1
|
Cen LP, Park KK, So KF. Optic nerve diseases and regeneration: How far are we from the promised land? Clin Exp Ophthalmol 2023; 51:627-641. [PMID: 37317890 PMCID: PMC10519420 DOI: 10.1111/ceo.14259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/10/2023] [Accepted: 05/18/2023] [Indexed: 06/16/2023]
Abstract
The retinal ganglion cells (RGCs) are the sole output neurons that connect information from the retina to the brain. Optic neuropathies such as glaucoma, trauma, inflammation, ischemia and hereditary optic neuropathy can cause RGC loss and axon damage, and lead to partial or total loss of vision, which is an irreversible process in mammals. The accurate diagnoses of optic neuropathies are crucial for timely treatments to prevent irrevocable RGCs loss. After severe ON damage in optic neuropathies, promoting RGC axon regeneration is vital for restoring vision. Clearance of neuronal debris, decreased intrinsic growth capacity, and the presence of inhibitory factors have been shown to contribute to the failure of post-traumatic CNS regeneration. Here, we review the current understanding of manifestations and treatments of various common optic neuropathies. We also summarise the current known mechanisms of RGC survival and axon regeneration in mammals, including specific intrinsic signalling pathways, key transcription factors, reprogramming genes, inflammation-related regeneration factors, stem cell therapy, and combination therapies. Significant differences in RGC subtypes in survival and regenerative capacity after injury have also been found. Finally, we highlight the developmental states and non-mammalian species that are capable of regenerating RGC axons after injury, and cellular state reprogramming for neural repair.
Collapse
Affiliation(s)
- Ling-Ping Cen
- Department of Neuro-Ophthalmology, Joint Shantou International Eye Centre of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Kevin K. Park
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Kowk-Fai So
- Guangzhou-HongKong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
- Aier School of Ophthalmology, Changsha Aier Hospital of Ophthalmology, Changsha, China
| |
Collapse
|
2
|
Gai H, Wang Y, Chan LLH, Chiu B. Identification of Retinal Ganglion Cells from β-III Stained Fluorescent Microscopic Images. J Digit Imaging 2021; 33:1352-1363. [PMID: 32705432 DOI: 10.1007/s10278-020-00365-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Optic nerve crush in mouse model is widely used for investigating the course following retinal ganglion cell (RGCs) injury. Manual cell counting from β-III tubulin stained microscopic images has been routinely performed to monitor RGCs after an optic nerve crush injury, but is time-consuming and prone to observer variability. This paper describes an automatic technique for RGC identification. We developed and validated (i) a sensitive cell candidate segmentation scheme and (ii) a classifier that removed false positives while retaining true positives. Two major contributions were made in cell candidate segmentation. First, a homomorphic filter was designed to adjust for the inhomogeneous illumination caused by uneven penetration of β-III tubulin antibody. Second, the optimal segmentation parameters for cell detection are highly image-specific. To address this issue, we introduced an offline-online parameter tuning approach. Offline tuning optimized model parameters based on training images and online tuning further optimized the parameters at the testing stage without needing access to the ground truth. In the cell identification stage, 31 geometric, statistical and textural features were extracted from each segmented cell candidate, which was subsequently classified as true or false positives by support vector machine. The homomorphic filter and the online parameter tuning approach together increased cell recall by 28%. The entire pipeline attained a recall, precision and coefficient of determination (r2) of 85.3%, 97.1% and 0.994. The availability of the proposed pipeline will allow efficient, accurate and reproducible RGC quantification required for assessing the death/survival of RGCs in disease models.
Collapse
Affiliation(s)
- He Gai
- Department of Electrical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Yi Wang
- Department of Electrical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Leanne L H Chan
- Department of Electrical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Bernard Chiu
- Department of Electrical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong.
| |
Collapse
|
3
|
Tan J, Liu G, Lan C, Pang IH, Luo X, Wu S, Fan N, Zhang J, Wang N, Liu X. Lentiviral vector-mediated expression of C3 transferase attenuates retinal ischemia and reperfusion injury in rats. Life Sci 2021; 272:119269. [PMID: 33631175 DOI: 10.1016/j.lfs.2021.119269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/17/2021] [Accepted: 02/17/2021] [Indexed: 10/22/2022]
Abstract
AIMS Our previous study showed that intravitreal delivery of self-complementary AAV2 (scAAV2)-mediated exoenzyme C3 transferase (C3) can attenuate retinal ischemia/reperfusion (I/R) injury. The current study investigated the neuroprotective effects of lentivirus (LV)-mediated C3 transgene expression on rat retinal I/R injury. MAIN METHODS The LV encoding C3 and green fluorescent protein (GFP) together (LV-C3-GFP) or GFP only (LV-GFP) was intravitreally injected to SPRAGUE-DAWLEY rats. On day 5 post-intravitreal injection, eyes were evaluated by slit-lamp examination. The GFP expression on retina was confirmed by in vivo and ex vivo assessments. RhoA GTPase expression in retina was examined by western blot. Retinal I/R injury was generated by transiently increasing intraocular pressure (110 mmHg, 90 min). Eyes were then enucleated, and retinas processed for morphological analysis and TdT-dUTP terminal nick-end labeling (TUNEL) assay. KEY FINDINGS No obvious inflammatory reactions or surgical complications were observed after intravitreal injection of LV vectors. There was a significant decrease of total RhoA GTPase level in the retina treated with LV-C3-GFP. Compared to the blank control group, LV-C3-GFP and LV-GFP did not affect the retinal thickness, cell density in ganglion cell layer (GCL), or numbers of apoptotic cells in retinal flat-mounts. In the LV-GFP-treated retinas, I/R decreased the retinal thickness and GCL cell density and increased apoptotic retinal cell numbers. LV-C3-GFP significantly protected against all these degenerative effects of I/R. SIGNIFICANCE This study indicated that LV-mediated C3 transgene expression exhibits neuroprotective effects on the retinal I/R injury and holds potential as a novel neuroprotective approach targeting certain retinopathies.
Collapse
Affiliation(s)
- Junkai Tan
- Xiamen Eye Center, Xiamen University, Xiamen 361006, China
| | - Guo Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Chunlin Lan
- The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Iok-Hou Pang
- Department of Pharmaceutical Sciences and North Texas Eye Research Institute, University of North Texas Health Sciences Center, Fort Worth, TX 76107, United States
| | - Xiaolin Luo
- Department of Ophthalmology, the 2nd Clinical Medical College, Jinan University, Shenzhen 518020, China
| | - Shen Wu
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China
| | - Ning Fan
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, School of Optometry, Shenzhen University, Shenzhen 518000, China
| | - Jingxue Zhang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China
| | - Ningli Wang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China
| | - Xuyang Liu
- Xiamen Eye Center, Xiamen University, Xiamen 361006, China; Department of Ophthalmology, the 2nd Clinical Medical College, Jinan University, Shenzhen 518020, China.
| |
Collapse
|
4
|
Adolf A, Turko P, Rohrbeck A, Just I, Vida I, Ahnert-Hilger G, Höltje M. The Higher Sensitivity of GABAergic Compared to Glutamatergic Neurons to Growth-Promoting C3bot Treatment Is Mediated by Vimentin. Front Cell Neurosci 2020; 14:596072. [PMID: 33240046 PMCID: PMC7669547 DOI: 10.3389/fncel.2020.596072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/06/2020] [Indexed: 11/16/2022] Open
Abstract
The current study investigates the neurotrophic effects of Clostridium botulinum C3 transferase (C3bot) on highly purified, glia-free, GABAergic, and glutamatergic neurons. Incubation with nanomolar concentrations of C3bot promotes dendrite formation as well as dendritic and axonal outgrowth in rat GABAergic neurons. A comparison of C3bot effects on sorted mouse GABAergic and glutamatergic neurons obtained from newly established NexCre;Ai9xVGAT Venus mice revealed a higher sensitivity of GABAergic cells to axonotrophic and dendritic effects of C3bot in terms of process length and branch formation. Protein biochemical analysis of known C3bot binding partners revealed comparable amounts of β1 integrin in both cell types but a higher expression of vimentin in GABAergic neurons. Accordingly, binding of C3bot to GABAergic neurons was stronger than binding to glutamatergic neurons. A combinatory treatment of glutamatergic neurons with C3bot and vimentin raised the amount of bound C3bot to levels comparable to the ones in GABAergic neurons, thereby confirming the specificity of effects. Overall, different surface vimentin levels between GABAergic and glutamatergic neurons exist that mediate neurotrophic C3bot effects.
Collapse
Affiliation(s)
- Andrej Adolf
- Institute of Integrative Neuroanatomy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Paul Turko
- Institute of Integrative Neuroanatomy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Astrid Rohrbeck
- Institute of Toxicology, Hannover Medical School (MHH), Hannover, Germany
| | - Ingo Just
- Institute of Toxicology, Hannover Medical School (MHH), Hannover, Germany
| | - Imre Vida
- Institute of Integrative Neuroanatomy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Gudrun Ahnert-Hilger
- Institute of Integrative Neuroanatomy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Markus Höltje
- Institute of Integrative Neuroanatomy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
5
|
Tan J, Zhang X, Li D, Liu G, Wang Y, Zhang D, Wang X, Tian W, Dong X, Zhou L, Zhu X, Liu X, Fan N. scAAV2-Mediated C3 Transferase Gene Therapy in a Rat Model with Retinal Ischemia/Reperfusion Injuries. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 17:894-903. [PMID: 32382585 PMCID: PMC7200613 DOI: 10.1016/j.omtm.2020.04.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 04/22/2020] [Indexed: 11/26/2022]
Abstract
Glaucoma is characterized by retinal ganglion cell (RGC) death and axonal loss. Therefore, neuroprotection is important in treating glaucoma. In this study, we explored whether exoenzyme C3 transferase (C3)-based gene therapy could protect retinas in an ischemia/reperfusion (I/R) injury rat model. Self-complementary adeno-associated virus 2 (scAAV2) vectors encoding either C3 protein (scAAV2-C3) or enhanced green fluorescence protein (scAAV2-EGFP) were intravitreally delivered into both eyes of rats, and I/R models (acute ocular hypertension) were made in one eye of each rat at day 7 after the injection. The rats were divided into six groups: scAAV2-C3, scAAV2-C3 with I/R, scAAV2-EGFP, scAAV2-EGFP with I/R, blank control, and blank control with I/R. TUNEL (terminal deoxynucleotidyltransferase-mediated deoxyuridine triphosphate nick end labeling), immunohistochemistry of cleaved caspase-3, NeuN and Brn-3a, and H&E staining were used to detect apoptotic cells and other changes in the retina. The results showed that scAAV2-C3 significantly reduced the number of apoptotic RGCs and decreased cell loss in the ganglion cell layer after I/R injury, and the I/R-injured retinas treated with scAAV2-C3 were the thickest in all I/R groups. These results suggest that scAAV2-mediated C3 gene therapy is able to protect the rat retina from I/R injury and has potential in the treatment of glaucoma in the future.
Collapse
Affiliation(s)
- Junkai Tan
- Xiamen Eye Center, Xiamen University, Xiamen 361006, China
| | - Xiaoguang Zhang
- Department of Medicine, Nanchang University, Nanchang 330006, China.,Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, School of Optometry, Shenzhen University, Shenzhen 518000, China
| | - Danli Li
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, School of Optometry, Shenzhen University, Shenzhen 518000, China
| | - Guo Liu
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, School of Optometry, Shenzhen University, Shenzhen 518000, China
| | - Yun Wang
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, School of Optometry, Shenzhen University, Shenzhen 518000, China
| | - Daren Zhang
- Xiamen Eye Center, Xiamen University, Xiamen 361006, China
| | - Xizhen Wang
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, School of Optometry, Shenzhen University, Shenzhen 518000, China
| | - Wenhong Tian
- Beijing FivePlus Molecular Medicine Institute Co., Ltd., Beijing 102600, China
| | - Xiaoyan Dong
- Beijing FivePlus Molecular Medicine Institute Co., Ltd., Beijing 102600, China
| | - Liang Zhou
- Institute of Laboratory Animal Sciences, Sichuan Academy of Medical Sciences and Sichuan Provincial Hospital, Chengdu, Sichuan 610212, China
| | - Xianjun Zhu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.,Institute of Laboratory Animal Sciences, Sichuan Academy of Medical Sciences and Sichuan Provincial Hospital, Chengdu, Sichuan 610212, China
| | - Xuyang Liu
- Xiamen Eye Center, Xiamen University, Xiamen 361006, China.,Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, School of Optometry, Shenzhen University, Shenzhen 518000, China
| | - Ning Fan
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, School of Optometry, Shenzhen University, Shenzhen 518000, China
| |
Collapse
|
6
|
Wang WJ, Jin W, Yang AH, Chen Z, Xing YQ. Protective effects of ciliary neurotrophic factor on the retinal ganglion cells by injure of hydrogen peroxide. Int J Ophthalmol 2018; 11:923-928. [PMID: 29977802 DOI: 10.18240/ijo.2018.06.05] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 11/22/2017] [Indexed: 12/11/2022] Open
Abstract
AIM To explore the effect of ciliary neurotrophic factor (CNTF) on retinal ganglion cell (RGC)-5 induced by hydrogen peroxide (H2O2). METHODS After cell adherence, RGC-5 culture medium was changed to contain different concentrations of H2O2 from 50 to 150 µmol/L at four time points (0.5, 1, 1.5 and 2h) to select the concentration and time point for H2O2 induced model. Two different ways of interventions for injured RGC-5 cells respectively were CNTF as an addition in the culture medium or recombinant lentiviral plasmid carrying CNTF gene transfecting bone mesenchymal stem cells (BMSCs) for co-culture with RGC-5. RESULTS Compared to the control group, H2O2 led to RGC-5 death closely associated with concentrations and action time of H2O2 and we chose 125 µmol/L and 2h to establish the H2O2-induced model. While CNTF inhibited the loss of RGC-5 cells obviously with a dose-dependent survival rate. Nevertheless two administration routes had different survival rate yet higher rate in recombinant lentiviral plasmid group but there were no statistically significant differences. CONCLUSION Both the two administration routes of CNTF have effects on RGC-5 cells induced by H2O2. If their own advantages were combined, there may be a better administration route.
Collapse
Affiliation(s)
- Wen-Jun Wang
- Eye Center, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Wei Jin
- Eye Center, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - An-Huai Yang
- Eye Center, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Zhen Chen
- Eye Center, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Yi-Qiao Xing
- Eye Center, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| |
Collapse
|
7
|
Robinson J, Okoro E, Ezuedu C, Bush L, Opere CA, Ohia SE, Njie-Mbye YF. Effects of Hydrogen Sulfide-Releasing Compounds on Aqueous Humor Outflow Facility in Porcine Ocular Anterior Segments, Ex Vivo. J Ocul Pharmacol Ther 2017; 33:91-97. [PMID: 28099049 DOI: 10.1089/jop.2016.0037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
PURPOSE To investigate the pharmacological actions of hydrogen sulfide (H2S)-releasing compounds l-cysteine and sodium hydrosulfide (NaHS) on aqueous humor (AH) outflow facility in porcine ocular anterior segment. METHODS Porcine ocular anterior segments were perfused with Dulbecco's modified Eagle's medium at a constant pressure of 7.35 mmHg. After stable outflow baseline, explants were exposed to NaHS or l-cysteine. The increase in outflow generated by the H2S-releasing compounds was measured in the absence and presence of inhibitor of H2S biosynthesis (aminooxyacetic acid; AOAA), blocker of KATP channels (glibenclamide), and inhibitor of adenylyl cyclase (SQ 22536). Hematoxylin and eosin (H&E) staining was used to assess trabecular meshwork (TM) morphology. RESULTS l-cysteine elicited a concentration-dependent increase in AH outflow facility, reaching maximal effect at 100 nM (150.6% ± 17.2% of basal level). This increase in outflow induced by l-cysteine was significantly (P < 0.001) antagonized by AOAA (30 μM) and glibenclamide (100 μM). AOAA and glibenclamide had no significant action on baseline outflow, whereas SQ 22536 (100 μM) increased outflow for only an hour. In addition, NaHS produced a concentration-dependent increase in AH outflow, with a maximal effect at 10 μM (151.4% ± 22.9% of basal level). Likewise, the increase in outflow caused by NaHS was significantly (P < 0.04) blocked by glibenclamide and SQ 22536. H&E staining revealed that l-cysteine or NaHS did not alter TM conformation. CONCLUSION H2S-releasing compounds can increase outflow facility in porcine ocular anterior segment. The stimulatory action of these compounds on outflow is mediated, in part by endogenously produced H2S, KATP channels, and adenylyl cyclase.
Collapse
Affiliation(s)
- Jenaye Robinson
- 1 Department of Pharmaceutical and Environmental Health Sciences, College of Pharmacy and Health Sciences, Texas Southern University , Houston, Texas
| | - Esther Okoro
- 1 Department of Pharmaceutical and Environmental Health Sciences, College of Pharmacy and Health Sciences, Texas Southern University , Houston, Texas
| | - Chinoso Ezuedu
- 1 Department of Pharmaceutical and Environmental Health Sciences, College of Pharmacy and Health Sciences, Texas Southern University , Houston, Texas
| | - Leah Bush
- 1 Department of Pharmaceutical and Environmental Health Sciences, College of Pharmacy and Health Sciences, Texas Southern University , Houston, Texas
| | - Catherine A Opere
- 2 Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University , Omaha, Nebraska
| | - Sunny E Ohia
- 1 Department of Pharmaceutical and Environmental Health Sciences, College of Pharmacy and Health Sciences, Texas Southern University , Houston, Texas
| | - Ya Fatou Njie-Mbye
- 1 Department of Pharmaceutical and Environmental Health Sciences, College of Pharmacy and Health Sciences, Texas Southern University , Houston, Texas
| |
Collapse
|
8
|
Cen LP, Liang JJ, Chen JH, Harvey AR, Ng TK, Zhang M, Pang CP, Cui Q, Fan YM. AAV-mediated transfer of RhoA shRNA and CNTF promotes retinal ganglion cell survival and axon regeneration. Neuroscience 2016; 343:472-482. [PMID: 28017835 DOI: 10.1016/j.neuroscience.2016.12.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 12/14/2016] [Accepted: 12/18/2016] [Indexed: 12/09/2022]
Abstract
The aim of the present study was to determine whether adeno-associated viral vector (AAV) mediated transfer of ciliary neurotrophic factor (CNTF) and RhoA shRNA has additive effects on promoting the survival and axon regeneration of retinal ganglion cells (RGCs) after optic nerve crush (ONC). Silencing effects of AAV-RhoA shRNA were confirmed by examining neurite outgrowth in PC12 cells, and by quantifying RhoA expression levels with western blotting. Young adult Fischer rats received an intravitreal injection of (i) saline, (ii) AAV green fluorescent protein (GFP), (iii) AAV-CNTF, (iv) AAV-RhoA shRNA, or (v) a combination of both AAV-CNTF and AAV-RhoA shRNA. Two weeks later, the ON was completely crushed. Three weeks after ONC, RGC survival was estimated by counting βIII-tubulin-positive neurons in retinal whole mounts. Axon regeneration was evaluated by counting GAP-43-positive axons in the crushed ON. It was found that AAV-RhoA shRNA decreased RhoA expression levels and promoted neurite outgrowth in vitro. In the ONC model, AAV-RhoA shRNA by itself had only weak beneficial effects on RGC axon regeneration. However, when combined with AAV-CNTF, AAV-RhoA shRNA significantly improved the therapeutic effect of AAV-CNTF on axon regeneration by nearly two fold, even though there was no significant change in RGC viability. In sum, this combination of vectors increases the regenerative response and can lead to more successful therapeutic outcomes following neurotrauma.
Collapse
Affiliation(s)
- Ling-Ping Cen
- Joint Shantou International Eye Center, Shantou University and The Chinese University of Hong Kong, Shantou, PR China.
| | - Jia-Jian Liang
- Joint Shantou International Eye Center, Shantou University and The Chinese University of Hong Kong, Shantou, PR China
| | - Jian-Huan Chen
- Joint Shantou International Eye Center, Shantou University and The Chinese University of Hong Kong, Shantou, PR China
| | - Alan R Harvey
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley, WA, Australia
| | - Tsz Kin Ng
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, PR China
| | - Mingzhi Zhang
- Joint Shantou International Eye Center, Shantou University and The Chinese University of Hong Kong, Shantou, PR China
| | - Chi Pui Pang
- Joint Shantou International Eye Center, Shantou University and The Chinese University of Hong Kong, Shantou, PR China; Department of Ophthalmology and Visual Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, PR China
| | - Qi Cui
- Joint Shantou International Eye Center, Shantou University and The Chinese University of Hong Kong, Shantou, PR China; Department of Ophthalmology and Visual Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, PR China
| | - You-Ming Fan
- Joint Shantou International Eye Center, Shantou University and The Chinese University of Hong Kong, Shantou, PR China; Department of Neurology, Affiliated Hospital of Hubei University for Nationalities, Enshi, PR China.
| |
Collapse
|
9
|
Wang J, Galvao J, Beach KM, Luo W, Urrutia RA, Goldberg JL, Otteson DC. Novel Roles and Mechanism for Krüppel-like Factor 16 (KLF16) Regulation of Neurite Outgrowth and Ephrin Receptor A5 (EphA5) Expression in Retinal Ganglion Cells. J Biol Chem 2016; 291:18084-95. [PMID: 27402841 DOI: 10.1074/jbc.m116.732339] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Indexed: 11/06/2022] Open
Abstract
Regenerative medicine holds great promise for the treatment of degenerative retinal disorders. Krüppel-like factors (KLFs) are transcription factors that have recently emerged as key tools in regenerative medicine because some of them can function as epigenetic reprogrammers in stem cell biology. Here, we show that KLF16, one of the least understood members of this family, is a POU4F2 independent transcription factor in retinal ganglion cells (RGCs) as early as embryonic day 15. When overexpressed, KLF16 inhibits RGC neurite outgrowth and enhances RGC growth cone collapse in response to exogenous ephrinA5 ligands. Ephrin/EPH signaling regulates RGC connectivity. The EphA5 promoter contains multiple GC- and GT-rich KLF-binding sites, which, as shown by ChIP-assays, bind KLF16 in vivo In electrophoretic mobility shift assays, KLF16 binds specifically to a single KLF site near the EphA5 transcription start site that is required for KLF16 transactivation. Interestingly, methylation of only six of 98 CpG dinucleotides within the EphA5 promoter blocks its transactivation by KLF16 but enables transactivation by KLF2 and KLF15. These data demonstrate a role for KLF16 in regulation of RGC neurite outgrowth and as a methylation-sensitive transcriptional regulator of EphA5 expression. Together, these data identify differential low level methylation as a novel mechanism for regulating KLF16-mediated EphA5 expression across the retina. Because of the critical role of ephrin/EPH signaling in patterning RGC connectivity, understanding the role of KLFs in regulating neurite outgrowth and Eph receptor expression will be vital for successful restoration of functional vision through optic nerve regenerative therapies.
Collapse
Affiliation(s)
- Jianbo Wang
- From the Departments of Physiological Optics and Vision Science and
| | - Joana Galvao
- the Byers Eye Institute, School of Medicine, Stanford University, Palo Alto, California 94303, the Shiley Eye Institute, University of California San Diego, La Jolla, California 92093, and
| | - Krista M Beach
- From the Departments of Physiological Optics and Vision Science and
| | - Weijia Luo
- Biology and Biochemistry, University of Houston, Houston, Texas 77204
| | - Raul A Urrutia
- the Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Epigenomics Translational Program, Center for Individualized Medicine, Departments of Medicine, Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905
| | - Jeffrey L Goldberg
- the Byers Eye Institute, School of Medicine, Stanford University, Palo Alto, California 94303, the Shiley Eye Institute, University of California San Diego, La Jolla, California 92093, and
| | - Deborah C Otteson
- From the Departments of Physiological Optics and Vision Science and Biology and Biochemistry, University of Houston, Houston, Texas 77204,
| |
Collapse
|
10
|
Joly S, Pernet V. Sphingosine 1-phosphate receptor 1 is required for retinal ganglion cell survival after optic nerve trauma. J Neurochem 2016; 138:571-86. [DOI: 10.1111/jnc.13701] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 06/11/2016] [Accepted: 06/12/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Sandrine Joly
- CUO-Recherche; Centre de recherche du CHU de Québec and Département d'ophtalmologie; Faculté de médecine; Université Laval; Quebec City Quebec Canada
| | - Vincent Pernet
- CUO-Recherche; Centre de recherche du CHU de Québec and Département d'ophtalmologie; Faculté de médecine; Université Laval; Quebec City Quebec Canada
| |
Collapse
|
11
|
Wang T, Wang Q, Song R, Zhang Y, Zhang K, Yuan Y, Bian J, Liu X, Gu J, Liu Z. Autophagy Plays a Cytoprotective Role During Cadmium-Induced Oxidative Damage in Primary Neuronal Cultures. Biol Trace Elem Res 2015; 168:481-9. [PMID: 26041154 DOI: 10.1007/s12011-015-0390-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 05/26/2015] [Indexed: 11/30/2022]
Abstract
Cadmium (Cd) induces significant oxidative damage in cells. Recently, it was reported that autophagy could be induced by Cd in neurons. However, little is known about the role of reactive oxygen species (ROS) during Cd-induced autophagy. In our study, we examined the cross-talk between ROS and autophagy by using N-acetyl cysteine (NAC, an antioxidant) and chloroquine (CQ, a pharmacological inhibitor of autophagy) in a primary rat neuronal cell cultures. We observed accumulation of acidic vesicular organelles and the increased expression of endogenous protein light chain 3 (LC3) in Cd-treated neurons, revealing that Cd induced a high level of autophagy. Moreover, increased levels of ROS were observed in neurons treated with Cd, showing that ROS accumulation was closely associated with neuron's exposure to Cd. Furthermore, we found that autophagy was inhibited by using CQ and/or NAC with further aggravation of mitochondrial damage, lactate dehydrogenase (LDH) leakage and hypoploid apoptotic cell number in Cd-treated neurons. These results proved that autophagy has a cytoprotective role during Cd-induced toxicity in neurons, and it can prevent the oxidative damage. These findings may enable the development of novel therapeutic strategies for neurological diseases.
Collapse
Affiliation(s)
- Tao Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, People's Republic of China
| | - Qiwen Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, People's Republic of China
- Bijie Pilot Area Research Institute of Bijie University, Bijie, 551700, People's Republic of China
| | - Ruilong Song
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, People's Republic of China
| | - Yajing Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, People's Republic of China
| | - Kangbao Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, People's Republic of China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, People's Republic of China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, People's Republic of China
| | - Xuezhong Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, People's Republic of China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, People's Republic of China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, People's Republic of China.
| |
Collapse
|
12
|
Liu WD, Chen LL, Shen CY, Jiang LB. Neuroprotective Effect of Compound Anisodine in a Mouse Model with Chronic Ocular Hypertension. Chin Med J (Engl) 2015; 128:2652-7. [PMID: 26415805 PMCID: PMC4736849 DOI: 10.4103/0366-6999.166043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Compound anisodine (CA) is a compound preparation made from hydrobromide anisodine and procaine hydrochloride. The former is an M-choline receptor blocker with the function of regulating the vegetative nervous system, improving microcirculation, and so on. The latter is an antioxidant with the activities of neuroprotection. This study aimed to investigate the potential neuroprotection of CA, which affects the degeneration of the retinal ganglion cells (RGCs) in an animal model with chronic ocular hypertension. METHODS Female C57BL/6J mice (n = 24) were divided randomly into four groups: normal control group without any treatment (Group A, n = 6); CA control group with feeding the CA solution (Group B, n = 6); microbeads (MBs) control group with injecting MB into the anterior chamber (Group C, n = 6); CA study group with MB injection and with feeding the CA solution (Group D, n = 6). Intraocular pressure (IOP) was measured every 3 days after MB injection. At the 21st day, neurons were retrograde-labeled by Fluoro-Gold (FG). Animals were sacrificed on the 27th day. Retinal flat mounts were stained immunohistologically by α2-III-tubulin. FG-retrograde-labeled RGCs, α2-III-tubulin-positive RGCs, and α2-III-tubulin-positive nerve fibers were quantified. RESULTS Mice of Groups C and D expressed the incidence of consistent IOP elevation, which is above the IOP level of Group A with the normal one. There is no significant difference in IOP between Groups A and B (P > 0.05). On the 27th day, there were distinct loss in stained RGCs and nerve fibers from Groups C and D compared with Group A (allP < 0.001). The quantity was significantly higher in Group D as compared to Group C (allP < 0.001) but lower than Group A (allP > 0.001). There was no significant difference in the quantity of RGCs and nerve fibers between Groups A and B (allP > 0.05). CONCLUSIONS These findings suggest that CA plays an importantly neuroprotective role on RGCs in a mouse model with chronic ocular hypertension.
Collapse
Affiliation(s)
| | | | | | - Li-Bin Jiang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing 100730, China
| |
Collapse
|
13
|
Jiang SM, Zeng LP, Zeng JH, Tang L, Chen XM, Wei X. β-III-Tubulin: a reliable marker for retinal ganglion cell labeling in experimental models of glaucoma. Int J Ophthalmol 2015; 8:643-52. [PMID: 26309856 DOI: 10.3980/j.issn.2222-3959.2015.04.01] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 01/22/2015] [Indexed: 02/05/2023] Open
Abstract
AIM To evaluate the reliability of β-III-Tubulin protein as a retinal ganglion cell (RGC) marker in the experimental glaucoma model. METHODS Glaucoma mouse models were established by injecting polystyrene microbeads into the anterior chamber of C57BL/6J mice, then their retinas were obtained 14d and 28d after the intraocular pressure (IOP) was elevated. Retinal flat mounts and sections were double-labeled by fluorogold (FG) and β-III-Tubulin antibody or single-labeled by β-III-Tubulin antibody, then RGCs were counted and compared respectively. RESULTS IOP of the injected eyes were elevated significantly and reached the peak at 22.8±0.7 mm Hg by day 14 after injection, then dropped to 11.3±0.7 mm Hg by day 28. RGC numbers counted by FG labeling and β-III-Tubulin antibody labeling were 64 807±4930 and 64614±5054 respectively in the control group, with no significant difference. By day 14, RGCs in the experimental group decreased significantly compared to the control group, but there was no significant difference between the FG labeling counting and the β-III-Tubulin antibody labeling counting either in the experimental group or in the control group. The result was similar by day 28, with further RGC loss. CONCLUSION Our result suggested that the β-III-Tubulin protein was not affected by IOP elevation and can be used as a reliable marker for RGC in experimental models of glaucoma.
Collapse
Affiliation(s)
- Shan-Ming Jiang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Li-Ping Zeng
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Ji-Hong Zeng
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Li Tang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Xiao-Ming Chen
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Xin Wei
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
14
|
Neuroprotective effects of C3 exoenzyme in excitotoxic retinopathy. Exp Eye Res 2014; 125:128-34. [PMID: 24928315 DOI: 10.1016/j.exer.2014.05.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 05/07/2014] [Accepted: 05/31/2014] [Indexed: 02/05/2023]
Abstract
The purpose of this study is to evaluate the neuroprotective effects of C3 exoenzyme (C3) on N-methyl-d-aspartate (NMDA)-induced retinopathy in rats. C3 was expressed in Escherichia. coli and purified by affinity chromatography. Immunofluorescence was performed in NIH 3T3 cells treated with C3 to verify the cellular uptake of the protein. NMDA was injected intravitreally into rat eyes with or without C3. At various time points after injection, eyes were enucleated. Hematoxylin/eosin staining was performed on retina cross-sections for morphological analysis. Survival and apoptosis of cells in the ganglion cell layer (GCL) were assessed by cresyl violet staining and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) on retina flat-mounts. RhoA levels in retina cells were evaluated by Western blot to detect C3 uptake in vivo. The cellular uptake of C3 was verified by immunofluorescence. Damage including a decrease in inner plexiform layer (IPL) thickness and reduction of cell density in the GCL, corresponding to apoptosis of neurons, was induced by intravitreal injection of NMDA. Protection against this damage was observed following co-injection of C3 and NMDA. RhoA ADP-ribosylation induced by C3 was confirmed by Western blot. Our results suggest that C3 exerts neuroprotective effects against excitotoxic damage induced by NMDA.
Collapse
|
15
|
Cyclic AMP and the regeneration of retinal ganglion cell axons. Int J Biochem Cell Biol 2014; 56:66-73. [PMID: 24796847 DOI: 10.1016/j.biocel.2014.04.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/10/2014] [Accepted: 04/22/2014] [Indexed: 01/12/2023]
Abstract
In this paper we present a brief review of studies that have reported therapeutic benefits of elevated cAMP on plasticity and regeneration after injury to the central nervous system (CNS). We also provide new data on the cellular mechanisms by which elevation of cyclic adenosine monophosphate (cAMP) promotes cytokine driven regeneration of adult CNS axons, using the visual system as the experimental model. cAMP is a second messenger for many intracellular signalling pathways. Elevation of cAMP in the eye by intravitreal injection of the cell permeant analogue (8-(4-chlorophenylthio)-adenosine-3',5'-cyclic monophosphate; CPT-cAMP), when added to recombinant ciliary neurotrophic factor (rCNTF), significantly enhances rCNTF-induced regeneration of adult rat retinal ganglion cell (RGC) axons into peripheral nerve (PN) grafted onto transected optic nerve. This effect is mediated to some extent by protein kinase A (PKA) signalling, but CPT-cAMP also acts via PI3K/Akt signalling to reduce suppressor of cytokine signalling protein 3 (SOCS3) activity in RGCs. Another target for cAMP is the exchange protein activated by cAMP (Epac), which can also mediate cAMP-induced axonal growth. Here we describe some novel results and discuss to what extent the pro-regenerative effects of CPT-cAMP on adult RGCs are mediated via Epac as well as via PKA-dependent pathways. We used the established PN-optic nerve graft model and quantified the survival and regenerative growth of adult rat RGCs after intravitreal injection of rCNTF in combination with a selective activator of PKA and/or a specific activator of Epac. Viable RGCs were identified by βIII-tubulin immunohistochemistry and regenerating RGCs retrogradely labelled and quantified after an injection of fluorogold into the distal end of the PN grafts, 4 weeks post-transplantation. The specific agonists of either PKA or Epac were both effective in enhancing the effects of rCNTF on RGC axonal regeneration, but interestingly, injections that combined rCNTF with both agonists were significantly less effective. The results are discussed in relation to previous CPT-cAMP studies on RGCs, and we also consider the need to modulate cAMP levels in order to obtain the most functionally effective regenerative response after CNS trauma. This article is part of a directed issue entitled: Regenerative Medicine: the challenge of translation.
Collapse
|
16
|
Wang J, Liu X, Zhong Y. Rho/Rho-associated kinase pathway in glaucoma (Review). Int J Oncol 2013; 43:1357-67. [PMID: 24042317 DOI: 10.3892/ijo.2013.2100] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 08/21/2013] [Indexed: 11/06/2022] Open
Abstract
The Rho/ROCK pathway plays important roles in the modulation of the cytoskeletal integrity of cells, the synthesis of extracellular matrix components in the aqueous humor outflow tissue and the permeability of Schlemm's canal endothelial cells. The activation of the Rho/ROCK pathway results in trabecular meshwork (TM) contraction, and the inhibition of this pathway would provoke relaxation of TM with subsequent increase in outflow facility and, thereby, decrease intraocular pressure (IOP). ROCK inhibitors also serve as potent anti‑scarring agents via inhibition of transdifferentiation of tenon fibroblasts into myofibroblasts. Furthermore, the RhoA/ROCK pathway is involved in optic nerve neuroprotection. Inactivation of Rho/ROCK signaling increase ocular blood flow, improve retinal ganglion cell (RGC) survival and promote RGC axon regeneration. Considering the IOP modulation, potent bleb anti-scarring effect and neuroprotective properties of ROCK inhibitors, the Rho/ROCK pathway is an attractive target for anti-glaucoma therapy, and it may be used for human therapy in the near future.
Collapse
Affiliation(s)
- Jing Wang
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai 200025, P.R. China
| | | | | |
Collapse
|
17
|
Cengiz N, Oztürk G, Erdoğan E, Him A, Oğuz EK. Consequences of neurite transection in vitro. J Neurotrauma 2012; 29:2465-74. [PMID: 20121423 DOI: 10.1089/neu.2009.0947] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In order to quantify degenerative and regenerative changes and analyze the contribution of multiple factors to the outcome after neurite transection, we cultured adult mouse dorsal root ganglion neurons, and with a precise laser beam, we transected the nerve fibers they extended. Cell preparations were continuously visualized for 24 h with time-lapse microscopy. More distal cuts caused a more elongated field of degeneration, while thicker neurites degenerated faster than thinner ones. Transected neurites degenerated more if the uncut neurites of the same neuron simultaneously degenerated. If any of these uncut processes regenerated, the transected neurites underwent less degeneration. Regeneration of neurites was limited to distal cuts. Unipolar neurons had shorter regeneration than multipolar ones. Branching slowed the regenerative process, while simultaneous degeneration of uncut neurites increased it. Proximal lesions, small neuronal size, and extensive and rapid neurite degeneration were predictive of death of an injured neuron, which typically displayed necrotic rather than apoptotic form. In conclusion, this in vitro model proved useful in unmasking many new aspects and correlates of mechanically-induced neurite injury.
Collapse
Affiliation(s)
- Nurettin Cengiz
- Department of Histology and Embryology, Yüzüncü Yil University Medical School, Van, Turkey
| | | | | | | | | |
Collapse
|
18
|
Hellström M, Pollett MA, Harvey AR. Post-injury delivery of rAAV2-CNTF combined with short-term pharmacotherapy is neuroprotective and promotes extensive axonal regeneration after optic nerve trauma. J Neurotrauma 2012; 28:2475-83. [PMID: 21861632 DOI: 10.1089/neu.2011.1928] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Recombinant adeno-associated viral (rAAV) vectors expressing neurotrophic genes reduce neuronal death and promote axonal regeneration in central nervous system (CNS) injury models. Currently, however, use of rAAV to treat clinical neurotrauma is problematic because there is a delay in the onset of transgene expression. Using the adult rat retina and optic nerve (ON), we have tested whether rAAV gene therapy administered at the time of injury combined with short-term pharmacotherapy has synergistic effects that enhance neuronal survival and regeneration. The ON was transected and a 1.5 cm segment of autologous peripheral nerve (PN) was grafted onto the cut end. At this time, bicistronic rAAV2 encoding ciliary neurotrophic factor (CNTF) and green fluorescent protein (rAAV2-CNTF-GFP) was injected into the injured eye. To provide interim support for axotomized retinal ganglion cells (RGCs) during vector integration and therapeutic transgene expression, rCNTF protein and a cyclic adenosine monophosphate (cAMP) analogue (CPT-cAMP) were injected intravitreally 3 and 10 days postoperatively. For comparison, another rAAV2-CNTF-GFP group received two intravitreal saline injections 3 and 10 days after the PN-ON surgery. A further PN graft group received only postoperative intravitreal injections of rCNTF plus CPT-cAMP. After 4 weeks, regenerating RGCs were retrogradely labelled by applying fluorogold to the distal end of each PN graft. Compared to saline-injected animals, both RGC survival and axonal regrowth were significantly higher in the rCNTF and CPT-cAMP injected rAAV2-CNTF-GFP group; approximately one third of the RGC population survived axotomy, and 27% of these regrew an axon. These values were also higher than those obtained in rats that received only rCNTF plus CPT-cAMP injections. Therefore, we show for the first time that rAAV-mediated gene delivery at the time of, or just after, neurotrauma is most successful when combined with temporary post-injury trophic support, and is potentially a viable treatment strategy for patients after acute CNS injury.
Collapse
Affiliation(s)
- Mats Hellström
- School of Anatomy and Human Biology, The University of Western Australia, Crawley, Western Australia, Australia
| | | | | |
Collapse
|
19
|
Njie-Mbye YF, Kulkarni M, Opere CA, Ohia SE. Mechanism of action of hydrogen sulfide on cyclic AMP formation in rat retinal pigment epithelial cells. Exp Eye Res 2012; 98:16-22. [PMID: 22445555 DOI: 10.1016/j.exer.2012.03.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 02/29/2012] [Accepted: 03/03/2012] [Indexed: 01/22/2023]
Abstract
Hydrogen sulfide (H(2)S), a colorless gas with the pungent odor of rotten eggs has been reported to produce pharmacological actions in ocular and non-ocular tissues. We have evidence that H(2)S, using sodium hydrosulfide (NaHS) and sodium sulfide (Na(2)S) as donors can increase cyclic AMP (cAMP) production in neural retina. In the present study, we investigated the mechanism of action of H(2)S on cyclic nucleotide production in rat retinal pigment epithelial cells (RPE-J). Cultured RPE-J cells were incubated for 30 min in culture medium containing the cyclic nucleotide phosphodiesterase (PDE) inhibitor, IBMX (2 mM). Cells were exposed to varying concentrations of NaHS, the H(2)S substrate (L-cysteine), cyclooxygenase (COX) inhibitors or the diterpene activator of adenylate cyclase, forskolin in the presence or absence of H(2)S biosynthetic enzymes or the ATP-sensitive potassium (K(ATP)) channel antagonist, glibenclamide. Following drug-treatment at different time intervals, cell homogenates were prepared for cAMP assay using a well established methodology. In RPE-J cells, NaHS (10 nM-1 μM) produced a time-dependent increase in cAMP concentrations over basal levels which reached a maximum at 20 min. At this time point, both NaHS (1 nM-100 μM) and L-cysteine (1 nM-10 μM) produced a concentration-dependent significant (p<0.05) increase in cAMP concentrations over basal level. The effects of NaHS on cAMP levels in RPE-J cells was enhanced significantly (p<0.01) in the presence of the COX inhibitors, indomethacin and flurbiprofen. In RPE-J cells, the effects caused by forskolin (10 μM) on cAMP production were potentiated by addition of low concentrations of NaHS. Both the inhibitor of cystathionine β-synthase (CBS), aminooxyacetic acid (AOA, 1 mM) and the inhibitor of cystathionine γ-lyase (CSE), proparglyglycine (PAG, 1mM) significantly attenuated the increased effect of L-cysteine on cAMP production. The K(ATP) channel antagonist, glibenclamide (100 μM) caused inhibition of NaHS induced-increase of cAMP formation in RPE-J cells. We conclude that, H(2)S (using H(2)S donor and substrate) can increase cAMP production in RPE-J cells, and removal of the apparent inhibitory effect of prostaglandins unmasks an excitatory activity of H(2)S on cAMP. Effects elicited by the H(2)S substrate on cAMP formation are dependent on biosynthesis of H(2)S catalyzed by the biosynthetic enzymes, CBS and CSE. In addition to the adenylyl cylcase pathway, K(ATP) channels are involved in mediating the observed effects of the H(2)S on cAMP production.
Collapse
Affiliation(s)
- Ya Fatou Njie-Mbye
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA.
| | | | | | | |
Collapse
|
20
|
Neurotrophic factors and the regeneration of adult retinal ganglion cell axons. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2012; 106:1-33. [PMID: 23211458 DOI: 10.1016/b978-0-12-407178-0.00002-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The adult central nervous system (CNS) has only a limited capacity to regenerate axons after injury. This is due to a number of factors including the presence of extrinsic inhibitory factors that limit plasticity, lack of effective trophic support, and intrinsic changes in neuronal responsiveness. In this review, we describe the expression and role of neurotrophins in retinal ganglion cells (RGCs) during development and adulthood, and the receptors and miscellaneous signaling systems that influence axonal regeneration after injury. The impact of exogenous neurotrophic factors on adult RGCs injured at different sites in the visual pathway is described for several modes of delivery, including recombinant factors, viral vectors, cell transplantation, as well as combinatorial treatments involving other pharmacotherapeutic agents. Indirect, off-target effects of neurotrophic factors on RGC axonal regeneration are also considered. There remain unresolved issues relating to optimal delivery of neurotrophic factors, and we emphasize the need to develop safe, reliable methods for the regulation of exogenous supply of these factors to the injured CNS.
Collapse
|
21
|
Abstract
The failure of the optic nerve to regenerate after injury or in neurodegenerative disease remains a major clinical and scientific problem. Retinal ganglion cell (RGC) axons course through the optic nerve and carry all the visual information to the brain, but after injury, they fail to regrow through the optic nerve and RGC cell bodies typically die, leading to permanent loss of vision. There are at least 4 hurdles to overcome in preserving RGCs and regenerating their axons: 1) increase RGC survival, 2) overcome the inhibitory environment of the optic nerve, 3) enhance RGC intrinsic axon growth potential, and 4) optimize the mapping of RGC connections back into their targets in the brain.
Collapse
|
22
|
Williams RD, Novack GD, van Haarlem T, Kopczynski C. Ocular hypotensive effect of the Rho kinase inhibitor AR-12286 in patients with glaucoma and ocular hypertension. Am J Ophthalmol 2011; 152:834-41.e1. [PMID: 21794845 DOI: 10.1016/j.ajo.2011.04.012] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 03/31/2011] [Accepted: 04/01/2011] [Indexed: 11/17/2022]
Abstract
PURPOSE To evaluate the ocular hypotensive efficacy of 0.05%, 0.1% and 0.25% AR-12286 Ophthalmic Solutions in patients diagnosed with ocular hypertension or glaucoma. DESIGN Parallel comparison, vehicle-controlled, double-masked, 3-week randomized clinical trial. METHODS Subjects (n = 89) with elevated intraocular pressure (IOP) were assigned randomly to receive either 1 of 3 concentrations of AR-12286 or its vehicle. Dosing was once-daily in the morning for 7 days, then once-daily in the evening for 7 days, then twice daily for 7 days. Primary and secondary efficacy end points were mean IOP at each diurnal time point (8 am, 10 am, 12 pm, and 4 pm) and mean change in IOP from baseline, respectively. RESULTS All 3 concentrations of AR-12286 produced statistically and clinically significant reductions in mean IOP that were dose dependent, with peak effects occurring 2 to 4 hours after dosing. Mean IOP at peak effect ranged from 17.6 to 18.7 mm Hg (-6.8 to -4.4 mm Hg) for the 3 concentrations. The largest IOP reductions were produced by 0.25% AR-12286 after twice daily dosing (up to -6.8 mm Hg; 28%). The 0.25% concentration dosed once-daily in the evening produced highly significant IOP reductions throughout the following day (-5.4 to -4.2 mm Hg). The only adverse event of note was trace (+0.5) to moderate (+2) conjunctival hyperemia that was transient, typically lasting 4 hours or less. After once-daily evening dosing, hyperemia was seen in less than 10% of patients. CONCLUSIONS AR-12286 was well tolerated and provided clinically and statistically significant ocular hypotensive efficacy in patients with ocular hypertension and glaucoma.
Collapse
|
23
|
Yang P, Yang Z. Enhancing intrinsic growth capacity promotes adult CNS regeneration. J Neurol Sci 2011; 312:1-6. [PMID: 21924742 DOI: 10.1016/j.jns.2011.08.037] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 08/23/2011] [Accepted: 08/26/2011] [Indexed: 01/01/2023]
Abstract
In the adult mammalian central nervous system (CNS), the axons do not spontaneously regenerate after injury due to the inhibitory extrinsic environment and a diminished intrinsic regenerative capability. Many previous studies focus largely on characterizing the hostile growth inhibitory molecules in the CNS. In fact, blocking such inhibitory activities by either genetic or pharmacological approaches only allows limited sprouting, and majority of the adult neurons fail to regenerate their axons even provided with permissive substrates. Upon the neural circuits established during development, the intrinsic neuronal growth activity is gradually repressed. Little is known to the mechanisms for transition from the robust growth mode of the immature neurons to the poor growth mode of the mature neurons and the way to reactivate the intrinsic growth capacity after injury. The primary sensory neurons with cell bodies in the dorsal root ganglion (DRG) provide a useful model to develop strategies to enhance the intrinsic growth capacity of neurons. The centrally projecting axons in the adult spinal cord do not regenerate, while the peripheral branches regenerate robustly after injury. Regeneration of the central branches can be significantly enhanced after a prior peripheral branch injury, which is defined as conditioning lesion. We reviewed the mode of conditioning lesion reactivating the intrinsic growth program. Importantly, we summarized the intrinsic neuronal determinants for neurite growth such as cAMP, PTEN/mTOR, APC-Cdh1, KLF4, etc., the mechanisms underlying development-dependent decline of CNS neurons growth ability, and procedures to enhance the intrinsic growth potential.
Collapse
Affiliation(s)
- Ping Yang
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China.
| | | |
Collapse
|
24
|
Chen H, Wei X, Cho KS, Chen G, Sappington R, Calkins DJ, Chen DF. Optic neuropathy due to microbead-induced elevated intraocular pressure in the mouse. Invest Ophthalmol Vis Sci 2011; 52:36-44. [PMID: 20702815 DOI: 10.1167/iovs.09-5115] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
PURPOSE To characterize a glaucoma model of mice, the authors adopted and modified a method of inducing the chronic elevation of intraocular pressure (IOP) by anterior chamber injection of polystyrene microbeads. METHODS Chronic elevation of IOP was induced unilaterally in adult C57BL/6J mice by injecting polystyrene microbeads to the anterior chamber. Effectiveness of microbeads of different sizes (small, 10 μm; large, 15 μm) on inducing IOP elevation was compared, and IOP was measured every other day using a tonometer. After maintaining elevated IOP for 2, 4, or 8 weeks, the degree of RGC and axon degeneration was assessed quantitatively using electron microscopy, fluorogold, retrograde labeling, and immunohistochemistry. RESULTS Eighty-one of 87 mice that received anterior chamber injection of microbeads exhibited consistent IOP elevation above that of control eyes. Injection of small microbeads induced longer and higher peak value of IOP elevation compared with that of the large microbeads. A single injection of small microbeads resulted in a 4-week elevation of IOP that was maintained to an 8-week period after a second injection of microbeads in week 4. As the duration of IOP elevation increased, RGC bodies and their axons degenerated progressively and reached an approximately 50% loss after an 8-week elevation of IOP. CONCLUSIONS Anterior chamber injection of microbeads effectively induced IOP elevation and glaucomatous optic neuropathy in mice. Development of an inducible mouse model of elevated IOP will allow applications of mouse genetic technology to the investigation of the mechanisms and the evaluation of treatment strategies of glaucoma.
Collapse
Affiliation(s)
- Huihui Chen
- Department of Ophthalmology, Central South University, Changsha, Hunan, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
25
|
Negative impact of rAAV2 mediated expression of SOCS3 on the regeneration of adult retinal ganglion cell axons. Mol Cell Neurosci 2010; 46:507-15. [PMID: 21145973 DOI: 10.1016/j.mcn.2010.12.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Accepted: 12/01/2010] [Indexed: 11/21/2022] Open
Abstract
Intravitreal injections of recombinant ciliary neurotrophic factor (rCNTF) protect adult rat retinal ganglion cells (RGCs) after injury and stimulate regeneration, an effect enhanced by co-injection with a cAMP analogue (CPT-cAMP). This effect is partly mediated by PKA and associated signaling pathways, but CPT-cAMP also moderates upregulation of suppressor of cytokine signaling (SOCS) pathways after rCNTF injection, which will also enhance the responsiveness of RGCs to this and perhaps other cytokines. We now report that intravitreal injections of CPT-cAMP do not potentiate RGC axonal regeneration when CNTF is expressed via an adeno-associated viral vector (rAAV2), and concomitantly we show that increases in retinal SOCS mRNA expression are less when CNTF is delivered using the vector. We also directly tested the impact of elevated SOCS3 expression on the survival and regeneration of injured adult RGCs by injecting a bicistronic rAAV2-SOCS3-GFP vector into the vitreous of eyes in rats with a peripheral nerve graft sutured onto the cut optic nerve. Overexpression of SOCS3 resulted in an overall reduction in axonal regrowth and almost complete regeneration failure of RGCs transduced with the rAAV2-SOCS3-GFP vector. Furthermore, rAAV2-mediated expression of SOCS3 abolished the normally neurotrophic effects elicited by intravitreal rCNTF injections. In summary, CNTF delivery to the retina using viral vectors may be more effective than bolus rCNTF injections because the gene therapy approach has a less pronounced effect on neuron-intrinsic SOCS repressor pathways. Our new gain of function data using rAAV2-SOCS3-GFP demonstrate the negative impact of enhanced SOCS3 expression on the regenerative potential of mature CNS neurons.
Collapse
|
26
|
Dallimore EJ, Park KK, Pollett MA, Taylor JS, Harvey AR. The life, death and regenerative ability of immature and mature rat retinal ganglion cells are influenced by their birthdate. Exp Neurol 2010; 225:353-65. [DOI: 10.1016/j.expneurol.2010.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2010] [Revised: 06/30/2010] [Accepted: 07/12/2010] [Indexed: 11/17/2022]
|
27
|
A chemical screen identifies novel compounds that overcome glial-mediated inhibition of neuronal regeneration. J Neurosci 2010; 30:4693-706. [PMID: 20357120 DOI: 10.1523/jneurosci.0302-10.2010] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A major barrier to regeneration of CNS axons is the presence of growth-inhibitory proteins associated with myelin and the glial scar. To identify chemical compounds with the ability to overcome the inhibition of regeneration, we screened a novel triazine library, based on the ability of compounds to increase neurite outgrowth from cerebellar neurons on inhibitory myelin substrates. The screen produced four "hit compounds," which act with nanomolar potency on several different neuronal types and on several distinct substrates relevant to glial inhibition. Moreover, the compounds selectively overcome inhibition rather than promote growth in general. The compounds do not affect neuronal cAMP levels, PKC activity, or EGFR (epidermal growth factor receptor) activation. Interestingly, one of the compounds alters microtubule dynamics and increases microtubule density in both fibroblasts and neurons. This same compound promotes regeneration of dorsal column axons after acute lesions and potentiates regeneration of optic nerve axons after nerve crush in vivo. These compounds should provide insight into the mechanisms through which glial-derived inhibitors of regeneration act, and could lead to the development of novel therapies for CNS injury.
Collapse
|
28
|
Njie-Mbye YF, Bongmba OYN, Onyema CC, Chitnis A, Kulkarni M, Opere CA, LeDay AM, Ohia SE. Effect of hydrogen sulfide on cyclic AMP production in isolated bovine and porcine neural retinae. Neurochem Res 2009; 35:487-94. [PMID: 19898983 DOI: 10.1007/s11064-009-0085-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2009] [Indexed: 10/20/2022]
Abstract
Hydrogen sulfide (H(2)S) has been reported to exert pharmacological effects on neural and non-neural tissues from several mammalian species. In the present study, we examined the role of the intracellular messenger, cyclic AMP in retinal response to H(2)S donors, sodium hydrosulfide (NaHS) and sodium sulfide (Na(2)S) in cows and pigs. Isolated bovine and porcine neural retinae were incubated in oxygenated Krebs buffer solution prior to exposure to varying concentrations of NaHS, Na(2)S or the diterpene activator of adenylate cyclase, forskolin. After incubation at different time intervals, tissue homogenates were prepared for cyclic AMP assay using a well established methodology. In isolated bovine and porcine retinae, the combination of both phosphodiesterase inhibitor, IBMX (2 mM) and forskolin (10 microM) produced a synergistic increase (P < 0.001) in cyclic AMP concentrations over basal levels. NaHS (10 nM-100 microM) produced a time-dependent increase in cyclic AMP concentrations over basal levels which reached a maximum at 20 min in both bovine and porcine retinae. At this time point, both NaHS and Na(2)S (10 nM-100 microM) caused a significant (P < 0.05) dose-dependent increase in cyclic AMP levels in bovine and porcine retinae. For instance, NaHS (100 nM) elicited a four-fold and three-fold increase in cyclic AMP concentrations in bovine and porcine retinae respectively whilst higher concentrations of Na(2)S (100 microM) produced a much lesser effect in both species. In bovine and porcine retinae, the effects caused by forskolin (10 microM) on cyclic AMP production were not potentiated by addition of low or high concentrations of both NaHS and Na(2)S. We conclude that H(2)S donors can increase cyclic AMP production in isolated neural retinae from cows and pigs. Bovine retina appears to be more sensitive to the stimulatory effect of H(2)S donors on cyclic nucleotide production than its porcine counterpart indicating that species differences exist in the magnitude of this response. Furthermore, effects produced by forskolin on cyclic AMP formation were not additive with those elicited by H(2)S donors suggesting that these agents may share a common mechanism in their action on the adenylyl cyclase pathway.
Collapse
Affiliation(s)
- Ya Fatou Njie-Mbye
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Hu Y, Cho S, Goldberg JL. Neurotrophic effect of a novel TrkB agonist on retinal ganglion cells. Invest Ophthalmol Vis Sci 2009; 51:1747-54. [PMID: 19875669 DOI: 10.1167/iovs.09-4450] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
PURPOSE Retinal ganglion cells (RGCs) die in glaucoma and virtually all optic neuropathies. Recently, novel tropomyosin-related kinase B (TrkB) monoclonal antibodies have been shown to activate TrkB receptors and exert neuroprotective and neurotrophic effects. In the present study, the authors examined the ability of one of them, 29D7, to elicit RGC survival and neurite growth both in culture and in vivo. METHODS RGCs from postnatal day (P)3 to P4 Sprague-Dawley rats were isolated by sequential immunopanning using a monoclonal antibody to Thy1. RGCs were cultured in serum-free defined medium in 96-well plates. RGC viability was assessed after 1 to 3 days by MTT assay. Activation of TrkB and downstream signaling molecules was confirmed by Western blot analysis. Intravitreal injections of 29D7 were performed after optic nerve axotomy, and subsequent RGC survival was quantified using beta-III tubulin immunostaining. Regeneration was assessed using retrograde fluorogold tracing in an optic nerve-peripheral nerve graft model. RESULTS Similar to brain-derived neurotrophic factor (BDNF), the 29D7 antibody strongly promoted RGC survival and neurite growth in vitro compared with medium alone or control IgG. Forskolin, which weakly supported RGC survival on its own, potentiated the effect of 29D7. Intravitreal injection of 29D7 enhanced RGC survival but not regeneration in vivo 2 weeks after optic nerve injury. CONCLUSIONS Together, these findings demonstrate the potential for antibody-mediated TrkB agonism as a potential therapeutic approach to enhance RGC survival after optic nerve injury. Further studies are needed to elucidate the mechanistic differences between this TrkB agonist and BDNF.
Collapse
Affiliation(s)
- Ying Hu
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | | | | |
Collapse
|
30
|
Douglas MR, Morrison KC, Jacques SJ, Leadbeater WE, Gonzalez AM, Berry M, Logan A, Ahmed Z. Off-target effects of epidermal growth factor receptor antagonists mediate retinal ganglion cell disinhibited axon growth. ACTA ACUST UNITED AC 2009; 132:3102-21. [PMID: 19783665 DOI: 10.1093/brain/awp240] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Inhibition of central nervous system axon growth is reportedly mediated in part by calcium-dependent phosphorylation of axonal epidermal growth factor receptor, with local administration of the epidermal growth factor receptor kinase inhibitors AG1478 and PD168393 to an optic nerve lesion site promoting adult retinal ganglion cell axon regeneration. Here, we show that epidermal growth factor receptor was neither constitutively expressed, nor activated in optic nerve axons in our non-regenerating and regenerating optic nerve injury models, a finding that is inconsistent with phosphorylated epidermal growth factor receptor-dependent intra-axonal signalling of central nervous system myelin-related axon growth inhibitory ligands. However, epidermal growth factor receptor was localized and activated within most glia in the retina and optic nerve post-injury, and thus an indirect glial-dependent mechanism for stimulated retinal ganglion cell axon growth by epidermal growth factor receptor inhibitors seemed plausible. Using primary retinal cultures with added central nervous system myelin extracts, we confirmed previous reports that AG1478/PD168393 blocks epidermal growth factor receptor activation and promotes disinhibited neurite outgrowth. Paradoxically, neurites did not grow in central nervous system myelin extract-containing cultures after short interfering ribonucleic acid-mediated knockdown of epidermal growth factor receptor. However, addition of AG1478 restored neurite outgrowth to short interfering ribonucleic acid-treated cultures, implying that epidermal growth factor receptor does not mediate AG1478-dependent effects. TrkA-/B-/C-Fc fusion proteins and the kinase blocker K252a abrogated the neuritogenic activity in these cultures, correlating with the presence of the neurotrophins brain derived neurotrophic factor, nerve growth factor and neurotrophin-3 in the supernatant and increased intracellular cyclic adenosine monophosphate activity. Neurotrophins released by AG1478 stimulated disinhibited retinal ganglion cell axon growth in central nervous system myelin-treated cultures by the induction of regulated intramembraneous proteolysis of p75(NTR) and Rho inactivation. Retinal astrocytes/Müller cells and retinal ganglion cells were the source of neurotrophins, with neurite outgrowth halved in the presence of glial inhibitors. We attribute AG1478-stimulated neuritogenesis to the induced release of neurotrophins together with raised cyclic adenosine monophosphate levels in treated cultures, leading to axon growth and disinhibition by neurotrophin-induced regulated intramembraneous proteolysis of p75(NTR). These off-target effects of epidermal growth factor receptor kinase inhibition suggest a novel therapeutic approach for designing treatments to promote central nervous system axon regeneration.
Collapse
Affiliation(s)
- Michael R Douglas
- Molecular Neuroscience Group, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Suggate EL, Ahmed Z, Read ML, Eaton-Charnock K, Douglas MR, Gonzalez AM, Berry M, Logan A. Optimisation of siRNA-mediated RhoA silencing in neuronal cultures. Mol Cell Neurosci 2009; 40:451-62. [PMID: 19340932 DOI: 10.1016/j.mcn.2009.01.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In investigating the consequences of gene silencing in axon growth disinhibition strategies in cultured retinal ganglion cells (RGC), we conducted experiments designed to silence RhoA signalling in PC12 and primary adult rat retinal cell cultures (containing RGC) by siRNA-mediated RhoA mRNA knockdown. We demonstrate wide differences in the levels of RhoA mRNA knockdown, dose-dependent cell toxicity, and induction of endogenous inflammatory cytokine and interferon responses to siRNA therapy. Toxicity effects observed with RhoA-siRNA was significantly reduced with "Stealth" chemical modification of the sequence, promoting approximately 50% and 70% knockdown of RhoA mRNA and protein in retinal cells, respectively, while promoting significant disinhibited RGC neurite outgrowth in the presence of inhibitory CNS myelin. Our results highlight differential responsiveness of cell lines compared to primary cultured cells, and demonstrate the efficacy of the "Stealth" modification to reduce siRNA-induced interferon responses, thereby increasing target cell viability and reducing off-target effects of the delivered nucleic acids.
Collapse
Affiliation(s)
- Ellen L Suggate
- Molecular Neuroscience Group, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham B152TT, UK
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Park KK, Hu Y, Muhling J, Pollett MA, Dallimore EJ, Turnley AM, Cui Q, Harvey AR. Cytokine-induced SOCS expression is inhibited by cAMP analogue: impact on regeneration in injured retina. Mol Cell Neurosci 2009; 41:313-24. [PMID: 19394427 DOI: 10.1016/j.mcn.2009.04.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 03/25/2009] [Accepted: 04/17/2009] [Indexed: 12/09/2022] Open
Abstract
Injured adult retinal ganglion cells (RGCs) regrow axons into peripheral nerve (PN) grafted onto cut optic nerve. Survival and regeneration of RGCs is increased by intraocular injections of ciliary neurotrophic factor (CNTF) and axonal regeneration is further enhanced by co-injection of a cyclic AMP analogue (CPT-cAMP). Based on these data, and because cytokine signaling is negatively regulated by suppressor of cytokine signaling (SOCS) proteins, we set out to determine whether CNTF injections increase retinal SOCS expression and whether any changes are attenuated by co-injection with CPT-cAMP. Using quantitative PCR we found increased SOCS1, SOCS2 and SOCS3 mRNA levels at various times after a single CNTF injection. Expression remained high for many days. SOCS protein levels were also increased. In situ hybridization revealed that RGCs express SOCS3 mRNA, and SOCS expression in cultured RGCs was increased by CNTF. Co-injection of CPT-cAMP reduced CNTF induced expression of SOCS1 and SOCS3 mRNA and decreased SOCS3 protein expression. CNTF injection also transiently increased retinal leukemia inhibitory factor (LIF) expression, an effect that was also moderated by CPT-cAMP. We propose that, along with known reparative effects of elevated cAMP on neurons, reducing SOCS upregulation may be an additional way in which cyclic nucleotides augment cytokine-induced regenerative responses in the injured CNS.
Collapse
Affiliation(s)
- Kevin K Park
- School of Anatomy and Human Biology M309, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA 6009, Australia
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Müller A, Hauk TG, Leibinger M, Marienfeld R, Fischer D. Exogenous CNTF stimulates axon regeneration of retinal ganglion cells partially via endogenous CNTF. Mol Cell Neurosci 2009; 41:233-46. [PMID: 19332123 DOI: 10.1016/j.mcn.2009.03.002] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2009] [Revised: 03/10/2009] [Accepted: 03/12/2009] [Indexed: 01/18/2023] Open
Abstract
Intravitreal injections of exogenous CNTF stimulate axon regeneration of RGCs in vivo. Nevertheless, controversy exists over the ability of exogenous CNTF to directly stimulate axon regeneration of mature RGCs. Here we demonstrate that CNTF potently stimulated axon outgrowth of mature RGCs in culture in a JAK/STAT3- and PI3K/AKT-signaling pathway-dependent fashion and stronger than oncomodulin. Additional cAMP elevation or inhibition of MAPK activity increased these effects. In vivo intravitreal injections of exogenous CNTF induced endogenous CNTF expression in astrocytes in a manner that depended on the MAPK/ERK-signaling pathway activation. Reduction of endogenous CNTF expression by MAPK/ERK pathway inhibitors or its absence in CNTF deficient mice markedly reduced the neurite growth-promoting effects of exogenous CNTF. These data demonstrate that CNTF is a potent axon growth-promoting factor for mature RGCs. However, exogenously applied CNTF stimulates RGCs in vivo partially indirectly via a mechanism that depends on astrocyte-derived CNTF.
Collapse
Affiliation(s)
- Adrienne Müller
- Department of Experimental Neurology, University of Ulm, Albert-Einstein-Alee 11, 89081 Ulm, Germany
| | | | | | | | | |
Collapse
|
34
|
Harvey AR, Hellström M, Rodger J. Gene therapy and transplantation in the retinofugal pathway. PROGRESS IN BRAIN RESEARCH 2009; 175:151-61. [PMID: 19660654 DOI: 10.1016/s0079-6123(09)17510-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The mature CNS has limited intrinsic capacity for repair after injury; therefore, strategies are needed to enhance the viability and regrowth of damaged neurons. Here we review gene therapy studies in the eye, aimed at improving the survival and regeneration of injured retinal ganglion cells (RGCs). To target RGCs most current methods use recombinant adeno-associated viral vectors (AAV), usually serotype-2 (AAV2), that are injected into the vitreal chamber of the eye. This vector provides long-term transduction of adult RGCs. Strong, constitutive promoters such as CMV and/or beta-actin are commonly used but cell-specific promoters have also been tested. Transgenes encoded by AAV have been selected to limit cell death, enhance growth factor expression, or promote growth cone responsiveness. We have assessed the effects of AAV vectors in adult rodent models (i) after optic nerve (ON) crush and (ii) after transplantation of peripheral nerve (PN) onto the cut ON, a procedure that induces injured RGCs to regenerate axons over longer distances. AAV-CNTF-GFP promotes RGC survival and axonal regrowth in mice after ON crush, and in rats after ON crush or PN transplantation. In rats, intravitreal injection of AAV-BDNF-GFP also increases RGC viability but does not promote regeneration. RGC viability and axonal regrowth is further enhanced when AAV-CNTF-GFP is injected into transgenic mice that over-express bcl-2. Reconstituted PN grafts containing Schwann cells that were transduced ex vivo with lentiviral (LV) vectors encoding a secretable form of CNTF support RGC axonal regrowth, however grafts containing Schwann cells transduced with LV-BDNF or LV-GDNF are less successful. We have also quantified the transduction efficiency and tropism of different AAV vectors injected intravitreally. AAV 2/2 and AAV 2/6 showed highest levels of transduction, AAV 2/8 the lowest, and each serotype displayed different transduction profiles for retinal cells. We are also studying the long-term impact of AAV2-mediated CNTF or BDNF expression on the dendritic morphology of RGCs in normal and PN grafted retinas. Analysis of regenerating RGCs intracellularly injected with lucifer yellow indicates gene-specific changes in dendritic structure that likely impact upon visual function.
Collapse
Affiliation(s)
- Alan R Harvey
- School of Anatomy and Human Biology, The University of Western Australia, Crawley, WA, Australia.
| | | | | |
Collapse
|
35
|
Höltje M, Djalali S, Hofmann F, Münster-Wandowski A, Hendrix S, Boato F, Dreger SC, Grosse G, Henneberger C, Grantyn R, Just I, Ahnert-Hilger G. A 29-amino acid fragment of Clostridium botulinum C3 protein enhances neuronal outgrowth, connectivity, and reinnervation. FASEB J 2008; 23:1115-26. [PMID: 19047066 DOI: 10.1096/fj.08-116855] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Small GTPases of the Rho family play versatile roles in the formation and development of axons and dendrites, effects often studied by the Rho-inactivating C3 transferase (C3bot) from Clostridium botulinum. Recently, we reported that transferase-deficient C3bot also exerted axonotrophic activity. Using overlapping peptides from the C3bot sequence, we identified a small peptide of 29 amino acids (covering residues 154-182) from the C-terminal region of C3bot that promotes both axonal and dendritic growth, as well as branching of hippocampal neurons, at submicromolar concentrations. Several C3bot constructs, including the short peptide, enhanced the number of axonal segments from mid- to higher-order segments. C3bot(154-182) also increased the number of synaptophysin-expressing terminals, up-regulated various synaptic proteins, and functionally increased the glutamate uptake. Staining against the vesicular glutamate and GABA transporters further revealed that the effect was attributable to a higher number of glutamatergic and GABAergic inputs on proximal dendrites of enhanced green fluorescent protein (EGFP)-transfected neurons. Using organotypical slice cultures, we also detected trophic effects of C3bot(154-182) on length and density of outgrowing fibers from the entorhinal cortex that were comparable to the effects elicited by full-length C3bot. In addition, an enhanced reinnervation was observed in a hippocampal-entorhinal lesion model. In summary, the neurotrophic effect of C3bot is executed by a C-terminal peptide fragment covering aa 154-182 of C3; it triggers dendritic and axonal growth and branching as well as increased synaptic connectivity. In contrast to full-length C3, this C3 peptide selectively acts on neurons but not on glial cells.
Collapse
Affiliation(s)
- Markus Höltje
- Centrum für Anatomie, AG Funktionelle Zellbiologie, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Argaw A, Duff G, Boire D, Ptito M, Bouchard JF. Protein kinase A modulates retinal ganglion cell growth during development. Exp Neurol 2008; 211:494-502. [PMID: 18423622 DOI: 10.1016/j.expneurol.2008.02.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 02/06/2008] [Accepted: 02/22/2008] [Indexed: 11/17/2022]
Abstract
During development, retinal ganglion cells (RGCs) extend their axons toward their thalamic and mesencephalic targets. Their navigation is largely directed by guidance cues present in their environment. Since cAMP is an important second messenger that mediates the neural response to guidance molecules and its intracellular levels seem to decrease significantly following birth, we tested whether modulation of the cAMP/protein kinase A (PKA) pathway would affect the normal development of RGC axons. At postnatal day 1, hamsters received a unilateral intraocular injection of either 0.9% saline solution, 12 mM of the membrane-permeable cAMP analogue (dibutyryl cAMP; db-cAMP), or 10 microM of the PKA inhibitor KT5720. Intraocular elevation of cAMP significantly accelerated RGC axonal growth while inhibition of PKA activity decreased it. Moreover, when highly purified RGC cultures were treated with forskolin (an activator of adenylate cyclase) or cAMP analogues (db-cAMP and Sp-cAMP), neurite length, growth cone (GC) surface area and GC filopodia number were significantly increased. This indicates that intraocular elevation of cAMP acts directly on RGCs. Since these effects were prevented by PKA inhibitors, it demonstrates that cAMP also exerts its action via the PKA pathway. Taken together, these results suggest that the cAMP/PKA cascade is essential for the normal development of retinothalamic projections.
Collapse
Affiliation(s)
- Anteneh Argaw
- Department of Biomedical Science, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada H3T 1J4
| | | | | | | | | |
Collapse
|
37
|
Luo JM, Zhi Y, Chen Q, Cen LP, Zhang CW, Lam DSC, Harvey AR, Cui Q. Influence of macrophages and lymphocytes on the survival and axon regeneration of injured retinal ganglion cells in rats from different autoimmune backgrounds. Eur J Neurosci 2007; 26:3475-85. [PMID: 18052979 DOI: 10.1111/j.1460-9568.2007.05957.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The immune response after neural injury influences the survival and regenerative capacity of neurons. In the primary visual pathway, previous studies have described beneficial effects of macrophages and T-cells in promoting neural survival and axonal regeneration in some rat strains. However, the contributions of specific cell populations to these responses have been unclear. In adult Fischer (F344) rats, we confirm prior reports that intravitreal macrophage activation promotes the survival of retinal ganglion cells (RGCs) and greatly enhances axonal regeneration through a peripheral nerve graft. Neonatal thymectomy that results in elimination of T-cell production enhanced RGC survival after axotomy, but diminished the effect of intravitreal macrophage activation on axon regeneration. Thus, in F344 rats, lymphocytes appear to suppress RGC survival but augment the pro-regenerative effects of macrophages. The cytotoxic effect of lymphocytes on RGCs was confirmed in in vitro studies; coculture of retinal explants with lymphocytes led to a 60% reduction in viable RGCs. Similar in vivo results were obtained in Sprague Dawley rats. By comparison, in adult Lewis rats, neither RGC survival nor axonal regeneration was increased after intravitreal macrophage activation. Neonatal thymectomy had only a small beneficial effect on RGC survival, and although Lewis lymphocytes reduced RGC viability in culture, they did so to a lesser extent. Thus, in addition to a complex role of lymphocytes, particularly T-cells, after central nervous system injury, the present results demonstrate that the impact of macrophages is also influenced by genetic background.
Collapse
Affiliation(s)
- Jian-Min Luo
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou University Medical College, Shantou, PR China
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Hu Y, Arulpragasam A, Plant GW, Hendriks WTJ, Cui Q, Harvey AR. The importance of transgene and cell type on the regeneration of adult retinal ganglion cell axons within reconstituted bridging grafts. Exp Neurol 2007; 207:314-28. [PMID: 17689533 DOI: 10.1016/j.expneurol.2007.07.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 06/27/2007] [Accepted: 07/02/2007] [Indexed: 12/22/2022]
Abstract
When grafted onto the cut optic nerve, chimeric peripheral nerve (PN) sheaths reconstituted with adult Schwann cells (SCs) support the regeneration of adult rat retinal ganglion cell (RGC) axons. Regrowth can be further enhanced by using PN containing SCs transduced ex vivo with lentiviral (LV) vectors encoding a secretable form of ciliary neurotrophic factor (CNTF). To determine whether other neurotrophic factors or different cell types also enhance RGC regrowth in this bridging model, we tested the effectiveness of (1) adult SCs transduced with brain-derived neurotrophic factor (BDNF) or glial cell line-derived neurotrophic factor (GDNF), and (2) fibroblasts (FBs) genetically modified to express CNTF. SCs transduced with LV-BDNF and LV-GDNF secreted measurable and bioactive amounts of each of these proteins, but reconstituted grafts containing LV-BDNF or LV-GDNF transduced SCs did not enhance RGC survival or axonal regrowth. LV-BDNF modified grafts did, however, contain many pan-neurofilament immunolabeled axons, many of which were also immunoreactive for calcitonin gene-related peptide (CGRP) and were presumably of peripheral sensory origin. Nor-adrenergic and cholinergic axons were also seen in these grafts. There were far fewer axons in LV-GDNF engineered grafts. Reconstituted PN sheaths containing FBs that had been modified to express CNTF did not promote RGC viability or regeneration, and PN reconstituted with a mixed population of SCs and CNTF expressing FBs were less effective than SCs alone. These data show that both the type of neurotrophic factor and the cell types that express these factors are crucial elements when designing bridging substrates to promote long-distance regeneration in the injured CNS.
Collapse
Affiliation(s)
- Ying Hu
- School of Anatomy and Human Biology, The University of Western Australia, Crawley, WA 6009, Australia
| | | | | | | | | | | |
Collapse
|
39
|
Benowitz L, Yin Y. Rewiring the injured CNS: lessons from the optic nerve. Exp Neurol 2007; 209:389-98. [PMID: 17610877 PMCID: PMC2323976 DOI: 10.1016/j.expneurol.2007.05.025] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Accepted: 05/22/2007] [Indexed: 11/30/2022]
Abstract
The optic nerve offers a number of advantages for investigating mechanisms that govern axon regeneration in the CNS. Although mature retinal ganglion cells (RGCs) normally show no ability to regenerate injured axons through the optic nerve, this situation can be partially reversed by inducing an inflammatory response in the eye. The secretion of a previously unknown growth factor, oncomodulin, along with co-factors, causes RGCs to undergo dramatic changes in gene expression and regenerate lengthy axons into the highly myelinated optic nerve. By themselves, strategies that counteract inhibitory signals associated with myelin and the glial scar are insufficient to promote extensive regeneration in this system. However, combinatorial treatments that activate neurons' intrinsic growth state and overcome inhibitory signals result in dramatic axon regeneration in vivo. Because of the ease of introducing trophic factors, soluble receptors, drugs, or viruses expressing any gene or small interfering RNA of interest into RGCs, this system is ideal for identifying intracellular signaling pathways, transcriptional cascades, and ligand-receptor interactions that enable axon regeneration to occur in the CNS.
Collapse
Affiliation(s)
- Larry Benowitz
- Laboratories for Neuroscience Research in Neurosurgery and Neurobiology Program, Children's Hospital, Boston, MA 02115, USA.
| | | |
Collapse
|