | - Linda Nicholson
- Department of Molecular Biology and Genetics Cornell University, Ithaca, NY 14853, USA
| | - Xiao Zhen Zhou
- Department of Medicine Beth Israel Deaconess Medical Center Harvard Medical School, Boston, MA 02215, USA
| | - Kun Ping Lu
- Department of Medicine Beth Israel Deaconess Medical Center Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
32
|
Liou YC, Zhou XZ, Lu KP. Prolyl isomerase Pin1 as a molecular switch to determine the fate of phosphoproteins. Trends Biochem Sci 2011; 36:501-14. [PMID: 21852138 DOI: 10.1016/j.tibs.2011.07.001] [Citation(s) in RCA: 275] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 07/15/2011] [Accepted: 07/15/2011] [Indexed: 12/13/2022]
Abstract
Pin1 is a highly conserved enzyme that only isomerizes specific phosphorylated Ser/Thr-Pro bonds in certain proteins, thereby inducing conformational changes. Such conformational changes represent a novel and tightly controlled signaling mechanism regulating a spectrum of protein activities in physiology and disease; often through phosphorylation-dependent, ubiquitin-mediated proteasomal degradation. In this review, we summarize recent advances in elucidating the role and regulation of Pin1 in controlling protein stability. We also propose a mechanism by which Pin1 functions as a molecular switch to control the fates of phosphoproteins. We finally stress the need to develop tools to visualize directly Pin1-catalyzed protein conformational changes as a way to determine their roles in the development and treatment of human diseases.
Collapse
Affiliation(s)
- Yih-Cherng Liou
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 14 Science Drive 4, Singapore 117543.
| | | | | |
Collapse
|
33
|
Sami F, Smet-Nocca C, Khan M, Landrieu I, Lippens G, Brautigan DL. Molecular basis for an ancient partnership between prolyl isomerase Pin1 and phosphatase inhibitor-2. Biochemistry 2011; 50:6567-78. [PMID: 21714498 DOI: 10.1021/bi200553e] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Pin1 is a prolyl isomerase that recognizes phosphorylated Ser/Thr-Pro sites, and phosphatase inhibitor-2 (I-2) is phosphorylated during mitosis at a PSpTP site that is expected to be a Pin1 substrate. However, we previously discovered I-2, but not phospho-I-2, bound to Pin1 as an allosteric modifier of Pin1 substrate specificity [Li, M., et al. (2008) Biochemistry 47, 292]. Here, we use binding assays and NMR spectroscopy to map the interactions on Pin1 and I-2 to elucidate the organization of this complex. Despite having sequences that are ∼50% identical, human, Xenopus, and Drosophila I-2 proteins all exhibited identical, saturable binding to GST-Pin1 with K(0.5) values of 0.3 μM. The (1)H-(15)N heteronuclear single-quantum coherence spectra for both the WW domain and isomerase domain of Pin1 showed distinctive shifts upon addition of I-2. Conversely, as shown by NMR spectroscopy, specific regions of I-2 were affected by addition of Pin1. A single-residue I68A substitution in I-2 weakened binding to Pin1 by half and essentially eliminated binding to the isolated WW domain. On the other hand, truncation of I-2 to residue 152 had a minimal effect on binding to the WW domain but eliminated binding to the isomerase domain. Size exclusion chromatography revealed that wild-type I-2 and Pin1 formed a large (>300 kDa) complex and I-2(I68A) formed a complex of half the size that we propose are a heterotetramer and a heterodimer, respectively. Pin1 and I-2 are conserved among eukaryotes from yeast to humans, and we propose they make up an ancient partnership that provides a means for regulating Pin1 specificity and function.
Collapse
Affiliation(s)
- Furqan Sami
- Center for Cell Signaling and Department of Microbiology, University of Virginia School of Medicine, Box 800577-MSB7225, Charlottesville, Virginia 22908, United States
| | | | | | | | | | | |
Collapse
|
34
|
De Vos A, Anandhakumar J, Van den Brande J, Verduyckt M, Franssens V, Winderickx J, Swinnen E. Yeast as a model system to study tau biology. Int J Alzheimers Dis 2011; 2011:428970. [PMID: 21559193 PMCID: PMC3090044 DOI: 10.4061/2011/428970] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 01/21/2011] [Indexed: 11/20/2022] Open
Abstract
Hyperphosphorylated and aggregated human protein tau constitutes a hallmark of a multitude of neurodegenerative diseases called tauopathies, exemplified by Alzheimer's disease. In spite of an enormous amount of research performed on tau biology, several crucial questions concerning the mechanisms of tau toxicity remain unanswered. In this paper we will highlight some of the processes involved in tau biology and pathology, focusing on tau phosphorylation and the interplay with oxidative stress. In addition, we will introduce the development of a human tau-expressing yeast model, and discuss some crucial results obtained in this model, highlighting its potential in the elucidation of cellular processes leading to tau toxicity.
Collapse
Affiliation(s)
- Ann De Vos
- Laboratory of Functional Biology, Catholic University of Leuven, Kasteelpark Arenberg 31, 3001 Heverlee, Belgium
| | - Jayamani Anandhakumar
- Laboratory of Functional Biology, Catholic University of Leuven, Kasteelpark Arenberg 31, 3001 Heverlee, Belgium
| | - Jeff Van den Brande
- Laboratory of Functional Biology, Catholic University of Leuven, Kasteelpark Arenberg 31, 3001 Heverlee, Belgium
| | - Mathias Verduyckt
- Laboratory of Functional Biology, Catholic University of Leuven, Kasteelpark Arenberg 31, 3001 Heverlee, Belgium
| | - Vanessa Franssens
- Laboratory of Functional Biology, Catholic University of Leuven, Kasteelpark Arenberg 31, 3001 Heverlee, Belgium
| | - Joris Winderickx
- Laboratory of Functional Biology, Catholic University of Leuven, Kasteelpark Arenberg 31, 3001 Heverlee, Belgium
| | - Erwin Swinnen
- Laboratory of Functional Biology, Catholic University of Leuven, Kasteelpark Arenberg 31, 3001 Heverlee, Belgium
| |
Collapse
|
35
|
Prolyl-peptidyl isomerase, Pin1, phosphorylation is compromised in association with the expression of the HFE polymorphic allele, H63D. Biochim Biophys Acta Mol Basis Dis 2010; 1802:389-95. [DOI: 10.1016/j.bbadis.2010.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2009] [Revised: 12/09/2009] [Accepted: 01/05/2010] [Indexed: 12/14/2022]
|
36
|
Westmark PR, Westmark CJ, Wang S, Levenson J, O'Riordan KJ, Burger C, Malter JS. Pin1 and PKMzeta sequentially control dendritic protein synthesis. Sci Signal 2010; 3:ra18. [PMID: 20215645 DOI: 10.1126/scisignal.2000451] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Some forms of learning and memory and their electrophysiologic correlate, long-term potentiation (LTP), require dendritic translation. We demonstrate that Pin1 (protein interacting with NIMA 1), a peptidyl-prolyl isomerase, is present in dendritic spines and shafts and inhibits protein synthesis induced by glutamatergic signaling. Pin1 suppression increased dendritic translation, possibly through eukaryotic translation initiation factor 4E (eIF4E) and eIF4E binding proteins 1 and 2 (4E-BP1/2). Consistent with increased protein synthesis, hippocampal slices from Pin(-/-) mice had normal early LTP (E-LTP) but significantly enhanced late LTP (L-LTP) compared to wild-type controls. Protein kinase C zeta (PKCzeta) and protein kinase M zeta (PKMzeta) were increased in Pin1(-/-) mouse brain, and their activity was required to maintain dendritic translation. PKMzeta interacted with and inhibited Pin1 by phosphorylating serine 16. Therefore, glutamate-induced, dendritic protein synthesis is sequentially regulated by Pin1 and PKMzeta signaling.
Collapse
Affiliation(s)
- Pamela R Westmark
- Department of Pathology and Laboratory Medicine and Waisman Center for Developmental Disabilities, University of Wisconsin, Madison, WI 53705, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
PIN1 gene variants in Alzheimer's disease. BMC MEDICAL GENETICS 2009; 10:115. [PMID: 19909517 PMCID: PMC2781804 DOI: 10.1186/1471-2350-10-115] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 11/12/2009] [Indexed: 12/12/2022]
Abstract
BACKGROUND Peptidyl-prolyl isomerase, NIMA-interacting 1 (PIN1) plays a significant role in the brain and is implicated in numerous cellular processes related to Alzheimer's disease (AD) and other neurodegenerative conditions. There are confounding results concerning PIN1 activity in AD brains. Also PIN1 genetic variation was inconsistently associated with AD risk. METHODS We performed analysis of coding and promoter regions of PIN1 in early- and late-onset AD and frontotemporal dementia (FTD) patients in comparison with healthy controls. RESULTS Analysis of eighteen PIN1 common polymorphisms and their haplotypes in EOAD, LOAD and FTD individuals in comparison with the control group did not reveal their contribution to disease risk.In six unrelated familial AD patients four novel PIN1 sequence variants were detected. c.58+64C>T substitution that was identified in three patients, was located in an alternative exon. In silico analysis suggested that this variant highly increases a potential affinity for a splicing factor and introduces two intronic splicing enhancers. In the peripheral leukocytes of one living patient carrying the variant, a 2.82 fold decrease in PIN1 expression was observed. CONCLUSION Our data does not support the role of PIN1 common polymorphisms as AD risk factor. However, we suggest that the identified rare sequence variants could be directly connected with AD pathology, influencing PIN1 splicing and/or expression.
Collapse
|
38
|
Behrens MI, Lendon C, Roe CM. A common biological mechanism in cancer and Alzheimer's disease? Curr Alzheimer Res 2009; 6:196-204. [PMID: 19519301 DOI: 10.2174/156720509788486608] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cancer and Alzheimer's disease (AD) are two common disorders for which the final pathophysiological mechanism is not yet clearly defined. In a prospective longitudinal study we have previously shown an inverse association between AD and cancer, such that the rate of developing cancer in general with time was significantly slower in participants with AD, while participants with a history of cancer had a slower rate of developing AD. In cancer, cell regulation mechanisms are disrupted with augmentation of cell survival and/or proliferation, whereas conversely, AD is associated with increased neuronal death, either caused by, or concomitant with, beta amyloid (Abeta) and tau deposition. The possibility that perturbations of mechanisms involved in cell survival/death regulation could be involved in both disorders is discussed. Genetic polymorphisms, DNA methylation or other mechanisms that induce changes in activity of molecules with key roles in determining the decision to "repair and live"- or "die" could be involved in the pathogenesis of the two disorders. As examples, the role of p53, Pin1 and the Wnt signaling pathway are discussed as potential candidates that, speculatively, may explain inverse associations between AD and cancer.
Collapse
Affiliation(s)
- M I Behrens
- Departamento de Neurología y Neurocirugía, Hospital Clínico Universidad de Chile and Clínica Alemana Santiago, Chile.
| | | | | |
Collapse
|
39
|
Sultana R, Perluigi M, Butterfield DA. Oxidatively modified proteins in Alzheimer's disease (AD), mild cognitive impairment and animal models of AD: role of Abeta in pathogenesis. Acta Neuropathol 2009; 118:131-50. [PMID: 19288120 PMCID: PMC2818870 DOI: 10.1007/s00401-009-0517-0] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 03/04/2009] [Accepted: 03/05/2009] [Indexed: 02/06/2023]
Abstract
Oxidative stress has been implicated in the pathogenesis of a number of diseases including Alzheimer's disease (AD). The oxidative stress hypothesis of AD pathogenesis, in part, is based on beta-amyloid peptide (Abeta)-induced oxidative stress in both in vitro and in vivo studies. Oxidative modification of the protein may induce structural changes in a protein that might lead to its functional impairment. A number of oxidatively modified brain proteins were identified using redox proteomics in AD, mild cognitive impairment (MCI) and Abeta models of AD, which support a role of Abeta in the alteration of a number of biochemical and cellular processes such as energy metabolism, protein degradation, synaptic function, neuritic growth, neurotransmission, cellular defense system, long term potentiation involved in formation of memory, etc. All the redox proteomics-identified brain proteins fit well with the appearance of the three histopathological hallmarks of AD, i.e., synapse loss, amyloid plaque formation and neurofibrillary tangle formation and suggest a direct or indirect association of the identified proteins with the pathological and/or biochemical alterations in AD. Further, Abeta models of AD strongly support the notion that oxidative stress induced by Abeta may be a driving force in AD pathogenesis. Studies conducted on arguably the earliest stage of AD, MCI, may elucidate the mechanism(s) leading to AD pathogenesis by identifying early markers of the disease, and to develop therapeutic strategies to slow or prevent the progression of AD. In this review, we summarized our findings of redox proteomics identified oxidatively modified proteins in AD, MCI and AD models.
Collapse
Affiliation(s)
- Rukhsana Sultana
- Department of Chemistry, Center of Membrane Sciences, University of Kentucky, Lexington, KY 40506-0055, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
| | - Marzia Perluigi
- Department of Biochemical Sciences, University of Rome “La Sapienza”, Rome 00185, Italy
| | - D. Allan Butterfield
- Department of Chemistry, Center of Membrane Sciences, University of Kentucky, Lexington, KY 40506-0055, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
40
|
A peptidyl-prolyl isomerase, FKBP12, accumulates in Alzheimer neurofibrillary tangles. Neurosci Lett 2009; 459:96-9. [PMID: 19414059 DOI: 10.1016/j.neulet.2009.04.062] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 04/19/2009] [Accepted: 04/29/2009] [Indexed: 11/20/2022]
Abstract
We investigated a possible role in Alzheimer's disease (AD) for FKBP12, a peptidyl-prolyl cis-trans isomerase known to be important in protein assembly, folding and transportation by using Western blotting and microscopic analyses in postmortem brain tissues from elderly controls and the patients with AD. FKBP12 was enriched and localized to neuronal cell bodies and neurites in control brains. Intense immunoreactivity was found in large neurons such as pyramidal cells. Many FKBP12 positive granules were located in the cytoplasm and the proximal portion of dendrites and axons, and in the nuclei. By contrast, the expression of FKBP12 in AD brains was lower than in control brains. Furthermore, numerous intracellular neurofibrillary tangles (NFTs) were stained for FKBP12 in the hippocampal CA1 subfield, subiculum, entorhinal cortex and angular gyrus. Neuritic pathology such as neuropil threads and dystrophic neurites (DNs) within senile plaques (SPs) and some reactive astrocytes were also immunolabeled for FKBP12 in AD. Double immunofluorescence staining showed dual labeling of intracellular NFTs for FKBP12 and tau. Similar results were obtained in reactive astrocytes for the combination of FKBP12 and glial fibrillary acidic protein (GFAP). Labeling for FKBP12 was dense in axons stained for highly phosphorylated neurofilament protein. Thus our results suggest that FKBP12 may be involved in neuronal or astrocytic cytoskeletal organization and in the abnormal metabolism of tau protein in AD damaged neurons.
Collapse
|
41
|
Bretteville A, Ando K, Ghestem A, Loyens A, Bégard S, Beauvillain JC, Sergeant N, Hamdane M, Buée L. Two-dimensional electrophoresis of tau mutants reveals specific phosphorylation pattern likely linked to early tau conformational changes. PLoS One 2009; 4:e4843. [PMID: 19290042 PMCID: PMC2653646 DOI: 10.1371/journal.pone.0004843] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Accepted: 02/13/2009] [Indexed: 11/18/2022] Open
Abstract
The role of Tau phosphorylation in neurofibrillary degeneration linked to Alzheimer's disease remains to be established. While transgenic mice based on FTDP-17 Tau mutations recapitulate hallmarks of neurofibrillary degeneration, cell models could be helpful for exploratory studies on molecular mechanisms underlying Tau pathology. Here, “human neuronal cell lines” overexpressing Wild Type or mutated Tau were established. Two-dimensional electrophoresis highlights that mutated Tau displayed a specific phosphorylation pattern, which occurs in parallel to the formation of Tau clusters as visualized by electron microscopy. In fact, this pattern is also displayed before Tau pathology onset in a well established mouse model relevant to Tau aggregation in Alzheimer's disease. This study suggests first that pathological Tau mutations may change the distribution of phosphate groups. Secondly, it is possible that this molecular event could be one of the first Tau modifications in the neurofibrillary degenerative process, as this phenomenon appears prior to Tau pathology in an in vivo model and is linked to early steps of Tau nucleation in Tau mutants cell lines. Such cell lines consist in suitable and evolving models to investigate additional factors involved in molecular pathways leading to whole Tau aggregation.
Collapse
Affiliation(s)
- Alexis Bretteville
- Inserm, U837, Place de Verdun, Lille, France
- Université Lille 2, Faculté de Médecine, Institut de Médecine Prédictive et Recherche Thérapeutique, Jean-Pierre Aubert Research Centre, Lille, France
| | - Kunie Ando
- Inserm, U837, Place de Verdun, Lille, France
- Université Lille 2, Faculté de Médecine, Institut de Médecine Prédictive et Recherche Thérapeutique, Jean-Pierre Aubert Research Centre, Lille, France
| | - Antoine Ghestem
- Inserm, U837, Place de Verdun, Lille, France
- Université Lille 2, Faculté de Médecine, Institut de Médecine Prédictive et Recherche Thérapeutique, Jean-Pierre Aubert Research Centre, Lille, France
| | - Anne Loyens
- Inserm, U837, Place de Verdun, Lille, France
- Université Lille 2, Faculté de Médecine, Institut de Médecine Prédictive et Recherche Thérapeutique, Jean-Pierre Aubert Research Centre, Lille, France
| | - Séverine Bégard
- Inserm, U837, Place de Verdun, Lille, France
- Université Lille 2, Faculté de Médecine, Institut de Médecine Prédictive et Recherche Thérapeutique, Jean-Pierre Aubert Research Centre, Lille, France
| | - Jean-Claude Beauvillain
- Inserm, U837, Place de Verdun, Lille, France
- Université Lille 2, Faculté de Médecine, Institut de Médecine Prédictive et Recherche Thérapeutique, Jean-Pierre Aubert Research Centre, Lille, France
| | - Nicolas Sergeant
- Inserm, U837, Place de Verdun, Lille, France
- Université Lille 2, Faculté de Médecine, Institut de Médecine Prédictive et Recherche Thérapeutique, Jean-Pierre Aubert Research Centre, Lille, France
| | - Malika Hamdane
- Inserm, U837, Place de Verdun, Lille, France
- Université Lille 2, Faculté de Médecine, Institut de Médecine Prédictive et Recherche Thérapeutique, Jean-Pierre Aubert Research Centre, Lille, France
| | - Luc Buée
- Inserm, U837, Place de Verdun, Lille, France
- Université Lille 2, Faculté de Médecine, Institut de Médecine Prédictive et Recherche Thérapeutique, Jean-Pierre Aubert Research Centre, Lille, France
- * E-mail:
| |
Collapse
|
42
|
Gendron TF, Petrucelli L. The role of tau in neurodegeneration. Mol Neurodegener 2009; 4:13. [PMID: 19284597 PMCID: PMC2663562 DOI: 10.1186/1750-1326-4-13] [Citation(s) in RCA: 320] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2009] [Accepted: 03/11/2009] [Indexed: 01/31/2023] Open
Abstract
Since the identification of tau as the main component of neurofibrillary tangles in Alzheimer's disease and related tauopathies, and the discovery that mutations in the tau gene cause frontotemporal dementia, much effort has been directed towards determining how the aggregation of tau into fibrillar inclusions causes neuronal death. As evidence emerges that tau-mediated neuronal death can occur even in the absence of tangle formation, a growing number of studies are focusing on understanding how abnormalities in tau (e.g. aberrant phosphorylation, glycosylation or truncation) confer toxicity. Though data obtained from experimental models of tauopathies strongly support the involvement of pathologically modified tau and tau aggregates in neurodegeneration, the exact neurotoxic species remain unclear, as do the mechanism(s) by which they cause neuronal death. Nonetheless, it is believed that tau-mediated neurodegeneration is likely to result from a combination of toxic gains of function as well as from the loss of normal tau function. To truly appreciate the detrimental consequences of aberrant tau function, a better understanding of all functions carried out by tau, including but not limited to the role of tau in microtubule assembly and stabilization, is required. This review will summarize what is currently known regarding the involvement of tau in the initiation and development of neurodegeneration in tauopathies, and will also highlight some of the remaining questions in need of further investigation.
Collapse
Affiliation(s)
- Tania F Gendron
- Department of Neuroscience, Mayo Clinic College of Medicine, Jacksonville, Florida, USA.
| | | |
Collapse
|
43
|
Checler F, Buée L. Données fondamentales sur les pathologies amyloïde et Tau dans la maladie d’Alzheimer : quelles perspectives thérapeutiques ? ANNALES PHARMACEUTIQUES FRANÇAISES 2009; 67:136-53. [DOI: 10.1016/j.pharma.2009.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Revised: 01/18/2009] [Accepted: 01/18/2009] [Indexed: 01/24/2023]
|
44
|
Sergeant N, Bretteville A, Hamdane M, Caillet-Boudin ML, Grognet P, Bombois S, Blum D, Delacourte A, Pasquier F, Vanmechelen E, Schraen-Maschke S, Buée L. Biochemistry of Tau in Alzheimer's disease and related neurological disorders. Expert Rev Proteomics 2008; 5:207-24. [PMID: 18466052 DOI: 10.1586/14789450.5.2.207] [Citation(s) in RCA: 215] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Microtubule-associated Tau proteins belong to a family of factors that polymerize tubulin dimers and stabilize microtubules. Tau is strongly expressed in neurons, localized in the axon and is essential for neuronal plasticity and network. From the very beginning of Tau discovery, proteomics methods have been essential to the knowledge of Tau biochemistry and biology. In this review, we have summarized the main contributions of several proteomic methods in the understanding of Tau, including expression, post-translational modifications and structure, in both physiological and pathophysiological aspects. Finally, recent advances in proteomics technology are essential to develop further therapeutic targets and early predictive and discriminative diagnostic assays for Alzheimer's disease and related disorders.
Collapse
|
45
|
Lim J, Balastik M, Lee TH, Nakamura K, Liou YC, Sun A, Finn G, Pastorino L, Lee VMY, Lu KP. Pin1 has opposite effects on wild-type and P301L tau stability and tauopathy. J Clin Invest 2008; 118:1877-89. [PMID: 18431510 DOI: 10.1172/jci34308] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Accepted: 02/29/2008] [Indexed: 01/03/2023] Open
Abstract
Tau pathology is a hallmark of many neurodegenerative diseases including Alzheimer disease (AD) and frontotemporal dementia with Parkinsonism linked to chromosome 17 (FTDP-17). Genetic tau mutations can cause FTDP-17, and mice overexpressing tau mutants such as P301L tau are used as AD models. However, since no tau mutations are found in AD, it remains unclear how appropriate tau mutant mice are as an AD model. The prolyl isomerase Pin1 binds and isomerizes tau and has been implicated in protecting against neurodegeneration, but whether such Pin1 regulation is affected by tau mutations is unknown. Consistent with earlier findings that Pin1 KO induces tauopathy, here we demonstrate that Pin1 knockdown or KO increased WT tau protein stability in vitro and in mice and that Pin1 overexpression suppressed the tauopathy phenotype in WT tau transgenic mice. Unexpectedly, Pin1 knockdown or KO decreased P301L tau protein stability and abolished its robust tauopathy phenotype in mice. In contrast, Pin1 overexpression exacerbated the tauopathy phenotype in P301L tau mice. Thus, Pin1 has opposite effects on the tauopathy phenotype depending on whether the tau is WT or a P301L mutant, indicating the need for disease-specific therapies for tauopathies.
Collapse
Affiliation(s)
- Jormay Lim
- Cancer Biology Program, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Cole AR, Soutar MPM, Rembutsu M, van Aalten L, Hastie CJ, McLauchlan H, Peggie M, Balastik M, Lu KP, Sutherland C. Relative resistance of Cdk5-phosphorylated CRMP2 to dephosphorylation. J Biol Chem 2008; 283:18227-37. [PMID: 18460467 DOI: 10.1074/jbc.m801645200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Collapsin response mediator protein 2 (CRMP2) binds to microtubules and regulates axon outgrowth in neurons. This action is regulated by sequential phosphorylation by the kinases cyclin-dependent kinase 5 (Cdk5) and glycogen synthase kinase 3 (GSK3) at sites that are hyperphosphorylated in Alzheimer disease. The increased phosphorylation in Alzheimer disease could be due to increases in Cdk5 and/or GSK3 activity or, alternatively, through decreased activity of a CRMP phosphatase. Here we establish that dephosphorylation of CRMP2 at the residues targeted by GSK3 (Ser-518/Thr-514/Thr-509) is carried out by a protein phosphatase 1 family member in vitro, in neuroblastoma cells, and primary cortical neurons. Inhibition of GSK3 activity using insulin-like growth factor-1 or the highly selective inhibitor CT99021 causes rapid dephosphorylation of CRMP2 at these sites. In contrast, pharmacological inhibition of Cdk5 using purvalanol results in only a gradual and incomplete dephosphorylation of CRMP2 at the site targeted by Cdk5 (Ser-522), suggesting a distinct phosphatase targets this residue. A direct comparison of dephosphorylation at the Cdk5 versus GSK3 sites in vitro shows that the Cdk5 site is comparatively resistant to phosphatase treatment. The presence of the peptidyl-prolyl isomerase enzyme, Pin1, does not affect dephosphorylation of Ser-522 in vitro, in cells, or in Pin1 transgenic mice. Instead, the relatively high resistance of this site to phosphatase treatment is at least in part due to the presence of basic residues located nearby. Similar sequences in Tau are also highly resistant to phosphatase treatment. We propose that relative resistance to phosphatases might be a common feature of Cdk5 substrates and could contribute to the hyperphosphorylation of CRMP2 and Tau observed in Alzheimer disease.
Collapse
Affiliation(s)
- Adam R Cole
- Neurosciences Institute, Division of Pathology and Neuroscience, University of Dundee, Ninewells Hospital, Dundee, Scotland, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Proline is unique in the realm of amino acids in its ability to adopt completely distinct cis and trans conformations, which allows it to act as a backbone switch that is controlled by prolyl cis-trans isomerization. This intrinsically slow interconversion can be catalyzed by the evolutionarily conserved group of peptidyl prolyl cis-trans isomerase enzymes. These enzymes include cyclophilins and FK506-binding proteins, which are well known for their isomerization-independent role as cellular targets for immunosuppressive drugs. The significance of enzyme-catalyzed prolyl cis-trans isomerization as an important regulatory mechanism in human physiology and pathology was not recognized until the discovery of the phosphorylation-specific prolyl isomerase Pin1. Recent studies indicate that both phosphorylation-dependent and phosphorylation-independent prolyl cis-trans isomerization can act as a novel molecular timer to help control the amplitude and duration of a cellular process, and prolyl cis-trans isomerization might be a new target for therapeutic interventions.
Collapse
Affiliation(s)
- Kun Ping Lu
- Cancer Biology Program, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 77 Avenue Louis Pasteur, NRB 1030, Boston, Massachusetts 02215, USA.
| | | | | | | |
Collapse
|
48
|
Lu KP, Zhou XZ. The prolyl isomerase PIN1: a pivotal new twist in phosphorylation signalling and disease. Nat Rev Mol Cell Biol 2007; 8:904-16. [PMID: 17878917 DOI: 10.1038/nrm2261] [Citation(s) in RCA: 538] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Protein phosphorylation regulates many cellular processes by causing changes in protein conformation. The prolyl isomerase PIN1 has been identified as a regulator of phosphorylation signalling that catalyses the conversion of specific phosphorylated motifs between the two completely distinct conformations in a subset of proteins. PIN1 regulates diverse cellular processes, including growth-signal responses, cell-cycle progression, cellular stress responses, neuronal function and immune responses. In line with the diverse physiological roles of PIN1, it has also been linked to several diseases that include cancer, Alzheimer's disease and asthma, and thus it might represent a novel therapeutic target.
Collapse
Affiliation(s)
- Kun Ping Lu
- Cancer Biology Program, Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, NRB1030, Boston, Massachusetts 02215, USA.
| | | |
Collapse
|
49
|
Hamdane M, Buée L. The complex p25/Cdk5 kinase in neurofibrillary degeneration and neuronal death: the missing link to cell cycle. Biotechnol J 2007; 2:967-77. [PMID: 17571276 DOI: 10.1002/biot.200700059] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Emergence of the cell cycle hypothesis in neurodegenerative disease comes from the numerous lines of evidence showing a tight link between "cell cycle-like reactivation" and neuronal death. Terminally differentiated neurons remain in G0 phase and display, compared to proliferating cells, an opposite regulation pattern of cell cycle markers in that most of the key activators and inhibitors are respectively down- and up-regulated. It has been clearly established that any experimental attempt to force terminally differentiated neurons to divide ultimately leads to their death. Conversely, cell cycle blockade in experimental models of neuronal death is able to rescue neurons. Hence, cell cycle deregulation is certainly among mechanisms governing neuronal death. However, many questions remain unresolved, especially those related to which molecular mechanisms trigger cell cycle deregulation and how this deregulation leads to cell death. In the present review, we focus on neurodegeneration in Alzheimer's disease and discuss the cell cycle deregulation related to this neurodegenerative pathology. Finally, we emphasize the role of p25/Cdk5 kinase complex in this pathological process through retinoblastoma protein phosphorylation and derepression of E2F-responsive genes and other actors such as cdc2, cyclins, and MCM proteins.
Collapse
|
50
|
Dourlen P, Ando K, Hamdane M, Begard S, Buée L, Galas MC. The peptidyl prolyl cis/trans isomerase Pin1 downregulates the Inhibitor of Apoptosis Protein Survivin. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:1428-37. [PMID: 17624454 DOI: 10.1016/j.bbamcr.2007.05.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Revised: 05/04/2007] [Accepted: 05/16/2007] [Indexed: 01/08/2023]
Abstract
The peptidyl prolyl cis-trans isomerase Pin1 and the Inhibitor of Apoptosis Protein (IAP) Survivin are two major proteins involved in cancer. They both modulate apoptosis, mitosis, centrosome duplication and neuronal development but until now no functional relationship has been reported between these two proteins. We tested Pin1-induced regulation of Survivin in neuroblastoma cells. Pin1 overexpression in SY5Y neuroblastoma cells decreased Survivin levels. Immunocytochemical studies indicated that they partially co-localized in interphase and mitotic cells. Co-immunoprecipitation further demonstrates the existence of a Pin1/Survivin complex. Pin1-induced effect on Survivin was confirmed in COS cells. RT-PCR and mutagenesis experiments suggested that this Pin1-induced decrease of Survivin occurred at the protein level. Survivin downregulation depended on the binding ability of Pin1 but was not related to the single Thr-Pro site, suggesting an indirect relationship into a protein complex. Finally, this functional regulation of Survivin by Pin1 is reciprocal since Pin1 silencing led to an increase in Survivin levels. The characterization of this functional relationship between Pin1 and Survivin might help to better understand mitosis control and cancer mechanisms.
Collapse
Affiliation(s)
- P Dourlen
- Inserm, U837, Place de Verdun, 59045 Lille cedex, France
| | | | | | | | | | | |
Collapse
|